奥数知识要点
小学奥数知识点汇总基础知识点

小学奥数知识点汇总基础知识点一、奥数概述小学奥数全称小学数学奥林匹克竞赛,是指面向小学生的一项数学竞赛活动。
通过奥数的学习和参与,可以提高学生的数学思维能力、逻辑推理能力、问题解决能力和创新思维。
二、奥数知识点汇总1. 数学基础知识a. 数的读写:正整数、负整数和小数的读写方法。
b. 分数与小数的换算:将分数转化为小数、将小数转化为分数。
c. 数轴:理解数轴上数的相对位置,掌握数轴上正数、负数和零的位置表示。
d. 数的比较大小:通过数的大小比较符号(>、<、=)来比较大小。
e. 数的倍数与因数:了解倍数与因数的概念,能够判断一个数是另一个数的倍数或因数。
f. 素数与合数:理解素数与合数的定义,能够判断一个数是素数还是合数。
2. 算术运算a. 四则运算:掌握加、减、乘、除四则运算的基本规则,能够进行简单的算术运算。
b. 多位数的加减法:掌握多位数的加减法运算方法,能够灵活运用。
c. 分数的运算:学会分数的加减乘除运算,能够进行分数的化简和比较。
d. 百分数的运算:掌握百分数的加减乘除运算,能够解决与百分数相关的问题。
3. 几何知识a. 图形的分类与性质:了解图形的基本分类(三角形、四边形、圆等),掌握各类图形的性质。
b. 直角、钝角与锐角:理解直角、钝角和锐角的概念,能够判断角的大小。
c. 周长与面积:掌握求图形周长和面积的方法,能够计算各类图形的周长和面积。
d. 空间几何:了解三维图形的基本概念,如长方体、立方体等,并能够计算它们的体积和表面积。
4. 数列与推理a. 数列的概念:理解数列的定义,能够判断数列的规律。
b. 算术数列:了解算术数列的特点,能够求解算术数列的通项公式和前n项和。
c. 几何数列:认识几何数列的特点,能够求解几何数列的通项公式和前n项和。
d. 推理与归纳:培养推理和归纳的能力,能够根据已知条件进行推理和推算。
5. 逻辑推理与证明a. 推理方法:学会使用归纳法、逆否命题、反证法等推理方法。
小学奥数知识点总结

小学奥数知识点总结小学奥数作为数学学习的拓展和延伸,对于培养孩子的逻辑思维、创新能力和解决问题的能力有着重要的作用。
以下是对小学奥数常见知识点的总结。
一、计算类1、速算与巧算这部分主要包括加法交换律、结合律,乘法交换律、结合律、分配律的灵活运用。
例如,通过凑整、拆数等方法,可以让计算变得更加简便。
2、等差数列要掌握等差数列的通项公式:第 n 项=首项+(n 1)×公差;求和公式:和=(首项+末项)×项数÷2 。
3、定义新运算根据给出的新运算规则,进行计算和推理。
二、数论类1、整除能被 2、3、5、9 等整除的数的特征要牢记。
例如,能被 2 整除的数末尾是偶数,能被 3 整除的数各位数字之和能被 3 整除。
2、质数与合数理解质数和合数的概念,知道 20 以内的质数有 2、3、5、7、11、13、17、19 。
3、最大公因数与最小公倍数通过短除法等方法求两个或多个数的最大公因数和最小公倍数。
三、图形类1、平面图形(1)三角形三角形的内角和是 180 度,三角形的面积=底×高÷2 。
(2)四边形包括平行四边形、长方形、正方形、梯形等。
要掌握它们的周长和面积计算公式。
(3)圆形圆的周长=2πr ,面积=πr² 。
2、立体图形(1)长方体和正方体了解它们的表面积、体积计算公式。
(2)圆柱体和圆锥体圆柱体的表面积=侧面积+两个底面积,体积=底面积×高;圆锥体的体积= 1/3×底面积×高。
四、应用题类1、行程问题涉及速度、时间和路程的关系,如相遇问题、追及问题。
2、工程问题工作总量=工作效率×工作时间,通常把工作总量看作单位“1”。
3、利润问题要清楚成本、售价、利润、利润率之间的关系。
4、浓度问题浓度=溶质÷溶液×100% ,通过溶质和溶液的变化来解决问题。
5、植树问题分为两端都种、两端都不种、一端种一端不种等情况。
奥数主要知识点总结

奥数主要知识点总结奥数竞赛的主要知识点涉及到了数学的各个方面,包括但不限于代数、几何、数论和组合数学等。
下面我们将对奥数竞赛中的主要知识点进行总结和梳理,以便帮助竞赛学习者更好地准备和参加奥数竞赛。
一、代数代数是奥数竞赛中的一个重要知识点,主要包括方程与不等式、多项式、函数、数列与数学归纳法等内容。
1.方程与不等式奥数竞赛中的方程与不等式题目往往具有较强的抽象性和逻辑性,包括一元一次方程、一元二次方程、多元一次方程、分式方程、绝对值方程、不等式组等。
解题时需要灵活运用代数运算、整理方程和不等式、配方变形等技巧,同时要有一定的数学分析能力和逻辑推理能力。
2.多项式奥数竞赛中的多项式知识点主要包括多项式的基本性质、多项式方程的根与系数之间的关系、多项式的除法算法、多项式的因式分解、多项式方程的解的特殊性质等。
解题时需要熟练掌握多项式的基本概念和运算法则,结合代数知识与数学方法进行问题求解。
3.函数奥数竞赛中的函数知识点主要包括函数的性质与图像、函数的极值、单调性和奇偶性、函数的复合与反函数、函数方程的解法等。
解题时需要通过函数的性质和运算规律,找出规律和方法,根据问题的特点运用函数知识解决问题。
4.数列与数学归纳法奥数竞赛中的数列与数学归纳法知识点主要包括等差数列、等比数列、递推数列、数学归纳法的原理和应用等。
解题时需要熟练掌握数列的性质与变形、数学归纳法的基本思想和方法,通过论证和推理解决问题。
二、几何几何是奥数竞赛中的另一个重要知识点,主要包括平面几何和空间几何两个方面。
1.平面几何奥数竞赛中的平面几何知识点主要包括点、线、面的性质与关系、图形的性质与变形、相似与全等、三角形的性质和判定、多边形的性质与关系等。
解题时需要通过图形的性质和关系,利用几何知识和方法求解问题。
2.空间几何奥数竞赛中的空间几何知识点主要包括空间图形的性质与关系、几何体的视图与投影、空间解析几何、空间立体几何等。
解题时需要熟练掌握几何体的性质与变形、几何图形的视图和投影,结合几何知识解决问题。
汇总小学阶段奥数知识点

汇总小学阶段奥数知识点小学奥数是拓展孩子数学思维、提升解题能力的重要途径。
下面为大家汇总小学阶段常见的奥数知识点。
一、计算类1、整数四则运算加法交换律:a + b = b + a加法结合律:(a + b) + c = a +(b + c)乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a ×(b × c)乘法分配律:(a + b) × c = a × c + b × c2、小数四则运算小数的加减法:小数点对齐,然后按照整数加减法的法则进行计算。
小数的乘法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
小数的除法:先把除数变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,然后按照除数是整数的除法进行计算。
3、分数四则运算同分母分数加减法:分母不变,分子相加减。
异分母分数加减法:先通分,化成同分母分数,再按照同分母分数加减法的法则进行计算。
分数乘法:分子相乘的积做分子,分母相乘的积做分母,能约分的先约分。
分数除法:除以一个数等于乘这个数的倒数。
二、数论类1、奇数和偶数奇数:不能被 2 整除的整数。
偶数:能被 2 整除的整数。
奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数2、质数和合数质数:只有 1 和它本身两个因数的自然数。
合数:除了 1 和它本身还有别的因数的自然数。
1 既不是质数也不是合数。
3、因数和倍数因数:如果 a × b = c(a、b、c 都是非 0 的整数),那么 a 和 b 就是 c 的因数。
倍数:c 就是 a 和 b 的倍数。
4、最大公因数和最小公倍数几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。
奥数知识点总结

奥数知识点总结一、整数与分数1.1 奇数与偶数•奇数是指不能被2整除的数,如1、3、5等。
•偶数是指能被2整除的数,如2、4、6等。
1.2 质数与合数•质数是指除了1和自身外没有其他因数的数,如2、3、5等。
•合数是指除了1和自身外还有其他因数的数,如4、6、8等。
1.3 最大公约数与最小公倍数•最大公约数是指两个或多个数的公共因数中最大的一个数,常用符号为gcd。
•最小公倍数是指两个或多个数的公共倍数中最小的一个数,常用符号为lcm。
二、代数与方程2.1 代数运算•加法是指两个或多个数相加,常用符号为+。
•减法是指一个数减去另一个数,常用符号为-。
•乘法是指两个或多个数相乘,常用符号为*。
•除法是指一个数除以另一个数,常用符号为/。
2.2 一元一次方程•一元一次方程是指只含有一个未知数的一次方程,如2x+3=7。
•解一元一次方程的步骤:1.将方程中的常数项移到等式的右边。
2.将未知数的系数移到等式的左边。
3.化简方程,求得未知数的值。
2.3 二元一次方程•二元一次方程是指含有两个未知数的一次方程,如2x+3y=7。
•解二元一次方程的步骤:1.选择一种方法消去其中一个未知数,得到一个只含有一个未知数的一次方程。
2.解这个一次方程,得到一个未知数的值。
3.将得到的未知数的值代入原方程中,求得另一个未知数的值。
三、几何与概率3.1 直线与角•直线是指在平面上无限延伸的一条线段。
•角是指由两条线段共享一个端点所形成的图形。
3.2 三角形与四边形•三角形是指由三条线段所围成的图形。
•四边形是指由四条线段所围成的图形。
3.3 圆与圆周角•圆是指平面上一组离一个固定点相等距离的点的集合。
•圆周角是指以圆心为顶点的角。
3.4 概率与统计•概率是指事件发生的可能性大小。
•统计是指对数据进行收集、整理、分析和解释的过程。
四、数论与逻辑4.1 数列与递推•数列是指按照一定规律排列的一组数。
•递推是指根据数列中前一项或前几项推导出后一项的方法。
小学奥数知识点汇总基础知识点

小学奥数知识点汇总基础知识点在小学阶段,奥数作为一门拓展性的学科,能够帮助孩子们培养逻辑思维和解决问题的能力。
下面为大家汇总一些基础的小学奥数知识点。
一、数的认识1、整数整数包括正整数、零和负整数。
需要掌握整数的读法、写法、大小比较以及四则运算。
2、自然数自然数是用以计量事物的件数或表示事物次序的数,即用数码 0,1,2,3,4……所表示的数。
3、奇数和偶数奇数指不能被 2 整除的整数,数学表达形式为:2k+1,奇数可以分为正奇数和负奇数。
偶数是能够被 2 所整除的整数。
若某数是 2 的倍数,它就是偶数,可表示为 2k。
4、质数与合数质数是指在大于 1 的自然数中,除了 1 和它本身以外不再有其他因数的自然数。
合数是指自然数中除了能被 1 和本身整除外,还能被其他数(0 除外)整除的数。
二、数的运算1、四则运算加法、减法、乘法和除法统称四则运算。
在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算原则。
2、运算定律加法交换律:a + b = b + a加法结合律:(a + b) + c = a +(b + c)乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a ×(b × c)乘法分配律:(a + b) × c = a × c + b × c三、图形的认识1、平面图形(1)三角形三角形具有稳定性。
三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形;按边分,可以分为等边三角形、等腰三角形和不等边三角形。
(2)四边形四边形包括平行四边形、长方形、正方形、梯形等。
平行四边形两组对边分别平行且相等。
长方形对边平行且相等,四个角都是直角。
奥数总结的知识点
奥数总结的知识点一、代数知识点1. 代数式展开与因式分解代数式展开与因式分解是奥数中常见的题型,学生需要掌握基本的代数运算规则,灵活运用展开公式和分解公式来解题。
2. 多项式的运算与定理奥数中常见的题型有多项式的加减乘除,以及多项式的整除性质和余式定理。
3. 不等式和方程的解法奥数考察的不等式和方程的解法比较灵活,包括一元二次不等式和不等式组的解法,还有一元二次方程、分式方程的解法等。
4. 函数与方程奥数中常考的包括函数的性质、图像、定义域、值域、一些特殊函数,还有方程组的解法等。
二、几何知识点1. 图形的性质在奥数的几何题型中,常考察各种图形的性质,包括角的性质、直线和射线的性质、多边形的性质、圆的性质等。
2. 几何证明奥数中几何证明的题型比较常见,学生需要掌握几何中的各种定理和公式,并能够灵活运用来构造合理的证明过程。
3. 三角形和相似三角形奥数中三角形和相似三角形的题型比较常见,包括三角形的性质、计算三角形的面积和周长、相似三角形的判定和计算等。
4. 圆和圆的性质奥数中还有许多和圆相关的题型,包括圆的切线、切圆、圆周角等。
三、数论知识点1. 整数的性质奥数中常考察整数的性质,包括约数、倍数、质数、合数、质因数分解、最大公约数和最小公倍数等。
2. 数列和数学归纳法奥数中数列和数学归纳法的题型比较常见,学生需要掌握各种数列的求和公式和递推公式,以及能够灵活应用数学归纳法来解决问题。
3. 方程与同余奥数中还常考察方程与同余的题型,包括一次同余方程、二次同余方程、同余方程组等。
四、综合题型在奥数的综合题型中,常常考察学生对各种数学知识点的综合运用能力,包括代数、几何和数论等的综合题型。
奥数的学习需要学生掌握扎实的数学基础知识,具有一定的逻辑思维能力和数学分析能力,还需要具备较强的数学综合运用能力。
除了掌握各种数学知识点外,学生还需要具备良好的数学解题方法和习题技巧。
在奥数的学习过程中,学生应多做练习题,多总结解题方法和思路,不断提高自己的数学解题能力。
奥数知识点汇总
奥数知识点汇总奥数,即奥林匹克数学竞赛,是一项对学生数学思维和能力具有较高要求的学科竞赛。
以下为大家汇总一些常见的奥数知识点,希望能对大家的数学学习有所帮助。
一、数论1、整除与余数整除是数论中的基础概念,如果一个整数 a 除以另一个非零整数 b ,商为整数且余数为零,我们就说 a 能被 b 整除。
而余数则是在除法运算中不能整除时剩下的部分。
例如,24 除以 6 等于 4,余数为 0,所以 24 能被 6 整除;25 除以 6 等于 4 余 1,余数为 1。
2、质数与合数质数是指一个大于 1 的自然数,除了 1 和它自身外,不能被其他自然数整除的数。
合数则是指除了能被 1 和本身整除外,还能被其他数(0 除外)整除的自然数。
例如,2、3、5、7 等是质数,4、6、8、9 等是合数。
需要注意的是,1 既不是质数也不是合数。
3、因数与倍数如果整数 a 能被整数 b 整除,那么 a 就是 b 的倍数,b 就是 a 的因数。
例如,6 能被 3 整除,所以 6 是 3 的倍数,3 是 6 的因数。
4、最大公因数与最小公倍数几个数共有的因数叫做这几个数的公因数,其中最大的一个叫做最大公因数。
几个数共有的倍数叫做这几个数的公倍数,其中最小的一个叫做最小公倍数。
例如,12 和 18 的公因数有 1、2、3、6,最大公因数是 6;12 和 18 的公倍数有 36、72 等,最小公倍数是 36。
二、几何1、三角形三角形的内角和为 180 度。
根据边长关系,三角形可以分为等边三角形(三条边相等)、等腰三角形(两条边相等)和不等边三角形。
三角形的面积公式为:面积=底×高÷2 。
2、四边形包括平行四边形、矩形、菱形、正方形等。
平行四边形的对边平行且相等,面积=底×高。
矩形的四个角都是直角,面积=长×宽。
菱形的四条边相等,对角线互相垂直平分。
正方形具有矩形和菱形的所有性质,面积=边长×边长。
小学奥数须掌握的30个知识点
小学奥数须掌握的30个知识点(一)数字与运算1. 数字的认识与分类:正整数、负整数、零、分数、小数等。
2. 数位与数值:数位是数字的位置,数值是数字所代表的大小。
3. 数的比较与排序:掌握数字大小的比较和排序方法。
4. 加减法运算:掌握简单的加减法运算,包括进位和借位。
5. 乘法与除法运算:理解乘法与除法的概念,能进行简单的乘除运算。
6. 数字运算的顺序:了解先乘除后加减的运算顺序。
(二)几何与形状1. 图形的分类与特征:认识平面图形和立体图形的分类及其特征。
2. 直线、线段与射线:了解直线、线段和射线的概念与特点。
3. 角与三角形:认识角的构成和三角形的分类。
4. 面积与周长:学习计算简单图形的面积和周长。
(三)计量与单位1. 长度与距离:认识不同单位的长度,并进行相互转换。
2. 重量与质量:了解不同单位的重量,并能进行相互转换。
3. 容量与体积:认识不同单位的容量和体积,并掌握转换方法。
4. 时间的认识与计算:学习秒、分、时的换算与计算方法。
(四)数据与统计1. 数据的收集与整理:了解数据的收集方法,学会整理数据。
2. 数据的分析与统计:掌握柱状图和折线图的制作和数据统计方法。
(五)模式与推理1. 数字的规律性:发现数字中的规律与特点,进行推理和预测。
2. 形状的变化与规律:观察图形的变化规律,并进行模式推理。
(六)逻辑与推理1. 推理与判断:通过给定条件进行推理和做出判断。
2. 问题解决:运用数学知识解决实际问题,培养逻辑思维能力。
(七)分数与小数1. 分数的认识与表示:理解分数的概念和表示方法,能进行简单的运算。
2. 分数与小数的关系:掌握分数与小数的相互转换。
3. 小数的加减运算:学会小数的加减运算,掌握进位和借位的方法。
(八)倍数与约数1. 倍数的概念与判断:理解倍数的概念,能进行倍数的判断。
2. 约数的概念与判断:了解约数的概念,能进行约数的判断。
(九)分析与解决问题1. 问题解决过程:学会分析和解决问题的步骤和方法。
奥数数学知识点总结初中
奥数数学知识点总结初中一、数与代数1. 整数s- 质数与合数- 完全数、亲和数、阿姆斯特朗数- 整数的性质与运算技巧- 方程与不等式的解法- 二次方程的求解与韦达定理- 不等式的解集表示与基本性质2. 有理数与无理数- 有理数的性质与运算- 无理数的概念与常见类型- 实数的四则运算与性质3. 代数表达式- 整式的加减乘除- 因式分解的技巧- 分式的运算与方程- 二次根式的化简与运算4. 多项式- 多项式的基本概念与运算- 多项式的因式分解- 多项式函数与最值问题5. 等差数列与等比数列- 数列的概念与表示- 等差数列的性质与求和公式 - 等比数列的性质与求和公式 - 数列的实际应用问题二、几何1. 平面几何- 点、线、面的基本性质- 三角形的分类与性质- 四边形的分类与性质- 圆的性质与圆的方程- 相似与全等的判定与应用2. 空间几何- 空间图形的基本概念- 立体图形的表面积与体积计算 - 空间直线与平面的位置关系 - 空间几何体的构造与切割3. 解析几何- 坐标系的建立与应用- 直线与圆的解析表达式- 圆锥曲线的性质与方程- 曲线与方程的综合问题三、组合与概率1. 组合数学- 排列组合的基本概念与公式 - 二进制数与应用- 容斥原理与应用- 图论的初步知识与问题解决2. 概率论- 概率的基本概念与计算方法 - 条件概率与独立事件- 随机事件的概率分布- 期望值与方差的计算四、数论1. 素数与整数的性质- 素数的分布与筛法- 整数的可除性与素因数分解 - 最大公约数与最小公倍数2. 同余与模运算- 同余的定义与性质- 费马小定理与欧拉定理- 同余方程的解法3. 整数的分解与组合- 分解质因数的应用- 整数的组合与排列问题五、逻辑与证明1. 证明方法- 直接证明与间接证明- 归纳法与反证法- 证明题的常见类型与解题技巧2. 逻辑推理- 命题逻辑的基本概念- 逻辑运算与逻辑公式- 逻辑推理题的解法六、数学思想与方法1. 数学思想- 数学归纳法的思想与应用- 转化与化归的思想方法- 数学建模与问题解决2. 解题策略- 题目的分析与理解- 策略的选择与运用- 常见错误与误区的避免以上是对初中奥数数学知识点的一个总结,每个部分都包含了该领域的核心概念和解题技巧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.圆周率常取数据3.14×1=3.14 3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.73.15×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.262.常用特殊数的乘积125×8=1000 25×4=100 125×3=375 625×16=10000 7×11×13=1001 25×8=200 125×4=500 37×3=1113.100内质数:2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 974.单位换算:1米=3尺=3.2808英尺=1.0926码 1公里=1000米=2里 1码=3英尺=36英寸 1海里=1852米=3.704里=1.15英里 1平方公里=1000000平方米=100公顷 =4平方里=0.3861平方英里 1平方米=100平方分米=10000平方厘米 1公顷=100公亩=15亩=2.4711英亩 1立方米=1000立方分米=1000000立方厘米 1立方米=27立方尺=1.308立方码=35.3147立方英尺 1吨=1000公斤=1000千克 1公斤=1000克=2斤(市制)=2.2046磅5.加减法运算性质:同级运算时,如果交换数的位置,应注意符号搬家。
加、去括号时要注意以下几点:括号前面是加号,去掉括号不变号;加号后面添括号,括号里面不变号;括号前面是减号,去掉括号要变号;减号后面添括号,括号里面要变号。
6.乘除法运算性质乘法中性质:(1)乘法交换律(2)乘法结合律(3)乘法分配律(4)乘法性质(5)积的变化规律:一扩一缩法。
除法中性质:当被除数为几个数字之和或者差时才可以用除法分配律积的变化规律:同扩同缩法。
同级运算时,如果有交换数的位置,应该注意符号搬家。
加、去括号时注意以下几点:括号前面是乘号,去掉或加上括号不变号;括号前面是除号,去掉或加上括号要变号;7.等差数列数列是指按一定规律顺序排列成一列数。
如果一个数列中从第二个数开始,相邻两个数的差都相等,我们就把这样的一列数叫做等差数列,等差数列中的每一个数都叫做项,第一个数叫第一项,通常也叫“首项”,第二个数叫第二项,第三个数叫第三项……最后一项叫做“末项”。
等差数列中相邻两项的差叫做“公差”,等差数列中项的个数叫做“项数”。
公式:和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 第n项=首项+(n-1)×公差8.和倍问题己知几个数的和及这几个数之间的倍数关系,求这几个数的应用题叫和倍问题。
解答和倍问题,一般是先确定较小的数为标准数(或称一倍数),再根据其他几个数与较小数的倍数关系,确定总和相当于标准数的多少倍,然后用除法求出标准数,再求出其他各数,最好采用画线段图的方法。
和倍公式:和÷(倍数+1)=小数9.差倍问题己知两个数的差及它们之间的倍数关系,求这两个数的应用题叫差倍问题。
解答差倍问题,一般以较小数作为标准数(一倍数),再根据大小两数之间的倍数关系,确定差是标准数的多少倍,然后用除法先求出较小数,再求出较大数。
解答这类问题,先画线段图,帮助分析数量关系。
差倍公式:差÷(倍数-1)=小数10.和差问题和差问题是根据大小两个数的和与两个数的差求大小两个数各是多少的应用题。
解答和差问题的基本公式是:(和-差)÷2=较小数(和+差)÷2=较大数九、11.年龄问题己知两个人或几个人的年龄,求他们年龄之间的某种数量关系;或己知某些人年龄之间的数量关系,求他们的年龄等,这种题称为年龄问题。
年龄问题的特点是:一般用和差或者和倍问题的方法解答。
(1)两人的年龄之差是不变的,称为定差。
(2)两个人的年龄同时都增加同样的数量。
(3)两个年龄之间的倍数关系,随着年龄的增长,也在发生变化。
年龄问题的解题方法是:几年后= 大小年龄之差÷倍数差-小年龄几年前=小年龄-大小年龄差÷倍数差12.平均数求平均数必须知道总数和份数,常用公式:平均数=总数÷份数总数=平均数×份数份数=总数÷平均数相遇问题行程问题又分为相遇问题、13.相遇与追及问题路程=速度×时间时间=路程÷速度速度=路程÷时间。
相遇问题它的特点是两个运动物体或人,同时或不同时从两地相向而行,或同时同地相背而行,要解答相遇问题,掌握以下数量关系:速度和×相遇时间=路程路程÷速度和=相遇时间速度÷相遇时间=速度和追及问题运动的物体或人同向而不同时出发,后出发的速度快,经过一段时间追上先出发的,这样的问题叫做追及问题,解答追及问题的基本条件是“追及路程”和“速度差”。
追及问题的基本数量关系是:追及时间=追及路程÷速度差追及路程=速度差×追及时间速度差=追及路程÷追及时间14.行船问题船在江河里航行,前进的速度与水流动的速度有关系。
船在流水中行程问题,叫做行船问题(也叫流水问题),船顺流而下的速度和逆流而上的速度与船速、水速的关系是:顺水速度=船速+水速逆水速度=船速-水速由于顺水速度是船速与水速的和,逆水速度是船速与水速的差,因此行船问题就是和差问题,所以解答行船问题有时需要驼用和差问题的数量关系。
船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2因为行船问题也是行程问题,所以在行船问题中也反映了行程问题的路程、速度与时间的关系。
顺水路程=顺水速度×时间逆水路程=逆水速度×时间15.过桥问题过桥问题的一般数量关系是:路程=桥长+车长车速=(桥长+车长)÷通过时间通过时间=(桥长+车长)÷车速车长=车速×通过时间-桥长桥长=车速×通过时间-车长16.植树问题在首尾不相接的路线上植树,段数与棵数关系可分为三类:(1)两端都种树段数=棵数-1 (2)一端种一端不种段数=棵数(3)两端都不种段数=棵数+1 在首尾相接的路线上种树(如圆、正方形、闭合曲线等)段数=棵数17.还原问题还原问题又叫逆推问题。
己知一个数的结果,再经过逆运算反求原数,叫做还原问题。
解决这类题要从结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算(即变加为减,变减为加,变乘为除,变除为乘)。
18.方阵问题很多的人或物按一定条件排成正方形(简称方阵),再根据己知条件求总人数,这类题叫方阵问题。
在解决方阵问题时,要搞清方阵中一些量(如层数,最外层人数,最里层人数,总人数)之间的关系。
方阵问题的基本特点是:(1)方阵不管在哪一层,每边的人数都相同,每向里面一层,每边上的人数减少2,每一层就少8。
(2)每层人数=(每边人数-1)×4 (3)每边人数=每层人数÷4+1 (4)实心方阵人数=每边人数×每边人数19.幻方与数阵幻方的特点:一个幻方每行、每列、每条对角线上的几个数的和都相等。
这相相等的和叫“幻和”。
两种方法:奇阶:1、九子排列法2、罗伯法,3、巴舍法。
偶阶:1、对称交换法2、圆心方阵法。
数阵有三种基本类型:(1)封闭型,(2)辐射型(3)综合型解数阵问题一般思路是从和相等入手,确定重处长使用的中心数,是解答解数阵类型题的解题关键。
一般答案不唯一。
20.奇数与偶数加法:偶数+偶数=偶数奇数+奇数=偶数偶数+奇数=奇数减法:偶数-偶数=偶数奇数-奇数=偶数偶数-奇数=奇数乘法:偶数×偶数=偶数奇数×奇数=奇数偶数×奇数=偶数盈亏问题解21.盈亏问题通常是比较法和对应法结合使用。
公式是:(同盈同亏用减法,一亏一盈用加法)即:两次分配结果差÷两次分配数差=人数22.牛吃草问题牛吃草问题涉及三种数量:A.原有的草。
B.新长出的草。
C.牛吃掉的草。
牛吃草问题解法一般分为三步:一、求每天新生的草量;二、求原有草量;三、求出最终的问题。
(类似于行程问题中的追及问题)23.还原问题解题关键:在从后往前推算的过程中,每一步都是做同原来相反的运算,原来加的,运算时用减;原来减的,运算时用加;原来乘的,运算时用除;原来除的,运算时用乘。
24.假设问题假设法是解答应用题时经常用到的一种方法。
所谓“假设法”就是依据题目中的己知条件或结论作出某种设想,然后按照己知条件进行推算,根据数量上出现的矛盾,再适当调整,从而找到正确答案。
25.余数问题一个带余数除法算式包含4个数:被除数÷除数=商……余数。
它们的关系也可表示为:被除数=除数×商+余数,或(被除数-余数)÷除数=商。
26.一笔画和多笔画(1)凡是由偶点组成的连通图,一定可以一笔画成;画时可以任一偶点为起点,最后能以这个点为终点画完此图。
(2)凡是只有两个奇点(其余均为偶点)的连通图,一定可以一笔画完;画时必须以一个奇点为起点,另一个奇点为终点。
(3)多笔画定理有2n(n>1)个奇点的连通图形,可以用n笔画完(彼此无公共线),而且至少要n次画完.27.抽屉原理抽屉原则一:把n+1(或更多)个苹果放到n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。
抽屉原则二:把(m×n+1)个(或更多个)苹果放进n个抽屉里,必须一个抽屉里有(m+1)个(或更多的)苹果。
说明:应用抽屉原则解题,要从最坏的情况去思考。
28.分解因式把一个合数写成几个质数相乘的形式,叫做分解质因数。
一个自然数的约数的个数,恰为各个质因数的指数加1后的乘积。
一个数的完全平方数,各个质因数的个数,恰好是平方前这个数各个质因数个数的2倍。
一个完全平方数各个质因数的个数都是偶数。
29.最大公约数与最小公倍数求两个数的最大公约数一般有三种方法:(1)分解质因数法(2)短除法(3)辗转相除法30.分数的比较分母相同的分数比较大小,分子大的分数比较大。
分子相同的分数比较大小,分母大的分数反而小。
分子和分母都不相同的分数比较大小,可以把它们转化成分母相同的分数比较大小;也可以把它们转化成分子相同的分数比较大小。
性质: 1.一个真分数的分子和分母都加上同一个自然数,所得的新分数比原分数大。
2.一个真分数的分子、分母都减去同一个自然数(这个自然数小于真分数的分子),所得的新分数比原分数小。