指数函数及其性质教学案例

合集下载

《指数函数》的优秀教案最新9篇

《指数函数》的优秀教案最新9篇

《指数函数》的优秀教案最新9篇高一数学《指数函数》优秀教案篇一我本节课说课的内容是高中数学第一册第二章第六节“指数函数”的第一课时——指数函数的定义,图像及性质。

我将尝试运用新课标的理念指导本节课的教学。

新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。

我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这几个方面加以说明。

一、教材分析1、教材的地位和作用:函数是高中数学学习的重点和难点,函数的贯穿于整个高中数学之中。

本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,同时也为今后研究对数函数以及等比数列的性质打下坚实的基础。

因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

2、教学的重点和难点:根据这一节课的内容特点以及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及其运用,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。

二、教学目标分析基于对教材的理解和分析,我制定了以下的教学目标:1、知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用。

2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论,增强学生识图用图的'能力。

3、情感目标(可持续性目标):通过学习,使学生学会认识事物的特殊性与一般性之间的关系,培养学生勇于提问,善于探索的思维品质。

三、教法学法分析1、教学策略:首先从实际问题出发,激发学生的学习兴趣。

第二步,学生归纳指数的图像和性质。

第三步,典型例题分析,加深学生对指数函数的理解。

2、教学:贯彻引导发现式教学原则,在教学中既注重知识的直观素材和背景材料,又要激活相关知识和引导学生思考、探究、创设有趣的问题。

3、教法分析:根据教学内容和学生的状况,本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。

高中数学《指数函数及其性质》教学案例分析

高中数学《指数函数及其性质》教学案例分析

高中数学《指数函数及其性质》教学案例分析指数函数是高中数学中重要的内容之一,涉及到指数的定义、性质、运算以及应用等方面内容。

本教学案例分析将围绕指数函数及其性质展开,通过案例的引入和分析,引导学生深入理解指数函数及其性质,并能够运用所学知识解决实际问题。

案例引入:假设某种细菌的数量在每小时翻倍,初始种群有100个,经过n个小时后,种群数量为2^n个。

现在要求学生利用指数函数来描述并分析该种群的数量变化情况。

案例分析:1. 引导学生理解指数函数的定义:指数函数是指以一个常数a(a>0且a≠1)为底,自变量是指数x,函数表达式为y=a^x 的函数。

引导学生注意指数函数中底数为常数,指数为变量。

2. 探究种群数量变化情况的表达式:通过观察种群数量的变化情况,可以发现种群数量与时间呈指数关系。

变化规律可以用指数函数表示,即种群数量N与时间t的关系可以表示为N=100*a^t。

初始种群数量是100,底数a是2(因为每小时翻倍),时间t为自变量。

3. 理解指数函数的性质:指数函数的性质有指数递增性、函数图像特点、定义域和值域等。

以N=100*a^t为例,可以引导学生分析底数a对函数图像的影响,如a>1时,函数图像逐渐增大,表示种群数量不断增加;a<1时,函数图像逐渐减小,表示种群数量逐渐减少。

4. 运用指数函数解决问题:通过学习指数函数的性质,学生可以运用所学知识解决一些实际问题。

给定种群数量N,可以通过求解N=100*a^t来确定时间t;给定时间t,可以通过求解N=100*a^t来确定种群数量N。

案例总结:通过以上案例的引入和分析,学生可以初步理解指数函数及其性质,能够使用指数函数描述和分析实际问题。

通过多个案例的练习,不断巩固和深化对指数函数及其性质的理解,提高解决实际问题的能力。

在案例分析的过程中,教师可以通过提问、讨论等方式,引导学生积极思考和互动,激发学生的学习兴趣和动力,提高学生的学习效果。

高中数学《指数函数及其性质》教案

高中数学《指数函数及其性质》教案

高中数学《指数函数及其性质》精品教案一、教学目标1. 让学生理解指数函数的定义,掌握指数函数的性质。

2. 培养学生运用指数函数解决实际问题的能力。

3. 提高学生对数学知识的探究和运用能力。

二、教学内容1. 指数函数的定义与表达式2. 指数函数的单调性3. 指数函数的奇偶性4. 指数函数的图像与性质5. 实际问题中的指数函数应用三、教学重点与难点1. 重点:指数函数的定义、性质及其应用。

2. 难点:指数函数图像的特点,以及如何运用指数函数解决实际问题。

四、教学方法1. 采用问题驱动的教学方法,引导学生探究指数函数的性质。

2. 利用数形结合的方法,让学生直观地理解指数函数的图像与性质。

3. 通过实际问题的引入,培养学生的应用能力。

五、教学过程1. 导入:回顾初中阶段学习的指数知识,引发学生对指数函数的好奇心。

2. 新课讲解:介绍指数函数的定义、表达式,分析指数函数的单调性和奇偶性。

3. 案例分析:分析实际问题中的指数函数应用,让学生体会数学与生活的联系。

4. 课堂练习:设计相关练习题,巩固学生对指数函数的理解。

教案仅供参考,具体实施时可根据学生实际情况进行调整。

六、教学评价1. 通过课堂提问、练习题和课后作业,评估学生对指数函数定义、性质的理解程度。

2. 观察学生在解决问题时的思维过程,评价其运用指数函数解决实际问题的能力。

3. 鼓励学生参与课堂讨论,评价其合作交流和探究能力。

七、教学资源1. 教材:高中数学教材相关章节。

2. 课件:制作精美的课件,辅助讲解指数函数的性质。

3. 练习题:设计具有梯度的练习题,巩固学生对指数函数的理解。

4. 实际问题:收集与生活相关的指数问题,激发学生的学习兴趣。

八、教学进度安排1. 第1-2课时:讲解指数函数的定义与表达式,分析单调性和奇偶性。

2. 第3课时:探讨指数函数的图像与性质。

3. 第4课时:分析实际问题中的指数函数应用。

九、课后作业1. 复习指数函数的定义、性质及其图像。

高中数学2.1.2指数函数及其性质教案新人教A版必修1

高中数学2.1.2指数函数及其性质教案新人教A版必修1

指数函数及其性质一、【教学目标】1.知识与技能:理解指数函数的概念,画出具体指数函数图象,能经过观察图象得出两类指数函数图象的地位关系;在理解函数概念的基础上,能运用所学知识解决简单的数学成绩;2.过程与方法:在教学过程中,利用画板作图加深对指数函数的认识,让先生在数学活动中感受数学思想方法之美、领会数学思想方法之重要;3.情感、态度、价值观:经过本节课自主探求研讨式教学,使先生获得研讨函数的规律和方法;培养先生自动学习、合作交流的认识。

二、【学情分析】指数函数式在先生零碎学习了函数概念,基本掌握函数性质的基础上进行研讨的,是先生对函数概念及其性质的第一次运用.教材在之前的学习中给出链各个理论的例子(GDP的增长成绩和碳14的衰减成绩),曾经让先生感遭到了指数函数的理论背景,但这两个例子的背景对于先生来说有些陌生.本节课先设计两个看似简单的成绩,但能经过得到超出想象的结果来激发先生学习新知的兴味和愿望。

三、【教材分析】本节课是《普通高中课程标准实验教科书·数学1》(人教A版)第二章第一节第二课【(2.1.2)《指数函数及其性质》.根据理论情况,将《指数函数及其性质》划分为三节课指数函数及其性质、指数函数及其性质的运用(1)、指数函数及其性质的运用(2)】,这是第一节“指数函数及其性质”.指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及消费理论中有着广泛的运用,所以指数函数应重点研讨。

四、【教学重难点】1.教学重点:指数函数的概念、底数互为倒数的指数函数的图象关于y轴对称。

2.教学难点:底数a的范围讨论,自变量的取值范围和由函数的图象归纳指数函数的性质。

五、【教学方法】自主预习、合作探求、体验践行。

六、 【教学装备】多媒体装备。

七、 【课时安排】第一课时(新知课)。

八、 【教学过程】(一) 创设情境,引出成绩(约3分钟)师:观察图片,你能说出这是甚么吗?生:国际象棋师:这盘象棋隐含了这么一个故事?生:....师:国王为了奖励发明者达依尔特许愿满足他提的任意一个请求,那么达伊尔提出如下要求在棋盘第一格放2粒大米,第二格放4粒大米,第三格放8粒大米,…按这个规律.最初一格棋盘上的大米数就是我要的.请问:最初一格的大米数是多少呢?生:642师:那么国王能否满足他的要求呢?【学情预设】先生会说能.也有说不能的.教师公布数据领会指数函数的爆炸增长,642粒大米是每年全世界粮食产量的1000多倍,明显国王是满足不了他的请求.师:请写出米粒数与棋盘格数的函数关系式.生:{}2,1,2,,64x y x =∈师: “一尺之棰,日取其半,万世不竭.”这句话来自著名的《庄子·天下篇》,哪位同学能用数学言语来表述它的含义?生:。

指数函数图像与性质教学设计精选10篇

指数函数图像与性质教学设计精选10篇

指数函数图像与性质教学设计精选10篇指数函数及其性质教学设计解读篇一《2.1.2 指数函数及其性质(2 》教学设计【学习目标】1.知识与技能①.熟练掌握指数函数概念、图象、性质。

②.掌握指数函数的性质及应用。

③.理解指数函数的简单应用模型, 认识数学与现实生活及其他学科的联系。

2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理。

②培养学生观察问题,分析问题的能力。

③体会具体到一般数学讨论方式及数形结合的思想;3.过程与方法让学生通过观察函数图象,进而研究指数型函数的性质, 主要通过小组讨论、小组展示、及时评价完成整个导学过程【学习重点】熟练掌握指数函数的的概念,图象和性质及指数型增长模型。

【学习难点】用数形结合的方法从具体到一般地探索、指数型函数的图象,性质。

【导学过程】教学内容师生互动设计意图互查每组两名同学互查识记内容教师提问记忆方法,学生回答,其他同学可以相互借鉴。

复习指数函数的图象及性质,为本节课中的内容储备知识基础。

展系吗?→请用一句话概括下图是指数函数2x y =, 3xy =, 0.3x y =, 0.5x y =的图象,请指出它们各自对应的图象。

教师随时点评,引导,欣赏,鼓励。

每组选派一名代表课堂上展示交流成果,组内同学补充。

其他同学可让学生从图象直观的理解指数函数,从变化中找到不变的规律,提高学生的总结归纳能示交流结论:针对展示交流成果提出问题,进一步加深理解。

力教学内容师生互动设计意图展示交流探究二:指数形式的函数定义域、值域:求下列函数的定义域、值域:(121 x y =+,(2y =,(3 1 4 2x y-=.首先提问给出的三个函数是否是指数函数,加深学生对指数函数概念的理解。

学生小组讨论,交流。

每组选派一名代表课堂上展示交流成果,组内同学补充。

其他同学可针对展示交流成果提出问题,进一步加深理解。

所给函数虽然不是指数函数,但是由指数函数得到的复合函数,其性质与指数函数密切相关,通过训练能够培养学生的创造性思维能力。

高中数学《指数函数及其性质》教学案例分析

高中数学《指数函数及其性质》教学案例分析

高中数学《指数函数及其性质》教学案例分析指数函数及其性质是高中数学重要的内容之一,也是学生较难理解的部分。

为了帮助学生更好地掌握指数函数的概念及其性质,我设计了以下的教学案例分析。

【案例分析】案例一:小明家的兔子繁殖问题小明家养了一对兔子,其中一只是雄兔,一只是雌兔。

已知一对兔子的寿命为2年,每对兔子每年可以繁殖一对新兔子,并且新生的兔子从出生后的第2年开始可以繁殖。

现在请你计算一下,小明家从第1年开始,到第n年结束,一共有多少对兔子?将此问题建模为数学问题。

【学生活动】1. 学生自主独立思考并讨论如何建立数学模型。

2. 学生可以根据问题描述,逐年列出兔子的数量的变化情况。

3. 学生可以发现,第1年有1对兔子,第2年有2对兔子,第3年有3对兔子……依次递增。

4. 学生可以推测,第n年结束时的兔子对数为n。

5. 学生运用已学的指数函数的知识,得出兔子对数是以指数形式增长的。

【教师指导】1. 引导学生理解指数函数的概念,指出指数函数是以底数为常数、指数为自变量的函数。

2. 引导学生根据已知条件,建立函数模型:f(n) = 2^(n-1),其中f(n)表示第n年结束时的兔子对数。

3. 引导学生通过计算,验证函数模型的正确性。

4. 引导学生利用求函数零点的方法,求解方程2^(n-1) = 0,引导学生分析零点对应的实际意义。

【案例分析】案例二:小明家的股票投资问题小明有100万元,他把这笔钱全部用于股票投资。

已知该股票每年的收益率为5%,并且收益是连续复利计算的。

请你计算一下,经过n年后,小明的投资金额是多少。

将此问题建模为数学问题。

通过以上案例分析,学生可以通过实际问题来理解指数函数及其性质。

在解决问题的过程中,学生需要运用已学的知识,建立数学模型,并通过计算验证模型的正确性。

学生还需要利用指数函数的性质,解决实际问题。

这样的教学方法既激发了学生的学习兴趣,又提高了学生的问题解决能力。

高中数学《指数函数及其性质》教案

高中数学《指数函数及其性质》教案

高中数学《指数函数及其性质》精品教案一、教学目标:1. 让学生理解指数函数的定义,掌握指数函数的表达式和基本的运算规则。

2. 让学生理解指数函数的性质,包括单调性、奇偶性、周期性等,并能运用这些性质解决实际问题。

3. 培养学生的逻辑思维能力和数学素养,提高学生解决数学问题的能力。

二、教学内容:1. 指数函数的定义与表达式2. 指数函数的运算规则3. 指数函数的单调性4. 指数函数的奇偶性5. 指数函数的周期性三、教学重点与难点:1. 教学重点:指数函数的定义、表达式、运算规则、单调性、奇偶性和周期性。

2. 教学难点:指数函数的单调性和周期性的证明及应用。

四、教学方法:1. 采用问题驱动的教学方法,引导学生主动探究指数函数的性质。

2. 利用多媒体课件,直观展示指数函数的图像,帮助学生理解指数函数的性质。

3. 运用例题讲解,让学生在实践中掌握指数函数的性质及应用。

4. 组织小组讨论,培养学生团队合作精神和沟通能力。

五、教学过程:1. 导入:通过回顾幂函数的知识,引导学生思考指数函数的定义和表达式。

2. 新课讲解:讲解指数函数的定义、表达式和运算规则,通过示例让学生掌握基本的运算方法。

3. 性质探究:引导学生自主探究指数函数的单调性、奇偶性和周期性,并提供相应的证明。

4. 应用练习:布置一些具有代表性的练习题,让学生运用指数函数的性质解决问题。

5. 课堂小结:对本节课的主要内容进行总结,强调指数函数的性质及其应用。

6. 课后作业:布置一些巩固知识的作业,让学生进一步掌握指数函数的性质。

六、教学目标:1. 让学生理解指数函数的图像特征,包括增长速度和渐近行为。

2. 培养学生运用指数函数模型解决实际问题的能力。

3. 提高学生对数学知识的应用能力和创新思维。

七、教学内容:1. 指数函数的图像特征2. 指数函数的增长速度3. 指数函数的渐近行为4. 实际问题中的指数函数模型八、教学重点与难点:1. 教学重点:指数函数的图像特征、增长速度和渐近行为。

高中数学《指数函数及其性质》教学案例分析

高中数学《指数函数及其性质》教学案例分析

高中数学《指数函数及其性质》教学案例分析一、教材内容分析指数函数及其性质是高中数学教学中的重要内容之一,也是学生学习数学的一个难点和重点。

指数函数是以a(a>0且a≠1)为底的幂函数,通常用y=a^x表示。

在高中数学教学中,主要是通过指数函数的性质、指数函数的图象、指数函数的应用等方面来进行教学。

指数函数的性质包括:指数函数的定义、指数函数的增减性、指数函数的奇偶性和周期性、指数函数的图象、指数函数的性质及应用等。

二、教学目标与要求1.了解指数函数的概念,会使用函数的符号表示指数函数;2.掌握指数函数和对数函数的性质;3.掌握指数函数的图象和性质;4.了解指数函数在实际问题中的应用。

三、教学案例设计1.教学策略:引入法指数函数的性质与应用是高中数学的一个重要内容,在教学过程中,可以通过引入法激发学生的学习兴趣。

可以用一组生活中的例子引出指数函数的概念,如细菌的繁殖、资金的增值等,引入指数函数的概念,然后引导学生探索指数函数的性质和图象。

2.教学方法:归纳法在教学指数函数的性质和图象时,可以采用归纳法,通过具体例子让学生总结并归纳出指数函数的性质和图象。

比如通过具体的函数关系让学生找出指数函数的增减性、奇偶性、周期性等性质,并用图象来加深学生的理解。

3.教学案例例:已知函数为y=2^x,讨论其性质并画出其图象。

解:讨论指数函数的增减性。

当x1<x2时,2^x1<2^x2;所以y=2^x是增函数。

讨论指数函数的奇偶性。

令y=f(-x),也就是f(-x)=2^(-x)=1/(2^x)。

因为2^x永远是正数,所以当x取相反数时,y的值不变,所以y=2^x是奇函数。

讨论指数函数的周期性。

因为y=2^x没有周期,所以y=2^x不是周期函数。

画出函数y=2^x的图象。

我们可以列出一张x和y的对应关系表格,画出对应的图象,就可以得到y=2^x的图象。

通过这个例子,学生可以对指数函数的增减性、奇偶性、周期性有一个直观的认识,并掌握画函数图象的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题 : § 2.1.2指数函数及其性质
一、教学设计思路:
1、函数及其图像在高中数学中占有重要的位置,如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图像语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望和好奇心。

我们知道:函数的表示法有3种:列表、图像、解析法,以往函数的学习大多只关注图像的作用,这其实只借助了图像的直观性。

只是从一个角度看函数是片面的。

本节课,力图让学生从不同角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种的研究方法,以便迁移到其他函数的研究中去。

2、本节课我努力做到:①在课堂活动中通过同伴合作,自主探究培养学生积极主动、勇于探索的学习方式;②在教学过程中努力做到生生对话,师生对话,且在对话之后重视体会、总结、反思、力图在培养和发展学生数学素养的同时让学生掌握学习研究数学的方法;
③通过课堂教学活动向学生渗透数学思想方法。

二、教案
三、教学点评:。

相关文档
最新文档