数值分析习 题 六 解 答

数值分析习 题 六 解 答
数值分析习 题 六 解 答

习 题 六 解 答

1、在区间[0,1]上用欧拉法求解下列的初值问题,取步长h=0.1。

(1)210(1)(0)2y y y '?=--?=?(2)sin (0)0

x y x e y -'?=+?=? 解:(1)取h=0.1,本初值问题的欧拉公式具体形式为

21(1)(0,1,2,)n n n y y y n +=--=

由初值y 0=y(0)=2出发计算,所得数值结果如下: x 0=0,y 0=2;

x 1=0.1,2100(1)211y y y =--=-=

x 2=0.2,2211(1)101y y y =--=-= 指出:

可以看出,实际上求出的所有数值解都是1。 (2)取h=0.1,本初值问题的欧拉公式具体形式为

21(sin )(0,1,2,)n x n n n y y h x e n -+=++=

由初值y 0=y(0)=0出发计算,所得数值结果如下: x 0=0,y 0=0;

x 1=0.1,

02

1000

(sin )00.1(sin 0)00.1(01)0.1x y y h x e e -=++=+?+=+?+=

x 2=0.2,

12

2110.1

(sin )0.10.1(sin 0.1)0.10.1(0.10.9)0.2

x y y h x e e --=++=+?+=+?+=

指出:

本小题的求解过程中,函数值计算需要用到计算器。

2、用欧拉法和改进的欧拉法(预测-校正法)求解初值问题,取步长h=0.1。

22(00.5)

(0)1

y x y x y '?=-≤≤?

=? 解:(1) 取h=0.1,本初值问题的欧拉公式具体形式为

2

1(2)(0,1,2,)n n n n y y h x y n +=+-=

由初值y 0=y(0)=1出发计算,所得数值结果如下: x 0=0,y 0=1;

x 1=0.1,2

21000(2)10.1(021)0.8y y h x y =+-=+?-?= x 2=0.2,222111(2)0.80.1(0.120.8)0.641y y h x y =+-=+?-?=

(2)由预测校正公式11(,)[(,)(,)]2n n n n n n n n y hf x y h

y f x y f x y ++?=+?

?=++??n+1n+1y y , 取h=0.1,本初值问题的预测-校正公式的具体形式为 12

22

10.1(2)

0.05[(2)(2)]

n n n n n n n n y x y y x y x y ++?=+?-??=+-+-??n+1n+1y y 由初值y 0=y(0)=1出发计算,所得数值结果如下: x 0=0,y 0=1; x 1=0.1,

2000220001120.1(2)0.8,0.05[(2)(2)]10.05[(02)(0.120.8]0.8205

y x y y x y x y =+?-==+?-+-=+?-+-?=11y y

x 2=0.2,

2111222

11122220.1(2)

0.82050.1(0.120.8205)0.6574

0.05[(2)(2)]

0.82050.05[(0.120.8205)(0.220.0.6574]0.6752

y x y y x y x y =+?-=+?-?==+?-+-=+?-?+-?=22y y

3、试导出解一阶常微分方程初值问题

000

(,)()

()y f x y x a x b y x y '==≤≤??

=?

的隐式欧拉格式

111(,)(0,1,2,)n n n n y y hf x y n +++=+=

并估计其局部截断误差。

解:在区间[x n ,x n+1]上对常微分方程y /(x)=f(x,y)两端同时积分,得

1

1(,())n n

x n n x y y f x y x dx ++-=?

由右矩形公式得

1

11(,())(,)n n

x n n x f x y x dx hf x y +++≈?

所以有差分格式

111(,)(0,1,2,)n n n n y y hf x y n +++=+=

这是所谓隐式欧拉公式。

对于隐式欧拉法111(,)(0,1,2,)n n n n y y hf x y n +++=+=

假定y n =y(x n ),上式右边的y n +1=y(x n +1),则

111111(,)()(,())()()n n n n n n n n n y y hf x y y x hf x y x y x hy x ++++++'=+=+=+ 将y /(x n +1) 按泰勒公式展开,上式为 11()()

()()

()[()()]n n n n n n n n y y x hy x y x hy x h y x h y x hy x ++'=+'=++'''=+++ 将y(x n +1)按泰勒公式展开,得

123

()()

()()()()2!3!

n n n n n n y x y x h h h y x hy x y x y x +=+''''''=++++

两式相减,得

23

112

3()[()()()()]()[()()]

2!3!

()()

2!

n n n n n n n n n n h h y x y y x hy x y x y x y x h y x hy x h y x O h ++'''''''''-=++++--++''=-+ 即

2

311()()()2!

n n n h y x y y x O h ++''-=-+

所以,

211()()n n y x y O h ++-=

指出:

可以用多种方法导出,其中差商法、数值积分方法是简单的方法。 4、验证改进的欧拉公式对任何不超过二次的多项式

2y ax bx c =++

准确成立,并说明理由。

分析:①本题所说的改进的欧拉法,是指梯形公式

111((,)(,))2

i i i i i i h

y y f x y f x y +++=++。

②在初值问题000

(,)

()

()y f x y x a x b y x y '==≤≤??

=?中,y 是解函数。

③本题要证明的是,如果解函数是2y ax bx c =++,则用梯形公式求出的数值解n y 等于相应的解函数的函数值()n y x ,而2()n n n y x ax bx c =++,即要证明

2n n n y ax bx c =++。

④为了证明结论成立,先建立求解格式。

⑤注意,2y ax bx c =++,所以(,)2f x y y ax b '==+。

解:因为2y ax bx c =++ 所以2y ax b y ex f ''=+=+ 。 记()f x ex f =+,设,0,1,2,i x ih i == 改进的欧拉公式为

1

1110((,)(,))2

(()())(0,1,2,)2i i i i i i i

i i h y y f x y f x y h y ex f ex f i y c ++++?

=++??

?=++++=??

=???

将上式对i 从0到n -1求和并利用初值条件得

1

1011

100221

11

000

2210

(()())2()((1))22(1)((1))2

21(2)(2(1))222(n n i i i n n i i i i n n n i i i n i h

y ex f ex f c

eh eh x x nfh c ih i h nfh c eh eh i i nfh c i i nfh c eh eh i n nfh c n n n nfh c e nh -+=--+==---===-==++++=+++=++++=++++=++++=+++=?-+++=∑∑∑∑∑∑∑2222)1()221

2

n n n n fnh c e nh fnh c

ex fx c ax bx c ++=++=++=++

则2()n n n n y ax bx c y x =++=

所以,改进的欧拉法对任何不超过二次的多项式

2y ax bx c =++

准确成立。 指出:

通过累加,把递推关系变成了函数关系。 5、对于初值问题

2(01)

(0)1y xy x y '?=≤≤?

=?

试用(1)欧拉法;(2)改进的欧拉法;(3)四阶经典龙格-库塔法分别求解,并

比较之,取0.2h =。

解:(1)取0.2h =,本初值问题的欧拉公式具体形式为

2

1(0,1,2,)n n n n y y hx y n +=+=

由初值y 0=y(0)=1出发计算,所得数值结果如下: x 0=0,y 0=1;

x 1=0.2,2110.2011y =+??= x 2=0.4,2210.20.21 1.04y =+??=

x 2=0.6,23 1.040.20.4 1.04 1.126528y =+??=

(2)由预测校正公式11(,)[(,)(,)]2n n n n n n n n y hf x y h

y f x y f x y ++?=+?

?=++??n+1n+1y y , 取0.2h =,本初值问题的预测-校正公式的具体形式为

12

22

1[]2

n

n n n n n n n y hx y h y x y x y ++?=+?

?=++??n+1n+1y y 由初值y 0=y(0)=1出发计算,所得数值结果如下: x 0=0,y 0=1; x 1=0.2,

00120022220011

0.2[]1[010.21] 1.02

22y hx y h y x y x y =+==++=+?+?=11y y x 2=0.4,

11222112222

1121.020.20.2 1.02 1.061616

0.2[] 1.02[0.2 1.020.4 1.061616] 1.085752

22

y hx y h y x y x y =+=+??==++=+?+?=22y y (3) 四阶经典龙格-库塔公式为

1

123411223

43(22)6

(,)(,)22(,)22

(,)

i i i i i i i i i i h y y k k k k k f x y hk h k f x y hk h k f x y k f x h y hk +?

=++++??

=???

=++

??

?

=++??=++?? 在本题中,2(,)f x y xy =, 取0.2,(0)1h y ==,计算得

2

10000221120000

2222300002243003(,)00.20(,)()()(0)(1)0.1

2222220.20.20.1(,)()()(0)(1)0.10201222222(,)()()(00.2)(10.20.10201)i i k f x y x y hk hk h h k f x y x y hk hk h h k f x y x y k f x h y hk x h y hk ====++=++=++=?=++

=++=++==++=++=++?1012340.208240.2(22)1(020.120.102010.20824) 1.0204166h y y k k k k ??

????

??

?=?

?=++++=+?+?+?+=??

6、用经典四阶龙格-库塔方法求下列初值问题的数值解。

(1)31(0)1(01,0.2)

y

y x

y x h ?'=

?+??=≤≤=?(2)23(1)1(12,0.2)y x x y y x h '?=+?=≤≤=? 解(1)四阶经典龙格-库塔公式为

1

123411223

43(22)6

(,)(,)22(,)22

(,)

i i i i i i

i i i i h y y k k k k k f x y hk h k f x y hk h k f x y k f x h y hk +?

=++++??

=???

=++??

?

=++??=++?? 在本题中,3(,)1y

f x y x

=

+, 取0.2,(0)1h y ==,计算得

7、选取参数p 1111(,)

i i i i k f x ph y qhk y y hk +=++??

=+? 具有二阶精度。 解:

112121(,)

(,)(,)(,)()()(,)(,)()i i i i x i i y i i i x i i y i i k f x ph y qhk f x y phf x y qhk f x y O h y x phf x y qhk f x y O h =++=+++'=+++ 所以

2121(1(,))()(,)()()(,)

()

1(,)

y i i i x i i i x i i y i i qhf x y k y x phf x y O h y x phf x y k O h qhf x y '-=++'+?=

+-

311()(,)

()1(,)

i x i i i i i y i i y x phf x y y y hk y h

O h qhf x y +'+=+=++-

而y(x i+1)泰勒展开得

2

312

3()()()()()

2

()()((,)(,))()

2

i i i i i i x i i y i i h y x y x hy x y x O h h

y x hy x f x y f x y y O h +'''=+++''=++++ …… 指出:

显然,两个式子不能逐项对比。实际上,11(,)i i k f x ph y qhk =++不形成递推而形成循环,本题应为错题。

7*、选取参数p 、q ,使得下列公式

1211

2(,)(,)i i i i i i k f x y k f x ph y qhk y y hk

+=??

=++??=+? 具有二阶精度。

解:因为1(,)()i i i k f x y y x '==

21212(,)

(,)(,)(,)()()(,)()(,)()i i i i x i i y i i i x i i i y i i k f x ph y qhk f x y phf x y qhk f x y O h y x phf x y qhy x f x y O h =++=+++''=+++ 则

12

2223(()(,)()(,)())()(,)()(,)()i i i i x i i i y i i i i x i i i y i i y y hk y h y x phf x y qhy x f x y O h y hy x ph f x y qh y x f x y O h +=+''=++++''=++++ 而y(x i+1)泰勒展开得

2

3122

3()()()()()

2

()()(,)(,)()

22

i i i i i i x i i y i i h y x y x hy x y x O h h h

y x hy x f x y f x y y O h +'''=+++''=++++ 比较上面两个关系式,如果三项相等,此方法是二阶数值方法,此时

1

2

p q ==。

8、用亚当姆斯预报-校正系统求解初值问题

1(01)

(0)0

dy

y x dx

y ?=-≤≤???=? 取步长h=0.1计算。

解:四阶的亚当姆斯预测—校正系统为

11231111112

111(5559379)24(,) (9195)

24(,)i i i i i i i i i i i i i i i i i i h y y y y y y y f x y h y y y y y y y f x y +---+++++--+++?

''''=+-+-??

'?

?

?''''=++-+??'?

预测:=校正:= 解:将(,)1,0.1y f x y y h '==-=,代入预报-校正系统得 预报:

11230.1

(245559379)24

i i i i i i y y y y y y +---=+

?--+-+ 校正:

11120.1

(249195)24

i i i i i i y y y y y y ++--''''=+

?--+- 用龙格-库塔法先求出123,,y y y ,再用亚当姆斯预测-校正法计算得

补充题(一)

1、用欧拉公式求解初值问题

0.9(01)12(0)1

y y x x y ?'

=-

≤≤?+?

?=? 当x 取步长为h=0.02,用欧拉公式解初值问题0,0.02,0.04,…,0.10时的解。

2、取步长为h=0.2,用欧拉公式解初值问题

2(00.6)

(0)1

y y xy x y '?=--≤≤?

=?。 答 案

1. 解:将0.9

(,)12f x y y x

=-+代入欧拉公式,得本初值问题的欧拉公式的具体形式为:

10.9

12n n n n y y h

y x +=-+0.018112n n y x ??

=- ?+??

,(0,1,2,3,4,5n =)

取0.02h =由初值y 0=y(0)=0出发计算,所得数值结果如下:

事实上,利用变量分离法,很容易求得该初值问题的准确解为:0.45()(12)y x x -=+ 表中()n y x 的第一列就是精确解()y x 在n x x =处的值。()n n y x y -表示n y 的局部截断误差,从表中可以看出,随着n 的增大,

()n n

y x y -的值也在增大。所以,欧拉

公式虽然计算简便,对一些问题有一定的使用价值,但是它的误差较大,所得的数值解精度较低。

2. 解:将2

(,)f x y y xy =--代入欧拉公式,得本初值问题的欧拉公式的具

体形式为:

2

1(,)0.2()n n n n n n n n y y hf x y y y x y +=+=+--

2

0.80.2n n n y x y =-

取步长为h=0.2由初值y 0=y(0)=1出发计算,所得数值结果如下:

2

21000(0.2)0.80.20.810.2010.8y y y x y ≈=-=?-??=

222111(0.4)0.80.20.80.80.20.20.80.6144y y y x y ≈=-=?-??=

223222(0.6)0.80.20.80.61440.20.40.61440.4613

y y y x y ≈=-=?-??=

补充题(二)

1、证明对任意的参数t ,如下的龙格-库塔方法是二阶的。

1

231

2131()2

(,)

(,)((1),(1))

n n n n n n n n h y y k k k f x y k f x th y thk k f x t h y t hk +?

=++???=??=++?=+-+-?? 分析与解答

1、证明:

因为1(,)()n n n k f x y y x '==

21212(,)

(,)(,)(,)()()(,)()(,)()n n n n x n n y n n n x n n n y n n k f x th y thk f x y thf x y thk f x y O h y x thf x y thy x f x y O h =++=+++''=+++ 31212((1),(1))

(,)(1)(,)(1)(,)()()(1)(,)(1)()(,)()n n n n x n n y n n n x n n n y n n k f x t h y t hk f x y t hf x y t hk f x y O h y x t hf x y t hy x f x y O h =+-+-=+-+-+''=+-+-+ 则

1232222

3()

2(()(,)()(,)()

2()(1)(,)(1)()(,)())()(,)()(,)()

22

n n n n x n n n y n n n x n n n y n n n n x n n n y n n h

y y k k h

y y x thf x y thy x f x y O h y x t hf x y t hy x f x y O h h h y hy x f x y y x f x y O h +=++''=++++''++-+-+''=++++ 而y(x n+1)泰勒展开得

2

312

3()()()()()

2

()()((,)(,))()

2

n n n n n n x n n y n n h y x y x hy x y x O h h

y x hy x f x y f x y y O h +'''=+++''=++++ 比较上面两个关系式,前三项总相等。

所以,无论t 取何值,此龙格-库塔法总是二阶数值方法。

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2)0 ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。 插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q

(1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() () x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又 插值余项为1011 ()()()()()()2 R x f x L x f x x x x x ''=-= -- 011 ()()()()2 f x f x x x x x ''∴= --

东南大学数值分析上机题答案

数值分析上机题 第一章 17.(上机题)舍入误差与有效数 设∑=-= N j N j S 2 2 11 ,其精确值为)111-23(21+-N N 。 (1)编制按从大到小的顺序1 -1 ···1-311-21222N S N +++=,计算N S 的通用 程序; (2)编制按从小到大的顺序1 21 ···1)1(111 222-++--+ -=N N S N ,计算N S 的通用程序; (3)按两种顺序分别计算210S ,410S ,610S ,并指出有效位数(编制程序时用单精度); (4)通过本上机题,你明白了什么? 解: 程序: (1)从大到小的顺序计算1 -1 ···1-311-21222N S N +++= : function sn1=fromlarge(n) %从大到小计算sn1 format long ; sn1=single(0); for m=2:1:n sn1=sn1+1/(m^2-1); end end (2)从小到大计算1 21 ···1)1(111 2 22 -++--+-= N N S N function sn2=fromsmall(n) %从小到大计算sn2 format long ; sn2=single(0); for m=n:-1:2 sn2=sn2+1/(m^2-1); end end (3) 总的编程程序为: function p203()

clear all format long; n=input('please enter a number as the n:') sn=1/2*(3/2-1/n-1/(n+1));%精确值为sn fprintf('精确值为%f\n',sn); sn1=fromlarge(n); fprintf('从大到小计算的值为%f\n',sn1); sn2=fromsmall(n); fprintf('从小到大计算的值为%f\n',sn2); function sn1=fromlarge(n) %从大到小计算sn1 format long; sn1=single(0); for m=2:1:n sn1=sn1+1/(m^2-1); end end function sn2=fromsmall(n) %从小到大计算sn2 format long; sn2=single(0); for m=n:-1:2 sn2=sn2+1/(m^2-1); end end end 运行结果:

数值分析习题集及答案[1].(优选)

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出 它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=( n=1,2,…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若

数值分析MATLAB上机实验

数值分析实习报告 姓名:gestepoA 学号:201******* 班级:***班

序言 随着计算机技术的迅速发展,数值分析在工程技术领域中的应用越来越广泛,并且成为数学与计算机之间的桥梁。要解决工程问题,往往需要处理很多数学模型,不仅要研究各种数学问题的数值解法,同时也要分析所用的数值解法在理论上的合理性,如解法所产生的误差能否满足精度要求:解法是否稳定、是否收敛及熟练的速度等。而且还能减少大量的人工计算。 由于工程实际中所遇到的数学模型求解过程迭代次数很多,计算量很大,所以需要借助如MATLAB,C++,VB,JAVA的辅助软件来解决,得到一个满足误差限的解。本文所计算题目,均采用MATLAB进行编程,MATLAB被称为第四代计算机语言,利用其丰富的函数资源,使编程人员从繁琐的程序代码中解放出来MATLAB最突出的特点就是简洁,它用更直观的、符合人们思维习惯的代码。它具有以下优点: 1友好的工作平台和编程环境。MATLAB界面精致,人机交互性强,操作简单。 2简单易用的程序语言。MATLAB是一个高级的矩阵/阵列语言,包含控制语言、函数、数据结构,具有输入、输出和面向对象编程特点。用户可以在命令窗口中将输入语句与执行命令同步,也可以先编好一个较大的复杂的应用程序(M 文件)后再一起运行。 3强大的科学计算机数据处理能力。包含大量计算算法的集合,拥有600多个工程中要用到的数学运算函数。 4出色的图像处理功能,可以方便地输出二维图像,便于我们绘制函数图像。

目录 1 第一题 (4) 1.1 实验目的 (4) 1.2 实验原理和方法 (4) 1.3 实验结果 (5) 1.3.1 最佳平方逼近法 (5) 1.3.2 拉格朗日插值法 (7) 1.3.3 对比 (8) 2 第二题 (9) 2.1实验目的 (9) 2.2 实验原理和方法 (10) 2.3 实验结果 (10) 2.3.1 第一问 (10) 2.3.2 第二问 (11) 2.3.3 第三问 (11) 3 第三题 (12) 3.1实验目的 (12) 3.2 实验原理和方法 (12) 3.3 实验结果 (12) 4 MATLAB程序 (14)

数值分析习题集及答案

(适合课程《数值方法A 》和《数值方法B 》) 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位 有效数字: ***** 123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: * * * * * * * * 12412324(),(),()/,i x x x ii x x x iii x x ++其中* * * * 1234,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 11783 100 n n Y Y -=- ( n=1,2,…) 计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982). 8. 当N 充分大时,怎样求 2 11N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设2 12S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加, 而相对误差却减小. 11. 序列{}n y 满足递推关系1101 n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算6 (21)f =-,取 2 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 6 3 11,(322), ,9970 2. (21) (322) --++ 13. 2 ()ln(1)f x x x =- -,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等 价公式 2 2 ln(1)ln(1)x x x x - -=-+ + 计算,求对数时误差有多大? 14. 试用消元法解方程组{ 10 10 12121010; 2. x x x x +=+=假定只用三位数计算,问结果是否可靠? 15. 已知三角形面积 1sin , 2 s ab c = 其中c 为弧度, 02c π << ,且测量a ,b ,c 的误差分别为,,.a b c ???证 明面积的误差s ?满足 . s a b c s a b c ????≤ ++ 第二章 插值法 1. 根据( 2.2)定义的范德蒙行列式,令

数值计算课后答案2

习 题 二 解 答 1.用二分法求方程x 3-2x 2-4x-7=0在区间[3,4]内的根,精确到10-3,即误差不超过31 102-?。 分析:精确到10-3与误差不超过10-3不同。 解:因为f(3)=-10<0,f(4)=9>0,所以,方程在区间[3,4]上有根。 由 3 4311*10 2 2 2 2 2 n n n n n n b a b a x x -----≤ == = < ? 有2n-1>1000,又为210=1024>1000, 所以n =11,即只需要二分11次即可。 x *≈x 11=3.632。 指出: (1)注意精确度的不同表述。精确到10-3和误差不超过10-3 是不同的。 (2)在计算过程中按规定精度保留小数,最后两次计算结果相同。

(3)用秦九韶算法计算f(x n )比较简单。 1*.求方程x 3-2x 2-4x-7=0的隔根区间。 解:令32247y x x x =---, 则2344322()()y x x x x '=--=+- 当23443220()()y x x x x '=--=+-=时,有122 23,x x =-=。 因为2 14902150327(),()y y -=- <=-<,所以方程在区间223 (,)-上无根; 因为214903 27 ()y - =-<,而函数在23 (,)-∞- 上单调增,函数值不可能变号,所以 方程在该区间上无根; 因为2150()y =-<,函数在(2,+∞)上单调增,所以方程在该区间上最多有一个根, 而(3)=-10<0,y(4)=9>0,所以方程在区间(3,4)有一个根。 所以,该方程有一个根,隔根区间是(3.4)。 2.证明1sin 0x x --=在[0,1]内有一个根,使用二分法求误差不大于4 1 102-?的根,需要迭代多少次? 分析:证明方程在指定区间内有一个根,就是证明相应的函数在指定区间有至少一个零点。 解:令()1sin f x x x =--, 因为(0)10sin 010,(1)11sin 1sin 10f f =--=>=--=-<,

数值分析上机实验报告

数值分析上机实验报告

《数值分析》上机实验报告 1.用Newton 法求方程 X 7-X 4+14=0 在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。 1.1 理论依据: 设函数在有限区间[a ,b]上二阶导数存在,且满足条件 {}α?上的惟一解在区间平方收敛于方程所生的迭代序列 迭代过程由则对任意初始近似值达到的一个中使是其中上不变号 在区间],[0)(3,2,1,0,) (') ()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20 )()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f a b c f x f b a x f b f x f k k k k k k ==- ==∈≤-≠>+ 令 )9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3 2 2 5 333647>?''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f 故以1.9为起点 ?? ?? ? ='- =+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。当前后两个的差<=ε时,就认为求出了近似的根。本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。

1.2 C语言程序原代码: #include #include main() {double x2,f,f1; double x1=1.9; //取初值为1.9 do {x2=x1; f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x1=x2-f/f1;} while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);} 1.3 运行结果: 1.4 MATLAB上机程序 function y=Newton(f,df,x0,eps,M) d=0; for k=1:M if feval(df,x0)==0 d=2;break else x1=x0-feval(f,x0)/feval(df,x0); end e=abs(x1-x0); x0=x1; if e<=eps&&abs(feval(f,x1))<=eps d=1;break end end

数值分析课后答案

1、解:将)(x V n 按最后一行展开,即知)(x V n 是n 次多项式。 由于 n i i i n n n n n i n x x x x x x x x x x V ...1...1... ......... ...... 1 )(21110 20 0---= ,.1,...,1,0-=n i 故知0)(=i n x V ,即110,...,,-n x x x 是)(x V n 的根。又)(x V n 的最高 次幂 n x 的系数为 )(...1...1... ...... .........1),...,,(101 1 21 11 2 2221 02001101j n i j i n n n n n n n n n n n x x x x x x x x x x x x x x V -== ∏-≤<≤-----------。 故知).)...()()(,...,,()(1101101------=n n n n x x x x x x x x x V x V 6、解:(1)设 .)(k x x f =当n k ,...,1,0=时,有.0)()1(=+x f n 对 )(x f 构造Lagrange 插值多项式, ),()(0 x l x x L j n j k j n ∑== 其 0)()! 1() ()()()(1)1(=+=-=++x w n f x L x F x R n n n n ξ, ξ介于j x 之间,.,...,1,0n j = 故 ),()(x L x f n =即 .,...,1,0,)(0 n k x x l x k j n j k j ==∑= 特别地,当0=k 时, 10) (=∑=n j x j l 。 (2) 0)()1(1) ()1()()(0000=-=??? ? ??-??? ? ??-=--=-===∑∑∑∑k j j i j i k j k i i j i i k j n j k i i j k n j j x x x x i k x l x x i k x l x x )利用(。 7、证明:以b a ,为节点进行线性插值,得 )()()(1 b f a b a x a f b a b x x P --+--= 因 0)()(==b f a f ,故0)(1=x P 。而 ))()(("2 1 )()(1b x a x f x P x f --= -ξ,b a <<ξ。 故)("max )(8 122)("max )(max 2 2 x f a b a b x f x f b x a b x a b x a ≤≤≤≤≤≤-=??? ??-≤。 14、解:设 ))...()(()(21n n x x x x x x a x f ---=, k x x g =)(,记)() (1 ∏=-=n j j n x x x w ,则 ),()(x w a x f n n =).()(' j n n j x w a x f = 由差商的性质知 [])! 1()(1,..,,1) (' 1 )(')('1 211 11 -== ==-===∑∑∑ n g a x x x g a x w x a x w a x x f x n n n n n j j n k j n n j j n n k j n j j k j ξ, ξ介于n x x ,...,1之间。 当20-≤≤ n k 时,0)()1(=-ξn g , 当 1-=n k 时,)!1()(1-=-n g n ξ, 故 ???-=-≤≤=-= --=∑1,,20,0)!1()(1) ('1 11 n k a n k n g a x f x n n n n j j k j ξ 16、解:根据差商与微商的关系,有 [] 1! 7! 7!7)(2,...,2,2)7(7 10===ξf f , [ ] 0! 80 !8)(2,...,2,2)8(8 1 ===ξf f 。 ( 13)(47+++=x x x x f 是7次多项式, 故 ,!7)()7(=x f 0)()8(=x f )。 25、解:(1) 右边= [][]dx x S x f x S dx x S x f b a b a ??-+-)(")(")("2)(")("2 = [] d x x S x f x S x S x S x f x f b a ?-++-)("2)(")("2)(")(")("2)(" 222 = [] d x x S x f b a ?-)(")(" 22 = [][]dx x S dx x f b a b a 2 2 )(")("??- =左边。 (2)左边= ? -b a dx x S x f x S ))(")(")(("

数值分析课后题答案

数值分析 2?当x=1,—1,2时,f(x)=O, 一3,4,求f(x)的二次插值多项式。解: X 0 =1,x j = — 1,x 2 = 2, f(X。)= 0, f (xj = -3, f (x2)= 4; l o(x)=(x-xi^~x2\=-1(x 1)(x-2) (x o -X/X o _x2) 2 (x -x0)(x -x2) 1 l i(x) 0 2(x-1)(x-2) (x i ~x0)(x i ~x2) 6 (x—x0)(x—x,) 1 l2(x) 0 1(x-1)(x 1) (X2 -X°)(X2 - X i) 3 则二次拉格朗日插值多项式为 2 L 2(X)= ' y k 1 k ( x) kz0 = -3l°(x) 4l2(x) 1 4 =(x_1)(x—2) 4 (x-1)(x 1) 2 3 5 2 3 7 x x - 6 2 3 6?设Xj, j =0,1,||(,n 为互异节点,求证: n (1 )7 x:l j(x) =x k(k =0,1川,n); j=0 n (2 )7 (X j -x)k l j(x)三0 (k =0,1川,n); j £ 证明 (1)令f(x)=x k

n 若插值节点为X j, j =0,1,|l(, n,则函数f (x)的n次插值多项式为L n(x)八x k l j(x)。 j=0 f (n 十)(?) 插值余项为R n(X)二f(X)-L n(X) n1(X) (n +1)!

.f(n1)( ^0 R n(X)=O n 二瓦x k l j(x) =x k(k =0,1川,n); j :o n ⑵、(X j -x)k l j(x) j卫 n n =為(' C?x j(—x)k_L)l j(x) j =0 i =0 n n i k i i =為C k( -x) (、X j l j(x)) i =0 j=0 又70 _i _n 由上题结论可知 n .原式二''C k(-x)k_L x' i=0 =(X -X)k =0 -得证。 7设f (x) c2 la,b 1且f (a) =f (b)二0,求证: max f(x)兰一(b-a) max a $至小一*丘f (x). 解:令x^a,x^b,以此为插值节点,则线性插值多项式为 L i(x^ f(x o) x x f (xj X o —人x -X o X —X o x-b x-a ==f(a) f(b)- a - b x -a 又T f (a) = f (b)二0 L i(x) = 0 1 插值余项为R(x)二f (x) - L,(x) f (x)(x - X Q)(X - xj 1 f(x) = 2 f (x)(x -X g)(X -xj

贵州大学数值分析上机实验

数值分析上机实验报告 课程名称:数值分析上机实验 学院:机械工程学院专业:机械制造 姓名:张法光学号:2012021691 年级:12级任课教师:代新敏老师 2012年12月30日

一.已知A 与b 12.38412 2.115237 -1.061074 1.112336 -0.1135840.718719 1.742382 3.067813 -2.031743 2.11523719.141823 -3.125432 -1.012345 2.189736 1.563849 -0.784165 1.112348 3.123124 -1.061074 -3.125A =43215.567914 3.123848 2.031454 1.836742-1.056781 0.336993 -1.010103 1.112336 -1.012345 3.12384827.108437 4.101011-3.741856 2.101023 -0.71828 -0.037585 -0.113584 2.189736 2.031454 4.10101119.8979180.431637- 3.111223 2.121314 1.784317 0.718719 1.563849 1.836742 -3.741856 0.4316379.789365-0.103458 -1.103456 0.238417 1.742382 -0.784165 -1.056781 2.101023-3.111223-0.1034581 4.7138465 3.123789 -2.213474 3.067813 1.112348 0.336993-0.71828 2.121314-1.103456 3.12378930.719334 4.446782 -2.031743 3.123124 -1.010103-0.037585 1.7843170.238417-2.213474 4.44678240.00001[ 2.1874369 33.992318 -2 5.173417 0.84671695 1.784317 -8 6.612343 1.1101230 4.719345 -5.6784392]T B ????? ? ?? ? ? ???? ? ? ???? ? ? ????? ?=(2)用超松弛法求解Bx=b (取松弛因子ω=1.4,x (0)=0,迭代9次)。 (3)用列主元素消去法求解 Bx=b 。 解:(3)、用列主元素消去法求解Bx=b (一)、理论依据: 其基本思想是选取绝对值尽量大的元素作为主元素,进行行与列的交换,再进行回代,求出方程的解。 将方阵A 和向量b 写成C=(A b )。将C 的第1列中第1行的元素与其下面的此列的元素逐一进行比较,找到最大的元素1j c ,将第j 行的元素与第1行的元素进行交换,然后通过行变换,将第1列中第2到第n 个元素都消成0。将变换后的矩阵(1)C 的第二列中第二行的元 素与其下面的此列的元素逐一进行比较,找到最大的元素(1) 2k c ,将第k 行的元素与第2行的 元素进行交换,然后通过行变换,将第2列中第3到第n 个元素都消成0。以此方法将矩阵的左下部分全都消成0。 (二)、计算程序: #include "math.h" #include "stdio.h" void main() { double u[9],x1[9],y[9],q[9],b1[9][10],x[9],a[9][9]={ {12.38412,2.115237,-1.061074,1.112336,-0.113584,0.718719,1.742382,3.067813,-2.031743 },

矩阵与数值分析上机实验题及程序

1.给定n 阶方程组Ax b =,其中 6186186186A ?? ? ? ?= ? ? ??? ,7151514b ?? ? ? ?= ? ? ??? 则方程组有解(1,1,,1)T x = 。对10n =和84n =,分别用Gauss 消去法和列主元消去法解方程组,并比较计算结果。 Gauss 消去法: Matlab 编程(建立GS.m 文件): function x=GS(n) A=[];b=[]; for i=1:n-1 A(i,i)=6; A(i,i+1)=1; A(i+1,i)=8; b(i)=15; end A(n,n)=6;b(1)=7;b(n)=14;b=b'; for k=1:n-1 for i=k+1:n m(i,k)=A(i,k)/A(k,k); A(i,k:n)=A(i,k:n)-m(i,k)*A(k,k:n); b(i)=b(i)-m(i,k)*b(k); end end b(n)=b(n)/A(n,n); for i=n-1:-1:1 b(i)=(b(i)-sum(A(i,i+1:n).*b(i+1:n)'))/A(i,i); end clear x; x=b; disp( 'AX=b 的解x 是') end 计算结果: 在matlab 命令框里输出GS (10)得: >> GS(10) AX=b 的解x 是 ans = 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 在matlab命令框里输出GS(84)得:>> GS(84) AX=b的解x是 ans = 1.0e+008 * 0.0000 … … … 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0001 0.0002 -0.0003 0.0007 -0.0013 0.0026 -0.0052 0.0105 -0.0209 0.0419 -0.0836 0.1665 -0.3303

数值分析第四版习题及答案

第四版 数值分析习题 第一章绪论 1.设x>0,x得相对误差为δ,求得误差、 2.设x得相对误差为2%,求得相对误差、 3.下列各数都就是经过四舍五入得到得近似数,即误差限不超过最后一位得半个单位,试指 出它们就是几位有效数字: 4.利用公式(3、3)求下列各近似值得误差限: 其中均为第3题所给得数、 5.计算球体积要使相对误差限为1%,问度量半径R时允许得相对误差限就是多少? 6.设按递推公式 ( n=1,2,…) 计算到、若取≈27、982(五位有效数字),试问计算将有多大误差? 7.求方程得两个根,使它至少具有四位有效数字(≈27、982)、 8.当N充分大时,怎样求? 9.正方形得边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g就是准确得,而对t得测量有±0、1秒得误差,证明当t增加时S得绝对误差增 加,而相对误差却减小、 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到得结果最好? 13.,求f(30)得值、若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果就是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c得误差分别为证明面积得误差满足 第二章插值法 1.根据(2、2)定义得范德蒙行列式,令 证明就是n次多项式,它得根就是,且 、 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)得二次插值多项式、 3. 4., 研究用线性插值求cos x 近似值时得总误差界、

数值分析简明教程第二版课后习题答案(供参考)

0.1算法 1、 (p.11,题1)用二分法求方程013 =--x x 在[1,2]内的近似根,要求误差不 超过10-3. 【解】 由二分法的误差估计式31 1*102 1 2||-++=≤=-≤ -εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812 ln 10 ln 3≈-≥ k ,因此取9=k ,即至少需 2、(p.11,题2) 证明方程210)(-+=x e x f x 在区间[0,1]内有唯一个实根;使用 二分法求这一实根,要求误差不超过2102 1 -?。 【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且 012010)0(0<-=-?+=e f ,082110)1(1>+=-?+=e e f ,即0)1()0(+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根. 由二分法的误差估计式211*1021 2 12||-++?=≤=-≤-εk k k a b x x ,得到1002≥k . 两端取自然对数得6438.63219.322 ln 10 ln 2=?≈≥k ,因此取7=k ,即至少需二分

0.2误差 1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。 【解】有效数字: 因为111021 05.001828.0||-?= <=-K x e ,所以7.21=x 有两位有效数字; 因为1 2102105.000828.0||-?=<=-K x e ,所以71.22=x 亦有两位有效数字; 因为3 3102 10005.000028.0||-?=<=-K x e ,所以718.23=x 有四位有效数字; %85.17.205 .0||111=<-= x x e r ε; %85.171.205 .0||222=<-= x x e r ε; %0184.0718 .20005 .0||333=<-= x x e r ε。 评 (1)经四舍五入得到的近似数,其所有数字均为有效数字; (2)近似数的所有数字并非都是有效数字.2.(p.12,题9)设72.21=x , 71828.22=x ,0718.03=x 均为经过四舍五入得出的近似值,试指明它们的绝对误差(限) 与相对误差(限)。 【解】 005.01=ε,31 1 11084.172.2005 .0-?≈< = x r εε; 000005.02=ε,622 21084.171828 .2000005 .0-?≈< =x r εε; 00005.03=ε,43 3 31096.60718 .000005 .0-?≈< = x r εε; 评 经四舍五入得到的近似数,其绝对误差限为其末位数字所在位的半个单位. 3.(p.12,题10)已知42.11=x ,0184.02-=x ,4 310184-?=x 的绝对误差限均为 2105.0-?,问它们各有几位有效数字?

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

最新数值分析课程第五版课后习题答案(李庆扬等)1

第一章 绪论(12) 1、设0>x ,x 的相对误差为δ,求x ln 的误差。 [解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=* ****1)()(ln )(ln x x x x x , 相对误差为* * ** ln ln ) (ln )(ln x x x x r δ εε= = 。 2、设x 的相对误差为2%,求n x 的相对误差。 [解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为n n x x n x n x x n x x x ** 1 *** %2%2) ()()()(ln * ?=='=-=εε, 相对误差为%2) () (ln )(ln *** n x x x n r == εε。 3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字: 1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5 ?=x 。 [解]1021.1*1 =x 有5位有效数字;0031.0* 2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56* 4 =x 有5位有效数字;0.17*5?=x 有2位有效数字。 4、利用公式(3.3)求下列各近似值的误差限,其中* 4*3*2*1,,,x x x x 均为第3题所给 的数。 (1)* 4*2*1x x x ++; [解]3 334* 4*2*11** *4*2*1*1005.1102 1 10211021)()()()()(----=?=?+?+?=++=? ??? ????=++∑x x x x x f x x x e n k k k εεεε; (2)* 3*2 *1x x x ;

数值分析2016上机实验报告

序言 数值分析是计算数学的范畴,有时也称它为计算数学、计算方法、数值方法等,其研究对象是各种数学问题的数值方法的设计、分析及其有关的数学理论和具体实现的一门学科,它是一个数学分支。是科学与工程计算(科学计算)的理论支持。许多科学与工程实际问题(核武器的研制、导弹的发射、气象预报)的解决都离不开科学计算。目前,试验、理论、计算已成为人类进行科学活动的三大方法。 数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。现在面向数值分析问题的计算机软件有:C,C++,MATLAB,Python,Fortran等。 MATLAB是matrix laboratory的英文缩写,它是由美国Mathwork公司于1967年推出的适合用于不同规格计算机和各种操纵系统的数学软件包,现已发展成为一种功能强大的计算机语言,特别适合用于科学和工程计算。目前,MATLAB应用非常广泛,主要用于算法开发、数据可视化、数值计算和数据分析等,除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。 本实验报告使用了MATLAB软件。对不动点迭代,函数逼近(lagrange插值,三次样条插值,最小二乘拟合),追赶法求解矩阵的解,4RungeKutta方法求解,欧拉法及改进欧拉法等算法做了简单的计算模拟实践。并比较了各种算法的优劣性,得到了对数值分析这们学科良好的理解,对以后的科研数值分析能力有了极大的提高。

目录 序言 (1) 问题一非线性方程数值解法 (3) 1.1 计算题目 (3) 1.2 迭代法分析 (3) 1.3计算结果分析及结论 (4) 问题二追赶法解三对角矩阵 (5) 2.1 问题 (5) 2.2 问题分析(追赶法) (6) 2.3 计算结果 (7) 问题三函数拟合 (7) 3.1 计算题目 (7) 3.2 题目分析 (7) 3.3 结果比较 (12) 问题四欧拉法解微分方程 (14) 4.1 计算题目 (14) 4.2.1 方程的准确解 (14) 4.2.2 Euler方法求解 (14) 4.2.3改进欧拉方法 (16) 问题五四阶龙格-库塔计算常微分方程初值问题 (17) 5.1 计算题目 (17) 5.2 四阶龙格-库塔方法分析 (18) 5.3 程序流程图 (18) 5.4 标准四阶Runge-Kutta法Matlab实现 (19) 5.5 计算结果及比较 (20) 问题六舍入误差观察 (22) 6.1 计算题目 (22) 6.2 计算结果 (22) 6.3 结论 (23) 7 总结 (24) 附录

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4; ()()1()(1)(2)()()2()()1()(1)(2)()()6()()1()(1)(1)()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--= =-+-----= =------==-+-- 则二次拉格朗日插值多项式为 2 20()()k k k L x y l x ==∑ 0223()4() 1 4(1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+-+=+- 6.设,0,1,,j x j n =L 为互异节点,求证: (1)0 ()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2) 0()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0()()n k n j j j L x x l x ==∑。 插值余项为(1)1()()()()()(1)! n n n n f R x f x L x x n ξω++=-=+ 又,k n ≤Q

(1)()0()0 n n f R x ξ+∴=∴= 0 ()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 000(2)()() (())()()(())n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 0()n k i j j j x l x x ==∑ 0()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10101010()() ()x x x x L x f x f x x x x x --=+-- =()()x b x a f a f b a b x a --=+-- 1()()0 ()0 f a f b L x ==∴=Q 又 插值余项为1011()()()()()()2 R x f x L x f x x x x x ''=-=-- 011()()()()2 f x f x x x x x ''∴=--

相关文档
最新文档