新人教指数函数及其性质第一课时
指数函数及其性质(第一课时)教学设计

教学难点:探索、概括指数函数的性质
教学过程:
教学内容
问题、任务
师生活动
设计意图
一、指数函数的概念
二、对数函数的图象
三、指数函数的性质
四、小结
1.问题1中时间 与GDP值 的对应关系 、问题2中时间 和碳14含量P的对应关系 能不能构成函数?
2.这三个函数有什么共同特征?
师:巡视学生作图情况,要注意学生作图时是否分了 和 两种情况。
师生:再一次观察几何画板所显示的指数函数的图象,注意当 时,函数 的图象与 的类似,当 时,函数 的图象与 的类似。师生共同作出指数函数的草图。
师生:根据投影,分析图象特征,讨论函数性质,并完成课件中的表格1。
师生:根据投影,分析图象特征,讨论函数性质,并完成课件中的表格2。
师生:回顾需研究函数的定义域、值域、奇偶性、单调性等。强调函数图象在研究函数性质中的作用,注意注意数形结合。
师:几何画板展示,动态显示指数函数的图象随底数a的变化而变化。提示学生注意底数a的取值范围与图象的形状的关系,底数在何值时图象发生了质的变化。
生:根据老师提示观察,并注意图象经过的关键点。
师:提示作函数图象的过程:列表、描点、连线。巡视学生作图情况。
13.分析指数函数 的性质。
14.谈谈本节课的收获。
师:投影展示问题1、问题2、问题3,引导学生根据函数的定义进行分析。
生:思考、讨论并回答问题。
师:引导学生把解析式概括到 的形式。
生:归纳概括共同特征。
师:板书定义。
师生:根据指数相关知识,给出底数的取值范围及函数的定义域。
生:根据对数函数的形式进行辨别。
会用描点法作具体指数函数的图象。
2014高中数学 2-1-2-1 指数函数及其性质课件 新人教A版必修1

函数 y=(2a2-3a+2)·x 是指数函数,求 a 的值. a
[解析] y = (2a2 - 3a + 2)·x 是 指 数 函 数 , 则 有 a
2a2-3a+2=1, a>0且a≠1,
1 ∴a= . 2
2
利用指数函数的性质比较大小
学法指导:比较幂大小的方法 (1)对于底数相同但指数不同的两个幂的大小的比较,可 以利用指数函数的单调性来判断. (2)对于底数不同,指数相同的两个幂的大小比较,可利 用指数函数的图象的变化规律来判断. (3)对于底数不同且指数不同的幂的大小的比较,则应通 过中间值来比较.
-
+
(5)比较大小,用“<”或“>”连接下列每组中的两个数. ①3
-2
<3
+1
-1
12 ②23
a+2;
<
-
11 2 2
;
-2.8
③0.4a
> 0.4
④1.1a 3 > 1.1a
⑤0.2-4 > 0.4-4.
2 2 (6)已知3a>3b,则
1 1 (3)当a<0时,n并不能取任意实数,如n= 2 , 4
时an
没有意义;
(4)当a=0时,n取 零或负数 没有意义. (5)实数幂的运算性质:ar·s=ar a
+s
ar ar-s;(ab)r= ;as=
arbr ;其中a>0,b>0,r、s∈R.
2.如果y=f(x)在D上是增函数,则对任意x1,x2∈D且 x1<x2,有f(x1) < (填“>”、“<”或“=”)f(x2),y=f(x)的图象从 左至右逐渐 上升 (填“上升”或“下降”).
课件人教A版高中数学必修一《指数函数及其性质》实用PPT课件_优秀版

②利用指数函数y=au的单调性求得此函数的值域.
2.求形如y=A·a2x+B·ax+C类函数的值域一般用换元法,设ax=t(t>0)再转
化为二次函数求值域.
反思与感悟
解析答案
跟踪训练 4 (1)函数 f(x)= 1-2x+ x1+3的定义域为( A )
A.(-3,0]
B.(-3,1]
C.(-∞,-3)∪(-3,0] D.(-∞,-3)∪(-3,1]
(2)对称变换:函数y=a-x的图象与函数y=ax的图象关于y轴对称;
函数y=-a-x的图象与函数y=ax的图象关于原点对称;
当x<0时,_________
反思与感悟
解析答案
跟踪训练3 (1)函数y=|2x-2|的图象是( B )
解析 y=2x-2的图象是由y=2x的图象向下平移2个单位长度得到的, 故y=|2x-2|的图象是由y=2x-2的图象在x轴上方的部分不变,下方部分 对折到x轴的上方得到的.
过点_(_0_,__1_)_,即x=_0_时,y=_1_ 若下向列下 各平函移数φ中(φ,>是0)个指单数位函,数则的得是到( y=)ax-φ的图象. 性质 跟一踪般训 地练,3函数(1y)=函a数x y=|2x-2|的图叫象做是指(数函数) ,其中x是自变量,函数的定义域是R.
当x>0时,y>1; 纠(3)错ax心的得系数凡是换1. 元时应立刻写出新元范围,这样才能避免失误.
解析 ∵x2-1≥-1,
解 ∵y=2-x与y=2x的图象关于y轴对称,
④中,y=x3的底为自变量,指数为常数,故④不是指数函数.
其中,指数函数第的个二数章是( 2.1) .2 指数函数及其性质
(3)ax的系数是1.
例2 如图是指数函数①y=ax,②y=bx,③y=cx,④y=dx的图象,则a,b,c,d与1的大小关系是( )
高中数学第二章基本初等函数(Ⅰ)2.1指数函数2.1.2第1课时指数函数的图象及性质课件新人教A版必修1

与指数函数有关的定义域、值域问题
求下列函数的定义域与值域:
(1)y=
;(2)y=23-|x|.
思路点拨:
指数函数y=axa>0, 且a≠1的定义域是R
―→
函数y=afxa>0,且a≠1 与fx的定义域相同
―→
值域
解:(1)由xx+ -11≥0,得 x≤-1 或 x>1.
已知指数函数f(x)的图象过点(3,8),则f(6)=________. 解析:设f(x)=ax(a>0,且a≠1). ∵函数f(x)的图象过点(3,8). ∴8=a3,∴a=2. ∴f(x)=2x. ∴f(6)=26=64. 答案:64
2.指数函数的图象和性质 a>1
图象图象
如图是指数函数:①y=ax,②y=bx,③y=cx,④ y=dx的图象,则a,b,c,d与1的大小关系是( )
A.a<b<1<c<d B.b<a<1<d<c C.1<a<b<c<d D.a<b<1<d<c
思路点拨:
解析:方法一:在①②中底数大于零且小于 1,在 y 轴右 边,底数越小,图象向下越靠近 x 轴,故有 b<a,在③④中底 数大于 1,在 y 轴右边,底数越大,图象向上越靠近 y 轴,故 有 d<c.故选 B.
1.指数函数的图象一定在x轴的上方.( ) 2.当a>1时,对于任意x∈R总有ax>1.( ) 3.函数f(x)=2-x在R上是增函数.( ) 答案:1.√ 2.× 3.×
指数函数的概念
函数y=(a2-3a+3)ax是指数函数,求a的值. 思路点拨: ax的系数为1 ―→ a为常数,a>0且a≠1 ―→ 不等式组 解:∵y=(a2-3a+3)ax 是指数函数, ∴aa>2-03且a+a≠3=1,1, 解得aa= >10或 且2a,≠1. ∴a=2.
数学新课标人教A版必修1教学课件:2.1.2.1 第1课时 指数函数的图象及性质

必修1 第二章 基本初等函数(I)
栏目导引 第二十二页,编辑于星期日:十一点 三十五分。
3.如图所示是指数函数的图象,已
知 a 的值取 2,43,130,15,则相应曲线 C1,C2,
C3,C4 的 a 依次为( )
必修1 第二章 基本初等函数(I)
栏目导引 第四页,编辑于星期日:十一点 三十五分。
1.指数函数的概念 函数y=ax(a>0,且a≠1,x∈R)叫做指数函数,其中 x为自变量. 2.指数函数的图象和性质
a>1
0<a<1
图象
必修1 第二章 基本初等函数(I)
栏目导引 第五页,编辑于星期日:十一点 三十五分。
栏目导引 第三页,编辑于星期日:十一点 三十五分。
(4)当a=0时,n取__零__或__负__数__没有意义. 如果y=f(x)在D上是增函数,则对任意x1, x2∈D且x1<x2,有f(x1)<(填“>”、“<”或 “=”)f(x2),y=f(x)的图象从左至右逐渐__上__升 (填“上升”或“下降”).
(4)∵-233<0,4313>430=1,3412<340=1, ∴-233<3412<4313.12 分
必修1 第二章 基本初等函数(I)
栏目导引 第二十八页,编辑于星期日:十一点 三十五分。
[题后感悟] 比较幂的大小的常用方法: (1)对于底数相同,指数不同的两个幂的大小比 较,可以利用指数函数的单调性来判断.(2)对 于底数不同,指数相同的两个幂的大小比较, 可以利用指数函数图象的变化规律来判断.(3)
高中数学_指数函数及其性质第一课时教学设计学情分析教材分析课后反思

课后反思1、本节课运用对媒体画出函数图像,让学生更直观的观察出对数函数的图像。
对突破本节课的重、难点起了很大的帮助。
2.本节课改变了以往常见的函数研究方法,通过选取不同的底数a的指数图像,让学生类比研究指数函数图像及其性质并分组探究指数函数的图像和性质。
这个环节让学生合作学习,合作学习让学生感受到学习过程中的互助。
还能让学生自己建构知识体系,更重要的是让学生体会到对函数的研究方法, 以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”。
3、本节课老师借助几何画板的直观图形,以形助数,以数定形,数形结合的数学方法,收到了较好的研究效果。
并在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉得运用这些数学思想方法去分析、思考问题。
在整个的教学过程中,始终体现以学生为本的教育理念。
在学生已有的认知基础上进行设问和引导,关注学生的认知过程,强调学生的品德、思维和心理等方面的发展。
重视讨论、交流和合作,重视探究问题的习惯的培养和养成。
同时,考虑不同学生的个性差异和发展层次,使不同的学生都有发展,体现因材施教的原则。
存在的不足:1、虽然对学生情况有所了解,但还是估计不足。
在例题的讲解过程中发现学生对指数函数仍然很陌生,这一部分我的引导启发应再充分些。
2、课堂驾驭能力有待提高,教学节奏过于紧凑应该多考虑大部分学生的学习能力。
有些例题的处理没能达到预期的效果是遗憾。
课标分析本课是《节普通高中课程标准实验教科书·数学(1)》(人教A 版)第二章第一节第二课(2.1.2)《指数函数及其性质》。
课标中要求(1)通过具体实例(如细胞的分裂等),了解指数函数模型的实际背景。
(2)理解指数函数的概念和意义,能借助计算器或计算机画出具体知识函数的图像,探索并理解指数函数的单调性与特殊点。
(3)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。
人教高中数学必修一2.1.2指数函数及其性质(课件)
底数是常数,指数是变量
1. 指数函数的定义
系数为1
y=1 ·ax
自变量
常数
定义:一般地,函数 y ax (a 0, a 1, x R) 叫做指数函数
注意:
(1) 规定a 0, a 1
x 0 a x恒等于零
a 0x 0 无意义
a 0 无意义
…...
2 一种放射性物质不断衰变为其他物质,每经过一年 剩留的质量约是本来的84%.求出这种物质的剩留 量随时间(单位:年)变化的函数关系.
设最初的质量为1,时间变量用x表示,剩留量用y表示
则
经过1年, y 184% 0.841 经过2年, y 1 0.84 0.84 0.842
归纳出:经过x年, y 0.84 x
• (1)
1
y 3x
• (2) y 5 x1
• (3)函数 y a2x3 3 恒过点 ( 3 , 4)
2
小结归纳:
• 通过本节课的学习,你学到了哪些知识? • 你又掌握了哪些数学思想方法? • 你能将指数函数的学习与实际生活联系起
来吗?
布置作业:习题2-1A组第5、6、7、8题
A先生从今天开始每天给你10万元,而 你承担如下任务:第一天给A先生1元, 第二天给A先生2元,,第三天给A先生4 元,第四天给A先生8元,依次下去…那 么,A先生要和你签定15天的合同,你同 意吗?又A先生要和你签定30天的合同, 你能签这个合同吗?
(8) y (2a 1)x (a 1 , a 1) 2
答案:(1)(6)(8)是指数函数
2:函数y (a2 3a 3) ax是指数函数,则a 2
3:已知y=f(x)是指数函数,且f(2)=4,求函数
指数函数及其性质教案(第一课时)
课题:§2.1.2指数函数及其性质(第一课时)课型:新授课一、教学目标:1.知识与技能理解指数函数的定义,掌握指数函数的图像、性质及其简单应用2.过程与方法通过教学,培养学生观察、分析、归纳等思维能力,体会分类讨论思想、数形结合思想以及从特殊到一般的学习方法,增强学生识图用图的能力.3.情感、态度、价值观体会理论来源于实践并应用于实践的辩证唯物主义观点.二、重、难点重点:指数函数的概念和性质及其应用.难点:指数函数定义、图象和性质的发现总结过程。
三、教法与学法:①教法:启发、引导、实验、探索相结合的教学方法.②学法:合作交流,自主观察、自主探索、归纳总结.四、教学过程(一).创设情境,激发兴趣。
(2分钟)情境1:在印度有一个古老的传说:舍罕王打算奖赏国际象棋的发明人--宰相西萨·班·达依尔。
国王问他想要什么,他对国王说:"陛下,请您在这张棋盘的第1个小格里,赏给我1粒麦子,在第2个小格里给2粒,第3小格给4粒,以后每一小格都比前一小格加一倍。
请您把这样摆满棋盘上所有的64格的麦粒,都赏给您的仆人吧!"国王觉得这要求太容易满足了,命令给他这些麦粒。
当人们把一袋一袋的麦子搬来开始计数时,国王才发现:就是把全印度甚至全世界的麦粒全拿来,也满足不了那位宰相的要求。
那么,宰相要求得到的麦粒到底有多少呢?总数为:=18446744073709551615(粒) 1000粒麦粒,大概是40g。
那么宰相得到的麦粒就有7000多亿吨,而2011年全球的小麦总量才6.5亿吨。
就是说,即便拿到现在来说,要交出7000多亿吨的小麦,也要全球人民同心协力,奋斗1000多年才可满足宰相的要求。
情境2:《庄子天下篇》中有这样一句话:“一尺之棰,日取其半,万世不竭。
”(二).交流探讨,形成概念。
(7分钟)1:现在假设棋盘上第一格给2粒麦子,第二格给4粒,第三格给8粒……,到第x格时,请写出给的麦子粒数y与格子数x的关系式。
4.2 第1课时 指数函数及其图象、性质(一)
答案: C
3.已知函数f(x)=4+ax+1(a>0,且a≠1)的图象经过定点P,则点P的
坐标是(
)
A.(-1,5) B.(-1,4)
C.(0,4)
D.(4,0)
解析:当x+1=0,即x=-1时,ax+1=a0=1,此时f(x)=4+1=5,故点P的
坐标为(-1,5).
设f(x)=0.8x, 因为0<0.8<1,所以f(x)在R上单调递减.
又因为0.9>0.8,所以0.80.9<0.80.8.
再比较0.80.8与0.90.8的大小,设g(x)=x0.8,
因为0.8>0,所以g(x)在区间(0,+∞)内单调递增.
又因为0.8<0.9,所以0.80.8<0.90.8.
第1课时
4.2 指数函数
指数函数及其图象、性质(一)
学习目标
1.通过具体实例,了解指数函数的实际意义.
2.理解指数函数的概念.
3.能用描点法或借助计算工具画出具体指数函
数的图象.
4.探索并理解指数函数的单调性.
5.感悟数学抽象的过程,提升直观想象和逻辑推
理素养.
自主预习·新知导学
合作探究·释疑解惑
(-5,-1),即点P的坐标为(-5,-1).
答案:(1)D (2)(-5,-1)
反思感悟
1.指数函数图象问题的处理技巧
(1)抓住图象上的特殊点,如指数函数的图象必过的定点;
(2)利用图象变换,如函数图象的左右平移、上下平移;
(3)利用函数的奇偶性与单调性,奇偶性确定函数的对称情况,
人教A版必修一2.1.2.1指数函数及其性质
探究要点一:对指数函数定义的理解 1.定义域是R 因为指数的概念已经扩充到有理数和无理数,所以在底数a>0的前提下,x可以是 任意实数.
3.形式化的严格性 在指数函数的定义表达式y=ax(a>0且a≠1)中,ax前的系数必须是1,自变量x在指 数的位置上,否则,不是指数函数.比如y=2ax,y=ax+1,y=ax+1等,都不是指数函数.
2.1.2 指数函数及其性质
第1课时 指数函数的图象及性质
1.指数函数的定义 函数y=ax(a>0且a≠1)叫做指数函数,其中x是自变量.
2.指数函数的图象和性质
4.函数f(x)=ax的图象经过点(2,4),则f(-3)的值是___________. 解析:由于f(x)=ax过(2,4),所以4=a2, 解得a=2或a=-2(舍去), 所以指数函数的解析式为f(x)=2x.
类型一:指数函数的概念 【例1】 下列函数中,哪些是指数函数?
规律方法:判断一个函数是否为指数函数只需判定其解析式是否符合y=ax(a>0,且 a≠1)这一结构形式,其具备的特点为:
变式训练1-1:(2010年中山高一检测)下列函数中,指数函数的个数是( ①y=-3x;②y=3x+1;③y=3x;④y=x3 (A)0 (B)1 (C)2 (D)3 解析:①中3x的系数不是1, ∴不是指数函数; ②中指数不是x而是x+1, ∴不是指数函数; ④中底数是变量, ∴不是指数函数; ③是指数函数.故选B.
)
类型二:指数函数的图象问题 【例2】 如图是指数函数①y=ax,②y=bx,③y=cx,④y=dx的图象,则a,b, c,d与1的大小关系是( )
(A)a<b<1<c<d (C)1<a<b<c<d