求函数的值域
求函数值域的十种常用方法

•
7、最具挑战性的挑战莫过于提升自我 。。20 20年12 月下午 3时12 分20.12. 1215:1 2December 12, 2020
•
8、业余生活要有意义,不要越轨。20 20年12 月12日 星期六 3时12 分31秒1 5:12:31 12 December 2020
•
9、一个人即使已登上顶峰,也仍要自 强不息 。下午 3时12 分31秒 下午3时 12分15 :12:312 0.12.12
logo
求函数值域的十 种常用方法
一:定义域法
二:函数单调性法
三:反函数法
四:换元法
五:分离常数法
六:判别式法
七:三角换元法
九:数形结合法
十导数法:
•
1、有时候读书是一种巧妙地避开思考 的方法 。20.1 2.1220. 12.12Sa turday, Dec者明。胜人者有力 ,自胜 者强。 20.12.1 220.12. 1215:1 2:3115: 12:31D ecembe r 12, 2020
•
6、意志坚强的人能把世界放在手中像 泥块一 样任意 揉捏。 2020年 12月12 日星期 六下午 3时12 分31秒1 5:12:31 20.12.1 2
•
2、阅读一切好书如同和过去最杰出的 人谈话 。15:1 2:3115: 12:3115 :1212/ 12/2020 3:12:31 PM
•
3、越是没有本领的就越加自命不凡。 20.12.1 215:12: 3115:1 2Dec-20 12-Dec-20
•
4、越是无能的人,越喜欢挑剔别人的 错儿。 15:12:3 115:12: 3115:1 2Saturday, December 12, 2020
求值域的方法

求值域的方法求值域的方法有:直接法:从自变量的范围出发,推出值域;配方法,求出最大值还有最小值;观察法:对于一些比较简单的函数,可以根据定义域与对应关系,直接得到函数的值域,等。
1.直接法:从自变量的范围出发,推出值域。
2.观察法:对于一些比较简单的函数,可以根据定义域与对应关系,直接得到函数的值域。
3.配方法:(或者说是最值法)求出最大值还有最小值,那么值域就出来了。
例题:y=x^2+2x+3x∈(-1,2)先配方,得y=x+1^2+1∴ymin=-1+1^2+2=2ymax=2+1^2+2=114.拆分法:对于形如y=cx+d,ax+b的分式函数,可以将其拆分成一个常数与一个分式,再易观察出函数的值域。
5.单调性法:y≠ca.一些函数的单调性,很容易看出来。
或者先证明出函数的单调性,再利用函数的单调性求函数的值域。
6.数形结合法,其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。
7.判别式法:运用方程思想,根据二次方程有实根求值域。
8.换元法:适用于有根号的函数例题:y=x-√(1-2x设√(1-2x=tt≥0∴x=1-t^2/2∴y=1-t^2/2-t=-t^2/2-t+1/2=-1/2t+1^2+1∵t≥0,∴y∈(-∝,1/2)9:图像法,直接画图看值域这是一个分段函数,你画出图后就可以一眼看出值域。
10:反函数法。
求反函数的定义域,就是原函数的值域。
例题:y=3x-1/3x-2先求反函数y=2x-1/3x-3明显定义域为x≠1所以原函数的值域为y≠1感谢您的阅读,祝您生活愉快。
函数值域的求法(学生用)

函数值域的求法函数值域的求法方法有好多, 在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。
一、直接观察法对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等,其值域可通过观察直接得到。
二、函数单调性法例求函数的值域.(1)求函数的值域⑵⑶三、基本不等式法例1 已知,求函数的值域。
[来源:#zzst*ep.%com^@]求函数的值域。
[中国四、配方法配方法是求二次函数值域最基本的方法之一。
例、求函数的值域。
1.求值域:;2.求函数y=的值域.3.函数的值域是()A.B.C.D.4、变式1:当时,函数在时取得最大值,则的取值范围是______________变式2:(1)求最值。
(-----动轴定区间)(2)求的最值(----------定轴动区间)五、根判别式法对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简如:例1 求函数的值域。
六、反函数法(原函数的值域是它的反函数的定义域)直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例求函数值域。
七.换元法1.求函数的值域.2.求函数的值域。
3.函数的值域为八、函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。
我们所说的单调性,最常用的就是三角函数的单调性。
例求函数,,的值域。
九.倒数法有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况例求函数的值域十.数形结合例、函数的值域为_____________________.求函数的值域:[来源:中#国教育^@出版网*%]解:[中~国@%*教^育出版网]函数的图像如图所示:[来^&源:#中%教*网]函数的值域为:.【点评】(1)对于一些可以较快作出函数的图像的函数,可以直接作出函数的图像,再观察函数的值域。
高中数学:求函数值域的方法十三种(一)

2
2
26
又 ∵ 在 [m, n] 上 当
x
增大时
f (x)
也
增
大
所
以
f (x)max f (n) f (x)min f (m)
3n 3m
m 4, n 0
解得
评注:解法 2 利用闭区间上的最值不超过整个定义域上的最值,缩小了 m ,n 的取值范围,
避开了繁难的分类讨论,解题过程简洁、明了。
(2) 求函数 y x(x a) 在 x [1 , 1] 上的最大值。
【解析】(1)二次函数的对称轴方程为 x a ,
当 a
1 2
即a
1 时, 2
f ( x )max
f ( 2 ) 4a 5 ;
当 a 1 2
即 a1 2
时,
f ( x )max f ( 1 ) 2a 2
。
f ( x )max 42aa52,,aa2121 。
y
x2 x2 x
x 1
x2 x x2
11 x 1
1
(x
1 1)2
3
不妨令:
24
f (x) (x 1)2 3 , g(x) 24
1 ( f (x) 0) 从而 f (x)
f
(
x)
3,
4
注意:在本题中应排
除
f
(x)
0 ,因为
f
(x)
作为分母。所以
g(x) 0,
3 4
故
y
1,1
3
f (x)max f (x)min
f (1) f (n)
3n 3m
,无解
④若
,则
f f
( x) max ( x) min
高中数学求值域的10种方法

求函数值域的十种方法一.直接法(观察法):对于一些比较简单的函数,其值域可通过观察得到。
例1.求函数1y =的值域。
【解析】0≥11≥,∴函数1y =的值域为[1,)+∞。
【练习】1.求下列函数的值域:①32(11)y x x =+-≤≤; ②x x f -+=42)(;③1+=x xy ;○4()112--=x y ,{}2,1,0,1-∈x 。
【参考答案】①[1,5]-;②[2,)+∞;③(,1)(1,)-∞+∞;○4{1,0,3}-。
二.配方法:适用于二次函数及能通过换元法等转化为二次函数的题型。
形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。
例2.求函数242y x x =-++([1,1]x ∈-)的值域。
【解析】2242(2)6y x x x =-++=--+。
∵11x -≤≤,∴321x -≤-≤-,∴21(2)9x ≤-≤,∴23(2)65x -≤--+≤,∴35y -≤≤。
∴函数242y x x =-++([1,1]x ∈-)的值域为[3,5]-。
例3.求函数][)4,0(422∈+--=x x x y 的值域。
【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设:)0)((4)(2≥+-=x f x x x f 配方得:][)4,0(4)2()(2∈+--=x x x f 利用二次函数的相关知识得][4,0)(∈x f ,从而得出:]0,2y ⎡∈⎣。
说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:0)(≥x f 。
例4.若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。
【分析与解】本题可看成第一象限内动点(,)P x y 在直线42=+y x 上滑动时函数xy y x lg lg lg =+的最大值。
利用两点(4,0),(0,2)确定一条直线,作出图象易得:2(0,4),(0,2),lg lg lg lg[(42)]lg[2(1)2]x y x y xy y y y ∈∈+==-=--+而,y=1时,y x lg lg +取最大值2lg 。
求函数值域的方法大全

求函数值域最值的方法大全函数是中学数学的一个重点,而函数值域最值的求解方法更是一个常考点, 对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,因此能熟练掌握其值域最值求法就显得十分的重要,求解过程中若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用;本文旨在通过对典型例题的讲解来归纳函数值域最值的求法,希望对大家有所帮助; 一、值域的概念和常见函数的值域函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域.常见函数的值域:一次函数()0y kx b k =+≠的值域为R.二次函数()20y ax bx c a =++≠,当0a >时的值域为24,4ac b a ⎡⎫-+∞⎪⎢⎣⎭,当0a <时的值域为24,4ac b a ⎛⎤--∞ ⎥⎝⎦., 反比例函数()0ky k x=≠的值域为{}0y R y ∈≠. 指数函数()01x y a a a =>≠且的值域为{}0y y >. 对数函数()log 01a y x a a =>≠且的值域为R.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 二、求函数值域最值的常用方法 1. 直接观察法适用类型:根据函数图象.性质能较容易得出值域最值的简单函数例1、求函数y=211x +的值域 解: 22111,011x x +≥∴<≤+ 显然函数的值域是:(]0,1 例2、求函数y=2-x 的值域;解: x ≥0 ∴-x ≤0 2-x ≤2故函数的值域是:-∞,2 2、配方法适用类型:二次函数或可化为二次函数的复合函数的题型;配方法是求二次函数值域最基本的方法之一;对于形如()20y ax bx c a =++≠或()()()()20F x a f x bf x c a =++≠⎡⎤⎣⎦类的函数的值域问题,均可用配方法求解.例3、求函数y=2x -2x+5,x ∈-1,2的值域;解:将函数配方得:y=x-12+4, x ∈-1,2,由二次函数的性质可知: 当x=1时,y m in =4 当x=-1,时m ax y =8 故函数的值域是:4,8例4、求函数的值域:y =解:设()2650x x μμ=---≥,则原函数可化为:y =.又因为()2265344x x x μ=---=-++≤,所以04μ≤≤,故[]0,2,所以,y 的值域为[]0,2. 3、判别式法适用类型:分子.分母中含有二次项的函数类型,此函数经过变形后可以化为0)()()(2=++y C x y B x y A 的形式,再利用判别式加以判断;例5、求函数的值域22221x x y x x -+=++解:210x x ++>恒成立,∴函数的定义域为R.由22221x x y x x -+=++ 得()()22120y x y x y -+++-= ;① 当20y -=即2y =时,300,0x x R +=∴=∈;② 当20y -≠即2y ≠时,x R ∈时,方程()()22120y x y x y -+++-=恒有实根.()()221420y y ∴=+-⨯-≥ 15y ∴≤≤且2y ≠.∴原函数的值域为[]1,5.例6、 求函数y=x+)2(x x -的值域; 解:两边平方整理得:22x -2y+1x+y 2=01 x ∈R,∴△=4y+12-8y≥0 解得:1-2≤y≤1+2但此时的函数的定义域由x2-x≥0,得:0≤x≤2;由△≥0,仅保证关于x 的方程:22x -2y+1x+y 2=0在实数集R 有实根,而不能确保其实根在区间0,2上,即不能确保方程1有实根,由△≥0求出的范围可能比y 的实际范围大,故不能确定此函数的值域为21,23;可以采取如下方法进一步确定原函数的值域; 0≤x≤2,∴y=x+)2(x x -≥0,∴y min =0,y=1+2代入方程1,解得:1x =222224-+∈0,2,即当1x =222224-+时,原函数的值域为:0,1+2;注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除; 4、反函数法适用类型:分子.分母只含有一次项的函数即有理分式一次型,也可用于其它易反解出自变量的函数类型; 例7、求函数12+=x xy 的值域; 分析与解:由于本题中分子、分母均只含有自变量的一次型,易反解出x,从而便于求出反函数;12+=x x y 反解得y y x -=2 即xxy -=2知识回顾:反函数的定义域即是原函数的值域; 故函数的值域为:),2()2,(+∞-∞∈ y ; 5、函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域;适用类型:一般用于三角函数型,即利用]1,1[cos ],1,1[sin -∈-∈x x 等;例8、求函数y=11+-x x e e 的值域;解:由原函数式可得:x e =11-+y y x e >0,∴11-+y y >0 解得:-1<y <1;故所求函数的值域为-1,1. 例9、求函数y=3sin cos -x x的值域;解:由原函数式可得:ysinx-cosx=3y 可化为:12+y sinxx+β=3y 即 sinxx+β=132+y y∵x∈R,∴sinxx+β∈-1,1;即-1≤132+y y ≤1解得:-42≤y≤42 故函数的值域为-42,42; 6、函数单调性法适用类型:一般能用于求复合函数的值域或最值;原理:同增异减 例10、求函数)4(log 221x x y -=的值域;分析与解:由于函数本身是由一个对数函数外层函数和二次函数内层函数复合而成,故可令:)0)((4)(2≥+-=x f x x x f 配方得:)4,0)(4)2()(2(所以∈+--=x f x x f 由复合函数的单调性同增异减知:),2[+∞-∈y ; 例11、 求函数y=+-25x log31-x 2≤x≤10的值域解:令y 1=25-x ,2y =log31-x ,则 y 1 ,2y 在2,10上都是增函数;所以y= y 1 +2y 在2,10上是增函数; 当x=2时,y m in =32-+log312-=81,当x=10时,m ax y = 52+log39=33;故所求函数的值域为:81,33;例12、求函数y=1+x -1-x 的值域; 解:原函数可化为: y=112-++x x令y 1 =1+x ,2y = 1-x ,显然y 1,2y 在1,+∞上为无上界的增函数,所以y= y 1 +2y 在1,+∞上也为无上界的增函数;所以当x=1时,y=y 1 +2y 有最小值2,原函数有最大值22=2;显然y >0,故原函数的值域为0,2; 7、换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型;换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用;适用类型:无理函数、三角函数用三角代换等; 例13、求函数y=x+1-x 的值域; 解:令x-1=t,t≥0则x=2t +1∵y=2t +t+1=2)21(+t +43,又t≥0,由二次函数的性质可知当t=0时,y m in =1,当t→0时,y→+∞; 故函数的值域为1,+∞;例14、求函数y=x+2+2)1(1+-x 的值域 解:因1-2)1(+x ≥0,即2)1(+x ≤1故可令x+1=cosβ,β∈0,∏;∴y=cosβ+1+B 2cos 1-=sinβ+cosβ+1 =2sinβ+∏/4+1 ∵0≤β≤∏,0≤β+∏/4≤5∏/4 ∴ -22≤sinβ+∏/4≤1 ∴ 0≤2sin β+∏/4+1≤1+2; 故所求函数的值域为0,1+2;例15、求函数 y=12243++-x x xx 的值域解:原函数可变形为:y=-21⨯212x x +⨯2211x x +- 可令x=tgβ,则有212x x+=sin2β,2211x x +-=cos2β∴y=-21sin2β⨯ cos2β=-41sin4β 当β=k∏/2-∏/8时,m ax y =41;当β=k∏/2+∏/8时,y m in =-41而此时tgβ有意义; 故所求函数的值域为-41,41; 例16、求函数y=sinx+1cosx+1,x∈-∏/12∏/2的值域; 解:y=sinx+1cosx+1=sinxcosx+sinx+cosx+1 令sinx+cosx=t,则sinxcosx=212t -1 y=212t -1+t+1=212)1(+t 由t=sinx+cosx=2sinx+∏/4且x∈-∏/12,∏/2 可得:22≤t≤2 ∴当t=2时,m ax y =23+2,当t=22时,y=43+22故所求函数的值域为43+22,23+2; 例17、求函数y=x+4+25x -的值域 解:由5-x≥0,可得∣x∣≤5 故可令x=5cosβ,β∈0,∏y=5cosβ+4+5sinβ=10sinβ+∏/4+4 ∵0≤β≤∏, ∴ ∏/4≤β+∏/4≤5∏/4当β=∏/4时,m ax y =4+10,当β=∏时,y m in =4-5;故所求函数的值域为:4-5,4+10; 8 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目; 适用类型:函数本身可和其几何意义相联系的函数类型. 例18、求函数y=)2(2-x +)8(2+x 的值域;解:原函数可化简得:y=∣x -2∣+∣x+8∣上式可以看成数轴上点Px 到定点A2,B-8间的距离之和; 由上图可知:当点P 在线段AB 上时, y=∣x -2∣+∣x+8∣=∣AB∣=10当点P 在线段AB 的延长线或反向延长线上时, y=∣x -2∣+∣x+8∣>∣AB∣=10 故所求函数的值域为:10,+∞ 例19、求函数y=1362+-x x+542++x x的值域解:原函数可变形为:y=)20()3(22--+x +)10()2(22+++x上式可看成x 轴上的点Px,0到两定点A3,2,B-2,-1的距离之和, 由图可知当点P 为线段与x 轴的交点时,y m in =∣AB∣=)12()23(22+++=43,故所求函数的值域为43,+∞; 例20、求函数y=1362+-x x-542++x x的值域解:将函数变形为:y=)20()3(22--+x -)10()2(22-++x上式可看成定点A3,2到点Px,0的距离与定点B-2,1到点Px,0的距离之差;即:y=∣AP∣-∣BP∣由图可知:1当点P 在x 轴上且不是直线AB 与x 轴的交点时,如点P1,则构成△ABP1,根据三角形两边之差小于第三边, 有 ∣∣AP1∣-∣BP1∣∣<∣AB∣=)12()23(22-++= 26即:-26<y <26 2当点P 恰好为直线AB 与x 轴的交点时,有∣∣AP∣-∣BP∣∣=∣AB∣= 26;综上所述,可知函数的值域为:-26,-26; 注:由例17,18可知,求两距离之和时,要将函数式变形,使A,B 两点在x 轴的两侧,而求两距离之差时,则要使两点A,B 在x 轴的同侧;如:例17的A,B 两点坐标分别为:3,2,-2,-1,在x 轴的同侧; 例18的A,B 两点坐标分别为:3,2,2,-1,在x 轴的同侧; 例21、求函数xxy cos 2sin 3--=的值域.分析与解:看到该函数的形式,我们可联想到直线中已知两点求直线的斜率的公式1212x x y y k --=,将原函数视为定点2,3到动点)sin ,(cos x x 的斜率,又知动点)sin ,(cos x x 满足单位圆的方程,从而问题就转化为求点2,3到单位圆连线的斜率问题,作出图形观察易得的最值在直线和圆上点的连线和圆相切时取得,从而解得: ]3326,3326[+-∈y 9 、不等式法适用类型:能利用几个重要不等式及推论来求得最值;如:ab b a ab b a 2,222≥+≥+ 其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧;例22、 求函y=sinx+1/sinx+cosx+1/cosx 的值域 解:原函数变形为:y=x sin 2+x cos 2+1/x sin 2+1/x cos 2=1+ x csc 2+x sec 2=3+x tg 2+x ctg 2当且仅当tgx=ctgx,即当x=k∏±∏/4时k∈z,等号成立; 故原函数的值域为:5,+∞; 例23、求函数y=2sinxsin2x 的值域解:y=2sinxsinxcosx=4x sin 2cosxy2=16x sin 4x cos 2=8x sin 2x sin 22-2x sin 2≤8x sin 2+x sin 2+2- x sin 2=8x sin 2+x sin 2+2- x sin 2/33=2764当且当x sin 2=2-2x sin 2,即当x sin 2=时,等号成立; 由y 2≤2764,可得:-938≤y≤938 xB故原函数的值域为:-938,938; 例24、当0>x 时,求函数248)(xx x f +=的最值,并指出)(x f 取最值时x 的值; 分析与解:因为2244448)(xx x x x x f ++=+=可利用不等式33abc c b a ≥++即:324443)(x x x x f ••≥所以12)(≥x f 当且仅当244xx =即1=x 时取”=”当1=x 时)(x f 取得最小值12;例25、双曲线12222=-b y a x 的离心率为1e ,双曲线12222=-ax b y 的离心率为2e ,则21e e +的最小值是 ;A 22B 4C 2D 2 分析与解:根据双曲线的离心率公式易得:bb a a b a e e 222221+++=+,我们知道xy y x 2≥+所以abb a e e 22212+≥+当且仅当bb a a b a 2222+=+时取“=”而ab b a 222≥+故2221≥+e e 当且仅当b a =时取“=”22)(min 21=+e e 所以;10、导数法设函数()f x 在[],a b 上连续,在(),a b 上可导,则()f x 在[],a b 上的最大值和最小值为()f x 在(),a b 内的各极值与()f a ,()f b 中的最大值与最小值;要求三次及三次以上的函数的最值,以及利用其他方法很难求的函数似的最值,通常都用该方法;导数法往往就是最简便的方法,应该引起足够重视; 例26、求函数()32362f x x x x =-+-,[]1,1x ∈-的最大值和最小值;解: ()2'366f x x x =-+,令()'0f x =,方程无解.()2'366f x x x =-+()23130x =-+> ∴函数()f x 在[]1,1x ∈-上是增函数.故当1x =-时, ()()min 112f x f =-=-,当1x =时, ()()max 12f x f == 例27、求函数221)(2++=x x x f 的最值.解析: 函数)(x f 是定义在一个开区间()∞+∞-,上的可导函数,令0)22(22)('2=+++-=x x x x f得)(x f 的唯一驻点1-=x 即为最点.1-<x 时,0)('>x f ,函数递增, 1-<x 时,0)('<x f ,函数递减, 故)(x f 有最大值1)1(=-f .说明 本函数是二次函数的复合函数,用配方法求最值也很简便.11)1(1)(2≤++=x x f ,等号成立条件是1-=x .注:最值寻根的导数判定若定义在一个开区间上的函数)(x f y =有导函数)()(x g x f ='存在,那么)(x f 是否有最值的问题可转化为)(x f 的导函数)(x g 是否有最根的问题来研究:1若导函数)(x g 无根,即0)(≠x g ,则)(x f 无最值;2若导函数)(x g 有唯一的根0x ,即0)('0=x f ,则)(x f 有最值)(0x f .此时,导函数)(x f '的根0x 即是函数)(x f 最根0x .3若导函数)(x g 有多个的根,则应从多个驻点中依次判定极点、最点的存在性. 11、多种方法综合运用 例28、求函数y=32++x x 的值域 解:令t=2+x t≥0,则x+3=2t +1 1 当t >0时,y=12+t t=t t /11+≤21, 当且仅当t=1,即x=-1时取等号 所以0<y≤21; 2 当t=0时,y=0;综上所述,函数的值域为:0,21; 注:先换元,后用不等式法;例29、求函数y=xx x x x x 424322121++++-+的值域;解:y=xx x x 42422121+++-+xx xx 42321+++=)11(222xx +-+x x21+令x=tg2β,则)11(222xx +-=βcos 2,xx 21+=21sin β,∴y=βcos 2+21sin β=-βsin 2+ 21sin β+1 =-)41(sin 2-β+1617 ∴当sin β=41时,m ax y =1617;当sin β=-1时,y m in =-2; 此时tg 2β都存在,故函数的值域为:-2,1617;注:此题先用换元法;后用配方法,然后再运用sin β的有界性;总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法; 学生巩固练习1 函数y =x 2+x1 x ≤-21的值域是A -∞,-47]B -47,+∞)C 2233,+∞)D -∞,-32232 函数y =x +x 21-的值域是 A -∞,1]B -∞,-1]C RD 1,+∞)3 一批货物随17列货车从A 市以V 千米/小时匀速直达B 市,已知两地铁路线长400千米,为了安全,两列货车间距离不得小于20V 2千米 ,那么这批物资全部运到B 市,最快需要_________小时不计货车的车身长4 设x 1、x 2为方程4x 2-4mx +m +2=0的两个实根,当m =_________时,x 12+x 22有最小值_________5 某企业生产一种产品时,固定成本为5000元,而每生产100台产品时直接消耗成本要增加2500元,市场对此商品年需求量为500台,销售的收入函数为Rx =5x -21x 2万元0≤x ≤5,其中x 是产品售出的数量单位 百台1把利润表示为年产量的函数; 2年产量多少时,企业所得的利润最大3年产量多少时,企业才不亏本6 已知函数fx =lg a 2-1x 2+a +1x +11若fx 的定义域为-∞,+∞,求实数a 的取值范围; 2若fx 的值域为-∞,+∞,求实数a 的取值范围7 某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周按120个工时计算生产空调器、彩电、冰箱共360台,且冰箱至少生产60台 已知生产家电产品每台所需工时和每台产值如下表家电名称 空调器 彩电 冰箱 工时产值千元4 3 2问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高最高产值是多少以千元为单位8 在Rt△ABC 中,∠C =90°,以斜边AB 所在直线为轴将△ABC 旋转一周生成两个圆锥,设这两个圆锥的侧面积之积为S 1,△ABC 的内切圆面积为S 2,记ABCABC =x 1求函数fx =21S S 的解析式并求fx 的定义域 2求函数fx 的最小值 参考答案1 解析 ∵m 1=x 2在-∞,-21上是减函数,m 2=x1在-∞,-21上是减函数,∴y =x 2+x1在x ∈-∞,-21上为减函数,∴y =x 2+x1 x ≤-21的值域为-47,+∞)答案 B2 解析 令x 21-=tt ≥0,则x =212t -∵y =212t -+t =-21 t -12+1≤1∴值域为-∞,1] 答案 A 3 解析 t =V 400+16×20V 2/V =V 400+40016V≥216=8 答案 84 解析 由韦达定理知 x 1+x 2=m ,x 1x 2=42+m , ∴x 12+x 22=x 1+x 22-2x 1x 2=m 2-22+m =m -412-1617,又x 1,x 2为实根,∴Δ≥0 ∴m ≤-1或m ≥2,y =m -412-1617在区间-∞,1上是减函数,在2,+∞)上是增函数,又抛物线y 开口向上且以m =41为对称轴 故m =1时,y min =21答案 -1 215 解 1利润y 是指生产数量x 的产品售出后的总收入Rx 与其总成本Cx 之差,由题意,当x ≤5时,产品能全部售出,当x >5时,只能销售500台,所以y =⎪⎩⎪⎨⎧>-≤≤--=⎪⎪⎩⎪⎪⎨⎧>+-⨯-⨯≤≤+--)1( 25.012)50(5.02175.4)5)(25.05.0()52155()50)(25.05.0(215222x x x x x x x x x x x 2在0≤x ≤5时,y =-21x 2+4 75x -0 5,当x =-ab2=4 75百台时,y max =10 78125万元,当x >5百台时,y <12-0 25×5=10 75万元,所以当生产475台时,利润最大3要使企业不亏本,即要求⎩⎨⎧≥->⎪⎩⎪⎨⎧≥-+≤≤025.012505.075.421502x x x x x 或 解得5≥x ≥4 75-5625.21≈0 1百台或5<x <48百台时,即企业年产量在10台到4800台之间时,企业不亏本6 解 1依题意a 2-1x 2+a +1x +1>0对一切x ∈R 恒成立,当a 2-1≠0时,其充要条件是⎪⎩⎪⎨⎧-<>-<>⎪⎩⎪⎨⎧<--+=∆>-13511,0)1(4)1(01222a a a a a a a 或或即, ∴a <-1或a >35又a =-1时,fx =0满足题意,a =1时不合题意 故a ≤-1或a >为35所求2依题意只要t =a 2-1x 2+a +1x +1能取到0,+∞上的任何值,则fx 的值域为R ,故有⎩⎨⎧≥∆>-0012a ,解得1<a ≤35,又当a 2-1=0即a =1时,t =2x +1符合题意而a =-1时不合题意,∴1≤a ≤35为所求7 解 设每周生产空调器、彩电、冰箱分别为x 台、y 台、z 台,由题意得x +y +z =360 ①120413121=++z y x ② x >0,y >0,z ≥60③假定每周总产值为S 千元,则S =4x +3y +2z ,在限制条件①②③之下,为求目标函数S 的最大值,由①②消去z ,得y =360-3x ④将④代入①得 x +360-3x +z =360,∴z =2x ⑤ ∵z ≥60,∴x ≥30⑥再将④⑤代入S 中,得S =4x +3360-3x +2·2x ,即S =-x +1080 由条件⑥及上式知,当x =30时,产值S 最大,最大值为S =-30+1080=1050千元得x =30分别代入④和⑤得y =360-90=270,z =2×30=60∴每周应生产空调器30台,彩电270台,冰箱60台,才能使产值最大,最大产值为1050千元8 解 1如图所示 设BC =a ,CA =b ,AB =c ,则斜边AB 上的高h =cab , ∴S 1=πah +πbh =,)2(),(22c b a S b a cab-+=+ππ, ∴fx =221)()(4c b a c b a ab S S -++= ①abCBcA又⎪⎩⎪⎨⎧-==+⇒⎪⎩⎪⎨⎧=+=+)1(222222x c ab cxb ac b a x c b a 代入①消c ,得fx =1)(22-+x x x在Rt△ABC 中,有a =c sin A ,b =c cos A 0<A <2π),则 x =c b a +=sin A +cos A =2sin A +4π∴1<x ≤2 2fx =]12)1[(21)(22-+-=-+x x x x x +6,设t =x -1,则t ∈0, 2-1,y =2t +t2+6 在0,2-1]上是减函数,∴当x =2-1+1=2时,fx 的最小值为62+8。
最全函数值域的12种求法(附例题,习题)[1]
![最全函数值域的12种求法(附例题,习题)[1]](https://img.taocdn.com/s3/m/27c3cb977f1922791788e822.png)
通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为.点评:算术xx具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-)2+∈[0,∴0≤√-x2+x+2≤函数的值域是点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一种重要的思想方法。
练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
函数值域的求法及例题

函数值域的求法及例题
函数值域是一个重要的概念。
它指函数的定义域中的所有可能函数值的集合。
了解函数值域的求法,可以帮助我们更有效地使用函数,对解决实际问题也很有帮助。
函数值域的求法有两种:直接和间接。
直接求法:如果可以确定函数的解析式,则可以直接求出函数值域。
具体步骤如下:
(1) 求函数定义域:即可以使用此函数的所有自变量x的取值范围
(2)求函数值域:即当自变量x在定义域内任意取值时,函数的值的取值范围。
例子:若函数:y=3x+2,
它的定义域为x∈R
那么,函数值域就是y∈R
间接求法:当不能确定函数的解析式时,可以采用间接的求法,即分情况求解。
即将函数定义域上的所有取值情况分类讨论,将其分解为一些能求出函数值域的子问题。
例子:若函数:y=x²,
它的定义域为x∈R
这里分情况讨论:
当x ≥ 0 时,y ≥ 0;
当 x<0 时,y<0;
即函数值域为y∈[0,+∞) ∪ (-∞,0],
总之,了解函数值域的求法是有必要的,有助于我们理解函数的概念,也有助于解决各种函数问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5(1)25x y x -=+22(2)1x xy x x -=-+(3)12y x x=--例题:求下列函数的值域解:(1)12y ≠-所以值域为的一切实数5225xy x -=+5(1)21y x y -=+解得由逆求法152025x ≠+ 12y ∴≠-解:(1)15521225225x y x x -==-+++由12y ≠-所以值域为的一切实数分离常数法2111y x x =--+221331()244x x x -+=-+≥214013x x ∴<≤-+113y ∴-≤<解:(2)1[,1)3-故值域为配方法1y ∴≠解:(2)221x x y x x -=-+2(1)(1)0y x y x y -+-+=由得0∴∆≥113y ∴-≤≤1y = 时无解1y ≠1[,1)3-又故值域为1y ≠ x R∈ 又判别式法211(1)122y t ∴=-++≤(0)t ≥解:(3)12x t -=0t ≥212t x -=令则且1(,]2y ∈-∞则换元法解:(3)1(,]2x ∈-∞定义域y x=12y x =--1(,]2x ∈-∞函数,在都是单调增函数12y ≤1(,]2y ∈-∞故即利用函数的单调性【函数值域及求法:】函数的值域就是函数值的取值范围。
【常见函数的值域】 【求函数值域的方法:】【(1)直接观察法:】对于一些比较简单的函数,其值域可通过观察得到。
例如:函数24x y -=,12+=x y 的值域分别是]2,0[和),0()0,(+∞⋃-∞。
【(2)配方法:】配方法是求二次函数值域最基本的方法之一。
形如y =af 2(x )+bf (x )+c (a ≠0)的函数常用配方法求函数的值域。
要注意f (x )的取值范围。
对于二次函数k h x a x f +-=2)()()0(>a 在区间],[n m 上的最值问题,有以下结论: ①若],[n m h ∈,则{})(,)(,)(m ax m in n f m f y k h f y ===; ②若m h <,则)(),(m ax m in n f y m f y ==; ③若m h >,则)(),(m ax m in m f y n f y ==。
0<a 时,可仿此讨论。
例如:求函数y=2x -2x+5,x ∈[-1,2]的值域。
求函数y =sin 2x +4cos x +1的值域。
[-3,5]【(3)部分分式法(分离常数或代数式)】 对于形如0,0,)(≠≠-++=c bc ad d cx b ax x f 的函数的值域,一般为}⎩⎨⎧≠∈c a y R y |,这是因为c a c d x ac ad bc c a c d x a b x c a d cd b ax x f ≠⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+=++=++=1)(。
主要适用于具有分式形式的函数解析式,通过变形,将函数化成y =a +b/g(x)的形式【(4)反求法(反函数法)】直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
对于形如0,0,)()(≠≠-++=c bc ad dx cf bx af y 的函数,若],[)(n m x f ∈,常先求出)(x f (用y 表示),再根据)(x f 的范围求得y 的范围。
例如:求函数y=6543++x x 值域。
【(5)判别式法】判别式法求最值,用途很广,大家也较熟悉,但用判别式求最值是有条件的,即当R x ∈时,使用“∆”求最值万无一失;当],[b a x ∈时,使用“∆”求最值不保险,因为],[b a 不一定包含“∆”求最值点的横坐标。
若解决某些实际问题时,用“∆”求最值方便,也要验证x 量否在已知区间,或是否符合实际。
能转化为 A(y )x 2+B(y )x +C(y )=0 的函数常用判别式法求函数的值域.主要适用于形如 y =(dx 2+ex +f)/(ax 2+bx+c )(a , d 不同时为零)的函数(最好是满足分母恒不为零).对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面.112..22222222ba y 型:直接用不等式性质k+xbxb. y 型,先化简,再用均值不等式x mx nx 1 例:y 1+x x+xx m x n c y 型 通常用判别式x mx n x mx nd. y 型x n法一:用判别式 法二:用换元法,把分母替换掉x x 1(x+1)(x+1)+1 1例:y (x+1)1211x 1x 1x 1==++==≤''++=++++=+++-===+-≥-=+++【(6)换元法】形如d cx b ax y +±+=的形式,可用换元法,即设d cx t +=,转化成二次函数再求值域(注意0≥t )。
通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型。
换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。
例如:求函数y=x+1-x 的值域。
通过代数换元法或者三角函数换元法,把无理函数、指数函数、对数函数等超越函数转化为代数函数来求函数值域的方法(关注新元范围)。
【(7)利用函数单调性:】通常和导数结合,是最近高考考的较多的一个内容 例如:求函数y=+-25x log31-x (2≤x ≤10)的值域函数有界性法:直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。
我们所说的单调性,最常用的就是三角函数的单调性。
例如:函数y=11+-x x e e ,2sin 11sin y θθ-=+,2sin 11cos y θθ-=+的值域。
110112sin 11|sin |||1,1sin 22sin 12sin 1(1cos )1cos 2sin cos 1)1,sin()sin()11即又由解不等式,求出,就是要求的答案x x x e yy e y e y y y y y y yx y x x y θθθθθθθθθθθθ-+=⇒=>-+-+=⇒=≤+--=⇒-=++-=++=++=+≤≤主要适用于 (1) y =ax +b + (cx +d)1/2 (ac >0)形式的函数; (2)利用基本不等式不能求得 y =x +k/x(k >0)的最值(等号不成立)时【(8)数形结合法】当函数的解析式明显具备某种几何意义, 像两点间的距离公式、直线斜率等时可考虑用数形结合法.其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。
例:已知点P (x.y )在圆x 2+y 2=1上,2,(2),2(,20, (1)的取值范围(2)y-2的取值范围解:(1)令则是一条过(-2,0)的直线.d 为圆心到直线的距离,R 为半径)(2)令y-2即也是直线d dy x x yk y k x x R d x b y x b R +==+-≤=--=≤例:求函数y=)2(2-x +)8(2+x 的值域。
解:原函数可化简得:y=∣x-2∣+∣x+8∣上式可以看成数轴上点P (x )到定点A (2),B (-8)间的距离之和。
由上图可知:当点P 在线段AB 上时,y=∣x-2∣+∣x+8∣=∣AB ∣=10当点P 在线段AB 的延长线或反向延长线上时,y=∣x-2∣+∣x+8∣>∣AB ∣=10 故所求函数的值域为:[10,+∞)例:求函数y=1362+-x x+542++x x的值域解:原函数可变形为:y=)20()3(22--+x +)10()2(22+++x上式可看成x 轴上的点P (x ,0)到两定点A (3,2),B (-2 ,-1 )的距离之和, 由图可知当点P 为线段与x 轴的交点时,y min =∣AB ∣= )12()23(22+++=43,【(8)数形结合法】 例:求函数y=1362+-x x-542++x x的值域解:将函数变形为:y=)20()3(22--+x -)10()2(22-++x上式可看成定点A (3,2)到点P (x ,0 )的距离与定点B (-2,1)到点P (x ,0)的距离之差。
即:y=∣AP ∣-∣BP ∣由图可知:(1)当点P 在x 轴上且不是直线AB 与x 轴的交点时,如点P¹,则构成△ABP¹,根据三角形两边之差小于第三边,有∣∣AP¹∣-∣BP¹∣∣<∣AB ∣= )12()23(22-++=26即:-26<y <26(2)当点P 恰好为直线AB 与x 轴的交点时,有 ∣∣AP ∣-∣BP ∣∣= ∣AB ∣= 26。
综上所述,可知函数的值域为:(-26,-26)。
注:求两距离之和时,要将函数式变形,使A ,B 两点在x 轴的两侧,而求两距离之差时,则要使两点A ,B 在x 轴的同侧。
【(9)不等式法】利用基本不等式a+b≥2ab ,a+b+c≥3abc 3(a ,b ,c ∈R +),求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。
例:33()13()32x (3-2x)(0<x<1.5)x x+3-2x =x x (3-2x) (应用公式abc 时,应注意使3者之和变成常数)a b c +⋅⋅≤=++≤ 均值不等式法利用基本不等式求出函数的最值进而确定函数的值域. 要注意满足条件“一正、二定、三等”。
【(10)倒数法】有时直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况。
例:求函数y=32++x x 的值域320112022012时,时,=00y x x y y x y y =++≠==≥⇒<≤+=∴≤≤【(11)多种方法综合运用】总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。
2(0)113322x =x (应用公式a+b+c 者的乘积变成常数)x x x x +>++≥=≥函数专讲【函数的性质〃函数的值域】【求函数值域的方法:】【导数法】对于可导函数,可利用导数的性质求出函数的最值,进而求得函数的值域。
例:求函数f(x)=x3-3x+1在闭区间[-3,0]上的值域解:由已知得f´(x)=3x2-3令3x2-3=0,解得x=-1或x=1(舍去)∵当-3≤x≤-1时,f´(x)≥0,函数单调递增当-1≤x≤0时,f´(x) ≤0,函数单调递减∴函数f(x)的极大值为f(-1)=3又f(0)=1,f(-3)=-17∴函数f(x)在[-3,0]上的值域是[-17,3]。