直角三角形课堂练习

合集下载

三角形内角和课堂实录

三角形内角和课堂实录

三角形内角和课堂实录一、教学目标:1.通过“量一量”、“算一算”、“拼一拼”、“折一折”的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。

2.通过把三角形的内角和转化为平角进行探究实验,渗透“转化”的数学思想。

3.通过数学活动使学生获得成功的体验,增强自信心。

培养学生的创新意识、探索精神和实践能力。

二、教学重、难点:验证三角形的内角和是180°。

三、教学准备学生准备:每人准备直角三角形,锐角三角形,钝角三角形各一个教师准备:1张长方形纸,直角三角形,锐角三角形,钝角三角形,等腰三角形,等边三角形各一个。

四、教学过程(一):引入1、(教师拿出一张长方形纸)师:这是什么图形?生:长方形师:它有几个角?(4个)这4个角称为长方形的内角。

板书:内角教师标好角,这4个角的和,我们可以叫做长方形的内角和,板书:内角和。

师:长方形的内角和是多少度?(360度)。

你是怎么知道的?(长方形每个角都是直角,是90度,4X90=360度)。

2、师:我们把这个长方形延对角线对折,将它分开,分成的是什么图形?生:直角三角形。

师:它有几个内角?(3个),今天我们要来研究三角形的内角和。

你觉得三角形的内角和怎么理解?(三角形3个内角相加的度数)你认为这个直角三角形的内角和是多少度?(180度)你是怎么想的?(是长方形内角和的一半360÷2=180)师:长方形分成了两个一样的直角三角形,所以每个直角三角形的内角和是长方形的一半。

师:那么这两个锐角的和角应该是多少度?生:90度师:你怎么想的?生:这个直角三角形的内角和是180度,减掉一个直角90度,剩下的两个角的和是90度。

3、教师将剪下的两个直角三角形拼成一个三角形师:现在拼成的图形是什么?(还是三角形)师:它的内角和是多少度?(180度)师:你是怎么想的?生:三角形的内角和都是180度。

师:三角形的内角和都是180度,你验证过了吗?(没有)那你有什么理由说这个三角形的内角和是180度?生:这两个直角三角形可以拼成长方形,内角和是360度,中间两个直角被拼掉了,少了180度,剩下的角就是180度。

教学课件_解直角三角形(第1课时)_2

教学课件_解直角三角形(第1课时)_2
AC 2
∴∠A=60° , ∠B=90°-∠A=90°- 60°=30°, AB=2AC=2 2 .
巩固练习
1.在下列直角三角形中不能求解的是( D ) A.已知一直角边一锐角 B.已知一斜边一锐角
C.已知两边
D.已知两角
2.在Rt△ABC中,∠C=90°,若BC=1,AB= 5 ,则
tan A的值为( C )
新知讲解
对于问题(2),当梯子底端距离墙面2.4m时,求梯子与
地面所成的角a的问题,可以归结为:在Rt△ABC中,已
知AC=2.4,斜边AB=6,求锐角a的度数
由于 cosa
AC AB
2.4 6
0.4
B
利用计算器求得 a≈66° ∴当梯子底墙距离墙面2.4m时,梯子与地面
α AC
所成的角大约是66°
巩固练习
5.如图,BD是△ABC的高,AB=6, AC=5 3 ,∠A=30°.
(1)求BD和AD的长; (2)求tan C的值.
解:(1)∵BD⊥AC,∴∠ADB=∠BDC=90°
∴sin A= BD,cos A= AD
AB
∵AB=6∠A=30°
AB
∴BD=3,AD=3 3
(2)∵AC=5 3 ∴CD=2 3 在Rt△BCD中,tan C=
(2)锐角之间的关系: ∠ A+ ∠ B= 90º;
(3)边角之间的关系:

a sinA= c
b cosA= c
tanA= a
b (4)面积公式:S▲ABC
1 2
a•b
1 2
c•h

c a
bC
例题讲解
例1 如图,在Rt△ABC中,∠C=90°,AC= ,2BC= ,6解这个直 角三角形.

人教版2020年九年级中考数学一轮复习 第15讲 三角形(有答案)

人教版2020年九年级中考数学一轮复习  第15讲 三角形(有答案)

第十五节三角形【知识点梳理】一、三角形1、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做(简称)。

2.三角形的中位线三角形的中位线平行于,并且等于.3.三角形的三边关系定理及推论三角形三边关系:任意两边之和第三边;任意两边之差第三边.4、三角形的内角和定理及推论1.三角形内角和:三角形三内角之和等于.2.三角形外角的性质:(1)三角形的一个外角任何一个和它不相邻的内角;(2)三角形的一个外角与它不相邻的两内角之和.1.三角形的分类:(1)按边分:三角形分为和等腰三角形;等腰三角形又分为及 .(2)按角分:三角形和斜三角形;斜三角形又分为:和 .答案:一、三角形1、三角形中的主要线段(1)三角形的角平分线。

(2)三角形的中线。

(3)三角形的高线(简称三角形的高)。

2.三角形的中位线:三角形的第三边,并且等于第三边长的一半.3.三角形的三边关系定理及推论:任意两边之和大于第三边;任意两边之差小于第三边.4、三角形的内角和定理及推论1. 180°.2.三角形外角的性质:(1)大于;(2)等于.1.三角形的分类:(1)按边分:三角形分为不等边三角形和等腰三角形;等腰三角形又分为底和腰不等的三角形及等边三角形.(2)按角分:三角形直角三角形和斜三角形;斜三角形又分为:锐角三角形和钝角三角形.【课堂练习】一.选择题(共9小题)1.三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线【考点】K3:三角形的面积;K2:三角形的角平分线、中线和高.【分析】根据等底等高的三角形的面积相等解答.【解答】解:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.2.如图,△ABC中,D,E两点分别在AB,BC上,若AD:DB=CE:EB=2:3,则△DBE与△ADC的面积比为()A.3:5 B.4:5 C.9:10 D.15:16【考点】K3:三角形的面积.【分析】根据三角形面积求法进而得出S△BDC:S△ADC=3:2,S△BDE:S△DCE=3:2,即可得出答案.【解答】解:∵AD:DB=CE:EB=2:3,∴S△BDC:S△ADC=3:2,S△BDE:S△DCE=3:2,∴设S△BDC=3x,则S△ADC=2x,S△BED=1.8x,S△DCE=1.2x,故△DBE与△ADC的面积比为:1.8x:2x=9:10.故选:C.3.如图,已知在Rt△ABC中,∠C=90°,AC=BC,AB=6,点P是Rt△ABC的重心,则点P到AB所在直线的距离等于()A.1 B.3C.32D.2【考点】K5:三角形的重心;KW:等腰直角三角形.【分析】连接CP并延长,交AB于D,根据重心的性质得到CD是△ABC的中线,PD=CD,根据直角三角形的性质求出CD,计算即可.【解答】解:连接CP并延长,交AB于D,∵P是Rt△ABC的重心,∴CD是△ABC的中线,PD=CD,∵∠C=90°,∴CD=AB=3,∵AC=BC,CD是△ABC的中线,∴CD⊥AB,∴PD=1,即点P到AB所在直线的距离等于1,故选:A.4.三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平行线的交点【考点】K5:三角形的重心.【分析】根据三角形的重心是三条中线的交点解答.【解答】解:三角形的重心是三条中线的交点,故选:A.5.如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连接CO并延长交AB于点E,过点E作EF⊥AB交BC于点F,连接AF交CE于点M,则MOMF的值为()A.12B.54C.23D.33【考点】K5:三角形的重心;S9:相似三角形的判定与性质.【分析】根据三角形的重心性质可得OC=CE,根据直角三角形的性质可得CE=AE,根据等边三角形的判定和性质得到CM=CE,进一步得到OM=CE,即OM=AE,根据垂直平分线的性质和含30°的直角三角形的性质可得EF=AE,MF=EF,依此得到MF=AE,从而得到的值.【解答】解:∵点O是△ABC的重心,∴OC=CE,∵△ABC是直角三角形,∴CE=BE=AE,∵∠B=30°,∴∠FAE=∠B=30°,∠BAC=60°,∴∠FAE=∠CAF=30°,△ACE是等边三角形,∴CM=CE,∴OM=CE﹣CE=CE,即OM=AE,∵BE=AE,∴EF=AE,∵EF⊥AB,∴∠AFE=60°,∴∠FEM=30°,∴MF=EF,∴MF=AE,∴==.故选:D.6.长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.4 B.5 C.6 D.9【考点】K6:三角形三边关系.【分析】已知三角形的两边长分别为2和7,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围,再结合选项选择符合条件的.【解答】解:由三角形三边关系定理得7﹣2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选:C.7.已知a,b,c是△ABC的三条边长,化简|a+b﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.0【考点】K6:三角形三边关系.【分析】先根据三角形的三边关系判断出a﹣b﹣c与c﹣b+a的符号,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c为△ABC的三条边长,∴a+b﹣c>0,c﹣a﹣b<0,∴原式=a+b﹣c+(c﹣a﹣b)=0.故选D.8.若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6 B.7 C.11 D.12【考点】K6:三角形三边关系.【分析】首先求出三角形第三边的取值范围,进而求出三角形的周长取值范围,据此求出答案.【解答】解:设第三边的长为x,∵三角形两边的长分别是2和4,∴4﹣2<x<2+4,即2<x<6.则三角形的周长:8<C<12,C选项11符合题意,故选C.9.如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为()A.54°B.62°C.64°D.74°【考点】K7:三角形内角和定理;JA:平行线的性质.【分析】根据平行线的性质得到∠C=∠AED=54°,根据三角形的内角和即可得到结论.【解答】解:∵DE∥BC,∴∠C=∠AED=54°,∵∠A=62°,∴∠B=180°﹣∠A﹣∠C=64°,故选C.二.填空题(共5小题)10.在△ABC中,已知BD和CE分别是边AC、AB上的中线,且BD⊥CE,垂足为O.若OD=2cm,OE=4cm,则线段AO的长度为cm.【考点】K5:三角形的重心;KQ:勾股定理.【分析】连接AO并延长,交BC于H,根据勾股定理求出DE,根据三角形中位线定理求出BC,根据直角三角形的性质求出OH,根据重心的性质解答.【解答】解:连接AO并延长,交BC于H,由勾股定理得,DE==2,∵BD和CE分别是边AC、AB上的中线,∴BC=2DE=4,O是△ABC的重心,∴AH是中线,又BD⊥CE,∴OH=BC=2,∵O是△ABC的重心,∴AO=2OH=4,故答案为:4.11.在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.【考点】K7:三角形内角和定理.【分析】直接用一个未知数表示出∠A,∠B,∠C的度数,再利用三角形内角和定理得出答案.【解答】解:∵∠A:∠B:∠C=2:3:4,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.12.如图,BC∥EF,AC∥DF,添加一个条件,使得△ABC≌△DEF.【考点】KB:全等三角形的判定.【分析】本题要判定△ABC≌△DEF,易证∠A=∠EDF,∠ABC=∠E,故添加AB=DE、BC=EF或AC=DF根据ASA、AAS即可解题.【解答】解:∵BC∥EF,∴∠ABC=∠E,∵AC∥DF,∴∠A=∠EDF,∵在△ABC和△DEF中,,∴△ABC≌△DEF,同理,BC=EF或AC=DF也可证△ABC≌△DEF.故答案为AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可).13.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=12 AC•BD.正确的是(填写所有正确结论的序号)【考点】KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【分析】①证明△ABC≌△ADC,可作判断;②③由于AB与BC不一定相等,则可知此两个选项不一定正确;④根据面积和求四边形的面积即可.【解答】解:①在△ABC和△ADC中,∵,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC,故①结论正确;②∵△ABC≌△ADC,∴∠BAC=∠DAC,∵AB=AD,∴OB=OD,AC⊥BD,而AB与BC不一定相等,所以AO与OC不一定相等,故②结论不正确;而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;故③结论不正确;④∵AC⊥BD,∴四边形ABCD的面积S=S△ABD+S△BCD=BD•AO+BD•CO=BD•(AO+CO)=AC•BD.故④结论正确;所以正确的有:①④;故答案为:①④.14.如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是.【考点】KI:等腰三角形的判定.【分析】分三种情况讨论:先确定特殊位置时成立的x值,①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,构建腰长为4的等腰直角△OMC,和半径为4的⊙M,发现M在点D的位置时,满足条件;③如图3,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可.【解答】解:分三种情况:①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴OM=4,当M与D重合时,即x=OM﹣DM=4﹣4时,同理可知:点P恰好有三个;③如图3,取OM=4,以M为圆心,以OM为半径画圆,则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或x=4﹣4或4.故答案为:x=0或x=4﹣4或4.三.解答题(共9小题)15.如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定即可求证:△ADF≌△BCE【解答】解:∵AE=BF,∴AE+EF=BF+EF,在△ADF与△BCE中,∴△ADF≌△BCE(SAS)16.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【考点】KD:全等三角形的判定与性质.【分析】可通过证△ABF≌△DCE,来得出∠A=∠D的结论.【解答】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE;(SAS)17.如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.【考点】KD:全等三角形的判定与性质.【分析】首先由BE=CF可以得到BC=EF,然后利用边角边证明△ABC≌△DEF,最后利用全等三角形的性质和平行线的判定即可解决问题.【解答】证明:∵AB∥CD,∴∠ABC=∠DEF,又∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴AC∥DF.18.已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形;【解答】解:(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL)19.如图,△ABC中,∠ACB=90°,AC=BC,点E是AC上一点,连接BE.(1)如图1,若AB=4,BE=5,求AE的长;(2)如图2,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD、CF,当AF=DF时,求证:DC=BC.【考点】KD:全等三角形的判定与性质;KQ:勾股定理.【分析】(1)根据等腰直角三角形的性质得到AC=BC=AB=4,根据勾股定理得到CE==3,于是得到结论;(2)根据等腰直角三角形的性质得到∠CAB=45°,由于∠AFB=∠ACB=90°,推出A,F,C,B四点共圆,根据圆周角定理得到∠CFB=∠CAB=45°,求得∠DFC=∠AFC=135°,根据全等三角形的性质即可得到结论.【解答】解:(1)∵∠ACB=90°,AC=BC,∴AC=BC=AB=4,∵BE=5,∴CE==3,∴AE=4﹣3=1;(2)∵∠ACB=90°,AC=BC,∴∠CAB=45°,∵AF⊥BD,∴∠AFB=∠ACB=90°,∴A,F,C,B四点共圆,∴∠CFB=∠CAB=45°,∴∠DFC=∠AFC=135°,在△ACF与△DCF中,,∴△ACF≌△DCF,∴CD=AC,∵AC=BC,∴AC=BC.20.在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)由等腰直角三角形的性质得出∠BAC=∠B=45°,∠PAB=45°﹣α,由直角三角形的性质即可得出结论;(2)连接AQ,作ME⊥QB,由AAS证明△APC≌△QME,得出PC=ME,△MEB是等腰直角三角形,由等腰直角三角形的性质即可得出结论.【解答】解:(1)∠AMQ=45°+α;理由如下:∵∠PAC=α,△ACB是等腰直角三角形,∴∠BAC=∠B=45°,∠PAB=45°﹣α,∵QH⊥AP,∴∠AHM=90°,∴∠AMQ=180°﹣∠AHM﹣∠PAB=45°+α;(2)PQ=MB;理由如下:连接AQ,作ME⊥QB,如图所示:∵AC⊥QP,CQ=CP,∴∠QAC=∠PAC=α,∴∠QAM=45°+α=∠AMQ,∴AP=AQ=QM,在△APC和△QME中,,∴△APC≌△QME(AAS),∴PC=ME,∴△MEB是等腰直角三角形,∴PQ=MB,∴PQ=MB.21.如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.【考点】KH:等腰三角形的性质;KG:线段垂直平分线的性质.【分析】(1)证得△ABE≌△ACD后利用全等三角形的对应角相等即可证得结论;(2)利用垂直平分线段的性质即可证得结论.【解答】解:(1)∠ABE=∠ACD;在△ABE和△ACD中,,∴△ABE≌△ACD,∴∠ABE=∠ACD;(2)∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC.22.如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,在运动过程中:(1)求证:△APR,△BPQ,△CQR的面积相等;(2)求△PQR面积的最小值;(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=90°?若存在,请直接写出t的值;若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)先利用锐角三角函数表示出QE=4t,QD=3(2﹣t),再由运动得出AP=3t,CR=4t,BP=3(2﹣t),AR=4(2﹣t),最后用三角形的面积公式即可得出结论;(2)借助(1)得出的结论,利用面积差得出S△PQR=18(t﹣1)2+6,即可得出结论;(3)先判断出∠DQR=∠EQP,用此两角的正切值建立方程求解即可.【解答】解:(1)如图,在Rt△ABC中,AB=6,AC=8,根据勾股定理得,BC=10,sin∠B===,sin∠C=,过点Q作QE⊥AB于E,在Rt△BQE中,BQ=5t,∴sin∠B==,∴QE=4t,过点Q作QD⊥AC于D,在Rt△CDQ中,CQ=BC﹣BQ=10﹣5t,∴QD=CQ•sin∠C=(10﹣5t)=3(2﹣t),由运动知,AP=3t,CR=4t,∴BP=AB﹣AP=6﹣3t=3(2﹣t),AR=AC﹣CR=8﹣4t=4(2﹣t),∴S△APR=AP•AR=×3t×4(2﹣t)=6t(2﹣t),S△BPQ=BP•QE=×3(2﹣t)×4t=6t(2﹣t),S△CQR=CR•QD=×4t×3(2﹣t)=6t(2﹣t),∴S△APR=S△BPQ=S△CQR,∴△APR,△BPQ,△CQR的面积相等;(2)由(1)知,S△APR=S△BPQ=S△CQR=6t(2﹣t),∵AB=6,AC=8,∴S△PQR=S△ABC﹣(S△APR+S△BPQ+S△CQR)=×6×8﹣3×6t(2﹣t)=24﹣18(2t﹣t2)=18(t﹣1)2+6,∵0≤t≤2,∴当t=1时,S△PQR最小=6;(3)存在,由(1)知,QE=4t,QD=3(2﹣t),AP=3t,CR=4t,AR=4(2﹣t),∴BP=AB﹣AP=6﹣3t=3(2﹣t),AR=AC﹣CR=8﹣4t=4(2﹣t),过点Q作QD⊥AC于D,作QE⊥AB于E,∵∠A=90°,∴四边形APQD是矩形,∴AE=DQ=3(2﹣t),AD=QE=4t,∴DR=|AD﹣AR|=|4t﹣4(2﹣t)|=|4(2t﹣2)|,PE=|AP﹣AE|=|3t﹣3(2﹣t)|=|3(2t﹣2)|∵∠DQE=90°,∠PQR=90°,∴∠DQR=∠EQP,∴tan∠DQR=tan∠EQP,在Rt△DQR中,tan∠DQR==,在Rt△EQP中,tan∠EQP==,∴,∴16t=9(2﹣t),∴t=.23.如图1,在△ABC中,设∠A、∠B、∠C的对边分别为a,b,c,过点A作AD⊥BC,垂足为D,会有sin∠C=,则S△ABC=BC×AD=×BC×ACsin∠C=absin∠C,即S△ABC=absin∠C同理S△ABC=bcsin∠AS△ABC=acsin∠B通过推理还可以得到另一个表达三角形边角关系的定理﹣余弦定理:如图2,在△ABC中,若∠A、∠B、∠C的对边分别为a,b,c,则a2=b2+c2﹣2bccos∠Ab2=a2+c2﹣2accos∠Bc2=a2+b2﹣2abcos∠C用上面的三角形面积公式和余弦定理解决问题:(1)如图3,在△DEF中,∠F=60°,∠D、∠E的对边分别是3和8.求S△DEF和DE2.解:S△DEF=EF×DFsin∠F=;DE2=EF2+DF2﹣2EF×DFcos∠F=.(2)如图4,在△ABC中,已知AC>BC,∠C=60°,△ABC'、△BCA'、△ACB'分别是以AB、BC、AC为边长的等边三角形,设△ABC、△ABC'、△BCA'、△ACB'的面积分别为S1、S2、S3、S4,求证:S1+S2=S3+S4.【考点】KY:三角形综合题.【分析】(1)直接利用正弦定理和余弦定理即可得出结论;(2)方法1、利用正弦定理得出三角形的面积公式,再利用等边三角形的性质即可得出结论;方法2、先用正弦定理得出S1,S2,S3,S4,最后用余弦定理即可得出结论.【解答】解:(1)在△DEF中,∠F=60°,∠D、∠E的对边分别是3和8,∴EF=3,DF=8,∴S△DEF=EF×DFsin∠F=×3×8×sin60°=6,DE2=EF2+DF2﹣2EF×DFcos∠F=32+82﹣2×3×8×cos60°=49,故答案为:6,49;(2)证明:方法1,∵∠ACB=60°,∴AB2=AC2+BC2﹣2AC•BCcos60°=AC2+BC2﹣AC•BC,两边同时乘以sin60°得,AB2sin60°=AC2sin60°+BC2sin60°﹣AC•BCsin60°,∵△ABC',△BCA',△ACB'是等边三角形,∴S1=AC•BCsin60°,S2=AB2sin60°,S3=BC2sin60°,S4=AC2sin60°,∴S2=S4+S3﹣S1,∴S1+S2=S3+S4,方法2、令∠A,∠B,∠C的对边分别为a,b,c,∴S1=absin∠C=absin60°=ab∵△ABC',△BCA',△ACB'是等边三角形,∴S2=c•c•sin60°=c2,S3=a•a•sin60°=a2,S4=b•b•sin60°=b2,∴S1+S2=(ab+c2),S3+S4=(a2+b2),∵c2=a2+b2﹣2ab•cos∠C=a2+b2﹣2ab•cos60°,∴a2+b2=c2+ab,∴S1+S2=S3+S4.。

初中数学人教版八年级上册含30°角的直角三角形的性质

初中数学人教版八年级上册含30°角的直角三角形的性质
人教版八年级数学上册
第十三章 轴对称
13.3.2 等边三角形
第2课时 含30°角的直角三角形的性质
导入新课
讲授新课
当堂练习
课堂小结
湖北省襄阳市三十一中 刘晓琼
学习目标
1.探索含30°角的直角三角形的性质.(重点) 2.会用含30°角的直角三角形的性质进行有关的证明和计 算.(难点)
导入新课
问题引入
讲授新课
一 含30°角的直角三角形的性质
如图,△ADC是△ABC的轴对称图形, A
因此AB=AD, ∠BAD=2×30°=60°, 从而△ABD是一个等边三角形. 再由AC⊥BD,
1
可得BC=CD= 2 AB. 性质:
在直角三角形中,如果一 B
C
D
个锐角等于30°,那么它所对 的直角边等于斜边的一半.
∵∠B=∠ACB=15° (已知),
∴∠DAC= ∠B+ ∠ACB= 15°+15°=30°,
11 ∴CD= 2 AC= 2
在直角三角形中,如果一个锐角等于30°,

内 容 那么它所对的直角边等于斜边的一半

的 直 角
使用 要点
找准30 °的角所对的直角边,点明斜边

你还能用其他 方法证明吗?
证法欣赏
已知:如图,在Rt△ABC 中,∠C =90°,∠A =30°.
求证:BC = 1 AB. 2
证法1:在△ABC 中, ∵ ∠C =90°,∠A =30°,
证明方法: A 倍长法
∴ ∠B =60°.
延长BC 到D,使BD =AB,
连接AD,
则△ABD 是等边三角形.
22
又AD=
1

直角三角形的三边关系.doc

直角三角形的三边关系.doc

直角三角形的三边关系(复习)一.知识要点1.直角三角形边角关系.(1)三边关系:勾股定理:。

2+歹=疽(2)三角关系:ZA+ZB+ZC=180° ,ZA+ZB =ZC=90° .(3)边角美系 tanA二一,s inA——, cosA——, b c c2.解法分类:(1)已知斜边和一个锐角解直角三角形;(2)已知一条直角边和一个锐角解直角三角形;(3)已知两边解直角三角形.3.解直角三角形的应用:关键是把实际问题转化为数学问题来解决解直角三角形的应用,主要是测量两点间的距离,测量物体的高度等,常用到下面几个概念:(1)仰、俯角:视线与水平线所成的角中,视线在水平线上方叫做仰角,在水平线下方叫做俯角(2)坡度:坡面的铅直高度h与水平宽度1的比叫做坡度,常用字母i表示,即i=,(3)坡角:坡面与水平面的夹角叫做坡角,用字母a表示,则tan(x=¥(4)方向角:指北或指南方向线与目标方向线所成的小于90。

的角o(5)方位角:从某点的指北方向线,按顺时针方向转到目标方向线所成的角。

二、课堂练习1、如图,在平面直角坐标系中,已知点A (3, 0)点 B (0, -4),贝ij cosZOAB 等于2、.如图ZXABC电匕C=90° ,A B=8,tanA=4/3 B则AC的长是3、在 RtAABC 中ZC=90° sinA= 4/5则cosB的值等于t4、在正方形网格中,AABC的位置如图所示,则sinB的值为 A C5、如图,在四边形ABCD中,E、F分别是 AB、AD 的中点,若 EF二2, BC二5, CD二3,则tanC等于6.如图,在矩形ABCD中,DE1AC于E,设匕 ADE 二。

,且 cosa = 2, AB 二 4,则 AD 的长为57.如图4,已知正方形刃时的边长为2,如果将线段以绕着点〃旋转后,点〃落在似的延长线上的〃'处,那么tan匕BAD'等于8.比较下列三角函数值的大小:sin40°sin50°9.若是锐角,cosA > VT ,则匕A应满足10.已知ZA为锐角且sinA=1/4,则( )A. 0°< ZA<30°B. 30°< ZA<45°图4C. 45°< ZA<60°D. 60°< ZA<90°11、计算:(-r2-(V3-V2)° +2sin30°+|-312、外国船只,除特许外,不得进入我国海洋100海里以内的区域。

全等三角形判定的复习课

全等三角形判定的复习课

2013年10月29日星期二
1、已知两边
例题1:如图AD=AE,点D、E在BC上,BD=CE ∠1=∠2,试说明ΔABD≌ ΔACE
A
1
B D
2
E
C
2013年10月29日星期二
2、一边一角
例题2:如图点E、F在上BC上,BE=CF,AB=DC, ∠B=∠C,试说明ΔABC≌ ΔDCE.
A
D
B
E
F
②已有什么
③还缺什么
④创造条件
2013年10月29日星期二
同学们 再见
复习课
虞城县小侯初中吴凤勤
知识点
全 等 三 角 形 定义:能够 的两个三角形 、对应 。 、 。 也对应相等。 、 。 、 的方 对应元素:对应_____、对应 性质:全等三角形的对应边 全等三角形的 、 判定: 、 、 全等三角形的画图: 利用直尺和圆规,根据 、 、 法都可画出与已知三角形全等的三角形。
点评:证明一条线段是其它两条线段的和,一般可在较长线段上截一线段,使它与 两条线段中的一条相等,再证剩下的线段与另一段相等,这种方法叫截长法;或将 两线段中的一条延长,使延长部分等于另一线段,再证它与较长线段相等,这种方 法叫补短法。
2013年10月29日星期二
小结
1、要说明两个三角形全等,要结合题目的条件和结论,选择恰 当的判定方法 2、全等三角形,是说明两条线段或两个角相等的重要方法之一, 说明时 ①要观察待说明的线段或角,在哪两个可能全等的三角形中。 ②分析要说明两个三角形全等,已有什么条件,还缺什么条 件。 ③有公共边的,公共边一般是对应边, 有公共角的,公共角 一般是对应角,有对顶角的,对顶角一般是对应角 总之,说明理由的过程中能用简单方法的就不要绕弯路。

直角三角形三边关系


52+122=132
在右图(书本 109页做一做)的方 格图中,用三角尺 化出两条直角边分 别为5cm、12cm的 直角三角形,然后 用刻度尺量出斜边, 并验证刚才得到的 直角三角形三边的 关系是否成立。
13
12
5 (每一小格代表1平方厘米)
概括
在西方又称毕达
勾股定理(gou-gu 哥t拉he斯or定em理)!
勾股定理从被发现到现在已有五千年的历史,远在公元前三千 年的巴比伦人就知道和应用它了。我国古代也发现了这个定理,据 《周髀算经》记载,商高(公元前1120年)关于勾股定理已有明确的 认识,《周髀算经》中有商高答周公的话:“勾广三,股修四,径隅 五。”同书中还有另一为学者陈子(公元前六七世纪)与荣方的一段 对话:“求邪(斜)至日者,以日下为勾,日高为股,勾、股各自乘, 并而开方除之,得邪(斜)至日”即
B
A
C D
7cm
4、已知∠ACB=90°, A
CD⊥AB,AC=3,BC=4.
D
求CD的长.
3
C
4
B
1、这节课你学到了什么知识? 如果直角三角形两直角边分别为a,b,斜边为c, 那么 a2 + b2 = c2 即直角三角形两直角边的平方和 等于斜边的平方(勾股定理)
2、你是通过什么方法得出这一结论的? 通过数格子和割补法求面积
1、求出下列直角三角形中未知边的长度。
10 6
x
24 x
25
2、如果一个直角三角形的两条边长分别是3厘米和4 厘米,那么这个三角形的周长是多少厘米?
可要当心噢!
3、如图,所有的四边形都是正方形,所有的三角形 都是直角三角形,其中最大的正方形的边长为7cm,则 正方形A,B,C,D的面积之和为_____4_9_____cm2。

冀教版八上数学 直角三角形全等的判定


复习引入
1.全等三角形的性质: 对应角相等,对应边相等. 2.判别两个三角形全等的方法:
SSS
SAS ASA
AAS
讲授新课
用“HL”判定三角形全等
在一个三角形中,由勾股定理可知:如果两条边确定, 那么第三条也随之确定.由此可以得出直角三角形的新的判定 方法.
我们已经知道,三边对应相等的两个三角形全等.由勾股 定理可知:两边对应相等的两个直角三角形,其第三条也一 定相等.
证明: ∵ BF⊥AC,DE⊥AC,
∴∠BFA=∠DEC=90 °.
∵AE=CF, ∴AE+EF=CF+EF.
即AF=CE.
在Rt△ABF和Rt△CDE中,
AB=CD,
A
E
B
F
C
AF=CE.
∴ Rt△ABF≌Rt△CDE(HL).
D∴BF=DE.课源自小结内容斜边和一条直角边对应相等 的两个直角三角形全等.
2.如图 在△ABC中,已知BD⊥AC,CE ⊥AB,BD=CE.求
证:△EBC≌△DCB.
A
证明: ∵ BD⊥AC,CE⊥AB,
∴∠BEC=∠BDC=90 °. 在 Rt△EBC 和Rt△DCB 中,
CE=BD,
E
D
BC=CB .
∴ Rt△EBC≌Rt△DCB (HL). B
C
3.如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF.求证:BF=DE.
∵AB=A'B',AC=A'C',
B
∴BC=B'C'.
∴△ABC≌△A'B'C'(SSS).
C C'
B'

特殊三角形性质

求:∠A,BC。
12.如图,△ABC中,∠C=90°,点D在AC上,已知∠BDC=45°,BD= ,AB=20.求∠A的度数。
13.(2010•雅安)如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN。
10.如图,在△ABC中,∠B=∠C,D在BC上,∠BAD=50°AE=AD,则∠EDC的度数为()
A.15°B. 25°C. 30°D. 50°
11.如图,△ABC中,∠B=45°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=18㎝,求△DEB的周长。
12.在△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB、BC于D、E.若∠CAB=∠B+30°,求∠AEB.
勾股定理:直角三角形斜边的平方等于两直角边的平方和。
【经典例题】
【例1】已知:如图,在△ABC中,∠A=45°,AC= ,AB= ,CD⊥AB,求BC边的长。
【例2】已知:如图,在△ABC中,∠A=30°,∠ACB=90°,M、D分别为AB、MB的中点.
求证:CD⊥AB。
【例3】如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.
9.把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3 cm,BC=5 cm,则重叠部分△DEF的面积是cm2。
10.已知 三内角 的对边分别为 ,给出以下条件: ① 的度数之此为 ; ② =
③ ④
其中不能推导出 为直角三角形的条件是(写序号即可)。
11.在△ABC中,BD⊥AC,垂足为D点,已知,AB=8,AD=4,∠ABC=75°.

数学沪科版八年级(上册)15.3第3课时直角三角形中30°角的性质定理

第15章 轴对称图形与等腰三角形
15.3 等腰三角形
第3课时 直角三角形中30°角的性质定理
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.探索含30°角的直角三角形的性质.(重点) 2.会运用含30°角的直角三角形的性质进行有关的 证明和计算.(难点)
导入新课
问题引入
问题1 如图,将两个相同的含30°角的三角尺摆放在 一起,你能借助这个图形,找到Rt△ABC的直角边BC 与斜边AB之间的数量关系吗?
×3.7=1.85
(m).
答:立柱BC的长是3.7m,DE的长是1.85m.
例5 已知:等腰三角形的底角为15 °,腰长为20.求腰上
的高.
D A
B
)15 °
15 ° C
解:过C作CD⊥BA,交BA的延长线于点D.
∵∠B=∠ACB=15° (已知),
∴∠DAC= ∠B+ ∠ACB= 15°+15°=30°,
这艘轮船上午8:00从A处出发,10:00到达B处,从B
处测得一礁石C在北偏西60°的方向上.
(1)画出礁石C的位置;
(2)求出B处到礁石C的距离.
M
解:(1)如图,以B为顶点,向北偏西60° C
作角, 这角一边与AM交于点C,
D
60° B
30°
则C为礁石所在地;
A
(2)∵∠DBC=∠BAC+∠ACB,
则△ABD 是等边三角形. 又∵AC⊥BD, ∴BC = 1 BD.
2
∴ BC = 1 AB.
2
B
C
D
证明2: 在BA上截取BE=BC,连接EC.
∵ ∠B= 60° ,BE=BC. ∴ △BCE是等边三角形,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直角三角形课堂练习
1、三角形的内角和为 度。
2、有 边相等的三角形叫做等腰三角形,在一个三角形中,等边对 。
3、在△ABC中,若∠C=90°,则∠A+∠B= 。

4、如图,CD是Rt△ABC斜边上的高.请找出图中各对互余的角.

5、如图,在等腰直角三角形ABC中,AD是斜边BC上的高,则AD=BD
=CD。请说明理由。

6、已知,如5图,AD=BD=CD,AD是BC边上的高,则AB=AC。请说明理由。

7、已知,如5图,AD=BD=CD,∠B=45°,请说明△ABC是等腰直角三角形。
8、已知三角形的三个内角之比为1:2:3,则该三角形是 三角形。
9、在△ABC中,∠A=90°,∠B=3∠C,求∠B,∠C的度数。

10、在直角三角形中,两锐角之比为2:3,则较大的锐角为 。
11、如右图,在Rt△ABC中,AB=AC,AD是斜边BC上的高,
则图中共有等腰直角三角形 个

相关文档
最新文档