第五章相交线与平行线测试题[1]
第五章 相交线与平行线测试试题含答案

第五章 相交线与平行线测试试题含答案 一、选择题 1.如图,AB∥CD , ∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD= ( )
A.110° B.115° C.125° D.130° 2.如图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=( )
A.20° B.25° C.35° D.40°
3.一辆行驶中的汽车经过两次拐弯后,仍向原方向行驶,则两次拐弯的角度可能是( ) A.先右转30,后左转60 B.先右转30后左转
60
C.先右转30后左转150 D.先右转30,后左转30
4.如图,要得到AB∥CD,只需要添加一个条件,这个条件不可以...是( )
A.∠1=∠3 B.∠B+∠BCD=180° C.∠2=∠4 D.∠D+∠BAD=180° 5.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为( )
A.①②③④ B.①②④ C.①③④ D.①②③
6.①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180° ; ④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )
A.、1个 B.2个 C.3个 D.4个
7.如图,//,2,2,ABCDFENBENFGHCGH则F与H的数量关系是( )
A.90FH B.
2HF
C.2180HF D.3180HF
8.三条互不重合的直线的交点个数可能是( ) A.0,1,3 B.0,2,3 C.0,1,2,3 D.0,1,2 9.下列定理中,没有逆定题的是( ) ①内错角相等,两直线平行 ②等腰三角形两底角相等 ③对顶角相等 ④直角三角形的两个锐角互余. A.1个 B.2个 C.3个 D.4个 10.下列命题中,属于真命题的是( ) A.同位角相等
数学第五章 相交线与平行线练习题附解析

数学第五章 相交线与平行线练习题附解析一、选择题1.如图,直线a ∥b ,则∠A 的度数是( )A .28°B .31°C .39°D .42°2.如图,直线AB ,CD 被直线EF 所截,与AB ,CD 分别交于点E ,F ,下列描述: ①∠1和∠2互为同位角 ②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是( )A .①③B .②④C .②③D .③④3.如图,AB ∥CD ∥EF ,AF ∥CG ,则图中与∠A (不包括∠A )相等的角有( )A .5个B .4个C .3个D .2个4.如图,下列条件不能判定AB ∥CD 的是( )A .12∠∠=B .2E ∠∠=C .B E 180∠∠+=D .BAF C ∠∠= 5.如图,直线a ∥b ,把三角板的直角顶点放在直线b 上,若∠1=60°,则∠2的度数为( )A .45°B .35°C .30°D .25°6.①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180° ; ④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )A .、1个B .2个C .3个D .4个7.如图,已知AB ∥CD ∥EF ,则∠x 、∠y 、∠z 三者之间的关系是( )A .180x y z ++=°B .180x y z +-=°C .360x y z ++=°D .+=x z y8.如图,若180A ABC ∠+∠=︒,则下列结论正确的是( )A .12∠=∠B .24∠∠=C .13∠=∠D .23∠∠=9.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°10.如图,直线l 与直线AB 、CD 分别相交于点E 、点F ,EG 平分BEF ∠交直线CD 与点G ,若168BEF ∠=∠=︒,则EGF ∠的度数为( ).A .34°B .36°C .38°D .68°二、填空题11.如图,现给出下列条件:①∠1=∠2,②∠B =∠5,③∠3=∠4,④∠5=∠D ,⑤∠B+∠BCD =180°,其中能够得到AD ∥BC 的条件是______(填序号);能够得到AB ∥CD 的条件是_______.(填序号)12.如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2=________.13.如图,//AB CD ,BD 平分ABC ∠,:4:1C DBA ∠∠=,则CDB ∠=______.14.如图,△ABC 的边长AB =3 cm ,BC =4 cm ,AC =2 cm ,将△ABC 沿BC 方向平移a cm (a <4 cm ),得到△DEF ,连接AD ,则阴影部分的周长为_______cm .15.如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B 的度数为____________.16.如图,∠AEM=∠DFN=a,∠EMN=∠MNF=b,∠PEM=12∠AEM,∠MNP=12∠FNP,∠BEP,∠NFD的角平分线交于点I,若∠I=∠P,则a和b的数量关系为_____(用含a的式子表示b).17.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.18.如图,长方形ABCD的周长为30,则图中虚线部分总长为____________.19.如图,直线AB、CD相交于点O,OE平分∠AOC,OF⊥OE于点O,若∠AOD=70°,则∠AOF=______度.20.如图,直角△ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.三、解答题21.如图1,D是△ABC延长线上的一点,CE//AB.(1)求证:∠ACD=∠A+∠B;(2)如图2,过点A作BC的平行线交CE于点H,CF平分∠ECD,FA平分∠HAD,若∠BAD =70°,求∠F 的度数.(3)如图3,AH //BD ,G 为CD 上一点,Q 为AC 上一点,GR 平分∠QGD 交AH 于R ,QN 平分∠AQG 交AH 于N ,QM //GR ,猜想∠MQN 与∠ACB 的关系,说明理由.22.综合与探究综合与实践课上,同学们以“一个含30角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线a ,b ,且//a b ,三角形ABC 是直角三角形,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒操作发现:(1)如图1.148∠=︒,求2∠的度数;(2)如图2.创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.23.已知:如图所示,直线MN ∥GH ,另一直线交GH 于A ,交MN 于B ,且∠MBA =80°,点C 为直线GH 上一动点,点D 为直线MN 上一动点,且∠GCD =50°.(1)如图1,当点C 在点A 右边且点D 在点B 左边时,∠DBA 的平分线交∠DCA 的平分线于点P ,求∠BPC 的度数;(2)如图2,当点C 在点A 右边且点D 在点B 右边时,∠DBA 的平分线交∠DCA 的平分线于点P ,求∠BPC 的度数;(3)当点C 在点A 左边且点D 在点B 左边时,∠DBA 的平分线交∠DCA 的平分线所在直线交于点P ,请直接写出∠BPC 的度数,不说明理由.24.如图1,AB//CD ,在AB 、CD 内有一条折线EPF .(1)求证:AEP CFP EPF ∠∠∠+=.(2)如图2,已知BEP ∠的平分线与DFP ∠的平分线相交于点Q ,试探索EPF ∠与EQF ∠之间的关系;(3)如图3,已知BEQ ∠=1BEP 3∠,1DFQ DFP 3∠∠=,则P ∠与Q ∠有什么关系,请说明理由.25.已知E 、D 分别在AOB ∠的边OA 、OB 上,C 为平面内一点,DE 、DF 分别是CDO ∠、CDB ∠的平分线.(1)如图1,若点C 在OA 上,且//FD AO ,求证:DE AO ⊥;(2)如图2,若点C 在AOB ∠的内部,且DEO DEC ∠=∠,请猜想DCE ∠、AEC ∠、CDB ∠之间的数量关系,并证明;(3)若点C 在AOB ∠的外部,且DEO DEC ∠=∠,请根据图3、图4直接写出结果出DCE ∠、AEC ∠、CDB ∠之间的数量关系.26.如图1,已知a ∥b ,点A 、B 在直线a 上,点C 、D 在直线b 上,且AD ⊥BC 于E .(1)求证:∠ABC+∠ADC=90°;(2)如图2,BF 平分∠ABC 交AD 于点F ,DG 平分∠ADC 交BC 于点G ,求∠AFB+∠CGD 的度数;(3)如图3,P为线段AB上一点,I为线段BC上一点,连接PI,N为∠IPB的角平分线上一点,且∠NCD=12∠BCN,则∠CIP、∠IPN、∠CNP之间的数量关系是______.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质2.C解析:C【分析】根据同位角,内错角,同旁内角的定义判断即可.【详解】①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB不平行于CD,∴∠4+∠5≠180°故错误,故选:C.【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.3.B解析:B【分析】由平行线的性质,可知与∠A相等的角有∠ADC、∠AFE、∠EGC、∠GCD.【详解】∵AB∥CD,∴∠A=∠ADC;∵AB∥EF,∴∠A=∠AFE;∵AF∥CG,∴∠EGC=∠AFE=∠A;∵CD∥EF,∴∠EGC=∠DCG=∠A;所以与∠A相等的角有∠ADC、∠AFE、∠EGC、∠GCD四个,故选B.4.B解析:B【分析】结合图形,根据平行线的判定方法对选项逐一进行分析即可得.【详解】A. ∠l=∠2,根据内错角相等,两直线平行,可得AB//CD,故不符合题意;B. ∠2=∠E,根据同位角相等,两直线平行,可得AD//BE,故符合题意;C. ∠B+∠E= 180°,根据同旁内角互补,两直线平行,可得AB//CD,故不符合题意;D. ∠BAF=∠C,根据同位角相等,两直线平行,可得AB//CD,故不符合题意,故选B.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.5.C解析:C【分析】由a与b平行,利用两直线平行同位角相等求出∠3的度数,再利用平角定义及∠4为直角,即可确定出所求角的度数.【详解】【解答】解:∵a∥b,∴∠3=∠1=60°,∵∠4=90°,∠3+∠4+∠2=180°,∴∠2=30°.故选:C.【点睛】本题考查了根据平行线的性质求角的度数,利用直角转化角是一种比较常见的方法,在一条直线上,3个角共顶点,且有一个角为直角,则另两个角的和为90°.6.C解析:C【详解】①如图1,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠C+∠CEF=180°,所以∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°,则①错误;②如图2,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A=∠AEF,∠C=∠CEF,所以∠A+∠C=∠AEC+∠AEF=∠AEC,则②正确;③如图3,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠1=∠CEF,所以∠A+∠AEC-∠1=∠A+∠AEC-∠CEF=∠A+∠AEF=180°,则③正确;④如图4,过点P作PF∥AB,因为AB∥CD,所以AB∥PF∥CD,所以∠A=∠APF,∠C=∠CPF,所以∠A=∠CPF+∠APC=∠C+∠APC,则④正确;故选C.7.B解析:B【分析】根据平行线的性质可得∠CEF=180°-y,x=z+∠CEF,利用等量代换可得x=z+180°-y,再变形即可.【详解】解:∵CD∥EF,∴∠C+∠CEF=180°,∴∠CEF=180°-y,∵AB∥CD,∴x=z+∠CEF,∴x=z+180°-y,∴x+y-z=180°,故选:B.8.C解析:C【分析】由∠A+∠ABC=180°可得到AD∥BC,再根据平行线的性质判断即可得答案.【详解】∵180A ABC ∠+∠=︒,∴//AD BC (同旁内角互补,两直线平行),∴13∠=∠(两直线平行,内错角相等).故选:C .【点睛】本题考查的是平行线的判定与性质,同旁内角互补,两直线平行;两直线平行内错角相等;熟知平行线的判定定理是解答此题的关键.9.B解析:B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,10.A解析:A【分析】由角平分线的性质可得∠GEB=12∠BEF=34°,由同位角相等,两直线平行可得CD ∥AB ,即可求解.【详解】∵EG 平分∠BEF ,∴∠GEB=12∠BEF=34°, ∵∠1=∠BEF=68°,∴CD ∥AB ,∴∠EGF=∠GEB=34°,故选:A .【点睛】本题考查了平行线的判定和性质,角平分线的定义,灵活运用这些性质进行推理是本题的关键.二、填空题11.①④ ②③⑤【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,解析:①④ ②③⑤【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,∴AB∥DC;③∵∠3=∠4,∴AB∥CD;④∵∠5=∠D,∴AD∥BC;⑤∵∠B+∠BCD=180°,∴AB∥CD,∴能够得到AD∥BC的条件是①④,能够得到AB∥CD的条件是②③⑤,故答案为①④,②③⑤.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.12.【解析】试题分析:如图:∵△ABC是等边三角形,∴∠ABC=60°,又∵直线l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35解析:035【解析】试题分析:如图:∵△ABC 是等边三角形,∴∠ABC=60°,又∵直线l 1∥l 2∥l 3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35°.考点:1.平行线的性质;2.等边三角形的性质.13.30°【分析】先由AB//CD 得到∠CDB=∠ABD ,∠C+∠ABC=180︒,设出∠ABD=x°,依据“平分,”列出方程,求出∠ABD 即可解决问题.【详解】∵AB//CD∴∠ABD=x°解析:30°【分析】先由AB//CD 得到∠CDB=∠ABD ,∠C+∠ABC=180︒,设出∠ABD=x°,依据“BD 平分ABC ∠,:4:1C DBA ∠∠=”列出方程,求出∠ABD 即可解决问题.【详解】∵AB//CD∴∠ABD=x°,∠ABD ,∠C+∠ABC=180︒,BD 平分ABC ∠,∴∠ABD=∠CBD∵:4:1C DBA ∠∠=,∴4C DBA ∠=∠设∠ABD=x°,则∠CBD=x°,∠C=4x°,∴2x°+4x°=180°,解得,x=30∴∠ABD=30°,∴∠CDB=30°,故答案为:30°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,求出∠ABD=30°是解此题的关键.14.9【分析】根据平移的特点,可直接得出AC、DE、AD的长,利用EC=BC-BE可得出EC的长,进而得出阴影部分周长.【详解】∵AB=3cm,BC=4cm,AC=2cm,将△ABC沿BC方向平解析:9【分析】根据平移的特点,可直接得出AC、DE、AD的长,利用EC=BC-BE可得出EC的长,进而得出阴影部分周长.【详解】∵AB=3cm,BC=4cm,AC=2cm,将△ABC沿BC方向平移a cm∴DE=AB=3cm,BE=a cm∴EC=BC-BE=(4-a)cm∴阴影部分周长=2+3+(4-a)+a=9cm故答案为:9【点睛】本题考查平移的特点,解题关键是利用平移的性质,得出EC=BC-BE.15.68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意解析:68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E,∵∠E=34°,∴∠GMC=68°,∵AB ∥CD ,∴∠GMC=∠B=68°,故答案为:68°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.16..【分析】分别过点P 、I 作ME∥PH,AB∥GI,设∠AME=2x,∠PNF=2y,知∠PEM=x,∠MNP=y,由PH∥ME 知∠EPH=x,由EM∥FN 知PH∥FN,据此得∠HPN=2y,∠E 解析:81209a b =-︒. 【分析】分别过点P 、I 作ME ∥PH ,AB ∥GI ,设∠AME=2x ,∠PNF=2y ,知∠PEM=x ,∠MNP=y ,由PH ∥ME 知∠EPH=x ,由EM ∥FN 知PH ∥FN ,据此得∠HPN=2y ,∠EPN=x+2y ,同理知3902EIF x x ∠︒-+=,根据∠EPN=∠EIF 可得答案. 【详解】 分别过点P 、I 作ME ∥PH ,AB ∥GI ,设∠AME =2x ,∠PNF =2y ,则∠PEM =x ,∠MNP =y ,∴∠DFN =2x ,∵PH ∥ME ,∴∠EPH =x ,∵EM ∥FN ,∴PH ∥FN ,∴∠HPN =2y ,∠EPN =x +2y ,同理,3902EIF x x ∠︒-+=,∵∠EPN=∠EIF,∴3902x x︒-+=x+2y,∴339042b︒-a=,∴91358b a =︒-,∴81209b-︒a=,故答案为:81209b-︒a=.【点睛】本题主要考查平行线的判定与性质,解题的关键是熟练掌握平行线的判定与性质.17.如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.18.15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意,虚线部分的总长为:.故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意, 解析:15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意, 虚线部分的总长为:130152AB BC +=⨯=. 故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型. 19.145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵,∵OE 平分∠AOC ,∴,∵OF⊥OE 于点O ,∴∠EOF=90°,∴∠A解析:145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵70180110AOD AOC AOD ∠=︒∴∠=︒-∠=︒,,∵OE 平分∠AOC ,∴1552AOE AOC ∠=∠=︒, ∵OF ⊥OE 于点O ,∴∠EOF =90°,∴∠AOF =∠AOE+∠EOF =55°+90°=145°, 故答案为145.【点睛】本题考查邻补角、角平分线和垂直以及角度的运算等知识,根据有关性质和定义灵活计算是解题关键.20.12【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的解析:12【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的, 故内部五个小直角三角形的周长为AC+BC+AB=12.故答案为12.点睛:本题主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.三、解答题21.(1)证明见解析;(2)∠F=55°;(3)∠MQN =12∠ACB ;理由见解析. 【分析】(1)首先根据平行线的性质得出∠ACE =∠A ,∠ECD =∠B ,然后通过等量代换即可得出答案;(2)首先根据角平分线的定义得出∠FCD =12∠ECD ,∠HAF =12∠HAD ,进而得出∠F =12(∠HAD+∠ECD ),然后根据平行线的性质得出∠HAD+∠ECD 的度数,进而可得出答案;(3)根据平行线的性质及角平分线的定义得出12QGR QGD ∠=∠,12NQG AQG ∠=∠,180MQG QGR ∠+∠=︒ ,再通过等量代换即可得出∠MQN =12∠ACB . 【详解】解:(1)∵CE //AB ,∴∠ACE =∠A ,∠ECD =∠B ,∵∠ACD =∠ACE+∠ECD ,∴∠ACD =∠A+∠B ;(2)∵CF 平分∠ECD ,FA 平分∠HAD ,∴∠FCD =12∠ECD ,∠HAF =12∠HAD , ∴∠F =12∠HAD+12∠ECD =12(∠HAD+∠ECD ), ∵CH //AB ,∴∠ECD =∠B ,∵AH //BC ,∴∠B+∠HAB =180°,∵∠BAD =70°,110B HAD ∴∠+∠=︒,∴∠F =12(∠B+∠HAD )=55°; (3)∠MQN =12∠ACB ,理由如下: GR 平分QGD ∠,12QGR QGD ∴∠=∠. GN 平分AQG ∠,12NQG AQG ∴∠=∠. //QM GR ,180MQG QGR ∴∠+∠=︒ .∴∠MQN =∠MQG ﹣∠NQG=180°﹣∠QGR ﹣∠NQG=180°﹣12(∠AQG+∠QGD ) =180°﹣12(180°﹣∠CQG+180°﹣∠QGC ) =12(∠CQG+∠QGC ) =12∠ACB . 【点睛】本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键.22.(1)242∠=︒;(2)理由见解析;(3)12∠=∠,理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠DBC ,则∠ABD =∠ABC−∠DBC =60°−∠1,进而得出结论;(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论.【详解】解:(1)如图1148∠=︒,90BCA ∠=︒,3180142BCA ∴∠=︒-∠-∠=︒,//a b ,2342∴∠=∠=︒;图1BD a,(2)理由如下:如图2.过点B作//图2∴∠+∠=︒,2180ABDa b,//∴,//b BD∴∠=∠DBC,1ABD ABC DBC∴∠=∠-∠=︒-∠,601∴∠+︒-∠=︒,2601180∴∠-∠=︒;21120∠=∠,(3)12图3CP a,理由如下:如图3,过点C作//AC平分BAM∠,∴∠=∠=︒,CAM BAC30∠=∠=︒,260BAM BACa b,又//∴,CP b//∠=∠=︒,160BAM30PCA CAM ∴∠=∠=︒,903060BCP BCA PCA ∴∠=∠-∠=︒-︒=︒,又//CP a ,260BCP ∴∠=∠=︒,12∠∠∴=.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.23.(1)∠BPC =65°;(2)∠BPC =155°;(3)∠BPC =155°【分析】(1)如图1,过点P 作PE ∥MN ,根据题意结合平行线的性质和角平分线的性质可以得出:∠BPE=∠DBP=40°,1CPE PCA DCA 252︒∠=∠=∠=,据此进一步求解即可; (2)如图2,过点P 作PE ∥MN ,根据平角可得∠DBA =100°,再由角平分线和平行线的性质得∠BPE =130°,1PCA CPE DCA 252︒∠=∠=∠=,据此进一步求解即可; (3)如图3,过点P 作PE ∥MN ,根据角平分线性质得出∠DBP =∠PBA=40°,由此得出∠BPE =∠DBP =40°,然后根据题意得出1PCA DCA 652︒∠=∠=,由此再利用平行线性质得出∠CPE 度数,据此进一步求解即可.【详解】(1)如图1,过点P 作PE ∥MN .∵PB 平分∠DBA ,∴∠DBP=∠PBA=40°,∵PE ∥MN ,∴∠BPE=∠DBP=40°,同理可证:1CPE PCA DCA 252︒∠=∠=∠=, ∴∠BPC =40°+25°=65°;(2)如图2,过点P 作PE ∥MN .∵∠MBA=80°.∴∠DBA=180°−80°=100°.∵BP平分∠DBA.∴1DBP DBA502︒∠=∠=,∵MN∥PE,∴∠BPE=180°−∠DBP=130°,∵PC平分∠DCA.∴1PCA DCA252︒∠=∠=,∵MN∥PE,MN∥GH,∴PE∥GH,∴∠EPC=∠PCA=25°,∴∠BPC=130°+25°=155°;(3)如图3,过点P作PE∥MN.∵BP平分∠DBA.∴∠DBP=∠PBA=40°,∵PE∥MN,∴∠BPE=∠DBP=40°,∵CP平分∠DCA,∠DCA=180°−∠DCG=130°,∴1PCA DCA652︒∠=∠=,∵PE∥MN,MN∥GH,∴PE∥GH,∴∠CPE=180°−∠PCA=115°,∴∠BPC=40°+115°=155°.【点睛】本题主要考查了平行线性质与角平分线性质的综合运用,熟练掌握相关概念是解题关键.24.(1)见解析;(2)∠EPF+2∠EQF=360°;(3)∠P+3∠Q=360°.【分析】(1)首先过点P作PG∥AB,然后根据AB∥CD,PG∥CD,可得∠AEP=∠1,∠CFP=∠2,据此判断出∠AEP+∠CFP=∠EPF即可.(2)首先由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ;然后根据∠BEP的平分线与∠DFP的平分线相交于点Q,推得∠EQF=1(360)2EPF⨯︒-∠,即可判断出∠EPF+2∠EQF=360°.(3)首先由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ;然后根据∠BEQ=1 3∠BEP,∠DFQ=13∠DFP,推得∠Q=13×(360°﹣∠P),即可判断出∠P+3∠Q=360°.【详解】(1)证明:如图1,过点P作PG∥AB,∵AB∥CD,∴PG∥CD,∴∠AEP=∠1,∠CFP=∠2,又∵∠1+∠2=∠EPF,∴∠AEP+∠CFP=∠EPF.(2)如图2,,由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,∵∠BEP的平分线与∠DFP的平分线相交于点Q,∴∠EQF=∠BEQ+∠DFQ=12(∠BEP+∠DFP)=1[360()] 2AEP CFP︒-∠+∠=1(360)2EPF⨯︒-∠,∴∠EPF+2∠EQF=360°.(3)如图3,,由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,∵∠BEQ=13∠BEP,∠DFQ=13∠DFP,∴∠Q=∠BEQ+∠DFQ=13(∠BEP+∠DFP)=13[360°﹣(∠AEP+∠CFP)]=13×(360°﹣∠P),∴∠P+3∠Q=360°.【点睛】此题主要考查了平行线的性质的应用,要熟练掌握,解答此题的关键是要明确:(1)定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.(2)定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.(3)定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.25.(1)证明见解析;(2)∠CDB+∠AEC=2∠DCE;(3)图3中∠CDB=∠AEC+2∠DCE,图4中∠AEC=∠CDB+2∠DCE.【分析】(1)依据DE、DF分别是∠CDO、∠CDB的平分线,可得∠CDF=12∠CDB,∠CDE=1 2∠CDO,进而得出∠EDF=12(∠CDB+∠CDO)=90°,再根据平行线的性质,即可得到∠AED=90°,即DE⊥AO;(2)连接OC,依据∠DEO=∠DEC,∠EDO=∠EDC,可得∠DOE=∠DCE,再根据三角形外角性质,即可得到∠CDB+∠AEC=∠COD+∠OCD+∠EOC+∠ECO=2∠DCE;(3)如图3中,依据∠CDB是△ODG的外角,可得∠CDB=∠DOG+∠DGO,依据∠DGO 是△CEG的外角,可得∠DGO=∠AEC+∠C,进而得到∠CDB=∠DOG+∠AEC+∠C=∠AEC+2∠DCE;如图4中,同理可得∠AEC=∠DOE+∠CDB+∠C=∠CDB+2∠DCE.【详解】解:(1)如图1,∵DE、DF分别是∠CDO、∠CDB的平分线,∴∠CDF=12∠CDB,∠CDE=12∠CDO,∴∠EDF=12(∠CDB+∠CDO)=90°,又∵DF∥AO,∴∠AED=90°,∴DE⊥AO;(2)如图2,连接OC,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠CDB是△COD的外角,∠AEC是△COE的外角,∴∠CDB=∠COD+∠OCD,∠AEC=∠EOC+∠ECO,∴∠CDB+∠AEC=∠COD+∠OCD+∠EOC+∠ECO=2∠DCE;(3)图3中,∠CDB=∠AEC+2∠DCE;图4中,∠AEC=∠CDB+2∠DCE.理由:如图3,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠CDB是△ODG的外角,∴∠CDB=∠DOG+∠DGO,∵∠DGO是△CEG的外角,∴∠DGO=∠AEC+∠C,∴∠CDB=∠DOG+∠AEC+∠C=∠AEC+2∠DCE;如图4,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠AEC是△OEH的外角,∴∠AEC=∠DOE+∠OHE,∵∠OHE是△CDH的外角,∴∠OHE=∠CDB+∠C,∴∠AEC=∠DOE+∠CDB+∠C=∠CDB+2∠DCE.【点睛】本题主要考查了平行线的性质以及三角形外角性质的综合运用,解题时注意:三角形的外角等于与它不相邻的两个内角的和.26.(1)见解析;(2)225°;(3)3∠CNP=∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.【分析】(1)如图1中,过E作EF∥a,利用平行线的性质即可解决问题;(2)如图2中,作FM∥a,GN∥b,设∠ABF=∠EBF=x,∠ADG=∠CDG=y,可得x+y=45°,证明∠AFB=180°-(2y+x),∠CGD=180°-(2x+y),推出∠AFB+∠CGD=360°-(3x+3y)即可解决问题;(3)分两种情形:①当点N在∠DCB内部时,②当点N′在直线CD的下方时,分别画出图形求解即可.【详解】(1)证明:如图1中,过E作EF∥a.∵a∥b,∴a∥b∥EF,∵AD⊥BC,∴∠BED=90°,∵EF∥a,∴∠ABE=∠BEF,∵EF∥b,∴∠ADC=∠DEF,∴∠ABC+∠ADC=∠BED=90°.(2)解:如图2中,作FM∥a,GN∥b,设∠ABF=∠EBF=x,∠ADG=∠CDG=y,由(1)知:2x+2y=90°,x+y=45°,∵FM∥a∥b,∴∠BFD=2y+x,∴∠AFB=180°-(2y+x),同理:∠CGD=180°-(2x+y),∴∠AFB+∠CGD=360°-(3x+3y),=360°-3×45°=225°.(3)解:如图,设PN交CD于E.当点N在∠DCB内部时,∵∠CIP=∠PBC+∠IPB,∴∠CIP+∠IPN=∠PBC+∠BPN+2∠IPE,∵PN平分∠EPB,∴∠EPB=∠EPI,∵AB∥CD,∴∠NPE=∠CEN,∠ABC=∠BCE,∵∠NCE=12∠BCN,∴∠CIP+∠IPN=3∠PEC+3∠NCE=3(∠NCE+∠NEC)=3∠CNP.当点N′在直线CD的下方时,同理可知:∠CIP+∠CNP=3∠IPN,综上所述:3∠CNP=∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.【点睛】本题考查平行线的性质,对顶角相等等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
(压轴题)人教版初中七年级数学下册第五章《相交线与平行线》模拟测试题(包含答案解析)(1)

一、选择题1.(0分)[ID :68957]下列定理中,没有逆定理的是( ).A .两直线平行,同旁内角互补B .线段垂直平分线上的任意一点到这条线段两个端点的距离相等C .等腰三角形两个底角相等D .同角的余角相等2.(0分)[ID :68956]如图,若1234//,//l l l l ,则图中与1∠互补的角有( )A .1个B .2个C .3个D .4个3.(0分)[ID :68947]如图,//AB CD ,EC 分别交,AB CD 于点,F C ,链接DF ,点G 是线段CD 上的点,连接FG ,若13∠=∠,24∠∠=,则结论① C D ∠=∠,②FG CD ⊥,③EC FD ⊥,正确的是( )A .①②B .②③C .①③D .①②③ 4.(0分)[ID :68944]如图,把一长方形纸片ABCD 沿EG 折叠后,AEG A EG '∠=∠,点A 、B 分别落在A '、B ′的位置,EA '与BC 相交于点F ,已知1125∠=︒,则2∠的度数是( )A .55°B .60°C .70°D .75° 5.(0分)[ID :68926]下列语句是命题的是( ) A .平分一条线段 B .直角都相等C .在直线AB 上取一点D .你喜欢数学吗?6.(0分)[ID :68912]下列命题:①两边及其中一边的对角对应相等的两个三角形全等;②两角及其中一角的对边对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等;④面积相等的两个三角形肯定全等;⑤有两条直角边对应相等的两个直角三角形全等.其中正确的个数是( )A .1个B .2个C .3个D .4个 7.(0分)[ID :68907]下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是( )已知:如图,∠BEC =∠B+∠C ,求证:AB ∥CD证明:延长BE 交__※__于点F ,则∠BEC =__⊙__+∠C又∵∠BEC =∠B+∠C ,∴∠B =▲∴AB ∥CD (__□__相等,两直线平行)A .⊙代表∠FECB .□代表同位角C .▲代表∠EFCD .※代表AB 8.(0分)[ID :68890]下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个 9.(0分)[ID :68885]下列说法中,正确的是 A .相等的角是对顶角 B .有公共点并且相等的角是对顶角 C .如果1∠和2∠是对顶角,那么12∠=∠ D .两条直线相交所成的角是对顶角 10.(0分)[ID :68882]如图,下列不能判定DF ∥AC 的条件是( )A .∠A =∠BDFB .∠2=∠4C .∠1=∠3D .∠A +∠ADF =180°11.(0分)[ID :68880]如图,直线a ∥b ,则∠A 的度数是( )A.28°B.31°C.39°D.42°12.(0分)[ID:68878]如图,下列条件:∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断13241804523623l l的有( )直线12A.5个B.4个C.3个D.2个13.(0分)[ID:68876]如图,直线a,b被直线c所截,且a//b,若∠1=55°,则∠2等于()A.35°B.45°C.55°D.125°14.(0分)[ID:68869]下列选项中,不是运用“垂线段最短”这一性质的是()A.立定跳远时测量落点后端到起跳线的距离 B.从一个村庄向一条河引一条最短的水渠C.把弯曲的公路改成直道可以缩短路程D.直角三角形中任意一条直角边的长度都比斜边短15.(0分)[ID:68864]如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20 B.24 C.25 D.26二、填空题,,上的点,且16.(0分)[ID:69053]如图,在ABC中,D,E,F分别是BC AC ABCDE B ∠=∠.FD 把BFE ∠分成2:3的两部分.3180FDE AFE ∠+∠=︒,则BFE ∠的度数是__________.17.(0分)[ID :69052]如图,两直线交于点O ,134∠=︒,则2∠的度数为_____________;3∠的度数为_________.18.(0分)[ID :69037]在同一平面内,直线AB 与直线CD 相交于点O ,40AOC ∠=︒,射线OE CD ⊥,则∠BOE 的度数为________︒.19.(0分)[ID :69028]如图,//AB CD ,点M 为CD 上一点,MF 平分∠CME .若∠1=57°,则∠EMD 的大小为_____度.20.(0分)[ID :69025]如图,长8米宽6米的草坪上有一条弯折的小路(小路进出口的宽度相等,且每段小路均为平行四边形),小路进出口的宽度均为1米,则绿地的面积为__平方米.21.(0分)[ID :69021]如图,//AB EF ,设90C ∠=︒,那么x ,y ,z 的关系式______.22.(0分)[ID :69020]如图,//EF AD ,//AD BC ,CE 平分BCF ∠,120DAC ∠=︒,20ACF ∠=︒,FEC ∠为______°.23.(0分)[ID :68997]如图,ABC ∆沿着由点B 到点E 的方向,平移到DEF ∆.若10BC =,6EC =,则平移的距离为__________.24.(0分)[ID :68977]如图,AB ∥CD ,∠1=64°,FG 平分∠EFD ,则∠EGF=__________________°.25.(0分)[ID :68966]假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数.那么刻的数是25的钥匙所对应的原来房间应该是__________号.26.(0分)[ID :68965]观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.27.(0分)[ID :68958]某商场重新装修后,准备在门前台阶上铺设地毯,已知这种地毯的批发价为每平方米40元,其台阶的尺寸如图所示,则购买地毯至少需要________元.三、解答题28.(0分)[ID :69154]完成下面推理过程,在括号内的横线上填空或填上推理依据. 如图,已知://AB EF ,EP EQ ⊥,90EQC APE ∠+∠=︒,求证://AB CD证明://AB EFAPE ∴∠=__________(__________)EP EQ ⊥ PEQ ∴∠=_________(___________)即90QEF PEF ∠+∠=︒90APE QEF ∴∠+∠=︒90EQC APE ∠+∠=︒EQC ∠=________//EF ∴_______(__________________)//AB CD ∴(________________)29.(0分)[ID :69108]如图,直线AB ,CD 相交于点O ,EO AB ⊥,垂足为O ,35EOC ∠=︒,求AOD ∠的度数.30.(0分)[ID:69102]如图,DE平分∠ADF,DF∥BC,点E,F在线段AC上,点A,D,B 在一直线上,连接BF.(1)若∠ADF=70°,∠ABF=25°,求∠CBF的度数;(2)若BF平分∠ABC时,求证:BF∥DE.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.D3.B4.C5.B6.B7.C8.C9.C10.B11.C12.B13.C14.C15.D二、填空题16.或150°【分析】分∠BFD:∠DFE=2:3和∠DFE:∠BFD=2:3两种情况分别求解【详解】解:∵把分成的两部分∴①∠BFD:∠DFE=2:3时设∠BFD=2x∠DFE=3x∴∠AFE=18017.【分析】根据平角的性质及对顶角的性质求解即可【详解】解:∵∴=180°-∠1=180°-34°=146°;∵∠1与∠3互为对顶角∴∠3=∠1=故答案为:146°;【点睛】本题主要考查了角的运算解题的18.50°或130°【分析】先根据垂直的定义求出∠DOE=90°然后根据对顶角相等求出∠DOB 的度数再根据角的和差求出∠BOE的度数【详解】解:如图1:∵OE⊥CD∴∠DOE=90°∵∴∠DOB=°∴∠19.【分析】根据AB∥CD求得∠CMF=∠1=57°利用MF平分∠CME求得∠CME=2∠CMF =114°根据∠EMD=180°-∠CME求出结果【详解】∵AB∥CD∴∠CMF=∠1=57°∵MF平分∠20.42【分析】利用平移表示出草坪的长和宽然后根据长方形的面积公式列式计算即可得解【详解】解:由平移的性质得:草坪的长为8﹣1=7(米)宽为6米草坪的面积=7×6=42(平方米)故答案为:42【点睛】本21.【分析】过作过作根据平行线的性质可知然后根据平行线的性质即可求解;【详解】如图过作过作∴∴∵∴∴∴∴∴故答案为:【点睛】本题考查了平行线的性质两直线平行同位角相等两直线平行内错角相等正确理解平行线的22.20【分析】根据平行线的性质可得进而可得∠ACB=60°根据角平分线的性质和角的和差可得∠BCE根据平行线的性质可得∠FEC【详解】∵∴∵∴∵又∵∴∵平分∴∠BCE=∠ECF=∠BCF=20°∵∴∴23.4【分析】观察图象发现平移前后BE对应CF对应根据平移的性质易得平移的距离为BE=BC-EC=4进而可得答案【详解】由题意平移的距离为BE=BC-EC=10-6=4故答案为:4【点睛】本题考查了平移24.【分析】根据两直线平行同位角相等求出∠EFD再根据角平分线的定义求出∠GFD然后根据两直线平行内错角相等解答【详解】解:∵AB∥CD∠1=64°∴∠EFD=∠1=64°∵FG平分∠EFD∴∠GFD=25.12【分析】根据编码的方法分析在1~30中除以5余2的数有712172227而其中除以7余5的数只有12故可求得答案【详解】解:∵1~30中除以5余2的数有712172227而其中除以7余5的数只有26.(n﹣1)×180【分析】分别过P1P2P3作直线AB的平行线P1EP2FP3G由平行线的性质可得出:∠1+∠3=180°∠5+∠6=180°∠7+∠8=180°∠4+∠2=180°于是得到∠1+∠27.192【分析】根据平移可知地毯的长度等于横向与纵向的长度之和求出地毯的长度再根据矩形的面积列式求出地毯的面积然后乘以单价计算即可得解【详解】解:地毯的长度至少为:08+16=24(米);24×2×4三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【分析】把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题.【详解】解:A、逆命题是:同旁内角互补,两直线平行,是真命题,故本选项不符合题意;B、逆命题是:到线段两个端点的距离相等的点在这条线段的垂直平分线上,是真命题,故本选项不符合题意;C、逆命题是:如果三角形有两个角相等,那么这个三角形是等腰三角形,是真命题,故本选项不符合题意;D、逆命题是:如果两个角相等,那么这两个角是同一个角的余角,是假命题,故本选项符合题意.故选:D .【点睛】本题主要考查了互逆定理的知识,如果一个定理的逆命题是假命题,那这个定理就没有逆定理.2.D解析:D【分析】直接利用平行线的性质得出相等的角以及互补的角进而得出答案.【详解】解:解:∵1234//,//l l l l ,∴∠1+∠2=180°,∠2=∠4,∵∠4=∠5,∠2=∠3,∴图中与∠1互补的角有:∠2,∠3,∠4,∠5共4个.故选:D .【点睛】本题主要考查了平行线的性质,注意不要漏角是解题的关键.3.B解析:B【分析】由平行线的性质和垂直的定义,逐个判断得结论.【详解】∵∠1=∠3,∠2=∠4,又∵∠1+∠2+∠3+∠4=180°,∴∠1+∠2=∠3+∠4=∠1+∠4=90°,∴∠EFD=∠1+∠2=90°,∴EC ⊥FD ,故③正确;∵AB ∥CD ,∴∠1=∠C ,∴∠FGD=∠4+∠C=∠4+∠1=90°,∴FG ⊥CD ,故②正确;∵∠1不一定等于∠2,∴∠C≠∠D ,故①不正确.故选:B .【点睛】本题考查了平行线的性质,三角形的外角性质及垂直的定义,由相等的角和平角的定义得到互余的角是解决本题的关键.4.C解析:C【分析】先根据平行线的性质可得55AEG ∠=︒,再根据平角的定义可得70∠︒=DEF ,然后根据平行线的性质即可得.【详解】由题意得://AD BC ,1125∠=︒,180155AEG ∴∠=︒-∠=︒,AEG A EG '∠=∠,55A EG '∴∠=︒,18070DEF AEG A EG '∴∠=︒-∠-∠=︒,又//AD BC ,270DEF ∴∠=∠=︒,故选:C .【点睛】本题考查了平角的定义、平行线的性质,熟练掌握平行线的性质是解题关键.5.B解析:B【分析】根据命题的定义分别进行判断.【详解】A.平分一条线段,为描述性语言,不是命题;B.直角都相等,是命题;C.在直线AB 上取一点,为描述性语言,不是命题;D.你喜欢数学吗?是疑问句,不是命题.故选:B .【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.6.B解析:B【分析】根据全等三角形的判断定理逐项判断即可.【详解】解:①两边及其夹角对应相等的两个三角形全等,故该项错误;②两角及其中一角的对边对应相等的两个三角形全等,符合AAS定理,故该项正确;③有两条边和第三条边上的高对应相等的两个三角形不一定全等,有可能是锐角三角形,也有可能是钝角三角形,故该项错误;④面积相等的两个三角形不一定全等,因为形状可能不相同,故该项错误;⑤有两条直角边对应相等的两个直角三角形全等,符合ASA定理,故该项正确.故选:B.【点睛】此题主要考查对全等三角形的判定定理的掌握,正确理解判定定理是解题关键.7.C解析:C【分析】延长BE交CD于点F,利用三角形外角的性质可得出∠BEC=∠EFC+∠C,结合∠BEC=∠B+∠C可得出∠B=∠EFC,利用“内错角相等,两直线平行”可证出AB∥CD,找出各符号代表的含义,再对照四个选项即可得出结论.【详解】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C.又∵∠BEC=∠B+∠C,∴∠B=∠EFC,∴AB∥CD(内错角相等,两直线平行).∴※代表CD,⊙代表∠EFC,▲代表∠EFC,□代表内错角.故选:C.【点睛】本题考查了平行线的判定以及三角形外角的性质,利用各角之间的关系,找出∠B=∠EFC 是解题的关键.8.C解析:C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.9.C解析:C【分析】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.由此逐一判断.【详解】A、对顶角是有公共顶点,且两边互为反向延长线,相等只是其性质,错误;B、对顶角应该是有公共顶点,且两边互为反向延长线,错误;C、角的两边互为反向延长线的两个角是对顶角,符合对顶角的定义,正确.D、两条直线相交所成的角有对顶角、邻补角,错误;故选C.【点睛】要根据对顶角的定义来判断,这是需要熟记的内容.10.B解析:B【分析】根据选项中角的关系,结合平行线的判定,进行判断.【详解】解:A.∠A=∠BDF,由同位角相等,两直线平行,可判断DF∥AC;B.∠2=∠4,不能判断DF∥AC;C.∠1=∠3由内错角相等,两直线平行,可判断DF∥AC;D.∠A+∠ADF=180°,由同旁内角互补,两直线平行,可判断DF∥AC;故选:B.【点睛】此题考查平行线的判定,熟练掌握内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.11.C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质12.B解析:B【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】解:①∵∠1=∠3,∴l1∥l2,故本小题正确;②∵∠2+∠4=180°,∴l1∥l2,故本小题正确;③∵∠4=∠5,∴l1∥l2,故本小题正确;④∠2=∠3不能判定l1∥l2,故本小题错误;⑤∵∠6=∠2+∠3,∴l1∥l2,故本小题正确.故选B.【点睛】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.13.C解析:C【解析】试题分析:根据图示可得:∠1和∠2是同位角,根据两直线平行,同位角相等可得:∠2=∠1=55°.考点:平行线的性质14.C解析:C【分析】垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.据此逐个分析即可.【详解】解:A.立定跳远时测量落点后端到起跳线的距离,运用“垂线段最短”这一性质;B.从一个村庄向一条河引一条最短的水渠,运用“垂线段最短”这一性质;C.把弯曲的公路改成直道可以缩短路程,运用“两点之间,线段最短”这一性质;D.直角三角形中任意一条直角边的长度都比斜边短,运用“垂线段最短”这一性质;故选:C.【点睛】本题主要考查了垂线段最短,实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.15.D 解析:D 【解析】由平移的性质知,BE=4,DE=AB=8,可得HE=DE-DH=8-3=5,所以S四边形HDFC=S梯形ABEH=1 2(AB+EH)×BE=12(8+5)×4=26.故选D.二、填空题16.或150°【分析】分∠BFD:∠DFE=2:3和∠DFE:∠BFD=2:3两种情况分别求解【详解】解:∵把分成的两部分∴①∠BFD:∠DFE=2:3时设∠BFD=2x∠DFE=3x∴∠AFE=180解析:180013︒或150°【分析】分∠BFD:∠DFE=2:3和∠DFE:∠BFD =2:3两种情况分别求解.【详解】解:∵FD把BFE∠分成2:3的两部分,∴①∠BFD:∠DFE=2:3时,设∠BFD=2x,∠DFE=3x,∴∠AFE=180-5x,∵∠CDE=∠B,∴DE∥AB,∴∠BFD=∠FDE=2x,又∵∠FDE+3∠AFE=180°,即2x+3(180-5x)=180,解得:x=360 13,∴∠BFE=5x=180013︒;②∠DFE:∠BFD =2:3时,设∠BFD=3x,∠DFE=2x,∴∠AFE=180-5x,∵∠CDE=∠B,∴DE∥AB,∴∠BFD=∠FDE=3x,又∵∠FDE+3∠AFE=180°,即3x+3(180-5x)=180,解得:x=30,∴∠BFE=5x=150°,综上:∠BFE 的度数为180013︒或150°, 故答案为:180013︒或150°. 【点睛】 本题考查了平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,分类讨论解决问题,属于中考常考题型.17.【分析】根据平角的性质及对顶角的性质求解即可【详解】解:∵∴=180°-∠1=180°-34°=146°;∵∠1与∠3互为对顶角∴∠3=∠1=故答案为:146°;【点睛】本题主要考查了角的运算解题的解析:146︒ 34︒【分析】根据平角的性质及对顶角的性质求解即可.【详解】解:∵134∠=︒∴2∠=180°-∠1=180°-34°=146°;∵∠1与∠3互为对顶角∴∠3=∠1=34︒故答案为:146°;34︒.【点睛】本题主要考查了角的运算,解题的关键是熟练运用平角的性质及对顶角的性质. 18.50°或130°【分析】先根据垂直的定义求出∠DOE=90°然后根据对顶角相等求出∠DOB 的度数再根据角的和差求出∠BOE 的度数【详解】解:如图1:∵OE ⊥CD ∴∠DOE=90°∵∴∠DOB=°∴∠解析:50°或130°【分析】先根据垂直的定义求出∠DOE=90°,然后根据对顶角相等求出∠DOB 的度数,再根据角的和差求出∠BOE 的度数.【详解】解:如图1:∵OE ⊥CD ,∴∠DOE=90°,∵40AOC ∠=︒,∴∠DOB=40AOC ∠=︒°,∴∠BOE=90°-40°=50°,如图2:∵OE ⊥CD ,∴∠DOE =90°,∵40AOC ∠=︒,∴∠DOB=40AOC ∠=︒°,∴∠BOE=90°+40°=130°,故答案为:50°或130°.【点睛】本题考查了垂线的定义,对顶角相等,要注意领会由垂直得直角这一要点.19.【分析】根据AB ∥CD 求得∠CMF=∠1=57°利用MF 平分∠CME 求得∠CME=2∠CMF =114°根据∠EMD=180°-∠CME 求出结果【详解】∵AB ∥CD ∴∠CMF=∠1=57°∵MF 平分∠解析:66【分析】根据AB ∥CD ,求得∠CMF=∠1=57°,利用MF 平分∠CME ,求得∠CME=2∠CMF =114°,根据∠EMD=180°-∠CME 求出结果.【详解】∵AB ∥CD ,∴∠CMF=∠1=57°,∵MF 平分∠CME ,∴∠CME=2∠CMF =114°,∴∠EMD=180°-∠CME =66°,故答案为:66.【点睛】此题考查平行线的性质,角平分线的有关计算,理解图形中角之间的和差关系是解题的关键.20.42【分析】利用平移表示出草坪的长和宽然后根据长方形的面积公式列式计算即可得解【详解】解:由平移的性质得:草坪的长为8﹣1=7(米)宽为6米草坪的面积=7×6=42(平方米)故答案为:42【点睛】本解析:42【分析】利用平移表示出草坪的长和宽,然后根据长方形的面积公式列式计算即可得解.【详解】解:由平移的性质,得:草坪的长为8﹣1=7(米),宽为6米,草坪的面积=7×6=42(平方米).故答案为:42.【点睛】本题考查了平移的性质,熟记性质并理解求出与草坪的面积相当的长方形的长和宽是解题的关键.21.【分析】过作过作根据平行线的性质可知然后根据平行线的性质即可求解;【详解】如图过作过作∴∴∵∴∴∴∴∴故答案为:【点睛】本题考查了平行线的性质两直线平行同位角相等两直线平行内错角相等正确理解平行线的 解析:90x y z +-=︒【分析】过C 作//CN AB ,过D 作//DM AB ,根据平行线的性质可知//////AB CN DM EF ,然后根据平行线的性质即可求解;【详解】如图,过C 作//CN AB ,过D 作//DM AB ,∴//////AB CN DM EF ,∴1x =∠,23∠∠=,4z ∠=,∵90BCD ∠=︒,∴1290∠+∠=︒,∴390x +∠=︒,∴3490x z +∠+∠=︒+,∴90x y z +=︒+,∴90x y z +-=︒.故答案为:90x y z +-=︒.【点睛】本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键;22.20【分析】根据平行线的性质可得进而可得∠ACB =60°根据角平分线的性质和角的和差可得∠BCE 根据平行线的性质可得∠FEC 【详解】∵∴∵∴∵又∵∴∵平分∴∠BCE =∠ECF =∠BCF =20°∵∴∴解析:20【分析】根据平行线的性质可得180DAC ACB ∠+∠=︒,进而可得∠ACB =60°,根据角平分线的性质和角的和差可得∠BCE ,根据平行线的性质可得∠FEC .【详解】∵//AD BC ,∴180DAC ACB ∠+∠=︒.∵120DAC ∠=︒,∴180********ACB DAC ∠=︒-∠=︒-︒=︒.∵60BCF ACF ACB ∠+∠=∠=︒.又∵20ACF ∠=︒,∴602040BCF ACB ACF ∠=∠-∠=︒-︒=︒.∵CE 平分BCF ∠,∴∠BCE =∠ECF =12∠BCF =20° ∵//EF BC ,∴20FEC BCE ∠=∠=︒,∴20FEC ∠=︒.故答案为:20.【点睛】本题主要考查平行线的性质,涉及到角的和差,角平分线的性质,解题的关键是求得∠BCE . 23.4【分析】观察图象发现平移前后BE 对应CF 对应根据平移的性质易得平移的距离为BE=BC-EC=4进而可得答案【详解】由题意平移的距离为BE=BC-EC=10-6=4故答案为:4【点睛】本题考查了平移解析:4【分析】观察图象,发现平移前后,B 、E 对应,C 、F 对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.【详解】由题意平移的距离为BE=BC-EC=10-6=4,故答案为:4.【点睛】本题考查了平移的性质,经过平移,对应点所连的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等,对应角相等.本题关键要找到平移的对应点.任何一对对应点所连线段的长度都等于平移的距离.24.【分析】根据两直线平行同位角相等求出∠EFD 再根据角平分线的定义求出∠GFD然后根据两直线平行内错角相等解答【详解】解:∵AB∥CD∠1=64°∴∠EFD=∠1=64°∵FG平分∠EFD∴∠GFD=解析:【分析】根据两直线平行,同位角相等求出∠EFD,再根据角平分线的定义求出∠GFD,然后根据两直线平行,内错角相等解答.【详解】解:∵AB∥CD,∠1=64°,∴∠EFD=∠1=64°,∵FG平分∠EFD,∴∠GFD=12∠EFD=12×64°=32°,∵AB∥CD,∴∠EGF=∠GFD=32°.故答案为:32.考点:平行线的性质.25.12【分析】根据编码的方法分析在1~30中除以5余2的数有712172227而其中除以7余5的数只有12故可求得答案【详解】解:∵1~30中除以5余2的数有712172227而其中除以7余5的数只有解析:12【分析】根据编码的方法分析,在1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12,故可求得答案.【详解】解:∵1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12,∴刻的数是25的钥匙所对应的原来房间应该是12,故答案为:12.【点睛】此题考查了带余数除法的知识.此题难度适中,解题的关键是理解题意,抓住1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12.26.(n﹣1)×180【分析】分别过P1P2P3作直线AB的平行线P1EP2FP3G由平行线的性质可得出:∠1+∠3=180°∠5+∠6=180°∠7+∠8=180°∠4+∠2=180°于是得到∠1+∠解析:(n﹣1)×180【分析】分别过P1、P2、P3作直线AB的平行线P1E,P2F,P3G,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°于是得到∠1+∠2=10°,∠1+∠P1+∠2=2×180,∠1+∠P1+∠P2+∠2=3×180°,∠1+∠P1+∠P2+∠P3+∠2=4×180°,根据规律得到结果∠1+∠2+∠P1+…+∠P n=(n+1)×180°.【详解】解:如图,分别过P1、P2、P3作直线AB的平行线P1E,P2F,P3G,∵AB∥CD,∴AB∥P1E∥P2F∥P3G.由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°∴(1)∠1+∠2=180°,(2)∠1+∠P1+∠2=2×180,(3)∠1+∠P1+∠P2+∠2=3×180°,(4)∠1+∠P1+∠P2+∠P3+∠2=4×180°,∴∠1+∠2+∠P1+…+∠P n=(n+1)×180°.故答案为:(n+1)×180.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,利用两直线平行,同旁内角互补是解答此题的关键.27.192【分析】根据平移可知地毯的长度等于横向与纵向的长度之和求出地毯的长度再根据矩形的面积列式求出地毯的面积然后乘以单价计算即可得解【详解】解:地毯的长度至少为:08+16=24(米);24×2×4解析:192【分析】根据平移可知地毯的长度等于横向与纵向的长度之和求出地毯的长度,再根据矩形的面积列式求出地毯的面积,然后乘以单价计算即可得解.【详解】解:地毯的长度至少为:0.8+1.6=2.4(米);2.4×2×40=192(元).答:铺设梯子的红地毯至少需要2.4米,花费至少192元.故答案为:192【点睛】本题考查了生活中的平移,熟记平移的性质并理解地毯长度的求法是解题的关键.三、解答题28.∠PEF;两直线平行,内错角相等;90°;垂直的定义;∠QEF;CD;内错角相等,两直线平行;同一平面内,平行于同一条直线的两条直线互相平行.根据平行线的性质得到∠APE=∠PEF,根据余角的性质得到∠EQC=∠QEF根据平行线的判定定理即可得到结论.【详解】证明:∵AB∥EF∴∠APE=∠PEF(两直线平行,内错角相等)∵EP⊥EQ∴∠PEQ=90°(垂直的定义)即∠QEF+∠PEF=90°∴∠APE+∠QEF=90°∵∠EQC+∠APE=90°∴∠EQC=∠QEF∴EF∥CD(内错角相等,两直线平行)∴AB∥CD(同一平面内,平行于同一条直线的两条直线互相平行),故答案为:∠PEF;两直线平行,内错角相等;90°;垂直的定义;∠QEF;CD;内错角相等,两直线平行;同一平面内,平行于同一条直线的两条直线互相平行.【点睛】本题考查了平行线的判定和性质,垂直的定义,熟练掌握平行线的判定和性质是解题的关键.29.125°.【分析】由两直线垂直,求得∠AOE=90°;由∠AOC与∠EOC互余,∠EOC=35°,即可得到∠AOC的度数;再由∠AOD与∠AOC互补,即可得出∠AOD的度数.【详解】∵EO⊥AB,∴∠AOE=90°,又∵∠EOC=35°,∴∠AOC=∠AOE-∠EOC=90°-35°= 55°,∴∠AOD=180°-∠AOC=180°-55°=125°.【点睛】本题主要考查补角、余角和垂直的定义.解题的关键是熟练利用补角、余角关系求角的度数.30.(1)∠CBF=45°;(2)见解析.【分析】(1)根据平行线的性质和已知条件即可求出∠CBF的度数;(2)根据平行线的性质可得∠ABC=∠ADF,再根据BF平分∠ABC,DE平分∠ADF,可得∠ADE=∠ABF,再根据同位角相等,两直线平行即可证明BF∥DE.解:(1)∵DF ∥BC , ∴∠ABC =∠ADF =70°, ∵∠ABF =25°,∴∠CBF =70°﹣25°=45°; (2)证明:∵DF ∥BC , ∴∠ABC =∠ADF , ∵BF 平分∠ABC ,DE 平分∠ADF ,∴∠ADE 12=∠ADF ,∠ABF 12=∠ABC , ∴∠ADE =∠ABF , ∴BF ∥DE .【点睛】 本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.。
第五章《相交线与平行线》单元测试卷(含答案)

第五章 相交线与平行线单元测试 班级: 姓名: 考生得分: 一、选择题(每小题3分,共30分) 1.已知∠α=35°,则∠α的补角的度数是( ) A.55° B.65° C.145° D.165° 2.将图中所示的图案平移后得到的图案是( )
A. B. C. D. 3.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数 是( ) A.60° B.50° C.40° D.30°
4.如图,a∥b,∠1=∠2,∠3=40°,则∠4等于( ) A.40° B.50° C.60° D.70° 5.如图所示,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为( ) A.30° B.35° C.40° D.45°
6.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有( ) A.1个 B.2个 C.3个 D.4个 7.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是( ) A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B+∠BDC=180°
8.如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为( ) A.2个 B.3个 C.4个 D.5个 9. 下列条件中能得到平行线的是( ) ①邻补角的角平分线;②平行线内错角的角平分线;③平行线同旁内角的角平分线. A.①② B.②③ C.② D.③ 10. 两平行直线被第三条直线所截,同位角的平分线( ) A.互相重合 B.互相平行 C.互相垂直 D.相交 二、填空题(每小题3分,满分24分) 11.图中是对顶角量角器,用它测量角的原理是 . 12.如图,l∥m,∠1=120°,∠A=55°,则∠ACB的大小是 .
13.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠, 能使所开的渠道最短,这样设计的依据是 . 14.如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1与∠2的关系是 .
(易错题)人教版初中七年级数学下册第五章《相交线与平行线》模拟测试(包含答案解析)(1)

一、选择题1.(0分)[ID :68954]在下列命题中,为真命题的是( )A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相平行 2.(0分)[ID :68941]如图,由点B 观察点A 的方向是( ).A .南偏东62︒B .北偏东28︒C .南偏西28︒D .北偏东62︒ 3.(0分)[ID :68938]下列命题中是真命题的是( ) A .如果0a b +<那么0ab < B .内错角相等C .三角形的内角和等于180︒D .相等的角是对顶角 4.(0分)[ID :68927]下列语句中,是命题的是( ) A .两个相等的角是对顶角B .在直线AB 上任取一点C C .用量角器量角的度数D .直角都相等吗? 5.(0分)[ID :68925]对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( )A .∠1=50°,∠2=40°B .∠1=50°,∠2=50°C .∠1=∠2=45°D .∠1=40°,∠2=40° 6.(0分)[ID :68906]已知,//AB CD ,且2CD AB =,ABE △和CDE △的面积分别为2和8,则ACE △的面积是( )A .3B .4C .5D .67.(0分)[ID :68904]如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A.4B.5C.2D.5.58.(0分)[ID:68902]交换下列命题的题设和结论,得到的新命题是假命题的是() A.两直线平行,同位角相等B.相等的角是对顶角C.所有的直角都是相等的D.若a=b,则a﹣3=b﹣39.(0分)[ID:68896]如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB∥CE,且∠ADC=∠B:④AB∥CE,且∠BCD=∠BAD.其中能推出BC∥AD的条件为()A.①②B.②④C.②③D.②③④10.(0分)[ID:68890]下列说法中不正确的个数为().①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A.2个B.3个C.4个D.5个11.(0分)[ID:68886]下列命题是真命题的有()个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A.0 B.1 C.2 D.312.(0分)[ID:68884]下列命题是假命题的是()A.等腰三角形底边上的高是它的对称轴B.有两个角相等的三角形是等腰三角形C.等腰三角形底边上的中线平分顶角D.等边三角形的每一个内角都等于60°13.(0分)[ID:68877](2017•十堰)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A .40°B .50°C .60°D .70°14.(0分)[ID :68864]如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,∠B =90°,AB =8,DH =3,平移距离为4,求阴影部分的面积为( )A .20B .24C .25D .26 15.(0分)[ID :68862]在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A . B . C . D .二、填空题16.(0分)[ID :69052]如图,两直线交于点O ,134∠=︒,则2∠的度数为_____________;3∠的度数为_________.17.(0分)[ID :69041]两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为____︒. 18.(0分)[ID :69016]过直线AB 上一点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC =50°时,则∠BOD 的度数__.19.(0分)[ID :69011]“等腰三角形的两条边相等”的逆命题是________________.(填真命题或假命题)20.(0分)[ID :69009]若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度.21.(0分)[ID :69008]如图,请你添加一个条件....使得AD ∥BC ,所添的条件是__________.22.(0分)[ID :69000]一副直角三角板叠放如图①所示,现将含30角的三角板固定不动,把含45角的三角板CDE 由图①所示位置开始绕点C 逆时针旋转(a DCF α=∠且018)0a <<,使两块三角板至少有一组边平行.如图,30a =︒②时,//AB CD .请你在图③、图④、图⑤内,各画一种符合要求的图形,标出a ,并完成各项填空: 图③中α=_______________时,___________//___________﹔图④中α=_____________时,___________//___________﹔图⑤中α=_______________时,___________//___________﹔23.(0分)[ID :68998]如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到△DEF 的位置,AB =10,DO =4,平移距离为6,则阴影部分面积为__24.(0分)[ID :68991]如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.25.(0分)[ID :68974]如图所示,AB ∥CD ,EC ⊥CD .若∠BEC =30°,则∠ABE 的度数为_____.26.(0分)[ID :68971]如图,CB ∥OA ,∠B =∠A =100°,E 、F 在CB 上,且满足∠FOC =∠AOC ,OE 平分∠BOF ,若平行移动AC ,当∠OCA 的度数为_____时,可以使∠OEB =27.(0分)[ID :68966]假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数.那么刻的数是25的钥匙所对应的原来房间应该是__________号.三、解答题28.(0分)[ID :69125]如图,直线AB 和直线BC 相交于点B ,连接AC ,点,,D E H 分别在AB 、AC 、BC 上,连接DE 、DH ,F 是DH 上一点,已知13180︒∠+∠=(1)求证:CEF EAD ∠=∠;(2)若DH 平分BDE ∠,2α∠=∠,求3∠的度数.(用α表示)29.(0分)[ID :69092]如图,∠1=∠2,∠3=∠D ,∠4=∠5,运用平行线性质和判定证明:AE ∥BF ,要求写出具体的性质或判定定理.30.(0分)[ID :69067]如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(-5, 1),B(4,0),C(2,5),将△ABC 向右平移2个单位长度,再向下平移1个单位长度得到(1)画出平移后的图形,并写出△EFG的三个顶点坐标.(2)求△EFG的面积.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.B3.C4.A5.C6.B7.C8.C9.D10.C11.B12.A13.B14.D15.D二、填空题16.【分析】根据平角的性质及对顶角的性质求解即可【详解】解:∵∴=180°-∠1=180°-34°=146°;∵∠1与∠3互为对顶角∴∠3=∠1=故答案为:146°;【点睛】本题主要考查了角的运算解题的17.72【分析】如果两个角的两边互相平行则这两个角相等或互补根据题意这两个角只能互补然后列方程求解即可【详解】解:设其中一个角是x°则另一个角是(180-x)°根据题意得解得x=72∴180-x=10818.40º或140º【分析】根据题意可知射线OCOD可能在直线AB的同侧也可能在直线AB 的异侧分两种情况进行讨论即可【详解】解:由OC⊥OD可得∠DOC=90°如图1当∠AOC=50°时∠BOD=18019.真命题【分析】交换命题的题设和结论即可得到该命题的逆命题根据等腰三角形的定义判断即可【详解】等腰三角形的两条边相等的逆命题是:两条边相等的三角形是等腰三角形;它是真命题故答案为:真命题【点睛】本题考20.55或20【分析】根据平行线性质得出∠A+∠B=180°①∠A=∠B②求出∠A=3∠B﹣40°③把③分别代入①②求出即可【详解】解:∵∠A与∠B的两边分别平行∴∠A+∠B =180°①∠A=∠B②∵∠21.∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时根据同位角相等两直线平行可得AD//BC;当∠DAC=∠C时根据内错角相等两直线平行可得AD//BC;当∠DAB+∠B=180°时根据同旁内角22.;(答案不唯一)【分析】画出图形再由平行线的判定与性质求出旋转角度【详解】图中当时DE//AC;图中当时CE//AB图中当时DE//BC故答案为:;(答案不唯一)【点睛】考查了平行线的判定和性质解题23.【分析】根据平移的性质得出BE=6DE=AB=10则OE=6则阴影部分面积=S四边形ODFC=S梯形ABEO根据梯形的面积公式即可求解【详解】解:由平移的性质知BE=6DE=AB=10∴OE=DE﹣24.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°再结合∠BAC是直角即可得出结果【详解】解:如图所示∵a∥b∴∠1+∠3=180°则∠3=180°-∠1∵b∥c∴∠2+∠4=180°25.120°【分析】先根据平行线的性质得到∠GEC=90°再根据垂线的定义以及平行线的性质进行计算即可【详解】过点E作EG∥AB则EG∥CD由平行线的性质可得∠GEC=90°所以∠GEB=90°﹣30°26.60°【分析】设∠OCA=a∠AOC=x利用三角形外角内角和定理平行线定理即可解答【详解】解:设∠OCA=a∠AOC=x已知CB∥OA∠B=∠A=100°即a+x=80°又因为∠OEB=∠EOC+∠27.12【分析】根据编码的方法分析在1~30中除以5余2的数有712172227而其中除以7余5的数只有12故可求得答案【详解】解:∵1~30中除以5余2的数有712172227而其中除以7余5的数只有三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【分析】根据对顶角、平行公理的推论、平行线的判定、同旁内角逐项判断即可得.【详解】A、相等的角不一定是对顶角,此项是假命题;B、平行于同一条直线的两条直线互相平行,此项是真命题;C、两直线平行,同旁内角互补,此项是假命题;D、在同一平面内,垂直于同一条直线的两条直线互相平行,此项是假命题;故选:B.【点睛】本题考查了命题与定理、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.2.B解析:B【分析】根据平行线的性质求出∠ABE,求出∠CBA,根据图形和角的度数即可得出答案.【详解】解:如图所示:∵东西方向是平行的,∴∠ABE=∠DAB= 62°,∵∠CBE=90°,∴∠CBA=90°-62°=28°,即由点B观察点A的方向是北偏东28°,故选:B.【点睛】本题考查了平行线的性质和方向角的应用,根据题意得出∠ABE的度数是解题的关键.3.C解析:C【分析】利用反例对A进行判断;根据平行线的性质对B进行判断;根据三角形内角和定理对C进行判断;根据对顶角定义对D进行判断.【详解】解:A、当a=-2,b=-1时,则a+b<0,ab>0,所以A选项错误;B、两直线平行,内错角相等,所以B选项错误,是假命题;C、三角形的内角和等于180°,所以C选项为真命题;D、对顶角既有大小关系,又有位置关系,相等的角是对顶角的说法错误,所以D选项错误,是假命题;【点睛】本题考查命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.4.A解析:A【分析】根据命题的定义逐一判断即可.【详解】解:A.“两个相等的角是对顶角”做出了判断,是命题;B.“在直线AB上任取一点C”没有做出判断,不是命题;C.“用量角器量角的度数”没有做出判断,不是命题;D.“直角都相等吗?”没有做出判断,不是命题;故选:A.【点睛】此题主要考查了命题的含义和应用,解答此题的关键是要明确:判断一件事情的语句叫命题,许多命题都是由题设和结论两部分组成.5.C解析:C【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【详解】A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.【点睛】此题考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.6.B解析:B【分析】△的高相等,底边之比等于面积之比,设利用平行线间的距离相等可知ABC与ACD△的面积为x,建立方程即可求解.ACE【详解】∵//AB CD∴ABC 与ACD △的高相等 ∵2CD AB = ∴=2ACD ABC S S设ACE △的面积为x ,则=8+=+ACD CDE ACE SS S x ,=2+=+ABC ABE ACE S S S x ∴()822+=+x x解得4x =∴=4ACE S故选B .【点睛】本题考查平行线间的距离问题,由平行线间的距离相等得到两三角形的高相等,从而建立方程是解题的关键.7.C解析:C【分析】根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可.【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤.故选:C .【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.8.C解析:C【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A 的题设和结论,得到的新命题是同位角相等,两直线平行是真命题; 交换命题B 的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C 的题设和结论,得到的新命题是所有的相等的角都是直角是假命题; 交换命题D 的题设和结论,得到的新命题是若a-3=b-3,则a=b 是真命题,故选C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.10.C解析:C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.11.B解析:B【分析】根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.【详解】解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,故选:B.【点睛】本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.A解析:A【分析】分别分析各题设是否能推出结论,不能推出结论的既是假命题,从而得出答案.【详解】A.等腰三角形底边上的高所在的直线是它的对称轴,故该选项错误,是假命题,B.有两个角相等的三角形是等腰三角形,正确,是真命题,C.等腰三角形底边上的中线平分顶角,正确,是真命题,D.等边三角形的每一个内角都等于60°,正确,是真命题,故选:A.【点睛】本题考查了命题与定理,判断命题的真假,关键是分析各题设是否能推出结论.13.B解析:B【解析】试题分析:由AB∥DE,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG⊥BC,∴∠FGB=90°﹣∠B=50°,故选B.考点:平行线的性质14.D解析:D【解析】由平移的性质知,BE=4,DE=AB=8,可得HE=DE-DH=8-3=5,所以S四边形HDFC=S梯形ABEH=1 2(AB+EH)×BE=12(8+5)×4=26.故选D.15.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项错误;故选:D.【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.二、填空题16.【分析】根据平角的性质及对顶角的性质求解即可【详解】解:∵∴=180°-∠1=180°-34°=146°;∵∠1与∠3互为对顶角∴∠3=∠1=故答案为:146°;【点睛】本题主要考查了角的运算解题的解析:146︒34︒【分析】根据平角的性质及对顶角的性质求解即可.【详解】解:∵134∠=︒∴2∠=180°-∠1=180°-34°=146°;∵∠1与∠3互为对顶角∴∠3=∠1=34︒故答案为:146°;34︒.【点睛】本题主要考查了角的运算,解题的关键是熟练运用平角的性质及对顶角的性质.17.72【分析】如果两个角的两边互相平行则这两个角相等或互补根据题意这两个角只能互补然后列方程求解即可【详解】解:设其中一个角是x°则另一个角是(180-x)°根据题意得解得x=72∴180-x=108解析:72【分析】如果两个角的两边互相平行,则这两个角相等或互补.根据题意,这两个角只能互补,然后列方程求解即可.【详解】解:设其中一个角是x°,则另一个角是(180-x)°,根据题意,得 11(180)23x x =-, 解得x=72,∴180-x=108°;∴较小角的度数为72°.故答案为:72.【点睛】本题考查了平行线的性质,一元一次方程的应用,运用“若两个角的两边互相平行,则两个角相等或互补”,而此题中显然没有两个角相等这一情况是解决此题的突破点. 18.40º或140º【分析】根据题意可知射线OCOD 可能在直线AB 的同侧也可能在直线AB 的异侧分两种情况进行讨论即可【详解】解:由OC ⊥OD 可得∠DOC=90°如图1当∠AOC=50°时∠BOD=180解析:40º或140º【分析】根据题意可知,射线OC 、OD 可能在直线AB 的同侧,也可能在直线AB 的异侧,分两种情况进行讨论即可.【详解】解:由OC ⊥OD ,可得∠DOC=90°,如图1,当∠AOC =50°时,∠BOD =180°-50°-90°=40°;如图2,当∠AOC =50°时,∠AOD=90°-50°=40°,此时,∠BOD =180°-∠AOD=140°.故答案为40º或140º.【点睛】本题考查了垂线的定义及角的计算.解决问题的关键是根据题意画出图形,解题时注意分类讨论思想的运用.19.真命题【分析】交换命题的题设和结论即可得到该命题的逆命题根据等腰三角形的定义判断即可【详解】等腰三角形的两条边相等的逆命题是:两条边相等的三角形是等腰三角形;它是真命题故答案为:真命题【点睛】本题考 解析:真命题【分析】交换命题的题设和结论即可得到该命题的逆命题,根据等腰三角形的定义判断即可.【详解】“等腰三角形的两条边相等”的逆命题是:两条边相等的三角形是等腰三角形;它是真命题,故答案为:真命题.【点睛】本题考查了命题的真假判断、逆命题的概念,掌握等腰三角形的定义是解题的关键.20.55或20【分析】根据平行线性质得出∠A+∠B=180°①∠A=∠B②求出∠A=3∠B﹣40°③把③分别代入①②求出即可【详解】解:∵∠A与∠B的两边分别平行∴∠A+∠B=180°①∠A=∠B②∵∠解析:55或20【分析】根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180°①,∠A=∠B②,∵∠A比∠B的3倍少40°,∴∠A=3∠B﹣40°③,把③代入①得:3∠B﹣40°+∠B=180°,∠B=55°,把③代入②得:3∠B﹣40°=∠B,∠B=20°,故答案为:55或20.【点睛】本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B或∠A+∠B=180°,注意分类讨论思想的应用.21.∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时根据同位角相等两直线平行可得AD//BC;当∠DAC=∠C时根据内错角相等两直线平行可得AD//BC;当∠DAB+∠B=180°时根据同旁内角解析:∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时,根据“同位角相等,两直线平行”可得AD//BC;当∠DAC=∠C时,根据“内错角相等,两直线平行”可得AD//BC;当∠DAB+∠B=180°时,根据“同旁内角互补,两直线平行”可得AD//BC,故答案是:∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°(答案不唯一).22.;(答案不唯一)【分析】画出图形再由平行线的判定与性质求出旋转角度【详解】图中当时DE//AC ;图中当时CE//AB 图中当时DE//BC 故答案为:;(答案不唯一)【点睛】考查了平行线的判定和性质解题解析:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一)【分析】画出图形,再由平行线的判定与性质求出旋转角度.【详解】图③中,当45DCF D α=∠=∠=时,DE//AC ;图④中,当9090120DCF DCB BCF B α=∠=∠+∠=︒-∠+︒=︒ 时,CE//AB ,图⑤中,当90135a DCF DCB BCF D =∠=∠+∠=∠+=︒ 时,DE//BC .故答案为:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一).【点睛】考查了平行线的判定和性质,解题关键是理解平行线的判定与性质,并且利用了数形结合.23.【分析】根据平移的性质得出BE=6DE=AB=10则OE=6则阴影部分面积=S 四边形ODFC=S 梯形ABEO 根据梯形的面积公式即可求解【详解】解:由平移的性质知BE =6DE =AB =10∴OE =DE ﹣解析:【分析】根据平移的性质得出BE=6,DE=AB=10,则OE=6,则阴影部分面积=S 四边形ODFC =S 梯形ABEO ,根据梯形的面积公式即可求解.【详解】解:由平移的性质知,BE =6,DE =AB =10,∴OE =DE ﹣DO =10﹣4=6,∴S 四边形ODFC =S 梯形ABEO 12=(AB+OE )•BE 12=×(10+6)×6=48. 故答案为48.【点睛】本题主要考查了平移的性质及梯形的面积公式,得出阴影部分和梯形ABEO 的面积相等是解题的关键. 24.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°再结合∠BAC 是直角即可得出结果【详解】解:如图所示∵a ∥b ∴∠1+∠3=180°则∠3=180°-∠1∵b ∥c ∴∠2+∠4=180°解析:270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC 是直角即可得出结果.【详解】解:如图所示,∵a ∥b ,∴∠1+∠3=180°,则∠3=180°-∠1,∵b ∥c∴∠2+∠4=180°,则∠4=180°-∠2,∵∠BAC 是直角,∴∠3+∠4=180°-∠1+180°-∠2,∴90°=360°-(∠1+∠2),∴∠1+∠2=270°.故答案为:270°【点睛】本题主要考查的是平行线的性质,掌握平行线的性质是解题的关键.25.120°【分析】先根据平行线的性质得到∠GEC=90°再根据垂线的定义以及平行线的性质进行计算即可【详解】过点E 作EG ∥AB 则EG ∥CD 由平行线的性质可得∠GEC=90°所以∠GEB=90°﹣30°解析:120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC=90°,所以∠GEB=90°﹣30°=60°,因为EG∥AB,所以∠ABE=180°﹣60°=120°.故答案为:120°.【点睛】本题主要考查了平行线的性质和垂直的概念等,解题时注意:两直线平行,同旁内角互补.26.60°【分析】设∠OCA=a∠AOC=x利用三角形外角内角和定理平行线定理即可解答【详解】解:设∠OCA=a∠AOC=x已知CB∥OA∠B=∠A=100°即a+x=80°又因为∠OEB=∠EOC+∠解析:60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答.【详解】解:设∠OCA=a,∠AOC=x,已知CB∥OA,∠B=∠A=100°,即a+x=80°,又因为∠OEB=∠EOC+∠ECO=40°+x.当∠OEB=∠OCA,a=80°-x,40°+x=a,解得∠OCA=60°.【点睛】本题考查角度变换和平行线定理的综合运用,熟悉掌握是解题关键.27.12【分析】根据编码的方法分析在1~30中除以5余2的数有712172227而其中除以7余5的数只有12故可求得答案【详解】解:∵1~30中除以5余2的数有712172227而其中除以7余5的数只有解析:12【分析】根据编码的方法分析,在1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12,故可求得答案.【详解】解:∵1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12,∴刻的数是25的钥匙所对应的原来房间应该是12,故答案为:12.【点睛】此题考查了带余数除法的知识.此题难度适中,解题的关键是理解题意,抓住1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12.三、解答题28.(1)见解析(2)90°+1 2α【分析】(1)根据平行线的判定和性质解答即可;(2)根据平行线的性质解答即可.【详解】解:(1)∵∠3+∠DFE=180°,∠1+∠3=180°∴∠DFE=∠1,∴AB∥EF,∴∠CEF=∠EAD;(2)∵AB∥EF,∴∠2+∠BDE=180°又∵∠2=α∴∠BDE=180°−α又∵DH平分∠BDE∴∠1=12∠BDE=12(180°−α)∴∠3=180°− 12(180°−α)=90°+12α.【点睛】本题考查了角平分线定义,平行线的性质和判定等知识点,注意:①内错角相等,两直线平行,②两直线平行,同旁内角互补.29.证明见解析【分析】由∠1=∠2,根据平行线的判定得出AB∥DF,再根据平行线的性质得出∠3=∠BCE,结合已知条件∠3=∠D,得出∠D=∠BCE,进而根据平行线的判定得出AD∥BC,再根据平行线的性质得出∠6=∠5,然后根据等量代换得出∠4=∠6,最后根据平行线的判定得出结论.【详解】证明:∵∠1=∠2,∴AB ∥DF (内错角相等,两直线平行),∴∠3=∠BCE ,(两直线平行,内错角相等),又∵∠3=∠D ,∴∠D =∠BCE ,∴AD ∥BC ,(同位角相等,两直线平行),∴∠6=∠5,(两直线平行,内错角相等),又∵∠4=∠5,∴∠4=∠6,∴AE ∥BF (内错角相等,两直线平行).【点睛】本题考查了平行线的判定,关键是根据平行线的判定和性质解答.30.(1)画图见解析;()3,0E -,()6,1F -,()4,4G ;(2)21.5【分析】(1)分别作出A ,B ,C 的对应点E ,F ,G 即可解决问题.(2)利用分割法求三角形面积即可.【详解】解:(1)如图,△EFG 即为所求,E (-3,0),F (6,-1),G (4,4).(2)S△EFG=5×9-12×1×9-12×5×2-12×4×7=21.5.【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。
七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)

七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)三总分题号一二19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.2.下列说法正确的是()A.直线AB和直线BA是同一条直线 B.直线是射线的2倍C.射线AB与射线BA是同一条射线 D.三条直线两两相交,有三个交点3.下列各图中,∠1=∠2一定成立的是()A.B.C.D.4.如图,直线BC,DE相交于点O,AO⊥BC于点O.OM平分∠BOD,如果∠AOE =50°,那么∠BOM的度数()A.20°B.25°C.40°D.50°5.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点6.如图,点P在直线L外,点A,B在直线l上,PA=3,PB=7,点P到直线l 的距离可能是()A.2 B.4 C.7 D.87.如图所示,∠1和∠2不是同位角的是()A.①B.②C.③D.④8.如图所示,同位角共有()A.6对B.8对C.10对D.12对9.下列说法正确的有()个.①不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③过一点可以而且只可以画一条直线与已知直线平行;④如果一条直线与两条平行线中的一条平行,那么它与另一条直线也互相平行.A.1 B.2 C.3 D.410.如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=()A .180°B .360°C .270°D .540°二、填空题(每题3分,共24分)11.把命题“等角的补角相等”改写成“如果…那么…”的形式是______. 12.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD =︒∠,那么AEC ∠=___________.13.把一个直角三角板(90GEF ∠=︒,30GFE ∠=︒)如图放置,已知AB ∥CD ,AF 平分BAE ∠,则AEG ∠=_____________14.如图,点E 在BC 延长线上,四个条件中:①13∠=∠;②25180+=︒∠∠,③4∠=∠B ;④B D ∠=∠;⑤180D BCD ∠+∠=︒,能判断//AB CD 的是______.(填序号).15.如图,已知12//l l ,直线l 分别与12,l l 相交于,C D 两点,现把一块含30角的直角三角中尺按如图所示的位置摆放.若1130∠=︒,则2∠=___________.16.如图,∠AEM=∠DFN=a,∠EMN=∠MNF=b,∠PEM=12∠AEM,∠MNP=12∠FNP,∠BEP,∠NFD的角平分线交于点I,若∠I=∠P,则a和b的数量关系为_____(用含a的式子表示b).17.如图所示,将△ABC沿BC边平移得到△A1B1C1,若BC1=8,B1C=2,则平移距离为.18.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a<4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.三.解答题(共46分)19.(7分)如图,直线l1,l2,l3相交于点O,∠1=40°,∠2=50°,求∠3的度数.20.(7分)已知:如图,AB∥CD,CD∥EF.求证:∠B+∠BDF+∠F=360°.21.(8分)如图,直线DE与∠ABC的边BC相交于点P,现直线AB,DE被直线BC所截,∠1与∠2.∠1与∠3,∠1与∠4分别是什么角?22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.(8分)图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFG存在怎样的数量关系?并说明理由;(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFG的数量关系.24.(8分)已知,E、F分别是直线AB和CD上的点,AB∥CD,G、H在两条直线之间,且∠G=∠H.(1)如图1,试说明:∠AEG=∠HFD;(2)如图2,将一45°角∠ROS如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,若∠BEO=∠KEO,EG∥OS,判断∠AEG,∠GEK的数量关系,并说明理由;(3)如图3,将∠ROS=(n为大于1的整数)如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,连接EK,若∠AEK=n∠CFS,则=.参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 CACAAACCDB二、填空题:11.如果两个角是等角的补角,那么它们相等. 12.146° 13.30°解:∵AB ∥CD ,AF 平分∠BAE , ∴∠BAF=∠EAF=∠AFE , 又∵∠GFE=30°,∴∠BAF=∠EAF=30°,即∠BAE=60°, ∴∠AEF=180°-60°=120°, 又∵∠GEF=90°,∴∠AEG=120°-90°=30°, 14.②③解:①∵∠1=∠3,∴AD ∥BC ;②∵∠2+∠5=180°,∵∠5=∠AGC ,∴∠2+∠AGC=180°,∴AB ∥DC ; ③∵∠4=∠B ,∴AB ∥DC ; ④∠B=∠D 无法判断出AD ∥BC ; ⑤∵∠D+∠BCD=180°,∴AD ∥BC . 15.20︒如图,∵121130,l l ∠=︒∥, ∴50CDB ∠=︒, ∵30ADB ∠=︒,∴2503020CDB ADB ∠=∠-∠=︒-︒=︒.16.如图1,ABCD是长方形纸带(AD∥BC),∠DEF=18°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠CFE的度数是126°.【分析】在图1中,由AD∥BC,利用“两直线平行,内错角相等”可得出∠BFE的度数,由折叠的性质可知,在图3中∠BFE处重叠了三次,进而可得出∠CFE+3∠BFE=180°,再代入∠BFE的度数即可求出结论.【解答】解:在图1中,AD∥BC,∴∠BFE=∠DEF=18°.由折叠的性质可知,在图3中,∠BFE处重叠了三次,∴∠CFE+3∠BFE=180°,∴∠CFE=180°﹣3×18°=126°.故答案为:126°.17.解:∵△ABC沿BC边平移得到△A1B1C1,∴BC=B1C1,BB1=CC1,∵BC1=8,B1C=2,∴BB1=CC1=,即平移距离为3,故答案为:3.18.180;3;内错角相等,两直线平行;两直线平行,同位角相等三.解答题:19.解:∵∠1=40°,∠2=50°,∴∠5=∠1=40°,∠4=∠2=50°,∴∠3=180°﹣∠5﹣∠4=180°﹣40°﹣50°=90°.20.证明:∵AB∥CD(已知)∴∠B+∠BDC=180°(两直线平行,同旁内角互补)∵CD∥EF(已知)∴∠CDF+∠F=180°(两直线平行,同旁内角互补)∴∠B+∠BDC+∠CDF+∠F=360°,∵∠BDF=∠BDC+∠CDF(已知)∴∠B+∠BDF+∠F=360°.21.解:∵直线AB,DE被直线BC所截,∴∠1与∠2是同旁内角,∠1与∠3是内错角,∠1与∠4是同位角.22.解:(1)如图1,作直线GH交AB于M,交CD于Q,∵AB∥CD,∴∠BMG=∠FQH,∵∠EGH=∠GHF,∴∠AEG=∠EGH﹣∠BMG=∠FHG﹣∠FQH=∠HFD;(2)∠GEK﹣2∠AEG=45°,如图2,延长KO交AB于M,∵EG∥MS,∴∠AEG=∠EMF,∠GEK=∠OKE,设∠OEM=α,则∠OEK=2α,∠OME=45°﹣α,∴∠OKE=180°﹣∠MEK﹣∠OME=135°﹣2α,∵EG∥OS,∴∠GEK=∠OKE=135°﹣2α,∴∠AEG=180°﹣∠GEK﹣∠MEK=180°﹣135°+2α﹣3α=45°﹣α,即∠GEK﹣2∠AEG=45°.(3)作OH∥AB,∵AB∥CD,∴OH∥CD,如图3,∵AB∥OH,∴∠OEB=∠EOH,又∵OH∥CD,∴∠FOH=∠OFD,又∵∠OFD=∠CFS=∠AEK,而∠EOH+∠HOF=,∴∠EOH =﹣∠AEK,即180°﹣n∠EOH=∠AEK,又∵∠OEK+∠AEK+∠EOH=180°,∴∠OEK+180°﹣n∠EOH+∠EOH=180°,∴∠OEK=(n﹣1)∠EOH,∴,又∵∠EOH=∠BEO,∴.故答案为:.。
人教版数学七年级下册第五章相交线与平行线测试卷(含答案)
人教版七年级下册第五章相交线与平行线测试卷(含答案)一、选择题(每小题3分,共24分)1.如图,直线a,b相交于点O,若∠1等于35°,则∠2等于( )A.35°B.55°C.135°D.145°2.下列各组角中,∠1与∠2是对顶角的为( )3.如图,直线AB∥CD,AB,CD与直线BE分别交于点B,E,∠B=70°,则∠BED=( )A.110°B.50°C.60°D.70°4.如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A.a户最长B.b户最长C.c户最长D.三户一样长5.如图,描述同位角、内错角、同旁内角关系不正确的是( )A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角6.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于( )A.18°B.36°C.45°D.54°7.下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.A.4B.3C.2D.18.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD.其中能使AD∥BC的条件为( )A.①②B.③④C.②④D.①③④二、填空题(每小题4分,共16分)9.命题“同旁内角互补,两直线平行”写成“如果……,那么……”的形式是______________________________.它是__________命题(填“真”或“假”).10.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段__________的长度.11.如图,已知∠1=∠2,∠B=40°,则∠3=__________.12.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=__________.三、解答题(共60分)13.(6分)填写推理理由:已知:如图,D,F,E分别是BC,AC,AB上的点,DF∥AB,DE∥AC,试说明∠EDF=∠A.解:∵DF∥AB(已知),∴∠A+∠AFD=180°(____________________).∵DE∥AC(已知),∴∠AFD+∠EDF=180°(____________________).∴∠A=∠EDF(____________________).14.(10分)如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.15.(10分)如图所示,△ABC平移得△DEF,写出图中所有相等的线段、角以及平行的线段.16.(10分)已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH.(1)直线AB与CD有怎样的位置关系?说明理由;(2)∠KOH的度数是多少?17.(12分)如图所示,已知∠1+∠2=180°,∠B=∠3,你能判断∠ACB与∠AED的大小关系吗?说明理由.18.(12分)如图,直线AB与CD相交于O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角;(2)若∠BOE=62°,求∠AOD和∠EOF的度数;(3)试问射线OD与OF之间有什么特殊的位置关系?为什么?参考答案1.D2.D3.D4.D5.D6.B7.D8.C9.如果同旁内角互补,那么这两条直线平行真10.AP 11.40°12.70°13.两直线平行,同旁内角互补两直线平行,同旁内角互补同角的补角相等14.(1)图略.(2)图略.(3)∠PQC=60°.理由如下:∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=60°.15.相等的线段:AB=DE,BC=EF,AC=DF;相等的角:∠BAC=∠EDF,∠ABC=∠DEF,∠BCA=∠EFD;平行的线段:AB∥DE,BC∥EF,AC∥DF.16.(1)AB∥CD.理由:∵∠1+∠2=180°,∴AB∥CD.(2)∵AB∥CD,∠3=100°,∴∠GOD=∠3=100°.∵∠GOD+∠DOH=180°,∴∠DOH=80°.∵OK平分∠DOH,∴∠KOH=12∠DOH=40°.17.∠AED=∠ACB.理由如下:∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4.∴BD∥FE.∴∠3=∠ADE.∵∠3=∠B,∴∠B=∠ADE.∴DE∥BC.∴∠AED=∠ACB.18.(1)∠DOE的补角为:∠COE,∠AOD,∠BOC.(2)∵OD是∠BOE的平分线,∠BOE=62°,∴∠BOD=12∠BOE=31°.∴∠AOD=180°-∠BOD=149°. ∴∠AOE=180°-∠BOE=118°. 又∵OF是∠AOE的平分线,∴∠EOF=12∠AOE=59°.(3)射线OD与OF互相垂直. 理由如下:∵OF,OD分别是∠AOE,∠BOE的平分线,∴∠DOF=∠DOE+∠EOF=12∠BOE+12∠EOA=12(∠BOE+∠EOA)=12×180°=90°.∴OD⊥OF.。
第五章相交线与平行线测试题
第五章《订交线与平行线》检测题一、选择题(第小题 3 分,共 30 分)1、已知∠ A= 40° , 则∠ A 的补角等于(2、以下图,直线a∥ b, 则∠ A 的度数是()A、 50° B )A、 28°、90°CB 、31°、 140° DC 、39°、180°D 、42°A31°aD B70°bC3、以以下图所示,∠ 1 是∠ 2 的对顶角的图形有()11221221A、1 个B、 2 个 C 、3个D、 4 个4、到直线 L 的距离等于 2cm的点有()A、0 个B、 2 个 C 、3个D、 4 个5、如图,以下条件不可以判定AB∥ CD的是()AD214B35CA 、∠ 1=∠ 4B 、∠ 2=∠3C 、∠ 5=∠BD 、∠ BAD+L ∠ D=180°6、如 , AC ⊥ BC , CD ⊥ AB, 中互余的角有()BACDA 、4B 、3C 、2D 、17、如 , AB ∥ CF ∥ DC,EG ∥ DB , 中与∠1 相等的角共有()CDEF1AGBA 、3个B 、4个C 、5个D 、6个 8、在平移 程中, 段()A 、相互平行且相等B 、相互垂直且相等C 、相互平行(或在同一条直 上)且相等D 、相互平行9、若∠ A 和∠ B 是同旁内角,∠ A = 30°, ∠ B 的度数( )A 、 30°B 、 150°C 、 30°或 150°D 不可以确立10、如 , 2 条直最多有2(2 1)= 1 个交点, 3 条直 最多有3(3 1)= 3 个交点, 4 条直 最多有224(41)= 6 个交点,⋯⋯由此猜想,8 条直 最多有___个交点。
2A 、32B 、 16C 、28D 、40二填空 (每个空3分,共 30分)11、如 AB 与 CD 订交所成的四个角中,∠1 的 角是___,∠1 的 角是___。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
三月份七年级数学练习题
一.选择题(每小题3分,共36分)
题号
1 2 3 4 5 6 7 8 9 10 11 12
答案
1.
如图,下列条件中,不能判断直线l1∥l2的是( )
A.∠1=∠3 B.∠4=∠5
C.∠2+∠4=180° D.∠2=∠3
2.
如图,AB∥CD∥EF,AF∥CG,
则图中与∠A(不包括∠A)相等的角有( )
A.5个 B.4个
C.3个 D.2个
3. 如图9,A、B、C、D中的哪幅图案可以通过图9平移得到( )
4. 同一平面内的四条直线满足a⊥b,b⊥c,c⊥d,则下列式子成立的是
( )
A.a∥b B.b⊥d C.a⊥d D.b∥c
5.
如果两条平行线被第三条直线所截,那么同位角的平分线( )
A.互相平行 B.互相垂直 C.交角是锐角 D.交角是钝角
6.点到直线的距离是指( )
A.从直线外一点到这条直线的垂线 B. 从直线外一点到这条直线的垂线段
C.从直线外一点到这条直线的垂线的长 D. 从直线外一点到这条直线的垂线段的长
7.下列句子中不是命题的是( )
A、两直线平行,同位角相等。 B、直线AB垂直于CD吗?
C、若︱a︱=︱b︱,则a 2 = b 2。 D、同角的补角相等。
(图9)
2
8.
如图,能判断直线AB∥CD的条件是( )
A、∠1=∠2 B、∠3=∠4
C、∠1+∠3=180 o D、∠3+∠4=180 o
9.
如图,图中∠1与∠2是同位角的是( )
⑴ ⑵ ⑶ ⑷
A、⑵⑶ B、⑵⑶⑷ C、⑴⑵⑷ D、⑶⑷
10
.如右图,CDAB//,且25A,45C,则E的度数是( )
A. 60 B. 70 C. 110 D. 80
11、等腰三角形两边长分别是3,7,则它的周长为( )
A .13 B. 17 C. 13或17 D. 不能确定
12、三角形一边上的中线把原三角形一定分成两个( )
A.形状相同的三角形 B.面积相等的三角形
C.直角三角形 D. 周长相等的三角形
13、在ABC中,∠B=2∠A,则∠C的度数为( )
A.36 B.45 C.72 D.90
二. 填空题 (每空3分, 共45分)
1
.命题:“邻补角互补”的题设是________________,结论是____________________.
2.
某宾馆在重新装修后,准备在大厅主楼梯上铺设某种红色地毯,已知这种地毯每平方
米售价30元,主楼梯道宽2米,其侧面如图所示,则购买地毯至少需要_____元.
C
A
B
第16题 第17题 第2题
A E
C
F
G D
1
2
第3题
A
E
C
F
D
B
1
2
第4题
1
2
1
2
2
1
1
2
E
DC
B
A
B
3
3. 如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若
∠1=50°,则∠2的度数为_______________。
4、 如图,EF⊥AB于点F,CD⊥AB于点D,E是AC上一点,∠1=∠2,则图中互相
平行的直线是____________________。
5. 把命题“对顶角相等”写成“如果„„,那么„„”
的形式为:
6.
如图⑤,已知ba//,若501,则2 ; 若1003=,则2 。
7. 如图⑥,为了把ABC平移得到‘’‘CBA,可以先将ABC向右平移 格,再向
上平移 格
8.三条直线AB、CD、EF相交于点O,如图⑦所示,AOD的对顶角是 ,
FOB的对顶角是 ,EOB
的邻补角是 。
9.如图(3),△DEF是由△ABC经过平移得到的,若∠C=80°,∠A=33°,则
∠EDF= ;
10.如图(2),如果AB∥CD,BC∥AD,∠B=50°,则∠D= ;
11、△ABC中,∠A=50°,∠B=60°,则∠C=_________.
12、已知△ABC中,∠A : ∠ B : ∠C=1:2:3,则△ABC各角的度数分别是
_________
13、
2
图⑤
c
b
a
3
1
图⑥
A’C’B’ABC
图⑦
O
F
E
D
C
B
A
O
F
ECBAD
(3)
D
B
A
C
(2)
4
三. 解答题 (共19分)
1
.(6分) 如图所示,AB∥ED,∠B=48°,∠D=42°, BC垂直于CD吗?下面给出两种添
加辅助线的方法,请选择一种,对你作出的结论加以说明.
2.(6分) 已知:如图,∠ADE=∠B,∠DEC=115°.
求∠C的度数.
3. (7分)已知:如图,在直角三角形ABC中,∠ACB=90,斜边AB的高为CD,AC=3,
BC=4,AB=5,求CD
的长(利用三角形的面积)
4、画出途中△ABC的中线AD、角平分线AF、高AE.
D
E
BC
A
C
B
A
A
B
C
D
5