空气采样系统技术规格要求

空气采样系统技术规格要求
空气采样系统技术规格要求

空气采样系统技术规格要求

(四)空气采样烟雾报警系统技术规范及相关要求

4.1功能要求

●设备类型应为进口原装空气采样(吸气式)烟雾探测报警器,采样时间应为连续不间隔。

●应采用较为先进的激光光源作为探测器光源且激光探测腔应能现场清洁,而非采用红外或LED探测。

●应具备火灾发生时对微小烟雾绝对浓度的探测能力,能够在火灾产生初期发出报警。报警灵敏度不应低于0.001OBS/m。

●根据最新火灾探测报警系统系列产品强制性国家标准的要求,由于探测器针对环境变化或探测部件污染所作的补偿,对慢速发展的火灾探测具有不良影响,所以,探测器必须为绝对烟雾探测,应能提供保护现场实时绝对烟雾浓度值,而不能只提供经过补偿过的相对数值。

●选用设备需要提供针对现场不同烟雾浓度的报警级别,并应在现场烟雾达到预先设置的报警级别时,发出相应的警报。报警级别不应少于4级,报警灵敏度的设置范围不应小于

0.001-20%OBS/m。

●系统应有独特的分段警报功能。系统应用类比强度控制仪将烟雾浓度分为20级,用户可以根据环境要求自行设定灵敏度参数。根据所检测的烟雾浓度可以发出四段警报(预警级、行动级、火警1、火警2)分别表示火灾的严重程度。这样用户可以根据不同的警报级别,采取相应的行动,从而达到对火灾的实时监测。

●选用设备需有能够有效避免灰尘引起探测器误报和造成探测器污染的空气过滤装置。过滤器应可清洁,可维护,且二级过滤器可重复使用。

●告警功能:当告警产生,系统可以通过各种传输手段向集中监控中心告警,并触发本地的声光报警装置。系统可通过远程显示屏异地显示告警的目标位置。应有四组(NO/NC)继电器输出,分别与四段警报和设备故障相对应。可供与警灯警号等设备相连,也可用于切断电力、空调等设备或启动自动拨号报警和自动灭火设备。可以通用TCP/IP通讯协议进行远程通讯或与计算机相连以便于管理。

●故障自检:系统定时自动检查整个系统的运行状况以及线路情况,发现有故障时,能实时发出故障告警。

●报警确认:报警发生后,值班人员可进行确认。系统自动记录确认时间。

●报警复位:报警发生后,允许用户对自动报警系统进行复位,并关闭声光报警。但只要火灾报警条件仍满足,系统还会再次报警。

●联动控制:系统提供火灾报警的联动控制功能,可用于与自动灭火系统、声光报警装置的联动。

●系统配置:高级用户通过口令后可以在现场对系统进行编程配置,包括配置报警阈值,报警延时等参数。主机与显示模块应可拆卸及自由组合。

●历史事件查询:系统详细记录所有的告警事件、控制操作及其发生时间和其他信息,可供以后查询。

●系统应可与点型感烟、感温探测器、手动报警开关等兼容成为一个完整的消防自动报警系统。此外,探测器主机应具有TCP/IP联网接口,系统应可以采用TCP/IP协议,通过PC LINK电缆等组成一个网络系统,实现集中式网络化管理。通讯方式应为RS232,RS485 Modbus总线,以太网TCP/IP可选。

●空气采样主机应具备加强型吸气泵,其离心泵吸气压力不得低于1400Pa。主机的IP等级不得低于IP65。

●空气采样主机应有两根或四根采样管,且任一采样管的管长应为100米。其最大覆盖面积为2000平方米。

●产品必须是得到国家“消防电子产品质量监督检验中心”认可的合格产品,并提供监督检验中心依据的最新标准GB-15631-2008的最新检测报告,并应通过FM、UL、及CFE认证。

4.2技术指标

本设备要求为智能型探测处理系统,具有可靠的故障判断功能,且具备布线简单,集中度高,操作方便,安全可靠等特点。产品基本技术指标应符合GB15631-2008规范要求。

系统主要技术指标包括:

?吸气装置: 2000Pa的离心气泵提供强劲的吸力;

?防尘防水等级:IP65

?过滤器:可现场清洁及维护、可重复使用

?供电电压:24VDC

?电源功耗:500MA-1.2A

?环境温度:运行环境温度须满足-10至60℃

?相对湿度:10-95%(无凝露)

?灵敏度: 0.001_20%遮光率/米

?烟雾报警级别: 四级报警—根据保护区环境状况进行编程,设置四级报警阈值。

?气流报警级别: 四级报警—根据采样管路气流状况进行编程,设置四级报警阈值。

?保护面积: 2000m2

?管路长度:标准型探测器探测管路可达到400米(4*100米)

4.3空气采样探测报警器的电源供应:

现场末端设备供电,由附近消防应急电源提供AC 220V,由系统承包商配置系统所需的24V 直流电源模块。

空气采样极早期报警系统施工方法

(二)空气采样极早期报警系统施工方法 1、取样管选材 A、选取材料必须配有国家建材质量检测中心的检测报告,其检测报告中注明阻燃指标,以便证明其是难燃自熄材质。 B、在有腐蚀性气体及温热交替较大场合宜选用ABS;在管路(四根)较短,弯头总和小于4个场合可以考虑采用UPVC材质;如果管路较长(>4个),可以采 2、辅料选材 3、取样管安装 (1)一般要求 A、标准采样管是在被保护区内安装外径为25mm的阻燃PVC管。 B、为确保通过空气采样系统气流状况通畅,吸气泵排出的气体的气压应与被探测区域的气压相等或略低。 C、取样管上取样孔采用Φ2.5-Φ4.0mm,取样孔之间距1-4m。一般将每根取样管分成三段。如单管长70米,前20m中取样孔为Φ2.5mm。中间30m取样孔为Φ3.00mm,后20米取样孔为Φ3.5mm。依次将取样孔变大,最末端塞为4个Φ4孔,每个取样孔上贴上指示标签。 D、取样管上直角弯应尽量避免小弧度,可采用半径大于或等于20cm手工弯制,故选用取样管为阻燃冷弯管。 E、取样管路总长度最好小于200米,极限250米(4根×50米、3根×70米、2根×100米),而每路取样管上取样孔的数量最好不超过25个,当只用一根管路时,长度不要超过100米。 F、每根管直角弯小于10个。

G、实际应用中,每根管路的长度应尽量接近,这样可使空气取样系统内部气流容易平衡。 H、若环境要求取样管承受很大的承载力或长时间暴露于强光、极热、极冷的环境中,或是遇到可溶解PVC管气体时,也可以使用ABS管或其他金属管材。 I、每个取样孔的间距(即保护半径)最大不应超过8米,管和管之间不大于8米,最小不应少于1米。 (2)取样管安装前加工及丈量 丈量现场确定取样管弯头数量,所用根数,配接直通数。每根管长3米,配一个直通,每1.0-1.2米配一个托卡。低层辅管可以先辅设后打取样孔,高空辅设必须先打取样孔,取样孔径Φ2.5mm,末端塞用Φ4mm钻头均匀打4个孔,然后粘好取样孔标签。 取样管长度依据设计手册和图纸中注明的长度。 管路处理一般有下列几种: A、切 用手锯切断,须将锯沫去净。用切刀时注意防止切手。 B、弯 一般取40cm长管将弯管器插入其中(弯管器一端用结实绳子连出,以便弯曲成形后可用力拉出弯管器),将热吹风机对其应弯部位吹加热,加热时要移动,使加热部分大于25cm,加热5-8分钟后可以手工弯曲成半径为20cm圆弧,注意弯曲一定均匀,防止死弯,同时必须保证弯曲后两头成90度角,并防止扭曲不在同一平面。 弯曲半径变化不是全部为半径20cm,两根管平行时,第一根为R20cm,那么第二根半径就必须是:200-间隙A-25mm,这样才能保证弯曲平行放置时,外观顺畅美观,但是最小半径不能小于R10cm,弯管后不要急于抽出弯管器,应稍等温度变低后,再用力抽出弯管器(通过绳索),如效果不好,可多次反复,成型后备用。 C、粘 粘接管路时应将管路端部外侧清洁干净,均匀涂胶长度为2cm,再将直通内壁(或三通内壁)均匀涂胶,然后再将两者插入,放置在平面上静止5分钟以上,以保证粘接后平行不弯曲。 D、伸缩缝 如果在冬天安装管路则夏季来临时管路涨长,容易上或下弯曲变形,夏天安装易出现在冬季收缩断裂,所以管路必须留有伸缩缝。一般每2根管长(含6米)留有一个直通不能粘胶。 E、毛细管 在天花板下方和机柜内部取样时,需用配接毛细管,毛细管总长小于0.6米。

最新空气培养的采样方法合集

医院常规空气细菌培养(自然沉降法)采样方法 一、采样时间 选择消毒处理后与进行医疗活动之前采样。 二、采样高度 与地面垂直高度80-150厘米。 三、布点方法 1.面积≤30 m2,设一条对角线取三点,即中间一点,两端各距墙1米处各取一点(图1) 2.室内面积>30m2,设两条对角线,东,西,南,北,中取五点,其中东,西,南,北距墙均1米(图2) 四、采样方法 用9厘米直径普通琼脂平皿,打开盖后面朝下斜扣到底盘,在采样点准确暴露5分钟后,送检培养。 五、结果分析 I类区域:<10 cfu/m3 II类区域:<200 cfu/m3 III类区域:<500 cfu/m3 六、附录 Ⅰ类区域:层流洁净手术室、层流洁净病房(参照洁净室空气培养方法与标准)。Ⅱ类区域:普通手术室、产房、婴儿室、早产儿室、普通保护性隔离室、供应室无菌区、烧伤病房、重症监护病房。 Ⅲ类区域:儿科病房、妇产科检查室、注射室、换药室、治疗室供应室清洁区、急诊室、化验室、各类普通病房和房间。 Ⅳ类区域:传染病科及病房。

洁净室空气细菌培养监测布点与标准 一、局部百级,周围千级: 共放13个培养皿,其中手术区域5点,周边区8点。采样布置点示意图: 二、局部千级,周围万级: 共放9个培养皿,其中手术区域3点,周边区6点。采样布置点示意图: 三、局部万级,周围十万级: 共放7个培养皿,其中手术区域3点,周边区域4点。采样布置点示意图:

四、三十万级:面积>30m2布放4点,面积≤30 m2布放2点。 五、要求: 1.送风口集中布置时,应对手术区和周边区分别检测;如送风口分散布置时,全室统一检测,测点可均布,不应布置在送风门正下方; 2.采样点可布置在地面上或不高于地面0.8m的任意高度上,手术区域放置在四角的平皿应离手术区边缘0.12m,培养皿放置30分钟; 3.采样后的培养皿,应立即置于37度条件下培养48小时; 4.然后计数生长的菌落数,菌落数的平均值均四舍五入进位到小数点后1位。 5.放置培养皿示意图: 盖面朝下斜扣到底盘A边 上 六、洁净室空气细菌菌落总数标准

安防系统技术标准和要求

安防系统技术标准和要求 安全防范系统工程技术文件 一、投标人资格要求 1.1投标申请人具有经工商行政管理机关登记注册的独立法人资格,企业注册资金在1000万元及以上。 1.2投标申请人须是同时 具备建设行政主管部门核发的建筑智能化工程专业承包二级以上(含二级)资质,安全防范一级资质,并在人员、设备、资金等方面具有相应的施工能力。 1.3具有固定的办公场所,健全的组织机构,通过相关质量体系认证,且具有履行合同所必需的经济、财务和相应的组织能力。 1.4近三年至少具有一项在800万元及以上的建筑智能化系统工程项目业绩(合同原件备查)。 1.5 投标单位拟派出的项目经理或注册建造师须是具备建设行政主管部门核发的二级建造师(机电工程专业)及以上。 1.6 拟派出的项目管理人员,应无在建工程,否则按废标处理;投标单位的项目经理或注册建造师中标后需到本项目招投标监督主管部门办理备案手续。 1.7本次招标不接受联合体投标。 1.8 外省施工企业还需到分公司工商注册所在地的市(州)、县(市)建设行政主管部门办理《吉林省入吉建筑业企业投标备案证明书》后方可参加投标。(详见吉建管[2007]17号、吉建管[2008]14号文件) 9 拒绝列入政府不良行为记录期间的企业或个人投标。 1. 二、招标内容和供货范围

以设计院提供的初步设计方案和智能与信息系统施工设计图为基础,根据实际情况,对安全防范系统工程进行优化设计和施工(包括视频监控系统、门禁系统、防盗报警系统、巡更系统以及考勤系统的设备采购、安装、调试、系统集成、明敷管线、电缆等)。 安全防范系统工程主要含:视频监控子系统、防盗报警子系统、门禁子系统(一卡通)、巡更管理子系统、实现各子系统的集成与联动,实现统一调度和管理,确保与弱电系统整合、开放协议,预留与其它弱电系统接口,便于未来集成。 三、投标要求 投标人在投标文件中应提供下列有关文件,否则视为非响应性投标。 3.1投标方应提供关键设备制造厂家授权书、厂家的通讯协议开放承诺书、厂家原厂授后服务承诺书、产品手册样本。(包括监控设备、存储设备、拼接屏等)。 3.2投标人有能力履行合同设备维护、保养、修理及其他服务义务的文件。 3.3投标文件应包括如下内容。 3.4系统硬件和软件的总体配置。 3.5详细的功能实现方案。 3.6工程计划建议。 3.7工程验收计划、技术培训。 3.8售后服务的保证。 3.9工程造价(包括备品备件、专用工具与仪器仪表); 本工程为“交钥匙工程”,满足招标方所有要求,与设备、供应、运输、保险等有关的所有辅材和安装内容应全部包含在内,除招标方明确提出需要的变更外,不再增加任何费用。投标方提供所有投标费用详细的报价清单和总报价(系统建设必须而未明确报价,视为赠送),报价风险由投标方自行承担。 3.10详细的分项硬件、软件报价

空气采样技术要求规范-施工

3、采样管的安装要求: 1、主采样管采用外径?25毫米,径小于?21毫米,防阻燃U-PVC管,系统将采 用四路使用,每路尽量保持一样的长度。 2、管与管之间连接的直通外套径在?25毫米,并配壁卡塞。 3、采样管固定卡,采用双月牙形固定卡如下图,将螺杆采用焊接的方法固定在 房梁上,螺杆长度不底于20公分,每个固定点之间的间距应在1.5~2米之间保证PVC管不下垂不变形。 4、采样管固定卡,也可采用厂家配套的管卡,采用较紧的管卡防止时间过长管路固定不紧造成脱落现象。不出现变形如下图: 5、严格按图这上的孔径和位置打孔

采样孔在地面上打好注意打孔时需要锥形倒角,并在采样孔处粘贴红色采样孔标签,如下图 此标签为无偿提供 6、采样管拐弯处采用半径不底于20公分的弯管器弯成半圆如下图所示,减少气流阻力

7、空气采样管连接处直接套管使用方法如下:此处连接采用直接套管螺纹和镀锌铁管外螺纹绞和,绞和处采用生料带和乳胶组合密封保证绝对不能漏气(此时注意采样孔向下,由于采样管已打好采样孔无法进行打压测漏,故此处密封应特别注意。)

8、采样管的末端为采样末端堵头,此末端堵上开孔除采样功能外还兼有气流平 衡的功能,末端盖帽采用PVC材质。 9、整个采样管路安装前应首先做好一台主机所用的管路进行主机试抽气以保证 未瑞放烟,机器报警的时间不超过120秒。 10、主机所处位置便于人工操作,便于将来换过滤器盒按照JB 50166-2007火灾 自动报警系统施工及验收规,此设备需要对采样管道进行定期吹洗,最长的时间间隔不应超过1年,吹洗时从机器跟前对采样管加入高压气流反吹即可, 同时更换过滤器。 十一、施工要求 1.系统的布线,应符合现行国家标准《火灾自动报警系统施工及验收规》 GB50166的相关规定。在施工安装时,应根据现行国家标准,对导线的种 类、电压等级进行检验。参考现行国家标准《火灾自动报警系统施工及 验收规》GB50166的相关规定,吸气式烟雾探测器火灾报警系统所采用的 信号线,电源线应采用铜芯绝缘导线或铜芯电缆。当额定工作电压不超 过50V时,选用导线的电压等级不应低于交流450V。 2.电源:由消防报警系统提供DC24V电源,每台电流小于500MA;共需提供 24V,20A电源。 3.模块:通过模块接入消防报警系统。消防报警系统提供每台吸气式烟雾 探测器1个输出3个输入点。

手术室空气采样方法

手术室空气采样方法 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

1、采样时间:消毒后、操作前进行采样。 2、采样方法:(1)布点:室内面积≤30 m2,设内、中、外对角线3点,内外点距墙1m;室内面积 >30 m2,设四角及中央5点,四角点距墙1m。(2)平板暴露法平板直径9c m、采样高度,暴露5m i n。 3、检验方法平板37℃培养48h。计数菌落数并分离致病菌。 4、平板暴露法结果计算50000N 细菌总数(c f u/m3)=A×T A为平板面积(c m2);T为暴露时间(m i n);N为平均菌落数(c f u) 5、结果判定(1)I、II类区域,细菌总数≤10cfu/cm3,并未检出致病菌为消毒合格。(2)I II类区域,细菌总数≤200c f u/c m3,并未检出致病菌为消毒合格。(3)I V类区域,细菌总数≤500c f u/c m2,并未检出致病菌为消毒合格。 6、注意事项:采样前关好门窗,在无人走动的情况下,静止10min 进行采样 层流手术室空气日常监测方法: 要求日常实行动态监测,必测项目为平板采样法(沉降法)或采样器法(浮游菌法)检测细菌菌落总数。 (1)回风口动态平板采样法:应在手术开始、手术2小时、手术结束前抽检3-4次。每个回风口中部摆放3个倾斜30℃,Φ90 培养皿,暴露30分钟后,37°C培养24小时。 标准:每皿菌落计数平均值应符合表4标准要求。单皿最大值不应超过平均值3 倍。 (2)动态采样器法:浮游菌菌落检测应在手术进行如切皮、缝合、连台手术之 间、手术进行4小时等,选择不少于3个程序,测定细菌菌落总数。

安防系统技术标准和要求

安全防范系统工程技术文件 一、投标人资格要求 1.1投标申请人具有经工商行政管理机关登记注册的独立法人资格,企业注册资金在1000万元及以上。 1.2投标申请人须是同时 具备建设行政主管部门核发的建___________________________________________________________ 全防范一级资质,并在人员、设备、 办公场所,健全的组织机构,通过相关质量体系认证,且具有履行合同所必需的经济、财务和相应的组织能力。 1.4近三年至少具有一项在800万元及以上的建筑智能化系统工程项目业绩(合同原件 备查)。 1.5投标单位拟派出的项目经理或注册建造师须是具备建设行政主管部门核发的二级_ 建造师(机电工程专业)及以上。 1.6拟派出的项目管理人员,应无在建工程,否则按废标处理;投标单位的项目经理或注册建造师中标后需到本项目招投标监督主管部门办理备案手续。 1.7本次招标不接受联合体投标。 1.8外省施工企业还需到分公司工商注册所在地的市(州)、县(市)建设行政主管部门办理《吉林省入吉建筑业企业投标备案证明书》后方可参加投标。(详见吉建管[2007]17 号、吉建管[2008]14号文件) 1.9拒绝列入政府不良行为记录期间的企业或个人投标。 二、招标内容和供货范围 以设计院提供的初步设计方案和智能与信息系统施工设计图为基础,根据实际情况,对安全防范系统工程进行优化设计和施工(包括视频监控系统、门禁系统、防盗报警系统、巡更系统以及考勤系统的设备采购、安装、调试、系统集成、明敷管线、电缆等)。 安全防范系统工程主要含:视频监控子系统、防盗报警子系统、门禁子系统(一卡通)、巡更管理子系统、实现各子系统的集成与联动,实现统一调度和管理,确保与弱电系统整合、开放协议,预留与其它弱电系统接口,便于未来集成。 三、投标要求 投标人在投标文件中应提供下列有关文件,否则视为非响应性投标。 3.1投标方应提供关键设备制造厂家授权书、厂家的通讯协议开放承诺书、厂家原厂授后服务承诺书、产品手册样本。(包括监控设备、存储设备、拼接屏等)。 3.2投标人有能力履行合同设备维护、保养、修理及其他服务义务的文件。 3.3投标文件应包括如下内容。 3.4系统硬件和软件的总体配置。 3.5详细的功能实现方案。 3.6工程计划建议。 3.7工程验收计划、技术培训。 3.8售后服务的保证。 3.9工程造价(包括备品备件、专用工具与仪器仪表); 本工程为“交钥匙工程”,满足招标方所有要求,与设备、供应、运输、保险等有关的所有辅材和安装内容应全部包含在内,除招标方明确提出需要的变更外,不再增加任何费用。投标方提供所有投标费用详细的报价清单和总报价(系统建设必须而未明确报价,视为赠送),报价风险由投标方自行承担。 3.10详细的分项硬件、软件报价

应用空气采样式火灾探测系统的分析与思考参考文本

应用空气采样式火灾探测系统的分析与思考参考文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

应用空气采样式火灾探测系统的分析与 思考参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1999年以来,笔者对某市电信局机房安装使用的空气 采样式火灾探测系统进行了质量跟踪。从两年多来的运行 情况看,该系统在火灾探测方面有着突出的特点,对早期 火灾报警能够起到积极的作用。该系统由抽取空气样本管 道网络、高效长寿气泵、空气流速控制器、烟粒子激光探 测器、信号微处理器、人工神经网络和火灾探测器等组 成,是1978年由澳大利亚VISION SYSTEM集团公司研 制开发,并在此基础上经过不断改进和完善所形成的火灾 报警产品,质量较为稳定。目前,已在美国、日本、加拿 大、马来西亚等国家应用,并取得了英国LPCB、美国FM 和德国VDS等国家认证机构的质量体系认证证书。从

采样控制系统的分析讲解

东南大学自动控制实验室 实验报告 课程名称:热工过程自动控制原理 实验名称:采样控制系统的分析 院(系):能源与环境学院专业:热能动力姓名:范永学学号:03013409 实验室:实验组别: 同组人员:实验时间:2015.12.15 评定成绩:审阅教师:

实验八 采样控制系统的分析 一、实验目的 1. 熟悉并掌握Simulink 的使用; 2. 通过本实验进一步理解香农定理和零阶保持器ZOH 的原理及其实现方法; 3. 研究开环增益K 和采样周期T 的变化对系统动态性能的影响; 二、实验原理 1. 采样定理 图2-1为信号的采样与恢复的方框图,图中X(t)是t 的连续信号,经采样开关采样后,变为离散信号)(*t x 。 图2-1 连续信号的采样与恢复 香农采样定理证明要使被采样后的离散信号X *(t)能不失真地恢复原有的连续信号X(t),其充分条件为: max 2ωω≥S 式中S ω为采样的角频率,max ω为连续信号的最高角频率。由于T S πω2= ,因而式可为 m ax ωπ≤ T T 为采样周期。 2. 采样控制系统性能的研究 图2-2为二阶采样控制系统的方块图。 图2-2 采样控制系统稳定的充要条件是其特征方程的根均位于Z 平面上以坐标原点为圆心的单位圆内,且这种系统的动、静态性能均只与采样周期T 有关。 由图2-2所示系统的开环脉冲传递函数为: ]2 5.05.01[)1(25])2(2[)1(25])15.0()1(25[)(21212++--=+-=+-==---S S S Z Z S S Z Z S S e Z z G S T ]5.015.0)1([)1(25221T e Z Z Z Z Z TZ Z Z ---+----=

综合布线系统招标文件技术规格及要求

1.1.综合布线系统通用技术规格及要求 1.1.1.系统总体技术要求 1.1.1.1.********工程综合布线系统要求符合ISO/IEC 11801:2002 6类UTP最新的国际标准,系统整体信道带宽性能要求能够支持至少250MHz以上的数据传输。其应用能够充分保证整个航站区及配套设施高速、可靠的信息传输要求,适应现在和将来的技术发展。保证********工程综合布线系统是一套先进的、完整的、规范化的布线系统。 1.1.1. 2.********工程的计算机网络系统主干采用万兆以太网技术,因此,综合布线系统主干线要求按照万兆光纤布线标准进行设计,符合基于光缆的10G以太网标准IEEE ;水平布线要求支持千兆以太网需求,支持基于铜缆的千兆以太网标准IEEE 。 1.1.1.3.投标人所提供的综合布线系统配线架、跳线、信息模块、线缆等主要产品元件以及由其构成的整个永久链路须提供传输特性测试报告,以证明其传输特性符合本规格书中提出的所有技术指标。 1.1.1.4.综合布线系统要求采用开放式结构,适用于主流网络拓扑结构,并能适应不断发展的网络技术的需求,能支持综合信息传输和连接(计算机数据通信处理、话音通讯、图像传输、视音频传输以及各种控制信号的通信等多种应用类型)。 1.1.1.5.综合布线系统采用模块化结构,保证系统能很容易的扩充和升级。系统中任何一个信息点都能够连接不同类型的计算机设备和其它信息设备。对任一个分支单元的改动都不会影响系统的其它单

元。能在设备布局和需要发生变化时实施灵活的线路管理。 1.1.1.6.要求综合布线系统保证实现信息安全、可靠地传输。 1.1.1.7.综合布线系统需提供较强的系统管理能力,可以有效地进行系统管理、系统维护、系统故障的排除。 1.1. 2.产品认证 1.1. 2.1.投标人所提供的布线产品须经过具有合法性、独立性和权威性的中国权威测试机构(如:信息产业部数据通讯产品质量监督检验中心、信息产业部光通信产品质量监督检验中心、国家电线电缆检测中心等等)进行测试认证,并出具该机构发出的认证证明。 1.2.系统各功能子系统技术规格及要求 1.2.1.综述 1.2.1.1.********工程综合布线系统根据相关标准及规范,主要分为六个部分: 1) 建筑群子系统 2) 设备间子系统 3) 干线子系统 4) 配线(水平)子系统 1)工作区子系统 2)管理子系统

VESDA主动式空气采样早期报警系统方案介绍精选文档

V E S D A主动式空气采样早期报警系统方案介 绍精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

VESDA主动式空气采样早期报警系统方案介绍 一、系统设计方案符合中华人民共和国之条例及规范包括: 《建筑设计防火规范》GBJ16-98 《火灾自动报警系统设计规范》GB50116-98 《火灾自动报警系统施工及验收规范》GB50117-98 《VESDA空气采样烟雾探测系统设计、施工验收技术条件》Q/HYC001-1999 建筑平面图 二、VESDA通过的论证 VESDA产品已通过ISO9002质量体系标准认证,产品的设计均满足国际消防和安全标准,该公司与国际认可组织合作,正根据下列标准进行生产。 NTC:中国 SSL:澳大利亚和新西兰(AS1603.8-1996) UL:美国(UL268-1996.12) ULC:加拿大(UL268-1996.12) FM:美国(FM3230-3250,FM3280) LPC:英国(CEA GEI 1-048) AFNOR:法国(NFS61-950) 由于VESDA早期烟雾探测系统已得到上述机构的认可,因此我们可在世界各地安装和使用该系统。 三、VESDA设备技术指标: 1.系统规格供电电压:18-30V DC 电源功耗:5.7-11W(静态,报警状态时加1.3W)电流消耗:

240VmA(报警状态时加50Ma) 环境温度:00C-390 C(探测器环境温度) -200C -600C(采样区温度) 相对湿度:10-95%(无露点) 探测器灵敏度:(0.005-20%obs/m) 探测器保护面积:200m2 (最大) 采样管网:200M (四报管组合长度,若使用单管时,其长度可达100M) 信号输出:30VDC,2A(C型,7个继电器输出) 体积:350mmX225mmX125mm(探测器主机) 140mmX150mmX90mm(远程显示部件) 19“ X3UX4”( 19”集中显示机架) 重量:4kg(带显示和编程模块的主机) 1kg(带显示模块的远程显示部件) 4kg(不带电池的智能电源) 一个VESDA网容纳的最大部件数:250 2.VESDA设备主要特点: (1)灵敏度高,探测范围宽 VESDA 系列产品,按灵敏度分为三个等级,即:0.01%obs/m/、 0.02%obs/m、 0.005%obs/m 传统的烟感报警器灵敏度为: 20%obs/m 因此,该系列产品比目前国内外普通使用的传统烟感报警器的灵敏度高几百倍到千倍。该系统探测范围宽,可达0.005%obs/m~20%obs/m;分为四级报警,且各报警的阈值可根据应用环境进行调节。

B类机房中心机房建设技术规格及要求

B类机房中心机房建设技术规格及要求 1、工程概述 隆基绿能科技股份有限公司数据中心机房建设工程是公司信息系统的应用中心和数据服务中心,集计算机技术、通讯技术为一体的智能化数据中心,因业务不断发展,迫切需要建立一个高质量的完全符合国家B类标准的计算机机房,以适应现在和未来发展的需要。 该数据中心机房的基础设施及弱电系统建设,要能最大限度、合理地满足应用系统数据集中运行的需求,满足高性能计算机类设备的运行要求,同时具有标准、稳定、先进和灵活的架构,能为公司系统运营提供可靠、安全的保障,保证数据及业务安全,能随需调整并可持续扩展。 2、建设范围 1)基础设施的建设范围为数据中心, 主要包括: 主机室区域、配电空调区域、UPS区域、机房控制区域。楼与楼、层与层之间的综合布线架构。 2)机房系统的建设范围为数据中心。 3、建设内容 本次建设内容为数据中心基础设施和弱电系统的设计及集成,包括以下系统:1)机房装修系统; 2)电气系统(含动力及照明); 3)UPS系统; 4)空调系统(机房区精密空调); 5)通风系统(含新风及消防排烟系统); 6)KVM系统; 7)动力环境监控系统; 8)综合布线系统; 9)消防系统; 10)防雷接地系统 4、建设依据 本次数据中心建设应满足国家现行的有关B级数据中心建设的标准及规范,

并参考TIA-942 Tier3的标准。 设计、施工、验收时需满足下列标准及规范(包括并不限于以下标准及规范,如各标准及规范对相同内容有不同规定时,应遵循更严格的标准。如有更新版本,参照新版本执行)。 《电子信息系统机房设计规范》(GB 50174-2008) 《电子信息系统机房施工及验收规范》(GB 50462-2008) 《计算站场地技术要求》(GB2887-2000) 《建筑设计防火规范》(GB 50016-2006) 《防静电活动地板通用规范》 SJT 10796-2001 《民用建筑电气设计规范》 JGJ/16—2008 《电气装置安装工程接地装置施工及验收规范》(GB50169-2006) 《供配电系统设计规范》(GB50052) 《低压配电设计规范》(GB 50054-95) 《建筑照明设计标准》(GB 50034-2004) 《电力工程电缆设计规范》(GB 50217-2007) 《不间断电源技术性能标定方法和试验要求》(现行国标电工标准) 《建筑物防雷设计规范》(GB 50057-94)(2000版) 《建筑物电子信息系统防雷技术规范》(GB 50343-2004) 《采暖通风与空气调节设计规范》(GB 50019-2003) 《通风与空调工程施工及验收规范》(GB50243-2002) 《中华人民共和国公共安全行业标准》GA/T70-94 《建筑与建筑群综合布线系统工程设计规范》(GB/T 50311-2007) 《建筑与建筑群综合布线系统工程施工及验收规范》(GB/T 50312-2007)《安全防范工程技术规范》(GB50348-2004) 《入侵报警系统工程设计规范》(GB50394-2007) 《视频安防监控系统工程设计规范》(GB50395-2007) 《出入口控制系统工程设计规范》(GB50396-2007) 《视频显示系统工程技术规范》(GB50464-2008) 《民用闭路监视电视系统工程技术规范》GB50198-94 《建筑设计防火规范》(GB50016-2006)

空气采样极早期报警系统施工方法

(一)空气采样极早期报警系统施工方法 1、取样管选材 A、选取材料必须配有国家建材质量检测中心的检测报告,其检测报告中注明阻燃指标,以便证明其是难燃自熄材质。 B、在有腐蚀性气体及温热交替较大场合宜选用ABS;在管路(四根)较短,弯头总和小于4个场合可以考虑采用UPVC材质;如果管路较长(>4个),可以采用阻燃弯UPVC管,主要是其可以手工弯制弯头减少空气阻力。如下表: 2、辅料选材 如选定阻燃冷弯PVC弯,其配套辅材一般如下表: 3、取样管安装 (1)一般要求 A、标准采样管是在被保护区安装外径为25mm的阻燃PVC管。 B、为确保通过空气采样系统气流状况通畅,吸气泵排出的气体的气压应与被探测区域的气压相等或略低。

C、取样管上取样孔采用Φ2.5-Φ4.0mm,取样孔之间距1-4m。一般将每根取样管分成三段。如单管长70米,前20m中取样孔为Φ2.5mm。中间30m取样孔为Φ3.00mm,后20米取样孔为Φ3.5mm。依次将取样孔变大,最末端塞为4个Φ4孔,每个取样孔上贴上指示标签。 D、取样管上直角弯应尽量避免小弧度,可采用半径大于或等于20cm手工弯制,故选用取样管为阻燃冷弯管。 E、取样管路总长度最好小于200米,极限250米(4根×50米、3根×70米、2根×100米),而每路取样管上取样孔的数量最好不超过25个,当只用一根管路时,长度不要超过100米。 F、每根管直角弯小于10个。 G、实际应用中,每根管路的长度应尽量接近,这样可使空气取样系统部气流容易平衡。 H、若环境要求取样管承受很大的承载力或长时间暴露于强光、极热、极冷的环境中,或是遇到可溶解PVC管气体时,也可以使用ABS 管或其他金属管材。 I、每个取样孔的间距(即保护半径)最大不应超过8米,管和管之间不大于8米,最小不应少于1米。 (2)取样管安装前加工及丈量 丈量现场确定取样管弯头数量,所用根数,配接直通数。每根管长3米,配一个直通,每1.0-1.2米配一个托卡。低层辅管可以先辅设后打取样孔,高空辅设必须先打取样孔,取样孔径Φ2.5mm,末端塞用Φ4mm钻头均匀打4个孔,然后粘好取样孔标签。 取样管长度依据设计手册和图纸中注明的长度。

空气培养采样方法

空气培养采样方法 Jenny was compiled in January 2021

医院常规空气细菌培养(自然沉降法)采样方法 一、采样时间 选择消毒处理后与进行医疗活动之前采样。 二、采样高度 与地面垂直高度80-150厘米。 三、布点方法 1.面积≤30 m2,设一条对角线取三点,即中间一点,两端各距墙1米处各取一点(图1) 图1 2.室内面积>30m2,设两条对角线,东,西,南,北,中取五点,其中东,西,南,北距墙均1米(图2) 图2 四、采样方法 用9厘米直径普通琼脂平皿,打开后盖面朝下斜扣到底盘,在采样点准确暴露5分钟后,送检培养。 五、结果分析 I类区域:<10 cfu/m3 II类区域:<200 cfu/m3 III类区域:<500 cfu/m3 六、附录 Ⅰ类区域:层流洁净手术室、层流洁净病房(参照洁净室空气培养方法与标准)。 Ⅱ类区域:普通手术室、产房、婴儿室、早产儿室、普通保护性隔离室、供应室无菌区、烧伤病房、重症监护病房。 Ⅲ类区域:儿科病房、妇产科检查室、注射室、换药室、治疗室供应室清洁区、急诊室、化验室、各类普通病房和房间。 Ⅳ类区域:传染病科及病房。

洁净室空气细菌培养监测布点与标准 一、局部百级,周围千级: 共放13个培养皿,其中手术区域5点,周边区8点。 采样布置点示意图: 二、局部千级,周围万级: 共放9个培养皿,其中手术区域3点,周边区6点。 采样布置点示意图: 三、局部万级,周围十万级: 共放7个培养皿,其中手术区域3点,周边区域4点。 2 1. 2.采样点可布置在地面上或不高于地面0.8m的任意高度上,手术区域放置在四角的平皿应离手术区边缘0.12m,培养皿放置30分钟; 3.采样后的培养皿,应立即置于37度条件下培养24小时; 4.然后计数生长的菌落数,菌落数的平均值均四舍五入进位到小数点后1位。 5.放置培养皿示意图: 盖面朝下斜扣到底盘A边上 培养底盘A 六、洁净室空气细菌菌落总数标准

【自控原理实验】实验九 采样控制系统动态性能和稳定性

实验九采样控制系统动态性能和稳定性 分析的混合仿真研究 一.实验目的 1.学习用混合仿真方法研究采样控制系统。 2.深入理解和掌握采样控制的基本理论。 二.实验内容 1.利用实验设备设计并实现已知被控对象为典型二阶连续环节的采样控制混合仿真系统。 2.改变数字控制器的采样控制周期和放大系数,研究参数变化对采样控制系统的动态性能和稳定性的影响。 三.实验步骤 1.采样控制系统的混合仿真研究方法 (1)参阅本实验附录1(1)以及图9.1.1和图9.1.2,利用实验箱上的电模拟单元电路U9和U11,设计并连接已知传递函数的连续被控对象的模拟电路。 (2)将实验箱上的数据处理单元U3模拟量输出端“O1”与被控对象的模拟电路的输入端(对应图9.1.2的r(t)端)相连,同时将该数据处理单元U3的模拟量输入端口“I1”与被控对象的模拟电路的输出端(对应图9.1.2的c(t)端)相连。再将运放的锁零端“G”与电源单元U1的“-15V”相连。注意,实验中运放没有锁零,而模拟电路中包含“电容”,故每次实验启动前,必须对电容短接放电,以免影响实验结果。 (3)接线完成,经检查USB通讯线是否接好,再给实验箱上电后,启动上位机程序,进入主界面。界面上的操作步骤如下: ①通道接线设置”:将环节的输出端Uo接到U3单元的A/D输入端I1,U3单元的D/A信号发生端接到环节的输入端Ui。 ②硬件按上述接线完后,检查USB通讯连线是否接好和检查实验箱电源是否正常后,点击LabVIEW上位机界面程序中的“RUN”按钮运行实验界面,如果有问题则请求指导教师帮助。 ③进入实验界面后,先对实验类别进行设置(选择实验九或实验十),通过对界面下边开关来选择,点击开关向上(对应紫色信号灯亮)即选择采样控制混合仿真研究(即实验九);点击开关向下(对应绿色信号灯亮)即选择采样控制系统串联校正混合研究(即实验十)。选择“采样时间”为“200Hz/5ms”。 ④完成实验类别设置,然后设置“测试信号设置”框内的参数项,设置“信号幅值”为“1”(根据实验曲线调整大小),设置“采样时间”为“200Hz/5ms”,“采样开关T”为“1 ms”,然后选择“采样控制系统混合仿真研究”,此时数字控制器是一比例放大器,可先设置Kp=1。 注意允许的采样周期最小值为1ms。小于此值即不能保证系统运行正常。 ⑤以上设置完成后,按“启动/暂停”键启动实验或暂停实验,动态波形得到显示,如上述参数设置合理就可以在主界面中间得到系统的“阶跃响应”。

无人值守称重系统技术规格及要求

技术规格及要求 1.无人值守过磅管理系统设计方案 为了方便对货运车辆的管理和货物运输的核算,并最大限度的减少管理人员的成本,特使用无人值守自动称重系统。本煤矿12台称重电子汽车衡含6台单向空车称重汽车衡和6台单向重车称重汽车衡,以此来核算车辆的货运情况,并生成相应的统计报表,以便对车辆称重信息进行核算。以下为本公司设计优选方案。 1.2系统软件实现的功能 软件结构采用客户机/服务器的结构体系,体系具有以下特点:采用SQL 结构数据库,具有分布处理、集中管理的功能,对数据的完整性和一致性处理有很好的性能。 用户的界面采用中文窗口界面系统,操作简单、直观、方便,红外自动检测车辆,司机刷卡即可自动完成全部操作过程,系统数据录入、修改、查询、增加和删除等操作均在统一的界面下进行,只要掌握一种报表的操作方法,即可对所有报表进行操作。 软件功能: 将称重数据实时上传中心服务器。 接收中心服务器下传的系统运行参数 语音提示功能。 通过字符叠加器,对车辆称重过程实时监视。 通过显示牌可显示车牌号码、重量及通行提示等信息。 使用中距离感应读卡器,ID卡管理。 对车辆进行图像抓拍,后台进行稽核。 系统后台管理软件功能: 车辆称重数据及各种特殊情况处理记录等。每辆车的称重信息实时上传中心服务器,且上传的数据均不得被修改。 中心可以实时显示当前车辆称重信息(如汽车衡号、车牌号、日期时间、毛重、皮重等) 数据库存放在监控中心专用服务器中,各种实时数据及时存入数据库中。 下传系统运行参数(黑名单、同步时钟、车辆信息及系统设置参数等)至计算机。

数据备份及恢复功能。无论称重系统中哪一台设备发生故障,或者与中心服务器通信中断时,都不会有任何丢失或被破坏的情况发生。 计算机系统具有设备故障自检功能。 网络覆盖范围:中心至汽车衡系统的数据通信采用标准的以太网网络 接口,通信控制协议采用TCP/IP协议,保证数据的加密安全和准确性 能。 与监控中心联网,实现数据的上传与系统信息及参数的下载。 报表数据的统计与查询。 1.3系统构成 1.3.1红外光幕检测系统 在磅体两端各安装一对红外光幕,红外线设备通过信号线连接到开关量IO 卡。当光束被阻挡时,红外对射仪将信号发送到开关量IO卡,地磅称重软件从开关量输入卡提取信号,当检测到报警信号后,系统禁止称重系统数据保存,称重流程终止。本系统用到的硬件设备有:红外钱对射仪,屏蔽信号线,12V变压器。 1.3.2视频监控与图像抓拍系统 在本系统中采用视频监控和图像抓拍的方式,每台地磅使用2台网络摄像机,在地磅的前端和后端各安装1台监控摄像机,用来抓拍车牌号和车尾的图像以及车辆是否上磅,为车辆是否作弊留存证据。 称重计量监控室通过网络接口,将视频引入视频存储服务器进行24小时不间断录像,并且把视频输送入称重计量控制器,将视频画面与称重前台界面统一起来,同时可根据设置进行磅单保存时照片抓拍以及车辆上下磅进行防作弊抓拍。视频存储服务器,对录像集中管理,保存2个月以上视频图像。

【CN110095322A】一种空气采样系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910320735.5 (22)申请日 2019.04.20 (71)申请人 杭州统标检测科技有限公司 地址 310053 浙江省杭州市滨江区长河街 道滨安路688号2幢C楼5层502室 (72)发明人 俞帅 葛悦 李昕  (51)Int.Cl. G01N 1/22(2006.01) (54)发明名称 一种空气采样系统 (57)摘要 本发明公开了一种空气采样系统,属于空气 检测技术领域,具有提升空气采样精确度的优 点,其技术方案如下,包括采样嘴、采样管、检测 本体,采样管一端与检测本体连接,采样嘴连接 在采样管另一端, 采样管包括玻璃内管、保温外管、红外发热灯管,玻璃内管一端与采样嘴内部 连通,玻璃内管另一端与检测本体内部连通,玻 璃内管呈螺旋状环绕在红外发热灯管外,保温外 管内壁设有反光层,保温外管与玻璃内管之间设 有反射空隙。权利要求书1页 说明书3页 附图1页CN 110095322 A 2019.08.06 C N 110095322 A

权 利 要 求 书1/1页CN 110095322 A 1.一种空气采样系统,包括采样嘴(1)、采样管(2)、检测本体(3),所述采样管(2)一端与检测本体(3)连接,所述采样嘴(1)连接在采样管(2)另一端,其特征是:所述采样管(2)包括玻璃内管(21)、保温外管(22)、红外发热灯管(23),所述玻璃内管(21)一端与采样嘴(1)内部连通,所述玻璃内管(21)另一端与检测本体(3)内部连通,所述玻璃内管(21)呈螺旋状环绕在红外发热灯管(23)外,所述保温外管(22)内壁设有反光层(24),所述保温外管(22)与玻璃内管(21)之间设有反射空隙(25)。 2.根据权利要求1所述的一种空气采样系统,其特征是:所述反光层(24)为铝镁合金反光板。 3.根据权利要求1所述的一种空气采样系统,其特征是:所述保温外管(22)上周向均匀分布有若干个导热导条(26)。 4.根据权利要求3所述的一种空气采样系统,其特征是:所述导热导条(26)为铜丝。 5.根据权利要求3所述的一种空气采样系统,其特征是:所述保温外管(22)为陶瓷保温层。 6.根据权利要求5所述的一种空气采样系统,其特征是:所述导热导条(26)内嵌在陶瓷保温层中部。 7.根据权利要求1所述的一种空气采样系统,其特征是:所述反射空隙(25)充有氮气。 8.根据权利要求1所述的一种空气采样系统,其特征是:所述玻璃内管(21)由棕色玻璃制成。 2

手术室空气采样的方法

五月培训内容:手术室空气采样方法 1、采样时间:消毒后、操作前进行采样。 2、采样方法: (1)布点: 室内面积≤30 m2,设内、中、外对角线3点,内外点距墙1m;室内面积>30 m2,设四角及中央5点,四角点距墙1m。 (2)平板暴露法 平板直径9cm、采样高度1.5m,暴露5min。 3、检验方法 平板37℃培养48h。计数菌落数并分离致病菌。 4、平板暴露法结果计算 50000N 细菌总数(cfu/m3)=A×T A为平板面积(cm2);T 为暴露时间(min);N 为平均菌落数(cfu) 5、结果判定 (1)I、II类区域,细菌总数≤10cfu/cm3,并未检出致病菌为消毒合格。 (2)III类区域,细菌总数≤200cfu/cm3,并未检出致病菌为消毒合格。 (3)IV类区域,细菌总数≤500cfu/cm2,并未检出致病菌为消毒合格。

6、注意事项:采样前关好门窗,在无人走动的情况下,静止10min 进行采样 层流手术室空气日常监测方法: 要求日常实行动态监测,必测项目为平板采样法(沉降法)或采样器法(浮游菌法)检测细菌菌落总数。 (1)回风口动态平板采样法:应在手术开始、手术2小时、手术结束前抽检3-4次。每个回风口中部摆放3个倾斜30℃,Φ90 培养皿,暴露30分钟后,37°C培养24小时。标准:每皿菌落计数平均值应符合表4标准要求。单皿最大值不应超过平均值3倍。 (2)动态采样器法:浮游菌菌落检测应在手术进行如切皮、缝合、连台手术之间、手术进行4小时等,选择不少于3个程序,测定细菌菌落总数。 标准:I级<30cfu/m3 ;II级<150 cfu/m3;III级<450 cfu/m3;IV级<500 cfu/m3。 (3)其他洁净用房在当天上午10时和下午4时各测1次,在每个回风口中部摆放3个Φ90培养皿,沉降0.5h后在37℃下培养24h。 标准:同回风口动态平板采样法标准。 层流手术室静态(空态)时空气采样方法: 1、采样方法: (1)当送风口集中布置时,应对手术区和周边区分别检测;当送风口分散布置时,按全室统一布点方法检测。

采样控制系统分析

北京联合大学 实验报告 实验名称:采样控制系统分析 学院:自动化专业:物流工程姓名:学号: 同组人姓名:学号: 班级:成绩: 实验日期:2014年12月18日

完成报告日期:2014年12月21日 实验5 采样控制系统分析 一.实验目的 1. 掌握判断采样控制系统稳定性的充要条件。 2. 掌握采样周期T对系统的稳定性的影响及临界值的计算。 3. 观察和分析采样控制系统在不同采样周期T时的瞬态响应曲线。 二、实验内容及步骤 1.闭环采样系统构成电路如图5-1所示。掌握采样周期T对系统的稳定性的影响及临界值的计算,观察和分析采样控制系统在不同采样周期T 时的瞬态响应曲线,填入表中。 2. 改变采样控制系统的被控对象,计算和测量系统的临界稳定采样周期T,填入表中。 图5-1 闭环采样系统构成电路 [a].闭环采样系统实验构成电路如图5-1所示,其中被控对象的各环节 参数: 积分环节(A3单元)的积分时间常数Ti=R2*C2=0.2S, 惯性环节(A5单元)的惯性时间常数T=R1*C1=0.5S,增益K=R1/R3=5。 实验步骤:注:(B5)单元的‘S ST’不能用‘短路套’短接! (1)用函数发生器(B5)单元的方波输出作为系统振荡器的采样周期信号。 (D1)单元选择“方波”,(B5)“方波输出”孔输出方波。调节“设定电位器1”控制相应的输出频率。

(2 ) 用信号发生器(B1)的‘阶跃信号输出’和‘幅度控制电位器’构造输入信号R(t): B1单元中电位器的左边K3开关拨下(GND),右边K4开关拨下(0/+5V 阶跃)。阶跃信号输出(B1单元的Y测孔)调整为2.5V(调节方法:调节电位器,用万用表测量Y测孔)。 (3)构造模拟电路:按图5-1安置短路套及测孔联线,表如下。 (4)运行、观察、记录: 三、数据处理(现象分析) ①运行LABACT程序,选择自动自动控制菜单下的采样系统分析实验项目,就会弹出虚拟示波器的界面,点击开始后将自动加载相应源文件,即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。 ②调节“设定电位器1”,D1单元显示方波频率,将采样周期T(B5方波输出)依次调整为15ms(66.6Hz) 、30ms(33.3Hz)和90ms(11.1Hz),按下信号发生器(B1)阶跃信号按钮(0→+2.5V阶跃),使用虚拟示波器CH1观察A6单元输出点OUT(C)的波形。观察相应实验现象,记录波形,并判断其稳定性,填入表5-1。 T=66.6Hz

相关文档
最新文档