黔东南州2017年小学毕业文化水平第8次模拟测试 数学

合集下载

黔东南州2017—2018学年度第二学期七年级数学期末文化水平测试

黔东南州2017—2018学年度第二学期七年级数学期末文化水平测试

黔东南州2017—2018学年度第二学期期末文化水平测试七年级数学试卷(本试卷共26个小题,满分150分,考试时间120分钟)注意事项:1.答题时,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,只需将答题卡交回,试题卷由考生自己留存。

一、选择题:(每题4分,10个小题共40分) 1.9的值为 A. 3 B. 3-C. 3±D. 92. 如图,AB ∥CD ,∠A=o70,则∠1的度数是A. o70 B. o100C. o110 D. o1303. 下列等式成立的是 A. 6)6(2-=-B. 749±=C.b a b a +=+D.51253-=-4. 下列调查中适合采用全面调查的是 A. 调查市场上某种白酒的塑化剂的含量 B. 调查鞋厂生产的鞋底能承受弯折次数 C. 了解某火车的一节车厢内感染流感病毒的人数 D. 了解某城市居民收看北京卫视的时间5. 如图,点E 在AC 的延长线上,下列条件中能判断AC ∥BD 的是 A. ∠1=∠2B. ∠3=∠4C. ∠A=∠DCED. ∠A+∠ACD=o1806. 线段CD 是由线段AB 平移得到,点A (-2,3)的对应点为 C (3,-2),则点B (-1,-2)的对应点D 的坐标为 A.(4,-7) B. (-2,-7)C. (4,-2)D. (-7,4)7. 小明在某商店购买商品A 、B 共两次,这两次购买商品A 、B 的数量和费用如下表:若小丽需要购买3个商品A 和2个商品B ,则她要花费A. 64元B. 65元C. 66元D. 67元 8. 如图,AB ∥CD ,则∠A+∠E+∠F+∠C 等于A.o720 B. o540 C. o360 D. o1809. 如果不等式组⎩⎨⎧<->b x x 2无解,则b 的取值范围是A.2->bB. 2-<bC. 2-≥bD. 2-≤b10. 已知115+的整数部分为a ,115-的小数部分为b ,则b a +的值为 A.10 B. 112 C.1211- D. 1112-二、填空题:(每个小题4分,8个小题共32分)11. 在实数:21,0,0.25,2,π,3.14,3π,••21.0,0.1010010001…(相邻两个1之间0的个数逐次加1)中,是无理数的是_________.12. 若点P (a ,3)在第二象限,则点P '(-2,a -)在第_____象限. 13. 如图,直线AB 、CD 相交于点O ,OE ⊥AB ,若∠1=20,则∠2=___________.14. 如图,半径为1的圆形纸片上的点A 与数轴上表示1-的点重合, 若将该圆形纸片沿数轴顺时针滚动一周(无滑动)后,点A 与数 轴上的点A '重合,则点A '表示的数为__________.15. 若实数x 、y 满足05342=--+-+y x y x ,则y x 2-=_____.16. 若关于x 、y 的二元一次方程组⎩⎨⎧=-=+523ay x y x 的解是⎩⎨⎧==1y bx ,则ba 的值为____________.17. 某超市对某种商品促销,将定价为5元的商品,以下列方式优惠销售:若购买不超过3件,按原价付款;若一次性购买3件以上,超过部分打八折.现有55元钱,最多可购买该商品的件数是 ___________.18. 观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式 17=9+8,…,按此规律猜想第六个等式是___________. 三、解答题:(8个小题,共78分) 19. (8分)计算:492327)3(32------购买商品A 的数量(个) 购买商品B 的数量(个) 购买总费用(元)第一次购物 4 3 93第二次购物66162ABCD╭1 (第2题图)A BCD E F(第8题图)(第14题图))╯╭ (13 4 2(第5题图)D A BCD OE(第13题图)(╮ 1 220. (8分)解方程组:⎩⎨⎧=-=+33651643y x y x .21. (10分)解不等式组⎪⎩⎪⎨⎧-≥++>-312121502x x x ,并把它的解集在数轴上表示出来.22. (10分)如图,A 、B 、C 三点坐标分别为(2,4)、(1,1)、(4,2),△ABC 中任意一点 P (0x ,0y )经过平移后对应点为1P (30-x ,20-y ),将△ABC 作同样的平移得到111C B A ∆. (1)写出点1A 、1B 、1C 的坐标,并画出111C B A ∆; (2)求111C B A ∆的面积.23. (10分)如图,AB ⊥BD 于点B ,点E 是BD 上的点,AE 平分∠BAC ,CE 平分∠ACD ,若∠1+∠2=o90.求证:CD ⊥BD.24. (10分)阅读对学生的成长有着深远的影响,某中学为了解学生每周课外阅读的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表.请根据图表中的信息,解答下列问题: (1)表中a =_________,b =_________; (2)将频数分布直方图补全;(3)估计该校2000名学生中,每周课外阅读时间不足0.5小时的学生大约有多少名?25. (10分)张老师去文具店给美术小组的30名学生买铅笔和橡皮,到了商店后发现,若给全组每人买2支铅笔和1块橡皮,则要按零售价计算,共需付款75元;若给全组每人买3支铅笔和2块橡皮,则可按批发价,共需付款96元.已知铅笔每支批发价比零售价低0.2元,橡皮每块批发价比零售价低0.1元,求这家文具店每支铅笔和每块橡皮的批发价各是多少元?26.(12分)为打造“书香校园”,某校计划用不超过1900本科技类书籍和不超过1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本。

《试卷3份集锦》黔东南州名校2017-2018年八年级上学期期末学业水平测试数学试题

《试卷3份集锦》黔东南州名校2017-2018年八年级上学期期末学业水平测试数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确) 1.校乒乓球队员的年龄分布如下表所示:年龄(岁)13 14 15 人数 a 5a -7 对于不同的a ,下列关于年龄的统计量不会发生改变的是( )A .众数,中位数B .众数,方差C .平均数,中位数D .平均数,方差 【答案】A【分析】先求出总人数,再确定不变的量即可.【详解】5712a a +-+=人,∴一共有12个人,∴关于年龄的统计量中,有7个人15岁,∴众数是15,中位数是15,∴对于不同的a ,统计量不会发生改变的是众数和中位数,故选A .【点睛】本题主要考查的是学生对中位数和众数的定义等知识的掌握情况及灵活运用能力,解题的关键在于能够熟知中位数和众数的定义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.2.如图,ABC ∆中,90ACB ∠=︒,30BAC ∠=︒,在直线BC 或AC 上取一点P ,使PAB ∆为等腰三角形,则符合条件的点P 共有( )A .4个B .5个C .6个D .7个【答案】B 【分析】分别以A 为顶点、B 为顶点、P 为顶点讨论即可.【详解】以点A 为圆心,AB 为半径作圆,交AC 于P 1,P 2,交BC 与P 3,此时满足条件的等腰△PAB 有3个;以点B 为圆心,AB 为半径作圆,交AC 于P 5,交BC 与P 4,P 6,此时满足条件的等腰△PAB 有3个; 作AB 的垂直平分线,交BC 于P 7,此时满足条件的等腰△PAB 有1个;∵30BAC ∠=︒,∴∠ABP3=60°,∵AB=AP 3,∴△ABP 3是等边三角形;同理可证△ABP 6,△ABP 6是等边三角形,即△ABP 3,△ABP 6,△ABP 7重合,综上可知,满足条件的等腰△PAB 有5个.故选B .【点睛】本题考查了等腰三角形的定义,等边三角形的判定,以及分类讨论的数学思想,分类讨论是解答本题的关键.3.已知a 2+a ﹣4=0,那么代数式:a 2(a+5)的值是( )A .4B .8C .12D .16【答案】D【分析】由a 2+a ﹣4=0,变形得到a 2=-(a-4),a 2+a=4,先把a 2=-(a-4)代入整式得到a 2(a+5)=-(a-4)(a+5),利用乘法得到原式=-(a 2+a-20),再把a 2+a=4代入计算即可.【详解】∵a 2+a ﹣4=0,∴a 2=-(a-4),a 2+a=4,a 2(a+5)=-(a-4)(a+5)=-(a 2+a-20)=−(4−20)=16,故选D【点睛】此题考查整式的混合运算—化简求值,掌握运算法则是解题关键4.如图所示,AC ①平分BAD ∠,AB AD =②,AB BC ⊥③,AD DC.⊥以此三个中的两个为条件,另一个为结论,可构成三个命题,即⇒①②③,⇒①③②,⇒②③①.其中正确的命题的个数是( )A.0 B.1 C.2 D.3【答案】C【解析】根据全等三角形的性质解答.①②③错误,两个全等三角形的对应角相等,但不一定是直角;【详解】解:⇒①③②正确,两个全等三角形的对应边相等;⇒∠;⇒②③①正确,两个全等三角形的对应角相等,即AC平分BAD故选:C.【点睛】.判断命题的真假关键是要熟悉课本考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题中的性质定理.5.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为( )A.(2,﹣3) B.(﹣2,3) C.(﹣2,﹣3) D.(2,3)【答案】C【解析】根据:关于x轴对称点的坐标特点:横坐标相同,纵坐标互为相反数;可得.【详解】解:∵关于x轴对称点的坐标特点:横坐标相同,纵坐标互为相反数,∴点P(﹣2,3)关于x轴的对称点坐标是(﹣2,﹣3),故答选:C.【点睛】关于x轴对称点的坐标特点:横坐标相同,纵坐标互为相反数;6.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.7 cm、5 cm、10 cm B.4 cm、3 cm、7 cmC.5 cm、10 cm、4 cm D.2 cm、3 cm、1cm【答案】A【分析】根据三角形边的性质即可得出答案.【详解】A:7-5<10<7+5,故选项A正确;B:4+3=7,故选项B错误;C:4+5<10,故选项C错误;D:3-2=1,故选项D错误;故答案选择A.【点睛】本题主要考查的是三角形边的性质:两边之和大于第三边,两边之差小于第三边.7.若分式3x x -的值为0,则x 的取值是( ) A .3x =B .0x =C .0x =或3D .以上均不对 【答案】B【分析】根据分式的值为零的条件可得到0,30x x =-≠,再解可以求出x 的值.【详解】解:由题意得:0,30x x =-≠,解得:x=1,故选:B .【点睛】本题主要考查了分式值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.8.某班共有学生40人,其中10月份生日的学生人数为8人,则10月份生日学生的频数和频率分别为( ) A .10和25%B .25%和10C .8和20%D .20%和8【答案】C【分析】直接利用频数与频率的定义分析得出答案.【详解】解:∵某班共有学生40人,其中10月份生日的学生人数为8人,∴10月份生日学生的频数和频率分别为:8、840=0.2. 故选:C.【点睛】此题考查了频数与频率,正确掌握相关定义是解题关键.9.将下列长度的三根木棒首尾顺次连接,能组成三角形的是( )A .1,2,4B .8,6,4C .12,6,5D .3,3,6 【答案】B【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【详解】A 、1+2=3<4,不能组成三角形,故此选项错误;B 、6+4>8,能组成三角形,故此选项正确;C 、6+5<12,不能组成三角形,故此选项错误;D 、3+3=6,不能组成三角形,故此选项错误;故选B .【点睛】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.10.下列图案是轴对称图形的是()A.B.C.D.【答案】C【分析】根据轴对称图形的性质,分别进行判断,即可得到答案.【详解】解:根据题意,A、B、D中的图形不是轴对称图形,C是轴对称图形;故选:C.【点睛】本题考查了轴对称图形的定义,解题的关键是熟记定义.二、填空题∠,且交AD于E.如果用“三角形三条11.如图,等边三角形ABC中,D为BC的中点,BE平分ABC∠,那么必须先要证明__________.角平分线必交于一点”来证明CE也一定平分ACB【答案】AD是∠BAC的角平分线【分析】根据等边三角形的三线合一定理,即可得到答案.【详解】解:∵等边三角形ABC中,D为BC的中点,∴AD是∠BAC的角平分线,∠,∵BE平分ABC∴点E是等边三角形的三条角平分线的交点,即点E为三角形的内心,∠;∴CE也一定平分ACB故答案为:AD是∠BAC的角平分线.【点睛】本题考查了等边三角形的性质,以及三线合一定理,解题的关键是熟练掌握三线合一定理进行解题. 12.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD 的延长线于点F ,若EF=5cm ,则AE= cm .【答案】1.【解析】∵∠ACB=90°,∴∠ECF+∠BCD=90°.∵CD ⊥AB ,∴∠BCD+∠B=90°.∴∠ECF=∠B ,在△ABC 和△FEC 中,∵∠ECF=∠B ,EC=BC ,∠ACB=∠FEC=90°,∴△ABC ≌△FEC (ASA ).∴AC=EF .∵AE=AC ﹣CE ,BC=2cm ,EF=5cm ,∴AE=5﹣2=1cm .13.已知三角形的三边分别为a,b,c ,其中a ,b 26940a a b -++-=,那么这个三角形的第三边c 的取值范围是____.【答案】17c <<【解析】根据非负数的性质列式求出a 、b ,再根据三角形的任意两边之和大于第三边,两边只差小于第三边求解即可. 26940a a b -+-=,∴269a a -+=0,b-4=0,∴a=3,b=4,∴4-3<c<4+3,即17c <<.故答案是:17c <<.【点睛】考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0;三角形的三边关系.14.一个等腰三角形的内角为80°,则它的一个底角为_____.【答案】50°或80°【分析】分情况讨论,当80°是顶角时,底角为(18080)250︒-︒÷=︒;当80°是底角时,则一个底角就是80°.【详解】在等腰三角形中,若顶角是80°,则一个底角是(18080)250︒-︒÷=︒;若内角80°是底角时,则另一个底角就是80°,所以它的一个底角就是50°或80°,故答案为:50°或80°.【点睛】本题考查了等腰三角形的性质,分类讨论思想的应用,三角形内角和的定理,熟记等腰三角形的性质以及内角和定理是解题关键.15.已知三角形三边长分别为6,8,9,则此三角形的面积为__________.【分析】由海伦公式:()12p a b c=++可计算三角形的面积.【详解】由题意知a=6,b=8,c=9,p=123689=22⨯++();∴由海伦公式计算【点睛】本题考查了利用三边长求三角形面积的应用问题,也考查了二次根式的化简.解题的关键是掌握海伦公式求三角形的面积.16.若关于x,y的二元一次方程组3,-x y kx y k+=⎧⎨=⎩的解也是二元一次方程x+2y=8的解,则k的值为____.【答案】2【解析】据题意得知,二元一次方程组的解也是二元一次方程x+2y=8的解,也就是说,它们有共同的解,及它们是同一方程组的解,列出方程组解答即可.【详解】根据题意,得()()()31 {2283 x y kx y kx y+-+===由(1)+(2),得2x=4k即x=2k(4)由(1)-(2),得2y=2k即y=k(5)将(4)、(5)代入(3),得2k+2k=8,解得k=2.【点睛】本题考查了三元一次方程组的解,运用了加减消元法和代入消元法.通过“消元”,使其转化为二元一次方程(组)来解.17.如图,已知在锐角△ABC 中,AB .AC 的中垂线交于点O ,则∠ABO+∠ACB=________.【答案】90°.【分析】由中垂线的性质和定义,得BA=BC ,BE ⊥AC ,从而得∠ACB=∠A ,再根据直角三角形的锐角互余,即可求解.【详解】∵BE 是AC 的垂直平分线,∴BA=BC ,BE ⊥AC ,∴∠ACB=∠A .∵∠ABO+∠A=90°,∴∠ABO+∠ACB=90°.故答案为:90°.【点睛】本题主要考查垂直平分线的性质以及直角三角形的性质定理,掌握垂直平分线的性质,是解题的关键.三、解答题18.如图,在平面直角坐标系中有一个ABC ,顶点()1,3A -,()2,0B ,()3,1C --.(1)画出ABC 关于y 轴的对称图形111A B C △(不写画法);(2)点C 关于x 轴对称的点的坐标为__________,点B 关于y 轴对称的点的坐标为__________; (3)若网格上每个小正方形的边长为1,求111A B C △的面积?【答案】(1)见解析;(2)()3,1-,()2,0-;(3)9【分析】(1)关于y 轴对称,则纵坐标不变,横坐标变成相反数,先确定三个顶点的对称点,再一次连接即可;(2)关于x 轴对称则横坐标不变,纵坐标变为相反数;关于y 轴对称,则纵坐标不变,横坐标变成相反数;(3)利用网格,所求面积=三角形所在的长方形的面积-多余的三角形面积,计算即可.【详解】解:(1)如解图所示,111A B C △即为所求;(2)点C 关于x 轴对称的点的坐标为()3,1-,点B 关于y 轴对称的点的坐标为()2,0-;(3)111A B C △的面积为:111452433159222⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】本题考查的主要是轴对称变换以及三角形面积求法,根据题意求出对应点的位置是解题关键. 19.(1)计算:|﹣5|+(π﹣2020)0﹣(12)﹣1; (2)解方程:21411x x x ++--=1. 【答案】(1)4;(2)x =﹣2.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)原式=5+1﹣2=4;(2)方程两边乘以(x+1)(x ﹣1)得:(x+1)2+4=(x+1)(x ﹣1),解得:x =﹣2,检验:当x =2时,(x+1)(x ﹣1)≠0,∴x =﹣2是原方程的解,∴原方程的解是:x =﹣2.【点睛】本题考查了有理数的混合运算和分式方程的计算,掌握有理数的混合运算法则以及分式方程的计算方法是解题的关键.20.某商贸公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示: 体积(立方米/件) 质量(吨/件)(1)已知一批商品有A 、B 两种型号,体积一共是21立方米,质量一共是11.5吨,求A 、B 两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种: ①按车收费:每辆车运输货物到目的地收费611元;②按吨收费:每吨货物运输到目的地收费211元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?【答案】(1)A 种型号商品有5件,B 种型号商品有8件;(2)先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2111元【分析】(1)设A 、B 两种型号商品各x 件、y 件,根据体积与质量列方程组求解即可;(2)①按车付费=车辆数⨯611;②按吨付费=11.5⨯211;③先按车付费,剩余的不满车的产品按吨付费,将三种付费进行比较.【详解】(1))设A 、B 两种型号商品各x 件、y 件,0.82200.510.5x y x y +=⎧⎨+=⎩, 解得58x y =⎧⎨=⎩, 答:A 种型号商品有5件,B 种型号商品有8件;(2)①按车收费:10.5 3.53÷=(辆),但是车辆的容积63⨯=18<21,3辆车不够,需要4辆车,60042400⨯=(元);②按吨收费:211⨯11.5=2111(元);③先用车辆运送18m 3,剩余1件B 型产品,共付费3⨯611+1⨯211=2111(元),∵2411>2111>2111,∴先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2111元.【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键,(2)注意分类讨论,分别求出费用进行比较解答问题.21.如图,直线y=﹣2x+8分别交x 轴,y 轴于点A ,B ,直线y 12=x+3交y 轴于点C ,两直线相交于点D .(1)求点D 的坐标;(2)如图2,过点A 作AE ∥y 轴交直线y 12=x+3于点E ,连接AC ,BE .求证:四边形ACBE 是菱形; (3)如图3,在(2)的条件下,点F 在线段BC 上,点G 在线段AB 上,连接CG ,FG ,当CG=FG ,且∠CGF=∠ABC时,求点G 的坐标.【答案】(1)点D 坐标(2,4);(2)证明见详解;(3)点585-.【分析】(1)两个解析式组成方程组,可求交点D 坐标;(2)先求出点A ,点B ,点E ,点C 坐标,由两点距离公式可求BC=AE=AC=BE=5,可证四边形ACBE 是菱形;(3)由“AAS ”可证△ACG ≌△BGF ,可得BG=AC=5,由两点距离公式可求点G 坐标.【详解】解:(1)根据题意可得:28132y x y x =-+⎧⎪⎨=+⎪⎩, 解得:24x y =⎧⎨=⎩, ∴点D 坐标(2,4)(2)∵直线y=﹣2x+8分别交x 轴,y 轴于点A ,B ,∴点B(0,8),点A(4,0).∵直线y 12=x+3交y 轴于点C , ∴点C(0,3). ∵AE ∥y 轴交直线y 12=x+3于点E , ∴点E(4,5)∵点B(0,8),点A(4,0),点C(0,3),点E(4,5),∴BC=5,AE=5,AC 2243=+=5,BE ()22485=+-=5, ∴BC=AE=AC=BE ,∴四边形ACBE 是菱形;(3)∵BC=AC ,∴∠ABC=∠CAB .∵∠CGF=∠ABC ,∠AGF=∠ABC+∠BFG=∠AGC+∠CGF ,∴∠AGC=∠BFG ,且FG=CG ,∠ABC=∠CAB ,∴△ACG ≌△BGF(AAS),∴BG=AC=5,设点G(a ,﹣2a+8),∴(﹣2a+8﹣8)2+(a ﹣0)2=52,∴a=∵点G 在线段AB 上,∴a =∴点8﹣【点睛】本题是一次函数综合题,考查了一次函数的性质,菱形的判定和性质,全等三角形的判定和性质,两点距离公式等知识,利用两点距离公式求线段的长是本题的关键.22.先化简,再化简:2(1)121a a a a a -÷+++,请你从﹣2<a <2的整数解中选取一个合适的数代入求值. 【答案】1a a+,当1a =时,原式=2 【分析】先利用分式混合运算的顺序和法则对分式进行化简,然后从中找到使分式有意义且不为0的值代入即可求值.【详解】原式= 21()1121a a a a a a a +-÷++++ ()2111a aa =⨯++ 1a a+= ∵a+1≠0且a≠0,∴a≠-1且a≠0,∴当a=1时,原式=1121+=. 【点睛】本题主要考查分式的化简求值,掌握分式混合运算的顺序和法则是解题的关键.23.如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内再涂黑4个小正方形,使它们成为轴对称图形.【答案】见解析【分析】直接利用轴对称图形的性质得出符合题意的答案.【详解】如图所示即为所求,答案不唯一.【点睛】本题考查了利用轴对称设计图案,正确掌握轴对称图形的定义是解题的关键.24.如图,ABC ∆为等边三角形,AE CD =,AD BE 、 相交于点P ,BQ AD ⊥ 于点Q ,(1)求证: ;AEB CDA ∆∆≌(2)求BPQ ∠的度数.【答案】(1)见解析;(2)∠BPQ =60°【分析】(1)根据等边三角形的性质,通过全等三角形的判定定理SAS 证得结论;(2)利用(1)中的全等三角形的对应角相等和三角形外角的性质求得∠BPQ=60°;【详解】(1)证明:∵△ABC 为等边三角形,∴AB=CA ,∠BAE=∠C=60°,在△AEB 与△CDA 中,AB CA BAE C AE CD =⎧⎪∠=∠⎨⎪=⎩∴△AEB ≌△CDA (SAS );(2)解:由(1)知,△AEB ≌△CDA ,则∠ABE=∠CAD ,∴∠BAD+∠ABD=∠BAD+∠CAD=∠BAC=60°,∴∠BPQ=∠BAD+∠ABD=60°;【点睛】本题考查了全等三角形的判定与性质、等边三角形的性质,在判定三角形全等时,关键是选择恰当的判定条件.25.某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【答案】(1)直拍球拍每副220元,横拍球每副260元;(2)购买直拍球拍30副,则购买横拍球10副时,费用最少.【解析】(1)设直拍球拍每副x 元,根据题中的相等关系:20副直拍球拍的价钱+15副横拍球拍的价钱=9000元;10副横拍球拍价钱-5副直拍球拍价钱=1600元,建立方程组即可求解;(2)设购买直拍球拍m 副,根据题意列出不等式可得出m 的取值范围,再根据题意列出费用关于m 的一次函数,并根据一次函数的性质解答即可.【详解】解:(1)设直拍球拍每副x 元,横拍球每副y 元,由题意得,20(20)15(20)9000{10(20)5(20)1600x y y x +++=+-+= 解得,220{260x y == ,答:直拍球拍每副220元,横拍球每副260元;(2)设购买直拍球拍m 副,则购买横拍球(40-m )副,由题意得,m≤3(40-m ),解得,m≤30,设买40副球拍所需的费用为w ,则w=(220+20)m+(260+20)(40-m )=-40m+11200,∵-40<0,∴w 随m 的增大而减小,∴当m=30时,w 取最小值,最小值为-40×30+11200=10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少.点睛:本题主要考查二元一次方程组、不等式和一次函数的性质等知识点.在解题中要利用题中的相等关系和不等关系建立方程组和不等式,而难点在于要借助一次函数建立解决实际问题的模型并根据自变量的取值范围和一次函数的增减性作出决策.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了minx,下坡用了miny,根据题意可列方程组()A.35120016x yx y+=⎧⎨+=⎩B.351.2606016x yx y⎧+=⎪⎨⎪+=⎩C.35 1.216x yx y+=⎧⎨+=⎩D.351200606016x yx y⎧+=⎪⎨⎪+=⎩【答案】B【分析】根据路程=时间乘以速度得到方程351.26060x y+=,再根据总时间是16分钟即可列出方程组.【详解】∵她去学校共用了16分钟,∴x+y=16,∵小颖家离学校1200米,∴351.2 6060x y+=,∴351.2 606016x yx y⎧+=⎪⎨⎪+=⎩,故选:B.【点睛】此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方.2.在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m()A.m>2 B.m<﹣1C.﹣1<m<2 D.以上答案都不对【答案】C【分析】根据平面直角坐标系中,点的坐标特征,列出不等式组,即可求解.【详解】∵点P(m﹣1,m+1)在第二象限,∴2010mm-<⎧⎨+>⎩,解得:﹣1<m<1.故选:C .【点睛】本题主要考查平面直角坐标系中,点的坐标特征,掌握点的坐标与所在象限的关系,是解题的关键. 3.若(x+m )(x ﹣8)中不含x 的一次项,则m 的值为( )A .8B .﹣8C .0D .8或﹣8 【答案】A【解析】试题分析:根据整式的乘法可得(x+m )(x-8)=x 2+(m-8)x-8m ,由于不含x 项,则可知m-8=0,解得m=8.故选A4.分式31x x +-有意义,则x 的取值范围是( ) A .1x >B .1x <C .11x -<<D .1x ≠± 【答案】D【解析】要使分式有意义,分式的分母不能为0,即||10x -≠,解得x 的取值范围即可. 【详解】∵31x x +-有意义, ∴||10x -≠,解得:1x ≠±,故选:D .【点睛】解此类问题只要令分式中分母不等于0,求得字母的值即可.5.代数式229++x kxy y 是关于x ,y 的一个完全平方式,则k 的值是( )A .6B .6-C .6±D .3± 【答案】C【分析】根据完全平方公式的a 、b 求出中间项即可.【详解】()222293x kxy y x kxy y =++++,根据a 、b 可以得出:k=±2×3=±1.故选C .【点睛】本题考查完全平方公式的计算,关键在于熟练掌握完全平方公式.6.已知直线y =2x 与y =﹣x+b 的交点(﹣1,a ),则方程组20x y x y b-=⎧⎨+=⎩的解为( )A.12xy=⎧⎨=⎩B.12xy=-⎧⎨=⎩C.12xy=⎧⎨=-⎩D.12xy=-⎧⎨=-⎩【答案】D【分析】根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.【详解】解:把(﹣1,a)代入y=2x得a=﹣2,则直线y=2x与y=﹣x+b的交点为(﹣1,﹣2),则方程组20x yx y b-=⎧⎨+=⎩的解为12xy=-⎧⎨=-⎩.故选D.【点睛】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.7.如图,网格中每个小正方形的边长均为1,点A,B,C都在格点上,以A为圆心,AB为半径画弧,交最上方的网格线于点D,则CD的长为()A.5 B.0.8 C.35-D.13【答案】C【分析】连接AD,由勾股定理求出DE,即可得出CD的长.【详解】解:如图,连接AD,则AD=AB=3,由勾股定理可得,Rt△ADE中,DE=225AD AE-=,又∵CE=3,∴CD=3-5,故选:C.【点睛】本题考查了勾股定理的运用,由勾股定理求出DE是解决问题的关键.8.下列因式分解结果正确的是( )A .2()x xy x x x y ++=+B .24(4)a a a a -+=-+C .244(2)(2)x x x x -+=+-D .2()()()x x y y y x x y -+-=-【答案】D【分析】利用提取公因式法、完全平方公式逐项进行因式分解即可.【详解】解:A 、原式2(1)x xy x x x y =++=++,故本选项不符合题意; B 、原式(4)a a =--,故本选项不符合题意;C 、原式2(2)x =-,故本选项不符合题意;D 、原式2()x y =-,故本选项符合题意,故选:D .【点睛】本题考查了提公因式法与公式法分解因式,属于基础题,关键是掌握因式分解的方法. 9.下列四个图案中,不是轴对称图案的是( )A .B .C .D .【答案】B【分析】根据轴对称图形的定义逐项判断即得答案.【详解】解:A 、是轴对称图案,故本选项不符合题意;B 、不是轴对称图案,故本选项符合题意;C 、是轴对称图案,故本选项不符合题意;D 、是轴对称图案,故本选项不符合题意.故选:B .【点睛】本题考查了轴对称图形的定义,属于应知应会题型,熟知概念是关键.10.下列说法正确的是( )A .所有命题都是定理B .三角形的一个外角大于它的任一内角C .三角形的外角和等于180°D .公理和定理都是真命题【答案】D【分析】直接利用命题与定理的定义以及三角形的外角的性质分析得出答案.【详解】解:A 、命题不一定都是定理,故此选项错误;B 、三角形的一个外角大于它不相邻的内角,故此选项错误;C 、三角形的外角和等于360°,故此选项错误;D 、公理和定理都是真命题,正确.故选:D .【点睛】此题主要考查了三角形外角的性质以及命题与定理,正确掌握相关定义是解题关键.二、填空题11.如图,AB =AC ,AD =AE ,∠BAC =∠DAE ,∠1=35°,∠2=30°,则∠3=_____度.【答案】65【解析】因为∠BAC =∠DAE ,所以1=CAE ∠∠ ,又因为AB =AC ,AD =AE ,所以ABD ACE ∆≅∆ ,所以2ABD ∠=∠ ,所以3=1+12353065ABD ∠∠∠=∠+∠=︒+︒=︒ . 12.已知3a b +=,2ab =,代数式32232a b a b ab ++=__________.【答案】18【分析】先提取公因式ab ,然后利用完全平方公式进行因式分解,最后将已知等式代入计算即可求出值.【详解】解:32232a b a b ab ++=222ab a ab b2=ab a b 当3a b +=,2ab =时,原式2=23=18,故答案为:18【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.13.将一次函数y=-2x-1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为______ .【答案】y=-1x+1【分析】注意平移时k 的值不变,只有b 发生变化.向上平移3个单位,b 加上3即可.【详解】解:原直线的k=-1,b=-1;向上平移3个单位长度得到了新直线,那么新直线的k=-1,b=-1+3=1.因此新直线的解析式为y=-1x+1.故答案为y=-1x+1.【点睛】本题考查了一次函数图象的几何变换,难度不大,要注意平移后k值不变.14.当x_________时,分式92xx-+分式有意义【答案】≠-1【分析】分式有意义使分母不为0即可.【详解】分式有意义x+1≠0,x≠-1.故答案为:≠-1.【点睛】本题考查分式有意义的条件问题,掌握分式有意义的知识分母不为零,会用分式有意义列不等式,会解不等式是关键.15.如图,以平行四边形ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,则∠AEB的度数是(_________)【答案】135 °【分析】本题考查的是平行四边形的性质和等腰三角形的性质解决问题即可.【详解】∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∴∠ADC+∠BCD=180°,∵△CDE是等腰直角三角形,∴∠EDC=∠ECD=45°,则∠ADE+∠BCE=∠ADC+∠BCD-∠EDC-∠ECD=90°,∵AD=DE,∴∠DEA=∠DAE=12(180°-∠ADE),∵CE=AD=BC,∴∠CEB=∠CBE=12(180°-∠BCE ), ∴∠DEA+∠CEB=12(360°-∠ADE-∠BCE )=12×270°=135° ∴∠AEB=360°-∠DEC-∠DEA -∠CEB =360°-90°-135°=135°故答案为:135 °.16.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点C 的坐标为()0,2,另一个顶点B 的坐标为()6,6,则点A 的坐标为_______.【答案】()4,4-【分析】如图:分别过B 和A 作y 轴的垂线,垂足分别为D 、E;根据余角的性质,可得∠DBC=∠ECA ,然后运用AAS 判定△BCD ≌△CAE ,可得CE=BD=6,AE=CD=OD-OC=4即可解答.【详解】解:分别过B 和A 作y 轴的垂线,垂足分别为D 、E∴∠BDC=∠AEC=90°∵AC=BC ,∠BCA=90°,∠BCD+ ∠ECA=90°又∵∠CBD+ ∠BCD=90°∴∠CBD= ∠ECA在△BCD 和△CAE 中∠BDC=∠AEC=90°,∠CBD= ∠ECA ,AC=BC∴△BCD ≌△CAE (AAS )∴CE=BD=6,AE=CD=OD-OC=4∴OE=CE-0C=6-2=4∴B 点坐标为(4,-4).故答案为(4,-4).【点睛】本题考查了全等三角形的判定与性质,根据题意构造出全等三角形是解答本题的关键.17.如图,直线a和直线b被直线c所截,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是________.【答案】①②③④;【详解】解:①∠1=∠2即同位角相等,能判断a∥b(同位角相等,两直线平行);②∠3=∠6为内错角相等,能判断a∥b;③易知∠4=∠6,已知∠4+∠7=180°即∠6+∠7=180°能判断a∥b(同旁内角互补,两直线平行);④易知∠5和∠3为对顶角,∠8和∠2为对顶角,故∠5+∠8=180°即∠3+∠2=180°能判断a∥b(同旁内角互补,两直线平行);综上可得①②③④可判断a∥b.【点睛】本题难度较低,主要考查学生对平行线判定定理知识点的掌握.三、解答题18.为响应国家的号召,减少污染,某厂家生产出一种节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶.这种油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,费用为118元;若完全用电做动力行驶,费用为36元,已知汽车行驶中每千米用油的费用比用电的费用多1.6元.(1)求汽车行驶中每千米用电的费用和甲、乙两地之间的距离.(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过61元,则至少需要用电行驶多少千米?【答案】(1)汽车行驶中每千米用电的费用是0.3元,甲、乙两地之间的距离是121千米;(2)至少需要用电行驶81千米.【分析】(1)设汽车行驶中每千米用电的费用是x 元,则每千米用油的费用为()0.6x +元,根据题意,列出分式方程,并解方程即可;(2)先求出汽车行驶中每千米用油的费用,设汽车用电行驶ykm ,然后根据题意,列出一元一次不等式,即可求出结论.【详解】解:(1)设汽车行驶中每千米用电的费用是x 元,则每千米用油的费用为()0.6x +元, 列方程得108360.6x x=+, 解得0.3x =,经检验0.3x =是原方程的解,则甲、乙两地之间的距离是360.3120÷=千米.答:汽车行驶中每千米用电的费用是0.3元,甲、乙两地之间的距离是360.3120÷=千米.(2)汽车行驶中每千米用油的费用为0.30.60.9+=元.设汽车用电行驶ykm ,可得()0.30.912060y y +-≤,解得80y ≥,答:至少需要用电行驶81千米.【点睛】此题考查的是分式方程的应用和一元一次不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.19.某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):请根据图中提供的信息,完成下列问题:(1)在这次问卷调查中,一共抽查了 名学生;并在图中补全条形统计图;(2)如果全校共有学生1600名,请估计该校最喜欢“科普”书籍的学生约有多少人?【答案】(1)200,作图见解析;(2)1.。

2017年贵州省黔东南州高考数学一模试卷(文科)

2017年贵州省黔东南州高考数学一模试卷(文科)

2017年贵州省黔东南州高考数学一模试卷(文科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.若复数,是虚数单位,则z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】解:∵,∴z在复平面内对应的点的坐标为(3,2),在第一象限.故选:A.直接利用复数代数形式的乘除运算化简,求出z的坐标得答案.本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.2.已知集合A={-2,-1,1,2},B={x|lgx≤1},则A∩B=()A.{-2,-1,1,2}B.{-2,-1,1}C.{1}D.{1,2}【答案】D【解析】解:∵A={-2,-1,1,2},B={x|lgx≤1=lg10}={x|0<x≤10},∴A∩B={1,2},故选:D.求出B中不等式的解集确定出B,找出A与B的交集即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.在各项均为正数的等比数列{a n}中,若log2(a2•a3•a5•a7•a8)=5,则a1•a9=()A.4B.5C.2D.25【答案】A【解析】解:∵在各项均为正数的等比数列{a n}中,log2(a2•a3•a5•a7•a8)=5,∴a2•a3•a5•a7•a8==25=32,∴a5=2,a1•a9=.故选:A.由已知推导出a2•a3•a5•a7•a8=a55=25=32,从而a1•a9=.本题考查等比数列中两项积的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.4.已知三个数a=0.60.3,b=log0.63,c=lnπ,则a,b,c的大小关系是()A.c<b<aB.c<a<bC.b<c<aD.b<a<c【答案】D【解析】解:三个数a=0.60.3∈(0,1),b=log0.63<0,c=lnπ>1,∴c>a>b.故选:D.利用指数函数与对数函数的单调性即可得出.本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.5.若x,y满足约束条件,则z=2x-y的最大值为()A.5B.3C.-1D.【答案】A【解析】解:由约束条件不等式组,作出可行域如图,化目标函数z=2x-y为y=2x-z,由图可知,当直线y=2x-z过C(2,-1)时,直线在y轴上的截距最小,z最大.∴z=2×2+1=5.故选:A.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求得最优解的坐标,代入目标函数得答案.本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.6.已知向量,满足:||=2,||=4,<,>=,则|3-2|=()A.52B.C.100-48D.【答案】B【解析】解:向量,满足:||=2,||=4,<,>=,∴•=2×4×cos=4,∴=9-12•+4=9×4-12×4+4×16=52,∴|3-2|==2.根据平面向量的数量积与模长根式,计算即可.本题考查了平面向量的数量积与模长根式的计算问题,是基础题目.7.在集合M={x|0<x≤5}中随机取一个元素,恰使函数大于1的概率为()A. B. C. D.【答案】D【解析】解:解不等式≥1,可得0<x≤,∴在集合M={x|0<x≤5}中随机取一个元素,恰使函数大于1的概率为=.故选D..解不等式≥1,可得0<x≤,以长度为测度,即可求在集合M={x|0<x≤5}中随机取一个元素,恰使函数大于1的概率.本题考查几何概型,解题的关键是解不等式,确定其测度.8.秦九韶是我国南宋时期著名的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入x的值为3,每次输入a的值均为4,输出s的值为484,则输入n的值为()A.6B.5C.4D.3【答案】C【解析】解:模拟程序的运行,可得x=3,k=0,s=0,a=4s=4,k=1不满足条件k>n,执行循环体,a=4,s=16,k=2不满足条件k>n,执行循环体,a=4,s=52,k=3不满足条件k>n,执行循环体,a=4,s=160,k=4不满足条件k>n,执行循环体,a=4,s=484,k=5由题意,此时应该满足条件k>n,退出循环,输出s的值为484,可得:5>n≥4,所以输入n的值为4.故选:C.模拟程序的运行过程,依次写出每次循环得到的s,k的值,由题意可得5>n≥4,即可得解输入n的值.本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.9.半径为2的圆C的圆心在第四象限,且与直线x=0和均相切,则该圆的标准方程为()A.(x-1)2+(y+2)2=4B.(x-2)2+(y+2)2=2C.(x-2)2+(y+2)2=4D.(x-2)2+(y+2)2=4C【解析】解:设圆心坐标为(a,-2)(a>0),则圆心到直线的距离d==2,∴a=2,∴圆的标准方程为(x-2)2+(y+2)2=4,故选C.设圆心坐标为(a,-2)(a>0),则圆心到直线的距离d==2,求出a,即可求出圆的标准方程.本题考查圆的标准方程,考查学生的计算能力,确定圆心坐标是关键.10.已知三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,PA=AC=2,且该三棱锥所有顶点都在球O的球面上,则球O的表面积为()A.4πB.8πC.16πD.20π【答案】B【解析】解:由题意,将三棱锥扩充为长方体,长方体的对角线PC为外接球的直径,PC=2,半径为,∴球O的表面积为4π•2=8π,故选B.由题意,将三棱锥扩充为长方体,长方体的对角线PC为外接球的直径,PC=2,由此可求球O的表面积.本题考查球O的表面积,考查学生的计算能力,比较基础.11.已知抛物线y2=4x与双曲线-=1(a>0,b>0)有相同的焦点F,点A是两曲线的一个交点,且AF⊥x轴,则双曲线的离心率为()A.2-1B.+1C.8-8D.2-2【答案】B【解析】解:∵抛物线y2=4x的焦点(1,0)和双曲线的焦点相同,∴c=1,∵A是它们的一个公共点,且AF垂直于x轴,设A点的纵坐标大于0,∴|AF|=2,∴A(1,2),∵点A在双曲线上,∴-=1,∵c=1,b2=c2-a2,∴a=-1,∴e==1+,故选:B.根据抛物线和双曲线有相同的焦点求得c,根据AF⊥x轴,可判断出|AF|的值和A的坐标,代入双曲线方程,求得离心率e.本题考查抛物线和双曲线的方程和性质,主要考查双曲线的离心率的问题,属于中档题.12.设f′(x)、g′(x)分别是函数f(x)、g(x)(x∈R)的导数,且满足g(x)>0,f′(x)g(x)-f(x)g′(x)>0.若△ABC中,∠C是钝角,则()A.f(sin A)•g(sin B)>f(sin B)•g(sin A)B.f(sin A)•g(sin B)<f(sin B)•g(sin A)C.f(cos A)•g(sin B)>f(sin B)•g(cos A)D.f(cos A)•g(sin B)<f(sin B)•g(cos A)【答案】C【解析】解:∵′=′′,当x>0时,′>0,∴在(0,+∞)递增,∵∠C是钝角,∴cos A>sin B>0,∴>,∴f(cos A)g(sin B)>f(sin B)g(cos A),故选:C.求出函数的导数,得到函数的单调性,从而求出答案.本题考查了函数的单调性问题,考查导数的应用,是一道中档题.二、填空题(本大题共4小题,共20.0分)画散点图分析可知:y与x线性相关,且求得回归方程为=x+1,则m的值为______ .【答案】【解析】解:计算=×(0+1+3+5+6)=3,=×(1+m+3m+5.6+7.4)=,∴这组数据的样本中心点是(3,),又y与x的线性回归方程=x+1过样本中心点,∴=1×3+1,解得m=,即m的值为.故答案为:.计算、,根据线性回归方程过样本中心点,代入方程求出m的值.本题考查了回归直线方程过样本中心点的应用问题,是基础题目.14.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于______ cm3.【答案】24【解析】解:几何体为三棱柱去掉一个三棱锥后的几何体,底面是直角三角形,直角边分别为3,4,侧面的高为5,被截取的棱锥的高为3.如图:V=V棱柱-V棱锥==24(cm3)故答案为:24.先根据三视图判断几何体的形状,再利用体积公式计算即可.本题考查几何体的三视图及几何体的体积计算.V椎体=S h,V柱体=S h.考查空间想象能力.15.已知数列{a n}的前n项和为S n,满足:a1=1,a n+1+2S n•S n+1=0,则该数列的前2017项和S2017= ______ .【答案】【解析】解:∵a n+1+2S n•S n+1=0,∴S n+1-S n+2S n•S n+1=0,两边同时除以S n•S n+1得,,又a1=1,∴数列{}是以2为公差、1为首项的等差数列,∴=1+2(n-1)=2n-1,则S n=,∴该数列的前2017项和S2017==,故答案为:.将a n+1=S n+1-S n代入a n+1+2S n•S n+1=0化简后,由等差数列的定义判断出数列{}是等差数列,由条件求出公差和首项,由等差数列的通项公式求出,再求出S n和S2017.本题考查等差数列的定义、通项公式,数列的前n项和与通项之间关系的应用,考查化简、变形能力.16.若对于任意的实数,,都有2-2x-log a x<0恒成立,则实数a的取值范围是______ .【答案】<a<1【解析】解:若对于任意的实数,,都有2-2x-log a x<0恒成立,即对于任意的实数,,都有log a x>2-2x恒成立,则y=log a x的图象恒在y=图象的上方,∴0<a<1.再根据它们的单调性可得<log a,即>,∴a>,综上可得,<a<1,故答案为:<a<1由题意可得,,时,函数y=2-2x的图象在函数y=log a x的图象的下方,可得0<a<1.再根据它们的单调性可得<log a,解此对数不等式求得a的范围本题主要考查对数不等式的解法,同时考查对数函数的单调性,体现了转化的数学思想,属于中档题.三、解答题(本大题共7小题,共82.0分)17.已知△ABC的内角A、B、C所对的边分别为a、b、c,若(2a-c)cos B=bcos C,=-3.(1)求△ABC的面积;(2)求AC边的最小值.【答案】解:(1)∵(2a-c)cos B=bcos C,由正弦定理可化为:(2sin A-sin C)cos B=sin B cos C⇔2sin A cos B=sin C cos B+cos C sin B=sin(B+C)=sin A…(2分)∵0<A<π,∴sin A≠0,即,∵0<B<π,∴B=,…(3分)又,得accos(π-B)=-3,∴,即ac=6,…(4分)∴△ABC的面积,…(6分)(2)由余弦定理b2=a2+c2-2accos B,…(7分)解得:b2=a2+c2-6…(8分)配方,得:b2=(a+c)2-18…(9分)由均值不等式知:a+c≥2=2…(10分)∴b2=(a+c)2-18≥6∴AC=b≥,即AC边的最小值为为.…(12分)【解析】(1)由(2a-c)cos B=bcos C,求出B,利用=-3,求出ac,即可求△ABC的面积;(2)利用余弦定理,结合基本不等式,即可求AC边的最小值.本题考查正弦定理、余弦定理的运用,考查基本不等式,考查向量知识的运用,属于中档题.18.从某校高三上学期期末数学考试成绩中,随机抽取了60名学生的成绩得到如图所示的频率分布直方图:(1)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;(2)若用分层抽样的方法从分数在[30,50)和[130,150]的学生中共抽取6人,该6人中成绩在[130,150]的有几人?(3)在(2)中抽取的6人中,随机抽取2人,求分数在[30,50)和[130,150]各1人的概率.【答案】解:(1)由频率分布直方图,得该校高三学生本次数学考试的平均分为:0.0050×20×40+0.0075×20×60+0.0075×20×80+0.0150×20×100+0.0125×20×120+0.0025×20×140=92.…(4分)(2)样本中分数在[30,50)和[130,150]的人数分别为6人和3人,所以抽取的6人中分数在[130,150]的人有(人)…(8分)(3)由(2)知:抽取的6人中分数在[30,50)的有4人,记为A1,A2,A3,A4分数在[130,150]的人有2人,记B1,B2,从中随机抽取2人总的情形有:(A1,A2)、(A1,A3)、(A1,A4)、(A1,B1)、(A1,B2)、(A2,A3)、(A2,A4)、(A2,B1)、(A2,B2)、(A3,A4)、(A3,B1)、(A3,B2)、(A4,B1)、(A4,B2)、(B1,B2)15种;而分数在[30,50)和[130,150]各1人的情形有(A1,B1)、(A1,B2)、(A2,B1)、(A2,B2)、(A3,B1)、(A3,B2)、(A4,B1)、(A4,B2)8种故分数在[30,50)和[130,150]各1人的概率…(12分)【解析】(1)由频率分布直方图,能求出该校高三学生本次数学考试的平均分.(2)样本中分数在[30,50)和[130,150]的人数分别为6人和3人,由此能求出抽取的6人中分数在[130,150]的人数.(3)抽取的6人中分数在[30,50)的有4人,记为A1,A2,A3,A4,分数在[130,150]的人有2人,记B1,B2,由此利用列举法能求出分数在[30,50)和[130,150]各1人的概率.本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.19.如图:三棱柱ABC-A1B1C1的所有棱长均相等,AA1⊥平面ABC,E为AA1的中点.(1)求证:平面BC1E⊥平面BCC1B1;(2)求直线BC1与平面BB1A1A所成角的正弦值.【答案】证明:(1)如图1,连接CB1交BC1于点O,则O为CB1与BC1的中点,连接EC,EB1,依题意有;EB=EC1=EC=EB1,…(2分)∴EO⊥CB1,EO⊥BC1,∵CB1∩BC1=O,∴EO⊥平面BCC1B1,∵OE⊆平面BC1E,∴平面EBC1⊥平面BCC1B1.…(5分)解:(2)如图2,取A1B1的中点为H,连接C1H、BH,∵AA1⊥平面ABC,∴平面A1B1C1⊥平面BB1A1A,平面A1B1C1∩平面BB1A1A=A1B1,又∵A1C1=B1C1,H为A1B1的中点,∴C1H⊥A1B1,∴C1H⊥平面BB1A1A,则∠C1BH为直线BC1与平面BB1A1A所成的角.…(8分)令棱长为2a,则C1H=,BC1=,∴∠所以直线BC1与平面BB1A1A所成角的正弦值为.…(12分)【解析】(1)连接CB1交BC1于点O,连接EC,EB1,推导出EO⊥CB1,EO⊥BC1,从而EO⊥平面BCC1B1,由此能证明平面EBC1⊥平面BCC1B1.(2)取A1B1的中点为H,连接C1H、BH,推导出C1H⊥平面BB1A1A,则∠C1BH为直线BC1与平面BB1A1A所成的角,由此能求出直线BC1与平面BB1A1A所成角的正弦值.本题考查面面垂直的证明,考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.20.椭圆:>>的左右焦点分别为F1,F2,点P在椭圆C上,满足,,.(1)求椭圆C的方程.(2)设过点D(0,2)的直线l与椭圆C相交于不同的两点M、N,且N在D、M之间,设,求λ的取值范围.【答案】解:(1)∵椭圆:>>的左右焦点分别为F1,F2,点P在椭圆C上,满足,,.∴,得,由得c=2,由c2=a2-b2得b=1,∴椭圆方程为.…(4分)(2)由题意可知:当直线L的斜率不存在时,直线L为x=0,DN=1,DM=3,;…(6分)当直线L的斜率存在时,设直线L的方程为y=kx+2,代入,得(1+5k2)x2+20kx+15=0,△=(20k)2-4×15(1+5k2)>0,得k2>,设M(x1,y1),N(x2,y2),则,….(8分)由得(x2,y2-2)=λ(x1,y1-2)∴x2=λx1代入上式得再消去,得,∵>,∴<<,∴<<,即<<,∴<<,解得<<,…(10分)又N在D,M之间,∴<<,…(11分)由上综合可得<.…(12分)【解析】(1)由椭圆定义得,由,得c=2,由此能求出椭圆方程.(2)当直线L的斜率不存在时,直线L为x=0,DN=1,DM=3,;当直线L的斜率存在时,设直线L的方程为y=kx+2,代入,得(1+5k2)x2+20kx+15=0,由此利用根的判别式、韦达定理、向量知识,结合已知条件能求出λ的取值范围.本题考查椭圆方程、实数的取值范围的求法,是中档题,解题时要认真审题,注意椭圆性质、根的判别式、韦达定理、向量知识的合理运用.21.已知函数f(x)=e x+b在(1,f(1))处的切线为y=ax.(1)求f(x)的解析式.(2)若对任意x∈R,有f(x)≥kx成立,求实数k的取值范围.(3)证明:对任意t∈(-∞,2],f(x)>t+lnx成立.【答案】解:(1)由f′(x)=e x得k=f′(1)=e=a,所以切线为y=ex,…(2分)由切点为(1,e+b)在切线y=ex上,b=0,所以f(x)=e x…(4分)(2)当k<0时,对于x∈R,e x≥kx显然不恒成立…(5分)当k=0时,e x≥kx显然成立…(6分)当k>0时,若要e x-kx≥0恒成立,必有(e x-kx)min≥0设t(x)=e x-kx,则t′(x)=e x-k 易知t(x)在(-∞,lnk)上单调递减,在(lnk,+∞)上单调递增,则t(x)min=k(1-lnk)若e x-kx≥0恒成立,即t(x)min=k(1-lnk)≥0,得0<k≤e综上得0≤k≤e…(8分)(3)证法1:由(1)知e x≥ex成立,构造函数h(x)=ex-lnx-t(x>0)(t≤2),所以(t≤2)有ex≥lnx+t成立(当,时取等号).由(1)知e x≥ex成立(当x=1时取等号),所以有e x>t+lnx成立,即对任意t∈(-∞,2],f(x)>t+lnx成立…(12分)证法2,因为t≤2,所以要证e x>t+lnx,只须证e x>2+lnx令, >,令t(x)=xe x-1,t′(x)=e x+xe x>0,所以t(x)在(0,+∞)递增,t(x)>t(0)=-1,由于t(0)=-1<0,t(1)=e-1>0所以存在x0∈(0,1),有,则,x0=-lnx0即h′(x)>0得>; <得0<x<x0所以>所以e x-2-lnx>0成立,即e x>t+lnx成立即对任意t∈(-∞,2],f(x)>t+lnx成立…(12分)【解析】(1)求出切线方程,得到b的值,从而求出f(x)的解析式即可;(2)通过讨论k的范围,结合函数的单调性求出k的具体范围即可;(3)法一:构造函数h(x)=ex-lnx-t(x>0)(t≤2),根据函数的单调性证明即可;法二:问题转化为证e x>2+lnx,令, >,根据函数的单调性证明即可.本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.22.在极坐标系中,点M的坐标为,,曲线C的方程为;以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,斜率为-1的直线l经过点M.(1)求直线l和曲线C的直角坐标方程;(2)若P为曲线C上任意一点,曲线l和曲线C相交于A、B两点,求△PAB面积的最大值.【答案】解:(1)∵在极坐标系中,点M的坐标为,,∴x=3cos=0,y=3sin=3,∴点M的直角坐标为(0,3),∴直线方程为y=-x+3,….(2分)由,得ρ2=2ρsinθ+2ρcosθ,∴曲线C的直角坐标方程为x2+y2-2x-2y=0,即(x-1)2+(y-1)2=2…(5分)(2)圆心(1,1)到直线y=-x+3的距离,∴圆上的点到直线L的距离最大值为,而弦∴△PAB面积的最大值为.…(10分)【解析】(1)求出点M的直角坐标为(0,3),从而直线方程为y=-x+3,由,能求出曲线C的直角坐标方程.(2)求出圆心(1,1)到直线y=-x+3的距离,从而得到圆上的点到直线L的距离最大值,由此能求出△PAB面积的最大值.本题考查直线和曲线的直角坐标方程的求法,考查三角形面积的最大值的求法,是中档题,解题时要认真审题,注意极坐标、直角坐标的互化和点到直线的距离公式的合理运用.23.已知函数f(x)=|x+t|的单调递增区间为[-1,+∞).(3)求不等式f(x)+1<|2x+1|的解集M;(4)设a,b∈M,证明:|ab+1|>|a+b|.【答案】(1)解:由已知得t=1,….(1分)所以|x+1|+1<|2x+1|当x<-1时,-(x+1)+1<-(2x+1),得x<-1当时,(x+1)+1<-(2x+1)得x∈ϕ当>时,(x+1)+1<(2x+1)得x>1综上得M={x|x<-1或x>1}…..(5分)(2)证明:要证|ab+1|>|a+b|,只须证(ab)2+2ab+1>a2+2ab+b2即证(ab)2-a2-b2+1>0因为(ab)2-a2-b2+1=a2(b2-1)-b2+1=(b2-1)(a2-1)由于a,b∈{x|x<-1,x>1},所以(b2-1)(a2-1)>0成立即|ab+1|>|a+b|成立.…..(10分)【解析】(1)利用绝对值的几何意义,分类讨论,即可求不等式f(x)+1<|2x+1|的解集M;(2)利用分析法证明即可.本题考查绝对值的几何意义,考查分析法证明不等式,正确转化是关键.。

2017年黔东南州中考数学试卷

2017年黔东南州中考数学试卷

2017年黔东南州中考数学试卷一、选择题(共10小题;共50分)1. 的值是A. B. C. D.2. 如图,,,则的度数是A. B. C. D.3. 下列运算结果正确的是A. B.C. D.4. 如图所示,所给的三视图表示的几何体是A. 圆锥B. 三棱锥C. 四棱锥D. 三棱柱5. 如图,的直径垂直于弦,垂足为,,半径为,则弦的长为A. B. C. D.6. 已知一元二次方程的两根分别为,则的值为A. B. C. D.7. 分式方程的根为A. 或B.C. D. 或8. 如图,正方形中,为中点,,,交于,则的度数为A. B. C. D.9. 如图,抛物线的对称轴为直线,给出下列结论:①;②;③;④,其中正确的个数有A. 个B. 个C. 个D. 个10. 我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中第三项的系数为A. B. C. D.二、填空题(共6小题;共30分)11. 在平面直角坐标系中有一点,将点先向右平移个单位,再向下平移个单位,则平移后点的坐标为.12. 如图,点,,,在一条直线上,已知,,请你添加一个适当的条件使得.13. 在实数范围内因式分解:.14. 黔东南下司“蓝莓谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在,该果农今年的蓝莓总产量约为,由此估计该果农今年的“优质蓝莓”产量约是.15. 如图,已知点,分别在反比例函数和的图象上,若点是线段的中点,则的值为.16. 把多块大小不同的直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板的一条直角边与轴重合且点的坐标为,;第二块三角板的斜边与第一块三角板的斜边垂直且交轴于点;第三块三角板的斜边与第二块三角板的斜边垂直且交轴于点;第四块三角板的斜边与第三块三角板的斜边垂直且交轴于点;按此规律继续下去,则点的坐标为.三、解答题(共8小题;共104分)17. 计算:.18. 先化简,再求值:,其中.19. 解不等式组:并把解集在数轴上表示出来.20. 某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.身高分组频数频率根据以上统计图表完成下列问题:(1)统计表中,,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:范围内;(3)在身高的人中,甲、乙两班各有人,现从人中随机推选人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.21. 如图,已知直线与相切于点,直线与相交于,两点.(1)求证:;(2)若,求图中阴影部分的面积.22. 如图,某校教学楼后方有一斜坡,已知斜坡的长为米,坡角为,根据有关部门的规定,时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡进行改造,在保持坡脚不动的情况下,学校至少要把坡顶向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参数数据:,,,,,)23. 某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,天就可以完成该项工程;若由甲队先单独做天后,剩余部分由乙队单独做需要天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资元,乙队每天工资元,学校要求在天内将学生公寓楼装修完成,若完成该工程甲队工作天,乙队工作天,求学校需支付的总工资(元)与甲队工作天数(天)的函数关系式,并求出的取值范围及的最小值.24. 如图,的圆心,经过坐标原点,与轴交于点,经过点的一条直线解析式为:与轴交于点,以为顶点的抛物线经过轴上点和点.(1)求抛物线的解析式;(2)求证:直线是的切线;(3)点为抛物线上一动点,且与直线垂直,垂足为,轴,交直线于点,是否存在这样的点,使的面积最小?若存在,请求出此时点的坐标及面积的最小值;若不存在,请说明理由.答案第一部分1. B2. C3. C4. D5. A6. D7. C8. A9. C 10. D第二部分11.12. (答案不唯一)13.14.15.16.第三部分原式17.原式18.当时,原式.19. 第一个不等式可化为解这个不等式,得第二个不等式可化为即解这个不等式,得原不等式组的解集为把解集在数轴上出来.频数分布直方图:(2)【解析】观察表格可知中位数在内.(3)将甲、乙两班的学生分别记为甲,甲,乙,乙树状图如图所示:所以两人都来自相同班级.21. (1)连接,是的切线,,,,是的直径,,,,,,,,,.(2),,,,,,,,,,,是等边三角形,的半径为,.阴扇形22. 假设点移到的位置时,恰好,过点作于点,作于点,米,,米,米.,,,四边形是矩形,米.,,(米).答:学校至少要把坡顶向后水平移动米才能保证教学楼的安全.23. (1)设甲队单独完成需要天,乙队单独完成需要天.由题意解得经检验是分式方程组的解,且符合题意,甲、乙两队工作效率分别是和.(2)由题意,得,,学校要求天内将学生公寓楼装修完成,即,总工资,.当时,有最小值,最小24. (1)设抛物线的解析式为,将点的坐标代入得:,解得:.抛物线的解析式为.(2)连接,过点作,垂足为.把代入得:,.将代入得:,解得,.,.,,,...,,即.直线是的切线.(3)存在使面积最小的点,,,...的面积.当最小时,的面积最小.设点的坐标为,则.当时,有最小值,的最小值为..的面积的最小值为.。

五年级上册数学.黔东南州期末文化水平测试

五年级上册数学.黔东南州期末文化水平测试

黔东南州2019~2020学年五年级数学(上册)期末文化水平测试(时间:90分钟满分:100分)2020.1一、填空题。

(第3小题2分,其余每空1分,共24分)1.2.3 X0.89的积是()位小数,精确到十分位约是()。

2.小数4.16767…可以简写成(),保留三位小数是()。

3.把2.545、2.54、2.55和2.54用“〈”按顺序排列起来()。

4.在里填上“>” “<”或“二”。

50.7x0.680.7 5.32x1005324.850.54.8x0.55.一个平行四边形的面积是15.9平方米,它的底是5.3米,高是()米。

6.一个盒子里装有4个白球、6个黄球和1个红球(球除颜色外均相同)。

任意摸出一个球,摸到()球的可能性最大,摸到()球的可能性最小。

7.一辆汽车行驶100公里需要8升汽油。

行驶1公里需要()升汽油,1升汽油可以行驶()公里。

8.体育老师买了6个足球,每个足球a元。

付给营业员120元,应找回()元。

9.一个直角三角形的两条直角边长分别是12厘米和16厘米,斜边长20厘米。

这个三角形的面积是()平方厘米,斜边上的高是()厘米。

10.一个梯形的上、下底之和是12厘米,高是9厘米。

这个梯形的面积是()。

11.一个三位小数“四舍五入”后的近似数是4.39,这个三位小数最小是(),最大是()。

12.有条小路长100米。

如果在小路的一边每隔5米栽一棵树,两端不栽,需要栽()棵树。

13.0.985985…的小数部分第101位上的数字是()。

14.一张桌子坐6人,两张桌子并起来坐10人,三张桌子并起来坐14人……照这样,10张桌子可以坐()人。

如果有58人,需要()张桌子。

二、判断题。

(对的画“ J”,错的画“X”。

每题1分,共5分)1.近似数不一定比准确数小。

2.等式两边同时乘或除以同一个不为0的数,等式仍成立。

3.把a X a X5省略乘号可以写成5a。

( )4.一个三角形的高扩大到原来的2倍,面积也扩大到原来的2倍。

贵州省黔东南州2017届高三下学期高考模拟考试文数试题

贵州省黔东南州2017届高三下学期高考模拟考试文数试题

第I卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若复数是虚数单位,则在复平面内对应的点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】因为,所以在复平面内对应的点在第一象限.故选A.2. 已知集合,则A. B. C. D.【答案】D【解析】因为,所以.故选D.3. 在各项均为正数的等比数列中,若,则A. B. C. D.【答案】A【解析】由题意,得,所以,则.故选A.【点睛】在处理与等比数列有关的计算时,要注意等比数列的性质的应用,尤其是“若,则”的运用,可减少计算量.4. 已知三个数,则的大小关系是A. B. C. D.5. 若满足约束条件,则的最大值为A. B. C. D.【答案】A6. 已知向量a,b满足:|a|=2,|b|=4,<a,b>=,则|3a-2b|=A. B. C. D.【答案】B【解析】由题意,得.故选B.7. 在集合中随机取一个元素,恰使函数大于1的概率为A. B. C. D.【解析】令,得,由几何概型的概率公式,得恰使函数大于1的概率为.故选D.8. 秦九韶是我国南宋时期著名的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入的值为,每次输入的值均为,输出的值为,则输入的值为A. B. C. 4 D. 3【答案】C【解析】由程序框图,得;,结束循环,即输入的值为4.故选C.9. 半径为2的圆C的圆心在第四象限,且与直线和均相切,则该圆的标准方程为A. B.C. D.【答案】C10. 已知三棱锥中,PA⊥底面ABC,AB⊥BC,PA=AC=2,且该三棱锥所有顶点都在球O 的球面上,则球的表面积为A. 4πB. 8πC. 16πD. 20π【答案】B【解析】因为底面,所以,又因为,所以底面,则,即均为直角三角形,所以该外接球的球心是的中点,外接球的半径为,表面积为.故选B.【点睛】处理球和多面体的组合问题,关键在于确定外接球或内切球的球心,往往将多面体补成长方体进行求解.11. 已知抛物线与双曲线有相同的焦点F,点A是两曲线的一个交点,且AF⊥x轴,则双曲线的离心率为A. B. C. D.【答案】B【点睛】本题考查抛物线和双曲线的几何性质、标准方程,在涉及过抛物线焦点的弦长问题时,要注意利用抛物线的定义合理将抛物线上的点到焦点的距离和到准线的距离进行互化.12. 设分别是函数的导数,且满足,.若中,是钝角,则A. B.C. D.【答案】C【解析】因为在时成立,所以在为增函数,又因为为钝角,所以,则,所以,所以.故选C.【点睛】解决本题的关键在于利用联想到导数的运算法则,进而构造函数.第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分。

2017中考数学真题贵州黔东南州数学(含答案)

2017年贵州省黔东南州中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.|﹣2|的值是()A.﹣2 B.2 C.﹣ D.【解析】解:∵﹣2<0,∴|﹣2|=2.故选B.2.如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90°C.100° D.30°【解析】解:∠A=∠ACD﹣∠B=120°﹣20°=100°,故选:C.3.下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.6ab2÷(﹣2ab)=﹣3b D.a(a+b)=a2+b【解析】解:A、原式=2a,不符合题意;B、原式=a2﹣2ab+b2,不符合题意;C、原式=﹣3b,符合题意;D、原式=a2+ab,不符合题意,故选C4.如图所示,所给的三视图表示的几何体是()A.圆锥B.正三棱锥C.正四棱锥D.正三棱柱【解析】解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为正三棱柱.故选:D.5.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD 的长为()A.2 B.﹣1 C.D.4【解析】解:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,∵OC=2,∴CE=OC=1,∴CD=2OE=2,故选A.6.已知一元二次方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则+的值为( )A .2B .﹣1C .D .﹣2 【解析】解:根据题意得x 1+x 2=2,x 1x 2=﹣1,所以+===﹣2.故选D .7.分式方程=1﹣的根为( )A .﹣1或3B .﹣1C .3D .1或﹣3 【解析】解:去分母得:3=x 2+x ﹣3x ,解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3,故选C8.如图,正方形ABCD 中,E 为AB 中点,FE ⊥AB ,AF=2AE ,FC 交BD 于O ,则∠DOC 的度数为( )A .60°B .67.5°C .75°D .54°【解析】解:如图,连接DF 、BF .∵FE⊥AB,AE=EB,∴FA=FB,∵AF=2AE,∴AF=AB=FB,∴△AFB是等边三角形,∵AF=AD=AB,∴点A是△DBF的外接圆的圆心,∴∠FDB=∠FAB=30°,∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∠ADB=∠DBC=45°,∴∠FAD=∠FBC,∴△FAD≌△FBC,∴∠ADF=∠FCB=15°,∴∠DOC=∠OBC+∠OCB=60°.故选A.9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个 B.2个 C.3个 D.4个【解析】解:①∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;②∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴a、b同号,∴b>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc>0,所以②正确;③∵x=﹣1时,y<0,即a﹣b+c<0,∵对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,∴a﹣2a+c<0,即a>c,所以③正确;④∵抛物线的对称轴为直线x=﹣1,∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,∴4a﹣2b+c>0,所以④正确.所以本题正确的有:②③④,三个,故选C.10.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190【解析】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)20第三项系数为1+2+3+…+20=190,故选D.二、填空题(本大题共6小题,每小题4分,共24分)11.在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为(1,﹣1).【解析】解:由题意可知:A的横坐标+3,纵坐标﹣2,即可求出平移后的坐标,∴平移后A的坐标为(1,﹣1)故答案为:(1,﹣1)12.如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件∠A=∠D使得△ABC≌△DEF.【解析】解:添加∠A=∠D.理由如下:∵FB=CE,∴BC=EF.又∵AC∥DF,∴∠ACB=∠DFE.∴在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).故答案是:∠A=∠D.13.在实数范围内因式分解:x5﹣4x=x(x2+3)(x+)(x﹣).【解析】解:原式=x(x4﹣22),=x(x2+2)(x2﹣2)=x(x2+2)(x+)(x﹣),故答案是:x(x2+3)(x+)(x﹣).14.黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是560kg.【解析】解:由题意可得,该果农今年的“优质蓝莓”产量约是:800×0.7=560kg,故答案为:560.15.如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB的中点,则k的值为﹣8.【解析】解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=﹣的图象上,∴ab=﹣2;∵B点在反比例函数y2=的图象上,∴k=2a•2b=4ab=﹣8.故答案是:﹣8.16.把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2C垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为(0,﹣).【解析】解:由题意可得,OB=OA•tan60°=1×=,OB1=OB•tan60°==()2=3,OB2=OB1•tan60°=()3,…∵2017÷4=506…1,∴点B2017的坐标为(0,﹣),故答案为:(0,﹣).三、解答题(本大题共8小题,共86分)17.计算:﹣1﹣2+|﹣|+(π﹣3.14)0﹣tan60°+.【解析】解:原式=1+()+1﹣=218.先化简,再求值:(x﹣1﹣)÷,其中x=+1.【解析】解:原式=•=•=x﹣1,当x=+1时,原式=.19.解不等式组,并把解集在数轴上表示出来.【解析】解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:20.某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.根据以上统计图表完成下列问题:(1)统计表中m=14,n=0.26,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:161≤x<164范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.【解析】解:(1)设总人数为x人,则有=0.06,解得x=50,∴m=50×0.28=14,n==0.26.故答案为14,0.26.频数分布直方图:(2)观察表格可知中位数在161≤x<164内,故答案为161≤x<164.(3)将甲、乙两班的学生分别记为甲1、甲2、乙1、乙2树状图如图所示:=.所以P(两学生来自同一所班级)=21.如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.【解析】(1)证明:连接OT.∵PT是⊙O的切线,∴PT⊥OT,∴∠PTO=90°,∴∠PTA+∠OTA=90°,∵AB是直径,∴∠ATB=90°,∴∠TAB+∠B=90°,∵OT=OA,∴∠OAT=∠OTA,∴∠PTA=∠B,∵∠P=∠P,∴△PTA∽△PBT,∴=,∴PT2=PA•PB.(2)∵TP=TB=,∴∠P=∠B=∠PTA,∵∠TAB=∠P+∠PTA,∴∠TAB=2∠B,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,∴tanB==,∴AT=1, ∵OA=OT ,∠TAO=60°,∴△AOT 是等边三角形,∴S 阴=S 扇形OAT ﹣S △AOT =﹣•12=﹣.22.如图,某校教学楼AB 后方有一斜坡,已知斜坡CD 的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD 进行改造,在保持坡脚C 不动的情况下,学校至少要把坡顶D 向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)【解析】解:假设点D 移到D′的位置时,恰好∠α=39°,过点D 作DE ⊥AC 于点E ,作D′E′⊥AC 于点E′,∵CD=12米,∠DCE=60°,∴DE=CD•sin60°=12×=6米,CE=CD•cos60°=12×=6米.∵DE ⊥AC ,D′E′⊥AC ,DD′∥CE′,∴四边形DEE′D′是矩形,∴DE=D′E′=6米.∵∠D′CE′=39°,∴CE′=≈≈12.8,∴EE′=CE′﹣CE=12.8﹣6=6.8(米).答:学校至少要把坡顶D 向后水平移动6.8米才能保证教学楼的安全.23.某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.【解析】解:(1)设甲队单独完成需要x天,乙队单独完成需要y天.由题意,解得,经检验是分式方程组的解,∴甲、乙两队工作效率分别是和.(2)设乙先工作x天,再与甲合作正好如期完成.则+=1,解得x=6.∴甲工作6天,∵甲12天完成任务,∴6≤m≤12.∵乙队每天的费用小于甲队每天的费用,∴让乙先工作6天,再与甲合作6天正好如期完成,此时费用最小,∴w的最小值为12×1400+6×3000=34800元.24.如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.【解析】解:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:﹣9a=2,解得:a=﹣.∴抛物线的解析式为y=﹣x2﹣x+.(2)连接AM,过点M作MG⊥AD,垂足为G.把x=0代入y=﹣x+4得:y=4,∴A(0,4).将y=0代入得:0=﹣x+4,解得x=8,∴B(8,0).∴OA=4,OB=8.∵M(﹣1,2),A(0,4),∴MG=1,AG=2.∴tan∠MAG=tan∠ABO=.∴∠MAG=∠ABO.∵∠OAB+∠ABO=90°,∴∠MAG+∠OAB=90°,即∠MAB=90°.∴l是⊙M的切线.(3)∵∠PFE+∠FPE=90°,∠FBD+∠PFE=90°,∴∠FPE=∠FBD.∴tan∠FPE=.∴PF:PE:EF=:2:1.∴△PEF的面积=PE•EF=×PF•PF=PF2.∴当PF最小时,△PEF的面积最小.设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).∴PF=(﹣x+4)﹣(﹣x2﹣x+)=﹣x+4+x2+x﹣=x2﹣x+=(x﹣)2+.∴当x=时,PF有最小值,PF的最小值为.∴P(,).∴△PEF的面积的最小值为=×()2=.。

2017年黔东南州中考数学试卷及答案解析

2017年贵州省黔东南州中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.|﹣2|的值是()A.﹣2 B.2 C.﹣ D.2.如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90°C.100° D.30°3.下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.6ab2÷(﹣2ab)=﹣3b D.a(a+b)=a2+b4.如图所示,所给的三视图表示的几何体是()A.圆锥B.正三棱锥C.正四棱锥D.正三棱柱5.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD 的长为()A.2 B.﹣1 C.D.46.已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2 B.﹣1 C.D.﹣27.分式方程=1﹣的根为()A.﹣1或3 B.﹣1 C.3 D.1或﹣38.如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()A.60°B.67.5°C.75°D.54°9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个 B.2个 C.3个 D.4个10.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190二、填空题(本大题共6小题,每小题4分,共24分)11.在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为.12.如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件使得△ABC≌△DEF.13.在实数范围内因式分解:x5﹣4x=.14.黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是kg.15.如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB的中点,则k的值为.16.把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2C垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为.三、解答题(本大题共8小题,共86分)17.计算:﹣1﹣2+|﹣|+(π﹣3.14)0﹣tan60°+.18.先化简,再求值:(x﹣1﹣)÷,其中x=+1.19.解不等式组,并把解集在数轴上表示出来.20.某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.根据以上统计图表完成下列问题:(1)统计表中m=,n=,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.21.如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.22.如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)23.某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.24.如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.2017年贵州省黔东南州中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.|﹣2|的值是()A.﹣2 B.2 C.﹣ D.【考点】15:绝对值.【分析】根据绝对值的性质作答.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.2.如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90°C.100° D.30°【考点】K8:三角形的外角性质.【分析】根据三角形的外角的性质计算即可.【解答】解:∠A=∠ACD﹣∠B=120°﹣20°=100°,故选:C.3.下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.6ab2÷(﹣2ab)=﹣3b D.a(a+b)=a2+b【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a,不符合题意;B、原式=a2﹣2ab+b2,不符合题意;C、原式=﹣3b,符合题意;D、原式=a2+ab,不符合题意,故选C4.如图所示,所给的三视图表示的几何体是()A.圆锥B.正三棱锥C.正四棱锥D.正三棱柱【考点】U3:由三视图判断几何体.【分析】由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.【解答】解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为正三棱柱.故选:D.5.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD 的长为()A.2 B.﹣1 C.D.4【考点】M5:圆周角定理;KQ:勾股定理;M2:垂径定理.【分析】根据垂径定理得到CE=DE,∠CEO=90°,根据圆周角定理得到∠COE=30°,根据直角三角形的性质得到CE=OC=1,最后由垂径定理得出结论.【解答】解:∵⊙O 的直径AB 垂直于弦CD ,∴CE=DE ,∠CEO=90°,∵∠A=15°,∴∠COE=30°,∵OC=2,∴CE=OC=1,∴CD=2OE=2,故选A .6.已知一元二次方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则+的值为( )A .2B .﹣1C .D .﹣2 【考点】AB :根与系数的关系.【分析】根据根与系数的关系得到x 1+x 2=2,x 1x 2=﹣1,利用通分得到+=,然后利用整体代入的方法计算【解答】解:根据题意得x 1+x 2=2,x 1x 2=﹣1,所以+===﹣2.故选D .7.分式方程=1﹣的根为( )A .﹣1或3B .﹣1C .3D .1或﹣3 【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:3=x 2+x ﹣3x ,解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3,故选C8.如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()A.60°B.67.5°C.75°D.54°【考点】LE:正方形的性质.【分析】如图,连接DF、BF.如图,连接DF、BF.首先证明∠FDB=∠FAB=30°,再证明△FAD≌△FBC,推出∠ADF=∠FCB=15°,由此即可解决问题.【解答】解:如图,连接DF、BF.∵FE⊥AB,AE=EB,∴FA=FB,∵AF=2AE,∴AF=AB=FB,∴△AFB是等边三角形,∵AF=AD=AB,∴点A是△DBF的外接圆的圆心,∴∠FDB=∠FAB=30°,∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∠ADB=∠DBC=45°,∴∠FAD=∠FBC,∴△FAD≌△FBC,∴∠ADF=∠FCB=15°,∴∠DOC=∠OBC+∠OCB=60°.故选A.9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个 B.2个 C.3个 D.4个【考点】H4:二次函数图象与系数的关系.【分析】①利用抛物线与x轴有2个交点和判别式的意义对①进行判断;②由抛物线开口方向得到a>0,由抛物线对称轴位置确定b>0,由抛物线与y 轴交点位置得到c>0,则可作判断;③利用x=﹣1时a﹣b+c<0,然后把b=2a代入可判断;④利用抛物线的对称性得到x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,则可进行判断.【解答】解:①∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;②∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴a、b同号,∴b>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc>0,所以②正确;③∵x=﹣1时,y<0,即a﹣b+c<0,∵对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,∴a﹣2a+c<0,即a>c,所以③正确;④∵抛物线的对称轴为直线x=﹣1,∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,∴4a﹣2b+c>0,所以④正确.所以本题正确的有:②③④,三个,故选C.10.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190【考点】4C:完全平方公式.【分析】根据图形中的规律即可求出(a+b)20的展开式中第三项的系数;【解答】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)20第三项系数为1+2+3+…+20=190,故选D.二、填空题(本大题共6小题,每小题4分,共24分)11.在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为(1,﹣1).【考点】Q3:坐标与图形变化﹣平移.【分析】根据坐标平移规律即可求出答案.【解答】解:由题意可知:A的横坐标+3,纵坐标﹣2,即可求出平移后的坐标,∴平移后A的坐标为(1,﹣1)故答案为:(1,﹣1)12.如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件∠A=∠D使得△ABC≌△DEF.【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理填空.【解答】解:添加∠A=∠D.理由如下:∵FB=CE,∴BC=EF.又∵AC∥DF,∴∠ACB=∠DFE.∴在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).故答案是:∠A=∠D.13.在实数范围内因式分解:x5﹣4x=x(x2+3)(x+)(x﹣).【考点】58:实数范围内分解因式.【分析】先提取公因式x,再把4写成22的形式,然后利用平方差公式继续分解因式.【解答】解:原式=x(x4﹣22),=x(x2+2)(x2﹣2)=x(x2+2)(x+)(x﹣),故答案是:x(x2+3)(x+)(x﹣).14.黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是560kg.【考点】X8:利用频率估计概率.【分析】根据题意可以估计该果农今年的“优质蓝莓”产量.【解答】解:由题意可得,该果农今年的“优质蓝莓”产量约是:800×0.7=560kg,故答案为:560.15.如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB的中点,则k的值为﹣8.【考点】G6:反比例函数图象上点的坐标特征.【分析】设A(a,b),则B(2a,2b),将点A、B分别代入所在的双曲线方程进行解答.【解答】解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=﹣的图象上,∴ab=﹣2;∵B点在反比例函数y2=的图象上,∴k=2a•2b=4ab=﹣8.故答案是:﹣8.16.把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2C垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为(0,﹣).【考点】D2:规律型:点的坐标.【分析】根据题意和图象可以发现题目中的变化规律,从而可以求得点B2017的坐标.【解答】解:由题意可得,OB=OA•tan60°=1×=,OB1=OB•tan60°==()2=3,OB2=OB1•tan60°=()3,…∵2017÷4=506…1,∴点B2017的坐标为(0,﹣),故答案为:(0,﹣).三、解答题(本大题共8小题,共86分)17.计算:﹣1﹣2+|﹣|+(π﹣3.14)0﹣tan60°+.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+()+1﹣=218.先化简,再求值:(x﹣1﹣)÷,其中x=+1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=x﹣1,当x=+1时,原式=.19.解不等式组,并把解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.【解答】解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:20.某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.根据以上统计图表完成下列问题:(1)统计表中m=14,n=0.26,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:161≤x<164范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;V8:频数(率)分布直方图;W4:中位数.【分析】(1)设总人数为x人,则有=0.06,解得x=50,再根据频率公式求出m,n.画出直方图即可;(2)根据中位数的定义即可判断;(3)画出树状图即可解决问题;【解答】解:(1)设总人数为x人,则有=0.06,解得x=50,∴m=50×0.28=14,n==0.26.故答案为14,0.26.频数分布直方图:(2)观察表格可知中位数在161≤x<164内,故答案为161≤x<164.(3)将甲、乙两班的学生分别记为甲1、甲2、乙1、乙2树状图如图所示:=.所以P(两学生来自同一所班级)=21.如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.【考点】S9:相似三角形的判定与性质;MC :切线的性质;MO :扇形面积的计算.【分析】(1)连接OT ,只要证明△PTA ∽△PBT ,可得=,由此即可解决问题;(2)首先证明△AOT 是等边三角形,根据S 阴=S 扇形OAT ﹣S △AOT 计算即可;【解答】(1)证明:连接OT .∵PT 是⊙O 的切线,∴PT ⊥OT ,∴∠PTO=90°,∴∠PTA +∠OTA=90°,∵AB 是直径,∴∠ATB=90°,∴∠TAB +∠B=90°,∵OT=OA ,∴∠OAT=∠OTA ,∴∠PTA=∠B ,∵∠P=∠P ,∴△PTA ∽△PBT ,∴=,∴PT 2=PA•PB .(2)∵TP=TB=,∴∠P=∠B=∠PTA ,∵∠TAB=∠P +∠PTA ,∴∠TAB=2∠B ,∵∠TAB +∠B=90°,∴∠TAB=60°,∠B=30°,∴tanB==,∴AT=1,∵OA=OT ,∠TAO=60°,∴△AOT 是等边三角形,∴S 阴=S 扇形OAT ﹣S △AOT =﹣•12=﹣.22.如图,某校教学楼AB 后方有一斜坡,已知斜坡CD 的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD 进行改造,在保持坡脚C 不动的情况下,学校至少要把坡顶D 向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】假设点D 移到D′的位置时,恰好∠α=39°,过点D 作DE ⊥AC 于点E ,作D′E′⊥AC 于点E′,根据锐角三角函数的定义求出DE 、CE 、CE′的长,进而可得出结论.【解答】解:假设点D 移到D′的位置时,恰好∠α=39°,过点D 作DE ⊥AC 于点E ,作D′E′⊥AC 于点E′,∵CD=12米,∠DCE=60°,∴DE=CD•sin60°=12×=6米,CE=CD•cos60°=12×=6米.∵DE ⊥AC ,D′E′⊥AC ,DD′∥CE′,∴四边形DEE′D′是矩形,∴DE=D′E′=6米.∵∠D′CE′=39°,∴CE′=≈≈12.8,∴EE′=CE′﹣CE=12.8﹣6=6.8(米).答:学校至少要把坡顶D 向后水平移动6.8米才能保证教学楼的安全.23.某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m 天,乙队工作n 天,求学校需支付的总工资w (元)与甲队工作天数m (天)的函数关系式,并求出m 的取值范围及w 的最小值.【考点】FH :一次函数的应用;B7:分式方程的应用.【分析】(1)设甲队单独完成需要x 天,乙队单独完成需要y 天.列出分式方程组即可解决问题;(2)设乙先工作x 天,再与甲合作正好如期完成.则+=1,解得x=6.由此可得m 的范围,因为乙队每天的费用小于甲队每天的费用,所以让乙先工作6天,再与甲合作6天正好如期完成,此时费用最小;【解答】解:(1)设甲队单独完成需要x 天,乙队单独完成需要y 天.由题意,解得,经检验是分式方程组的解,∴甲、乙两队工作效率分别是和.(2)设乙先工作x天,再与甲合作正好如期完成.则+=1,解得x=6.∴甲工作6天,∵甲12天完成任务,∴6≤m≤12.∵乙队每天的费用小于甲队每天的费用,∴让乙先工作6天,再与甲合作6天正好如期完成,此时费用最小,∴w的最小值为12×1400+6×3000=34800元.24.如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入可求得a的值,从而得到抛物线的解析式;(2)连接AM,过点M作MG⊥AD,垂足为G.先求得点A和点B的坐标,可求得,可得到AG、ME、OA、OB的长,然后利用锐角三角函数的定义可证明∠MAG=∠ABD,故此可证明AM⊥AB;(3))先证明∠FPE=∠FBD.则PF:PE:EF=:2:1.则△PEF的面积=PF2,设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).然后可得到PF与x 的函数关系式,最后利用二次函数的性质求解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:﹣9a=2,解得:a=﹣.∴抛物线的解析式为y=﹣x2﹣x+.(2)连接AM,过点M作MG⊥AD,垂足为G.把x=0代入y=﹣x+4得:y=4,∴A(0,4).将y=0代入得:0=﹣x+4,解得x=8,∴B(8,0).∴OA=4,OB=8.∵M(﹣1,2),A(0,4),∴MG=1,AG=2.∴tan∠MAG=tan∠ABO=.∴∠MAG=∠ABO.∵∠OAB+∠ABO=90°,∴∠MAG+∠OAB=90°,即∠MAB=90°.∴l是⊙M的切线.(3)∵∠PFE+∠FPE=90°,∠FBD+∠PFE=90°,∴∠FPE=∠FBD.∴tan∠FPE=.∴PF:PE:EF=:2:1.∴△PEF的面积=PE•EF=×PF•PF=PF2.∴当PF最小时,△PEF的面积最小.设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).∴PF=(﹣x+4)﹣(﹣x2﹣x+)=﹣x+4+x2+x﹣=x2﹣x+=(x﹣)2+.∴当x=时,PF有最小值,PF的最小值为.∴P(,).∴△PEF的面积的最小值为=×()2=.2017年7月2日。

2022-2023学年贵州省黔东南苗族侗族自治州人教版五年级上册期末文化水平测试数学试卷

2022-2023学年贵州省黔东南苗族侗族自治州人教版五年级上册期末文化水平测试数学试卷学校:___________姓名:___________班级:___________考号:___________一、填空题1.在()填上“>”“<”或“=”。

0.9723.8⨯()241.20.8÷()1.2 6.64 3.3÷()66.4 3.3÷2.620平方米=()公顷2.08吨=()千克3.2平方米=()平方分米2时45分=()时3.工人师傅0.25小时做了30个零件,照这样计算,他1小时能做()个零件。

4.一个梯形的面积是100cm 2,高是10cm ,梯形的上下底之和是()cm 。

5.一个三角形和一个平行四边形等底等高,它们面积的和是25.8cm 2,三角形的面积是()cm 2,平行四方形的面积是()cm 2。

6.一个直角三角形的三条边分别是3厘米、4厘米和5厘米,这个直角三角形的面积是()平方厘米。

7.两个数相除,商是6.25,如果被除数不变,除数除以10,商是()。

8.仓库里有a 吨化肥,每天运走b 吨,4天后还剩下()吨。

9.20.111÷的商用循环小数表示是(),保留一位小数是(),保留两位小数是(),保留整数是()。

10.一个两位数,十位上的数是a ,个位上的数是b ,则这个两位数是()。

二、判断题11.90.9090是循环小数,循环节是90。

()12.边长4厘米的正方形,它的周长和面积不相等。

()13.两个面积相等的三角形一定可以拼成一个平行四边形。

()14.一个数(0除外)除以一个小数,商不一定大于被除数.()15.玩掷硬币游戏,如果掷20次,一定有10次是“正面向上”。

()三、选择题16.绿化队要在一条50m 的小路两边栽树。

每隔5m 种一棵树(一端栽,一端不栽)。

一共要栽()棵。

A.10B.20C.22D.1817.下面的数中,最大的是()。

贵州黔东南州2017届高三数学下学期模拟考试试题 文

黔东南州2017年高考模拟考试试卷数学(文科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第II 卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

满分150分,考试时间120分钟。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若复数i iiz ,32+-=是虚数单位,则z 在复平面内对应的点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.已知集合}1lg {},2,1,1-2-{≤==x x B A ,,则=B AA.}2,1,1-2{-,B.}1,1-2{-,C.}1{D.}2,1{ 3. 在各项均为正数的等比数列}{n a 中,若5)....(log 875322=a a a a a ,则=91.a a A. 4 B.5 C.2 D.254.已知三个数πln ,3log ,6.06.03.0===c b a ,则c b a ,,的大小关系是A.a b c <<B.b a c <<C. a c b <<D.c a b <<5.若y x ,满足约束条件⎪⎩⎪⎨⎧-≥≤+≤11y y x x y ,则y x z -2=的最大值为A.5B.3C.1-D.21 6. 已知向量a ,b 满足:|a |=2,|b |=4,<a ,b >=3π,则|3a -2b |= A .52 B .132 C .348-100 D .348-100 7. 在集合{}50≤<=x x M 中随机取一个元素,恰使函数x y21log =大于1的概率为A.54 B.109 C.51 D. 1018.秦九韶是我国南宋时期著名的数学家,普州(现四川省安岳县) 人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法, 至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶 算法求某多项式值的一个实例,若输入x 的值为3,每次输入a 的 值均为4,输出s 的值为484,则输入n 的值为A.6B.5C.4D.39. 半径为2的圆C 的圆心在第四象限,且与直线0=x 和22=+y x 均相切,则该圆的标准方程为A.4)2()1(22=++-y xB.2)2()2(22=++-y xC.4)2()2(22=++-y x D.4)22()22(22=++-y x10.已知三棱锥ABC P -中,ABC PA 底面⊥,2,==⊥AC PA BC AB ,且该三棱锥所有顶点都在球O 的球面上,则球O 的表面积为A.π4B.π8C.π16D.π2011.已知抛物线x y 42=与双曲线)0,0(12222>>=-b a by a x 有相同的焦点F ,点A 是两曲线的一个交点,且AF ⊥x 轴,则双曲线的离心率为A.1-22 B .12+ C.8-28 D. 2-2212.设)()(x g x f ''、分别是函数))(()(R x x g x f ∈、的导数,且满足0)(>x g ,0)()()()(>'-'x g x f x g x f .若ABC ∆中,C ∠是钝角,则A.)(sin ).(sin )(sin ).(sin A g B f B g A f >B.)(sin ).(sin )(sin ).(sin A g B f B g A f <C.)(cos ).(sin )(sin ).(cos A g B f B g A f >D. )(cos ).(sin )(sin ).(cos A g B f B g A f <第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黔东南州2017年小学毕业文化水平第8次模拟测试
数 学 试 卷
1、地球和太阳的平均距离是一亿四千九百五十万千米,写作( )千米,改写成用亿作单位的数是( )亿千米。

2、30米减少5
1米后是( )米,( )吨增加20%是72吨。

3、一个盒子里装有5个红球,2个黄球,3个白球,一次摸到红球的可能性是( )。

4、把2米长的绳子平均剪成5段,每段长( )米,每段是全长的( )。

5、8只鸽子飞回3个鸽舍,至少有( )只鸽子要飞进同一个鸽舍里。

6、一箱苹果重量的43和一箱梨子重量的8
5相等,那么一箱苹果与梨子的重量比是( )。

7、 4:( )=15)(
=0.4=12÷( ) =( )%
8、一个半圆花坛,半径是4米,则这个花坛的周长是( ),面积是( )。

9、5
3升=( )毫升 1.25立方米=( )立方分米 10、从万博到火车站,骑自行车需要2
1小时,坐汽车要10分钟,自行车和汽车的速度比是( )。

11、用一根48分米长的铁丝做成一个正方体框架,这个正方体框架的表面积是( )平方分米,体积是( )立方分米。

12、要挖一个长40米,宽20米,深2.5米,共需挖出( )立方米的土。

A、第一段长
B、第二段长
C、一样长
D、无法比较
2、有一种手表零件长5毫米,在设计图纸上的长度是10厘米,图纸的比例尺是()
A、1︰20
B、20︰1
C、1︰2
D、2︰1
3、一种商品,先提价25%,几天后又打八折出售,打折后的价格()提价前的价格。

A.等于B.高于C.低于D.无法确定
4、两个连续的自然数(非0)的积一定是()。

A、合数
B、偶数
C、奇数
5、一个圆锥的体积、底面积与另一个圆柱的体积、底面积相等。

已知这个圆锥的高是6厘米,那么另一个圆柱的高是()厘米。

A、2
B、3
C、12
D、18
6、小正方形的边长是m米,大正方形的边长是3m米,则小正方形和大正方形的面积比是()。

A.3:1
B.1:2
C.1:9
四、看谁算得快。

(10分)
0.36+1.7=5

8
15=0.32×0.05= 1.2÷
6
7=
2

3

2

3
4=
6.8-1.08=50×30%=8
7-
3
4-
1
4=0.18÷0.12=(
3
8+
3
4)×8=
五、怎样简便怎样算。

(每题2分,计12分)
7.2×99+7.2 5-(6

3
14+
3
16÷
3
8)(
5
7+
2
27)×7+
13
27
0.125×2.5×3.2 1.05×(3.8-0.8)÷6.3 3
4÷[(
3
5-
1
4)×
3
7]
六、巧解未知数X。

(每题2分,计6分)
X-85%X=1.05 X︰5
14=21︰
5
8 4.5X-0.5=8.5
六年级数学试卷第2页(共 4 页)
七、按要求做。

(13分)
1、求阴影部分面积。

(单位:cm)(4分)
2、求不规则图形的体积(2分)
3、求组合图形的体积。

(3分)
4、有一个三角形的三个顶点分别在A(2,8)、B(2,5)、C(4,5)。

(每题1分,计4分)
①先画这个三角形。

①绕C点把这个三角形按顺时针旋转900.
①把旋转后的三角形先向右平移三格,再向下平移两格。

①把旋转后的三角形按照3︰1放大。

9
8
7
6
5
4
3
2
1
八、解决问题。

(22分)
六年级数学试卷第3页(共 4 页)
1、一个圆锥形麦堆的底面周长是6.28米,麦堆的高是1.5米。

如果每立方米小麦重750千克,这堆小麦重多少千克?
2、水果批发市场有苹果440箱,比桃子的箱数的32多20箱,桃子有多少箱?
3、凯里七小搞基建,原计划投资400万元,实际比原计划节约了10%,实际节约了多少万元?
4、装配小组要装配一批洗衣机,计划每天装配27台,20天完成任务。

实际每天装配了30台,只需几天就可以完成任务?(用比例知识解)
5、统计。

(共7分)
下图是广本汽车销售店2017年一月至五月的销售情况统计图。

(1)四月份的汽车销售量比二月份增加了百分之几?(3分)
(2)五月份的汽车销售量是三月份的百分之几?(2分)
(3)平均每月销售多少台?(2分)
六年级数学 试卷第4页(共 4 页)。

相关文档
最新文档