勾股定理与弦图

合集下载

模型46 勾股定理之蚂蚁行程、弦图模型(解析版)

模型46 勾股定理之蚂蚁行程、弦图模型(解析版)

1.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.例.如图所示,有一正方体纸盒,在点C1处有一只小虫,它要爬到点A吃食物.应该沿着怎样的路线才能使行程最短?解:如图,把侧面或上面展开与正面组成一矩形,连接AC1,则AC1就是行程最短的路线.2.赵爽弦图模型我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图1),这个正方形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a、b与斜边c满足关系式a2+b2=c2.称为勾股定理.把这四个全等的直角三角形拼成了另一个大的正方形(如图2),也能验证这个结论证明:由图2得,大正方形面积=4×=(a+b)2,整理得b2+c2+2ab=2ab+c2,∴c2=a2+b2,即直角三角形两直角边的平方和等于斜边的平方.例题精讲考点一:行程最短问题【例1】.如图,有一个圆柱,它的高等于16cm,底面半径等于4cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的最短路程是20 cm.(π取3)解:将圆柱体展开,连接A、B,根据两点之间线段最短,根据题意可得:AC是圆周的一半,∴AC=×2×4π=12,∴AB==20cm.变式训练【变式1-1】.如图,圆锥的底面圆的半径为10cm,母线长为40cm,C为母线PA的中点,一只蚂蚁欲从点B处沿圆锥的侧面爬到点C处,则它爬行的最短距离是20cm.解:由题意知,底面圆的直径AB=20,故底面周长等于20π设圆锥的侧面展开后的扇形圆心角为n°∵根据底面周长等于展开后扇形的弧长得,20π=,解得n=90°∴展开图中扇形圆心角=90°,作CE⊥PB于E,则CE=PE=10,BE=40﹣10,∵根据勾股定理求得它爬行的最短距离是=20cm∴蚂蚁爬行的最短距离为20cm【变式1-2】.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是15cm.解:由题意可得,当展开前面和右面时,最短路线长是:==15(cm);当展开前面和上面时,最短路线长是:==7(cm);当展开左面和上面时,最短路线长是:=(cm);∵15<7<,∴一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是15cm,故答案为:15.【变式1-3】.如图是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A,B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是 2.5米.解:三级台阶平面展开图为长方形,长为2,宽为(0.2+0.3)×3,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=22+[(0.2+0.3)×3]2=2.52,解得x=2.5.考点二:弦图模型的应用【例2】.如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形EFGH拼成的大正方形ABCD.若AE=5,AB=13,则中间小正方形EFGH的面积是49.解:∵AE=5,AB=13,∴BF=AE=5,在Rt△ABF中,AF==12,∴小正方形的边长EF=12﹣5=7,∴小正方形EFGH的面积为7×7=49.故答案为:49.变式训练【变式2-1】.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=2.5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD的周长是15,则这个风车的外围周长是38.解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则x2=4y2+2.52,∵△BCD的周长是15,∴x+2y+2.5=15则x=6.5,y=3.∴这个风车的外围周长是:4(x+y)=4×9.5=38.故答案是:38.【变式2-2】.如图,在弦图中,正方形ABCD的对角线AC与正方形EFHI的对角线EH交于点K,对角线AC交正方形EFHI于G,J两点,记△GKH面积为S1,△JIC面积为S2,若AE=12,CD=4,则S1+S2的值为16.解:由题意可得,AF=CI,∠AFG=∠CIJ=90°,FH∥EI,∵∠AGF=∠HGK,∠IJC=∠KJE,∵FH∥EI,∴∠HGK=∠KJE,∴∠AGF=∠IJC,在△AFG和△CIJ中,,∴△AFG≌△CIJ(AAS),∴FG=IJ,∵四边形EFHI为正方形,∴EI﹣IJ=FH﹣FG,即HG=EJ,在△GHK和△JEK中,,∴△GHK≌△JEK(AAS),∴HK=EK,即点K为正方形EFHI的中心,如图,过点K作KM⊥FH于点M,∵AE=12,CD=4,∴BF=12,AD=,在Rt△ADE中,由勾股定理得DE==4,∴AF=DE=4,EF=AE﹣AF=12﹣4=8,则FH=8,KM=4,设GH=a,FG=b,则a+b=FH=8,∴=,==2b,∴S1+S2=2a+2b=2(a+b)=16.故答案为:16.1.如图所示,一只小蚂蚁从棱长为1的正方体的顶点A出发,经过每个面的中心点后,又回到A点,蚂蚁爬行最短程S满足()A.5<S≤6B.6<S≤7C.7<S≤8D.8<S≤9解:正方体展开图形为:则蚂蚁爬行最短程S=5+=5+.即6<S≤7.故选:B.2.如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,图中的四个直角三角形是全等的,如果大正方形ABCD的面积是小正方形EFGH面积的13倍,那么tan ∠ADE的值为()A.B.C.D.解:设小正方形EFGH面积是a2,则大正方形ABCD的面积是13a2,∴小正方形EFGH边长是a,则大正方形ABCD的边长是a,∵图中的四个直角三角形是全等的,∴AE=DH,设AE=DH=x,在Rt△AED中,AD2=AE2+DE2,即13a2=x2+(x+a)2解得:x1=2a,x2=﹣3a(舍去),∴AE=2a,DE=3a,∴tan∠ADE==,故选:C.3.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是()A.12B.15C.20D.30解:设每个小直角三角形的面积为m,则S1=4m+S2,S3=S2﹣4m,因为S1+S2+S3=60,所以4m+S2+S2+S2﹣4m=60,即3S2=60,解得S2=20.故选:C.4.四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为4,大正方形面积为74,直角三角形中较小的锐角为θ,那么tanθ的值是()A.B.C.D.解:由已知条件可知,小正方形的边长为2,大正方形的边长为.设直角三角形中较小边长为x,则有(x+2)2+x2=()2,解得x=5.则较长边的边长为x+2=5+2=7.故tanθ==.故选:B.5.赵爽弦图由四个全等的直角三角形所组成,形成一个大正方形,中间是一个小正方形(如图所示).某次课后服务拓展学习上,小浔绘制了一幅赵爽弦图,她将EG延长交CD于点I.记小正方形EFGH的面积为S1,大正方形ABCD的面积为S2,若DI=2,CI=1,S2=5S1,则GI的值是()A.B.C.D.解:如图,连接DG,∵赵爽弦图由四个全等的直角三角形所组成,形成一个大正方形,中间是一个小正方形,∴AE=BF=CG=DH,AF=BG=CH=DE,CH⊥DE,∵DI=2,CI=1,∴CD=DI+CI=2+1=3,∵大正方形ABCD的面积为S2,∴S2=CD2=32=9,又∵小正方形EFGH的面积为S1,S2=5S1,∴S1=,∴EF=FG=GH=HE=,∵将EG延长交CD于点I,∴∠HGE=45°,在Rt△EHG中,由勾股定理得:EG==,设AE=BF=CG=DH=x,则AF=BG=CH=DE=x+,在Rt△CDH中,由勾股定理得:CD2=DH2+CH2,即9=x2+(x+)2,解得:x1=,x2=﹣(不合题意,舍去),即AE=BF=CG=DH=x=,∴DH=EH=,∴CH垂直平分ED,∴DG=EG=,∴∠DGH=∠HGE=45°,∴∠DGE=45°+45°=90°,∴∠DGI=90°,在Rt△DGI中,由勾股定理得:GI===,故选:A.6.如图,一只蚂蚁沿着图示的路线从圆柱高AA1的端点A到达A1,若圆柱底面半径为,高为5,则蚂蚁爬行的最短距离为13.解:因为圆柱底面圆的周长为2π×=12,高为5,所以将侧面展开为一长为12,宽为5的矩形,根据勾股定理,对角线长为=13.故蚂蚁爬行的最短距离为13.7.如图,底面半径为1,母线长为4的圆锥,一只小蚂蚁若从A点出发,绕侧面一周又回到A点,它爬行的最短路线长是.解:由题意知,底面圆的直径为2,故底面周长等于2π.设圆锥的侧面展开后的扇形圆心角为n°,根据底面周长等于展开后扇形的弧长得,2π=,解得n=90°,所以展开图中圆心角为90°,根据勾股定理求得到点A的最短的路线长是:==4.8.将四个全等的直角三角形分别拼成正方形(如图1,2),边长分别为6和2.若以一个直角三角形的两条直角边为边向外作正方形(如图3),其面积分别为S1,S2.则S1﹣S2=12.解:设四个全等的直角三角形的两条直角边分别为a,b(a>b),根据图1得:a+b=6,根据图2得:a﹣b=2,联立解得:,∴S1=16,S2=4,则S1﹣S2=12.故答案为:12.9.如图1,四个全等的直角三角形围成一个大正方形,中间是一个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.连接四条线段得到如图2的新的图案,如果图1中的直角三角形的长直角边为5,短直角边为3,图2中阴影部分的面积为S,那么S的值为16.解:由题意作出如下图,得AC=,BD=2,AB=CD,△ABD是直角三角形,则大正方形面积=AC2=34,△ADC面积=(5×3﹣2×3)=4.5,阴影部分的面积S=34﹣4×4.5=16,故答案为:16.10.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用2.5秒钟.解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB==cm;(2)展开底面右面由勾股定理得AB==5cm;所以最短路径长为5cm,用时最少:5÷2=2.5秒.11.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形E 的边长为7cm,则图中五个正方形A、B、C、D、E的面积和为98cm2.解:设正方形A、B、C、D的边长分别是a、b、c、d,则正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又∵a2+b2=x2,c2+d2=y2,∴正方形A、B、C、D、E的面积和=(a2+b2)+(c2+d2)+72=x2+y2+72=72+72=98(cm2).即正方形A,B,C,D、E的面积的和为98cm2.故答案为:98.12.我国汉代数学家赵爽为了证明勾股定理,创制了一幅弦图,后人称其为赵爽弦图(如图1).图2为小明同学根据弦图思路设计的,在正方形ABCD中,以点B为圆心,AB为半径作,再以CD为直径作半圆交于点E,若边长AB=10,则△CDE的面积为20.解:如图,取CD的中点F,连接BF、BE、DE、EF,由题意可得,FE=FC,BE=BC,∴BF是EC的垂直平分线,∴∠FBC+∠BCE=90°,∵∠BCD=90°,∴∠DCE+∠BCE=90°,∴∠FBC=∠DCE,又∵∠BCF=∠CED=90°,∴△BCF∽△CED,∴==,∵BC=CD=AB=10,CF=5,∠BCF=90°,∴BF===5,∴==,解得:CE=4,ED=2,=×CE×DE=×4×2=20,∴S△CDE故答案为:20.13.图1是一个勾股定理演示教具的正面示意图,当它倒过来时,大正方形中的全部墨水恰能注满两个小正方形.王老师有一个内长为11寸,内宽为9寸的木质盒子(如图2).现要自制一个这样的教具(由三个正方形和一个直角三角形组成),使得教具恰好摆入这个盒子中,以便保护和携带(如图3所示,A,B,C,D,E五点均紧贴盒子边缘,教具的厚度等于木盒的内高).此时盒子的空间利用率为.解:如图,过点A作AM⊥EG的延长线于点M,过点F作FR⊥GH于点R,过点B作BN⊥GH,过点F作FN∥GH,延长GH交CK于K,∵四边形AGFL、DEGH、BCHF均为正方形,∴AG=FG,BF=FH=CH,EG=GH,∠AGF=∠BFH=90°=∠AMG=∠FRG=∠BNF =∠CKH,∴∠AGM+∠FGM=∠FGR+∠FGM,∴∠AGM=∠FGR,∴△AGM≌△FGR(AAS),∴AM=FR,GM=GR,同理,△BFN≌△HFR≌△CHK(AAS),∴FR=FN=HK=AM,BN=HR,设AM=x,BN=y,AM=FR=z,则FR=FN=HK=AM=x,BN=HR=y,由勾股定理得:FH2=x2+y2,FG2=x2+z2,GH=y+z,根据题意,得:FH2+FG2=GH2,∴x2+z2+x2+y2=(y+z)2,∴x2=yz①,∵AM+GR+RH+HK=9,BN+FR+EG=11,∴2x+y+z=9②,x+2y+z=11③,②﹣③,得:x﹣y=﹣2,即y=x+2④,②×2﹣③,得:3x+z=7,即z=7﹣3x⑤,将④⑤代入①,得:x2=(x+2)(7﹣3x),解得:x1=2,x2=﹣(舍去),∴y=4,z=1,∴GH=5,FG2=5,FH2=20,∴勾股定理演示教具的正面面积为:S=25+5+20+××2=55,∵教具的厚度等于木盒的内高,∴盒子的空间利用率为:=,故答案为:.14.我国古代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由4个全等的直角三角形与1个小正方形拼成的一个大正方形,如图,若拼成的大正方形为正方形ABCD,面积为9,中间的小正方形为正方形EFGH,面积为2,连接AC,交BG于点P,交DE﹣S△CGP=,③DH+HC=4,④HC=2+,于点M,①△CGP≌△AEM,②S△AFP以上说法正确的是①③④.(填写序号)解:∵Rt△BCG≌Rt△DAE,∴CG=AE,∠CGP=∠AEM,∵CH∥AF.∴∠GCP=∠MAE,∴△CGP≌△AEM(ASA),=S△AEM,CP=ME,∴S△CGP﹣S△CGP=S四边形MEFP∴S△AFP∵HE=GF,∴HM=PF,=S四边形MHGP=S正方形EFGH=1,∴S四边形MEFP﹣S△CGP=1,∴S△AFP∵DH2+CH2=DC2=9,∴(DH+CH)2=DH2+CH2+2DH•CH=9+2DH•CH,∵CH﹣DH=HG,∴(CH﹣DH)2=HG2=2,∴CH2+DH2﹣2DH•CH=2,∴2DH•CH=7,∴(DH+CH)2=9+7=16,∴DH+CH=4,∵CH﹣DH=,∴HC==2+,故答案为:①③④.15.一个长方体盒子,它的长是12dm,宽是4dm,高是3dm,(1)请问:长为12.5dm的铁棒能放进去吗?(1)如果有﹣只蚂蚁要想从D处爬到C处,求爬行的最短路程.解:(1)如图1,连接BD,∵AD=12,AB=4,∴BD2=AD2+AB2=122+42=160,∴CD===13(dm).∵13dm>12.5dm,∴长为12.5dm的铁棒能放进去;(2)如图2所示,CD==dm.如图3所示,CD==dm,如图4所示,CD==dm,∵>>,∴爬行的最短路程是dm.16.如图①,美丽的弦图,蕴含着四个全等的直角三角形.(1)如图①弦图中包含了一大,一小两个正方形,已知每个直角三角形较长的直角边为a.较短的直角边为b,斜边长为c,可以验证勾股定理;(2)如图②,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1、2、S3,若S1+S2+S3=16,则S2=.(1)证明:,另一方面,即a2﹣2ab+b2=c2﹣2ab,则a2+b2=c2;(2)解:设正方形MNKT的面积为x,八个全等的直角三角形的面积均为y,∵S1+S2+S3=16,∴S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=12y+3x=16,∴4y+x=,∴S2=4y+x=.故答案为:.17.如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是:大正方形的面积有两种求法,一种是等于c2,另一种是等于四个直角三角形与一个小正方形的面积之和,即,从而得到等式c2=,化简便得结论a2+b2=c2.这里用两种求法来表示同一个量从而得到等式或方程的方法,我们称之为“双求法”.现在,请你用“双求法”解决下面两个问题(1)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=3,BC=4,求CD的长度.(2)如图3,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.解:(1)在Rt△ABC中,由面积的两种算法可得:,解得:CD=.(2)在Rt△ABD中AD2=42﹣x2=16﹣x2,在Rt△ADC中AD2=52﹣(6﹣x)2=﹣11+12x﹣x2,所以16﹣x2=﹣11+12x﹣x2,解得=.。

小学勾股定理与弦图基础知识点

小学勾股定理与弦图基础知识点

小学勾股定理与弦图基础知识点
 小学勾股定理与弦图基础知识点
(一)勾股定理
1、勾股定理
在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理。

2、勾股定理的证明
如图,从两个大小相等的正方形中(边长都是a+b),减去4块一样的直角三角形后(直角三角形直角边为a、b,斜边为c),剩下的面积应该是相等的,所以得到:在直角三角形中,两个直角边和斜边满足一下数量关系
a[sup]2[/sup]+b[sup]2[/sup]=c[sup]2[/sup](其中a、b为直角边,c为斜边)。

勾股定理与弦图

勾股定理与弦图

印发类通知范例范文尊敬的各位老师、同学们:大家好!我是XXX学校的XXX,今天我代表学校向大家发出一项重要通知。

鉴于我们学校即将迎来即将到来的XXX活动,为使活动顺利进行,加强组织和管理,我们特向全校师生发布以下通知:一、活动背景及目的XX活动是我校的重要学习与交流活动,旨在倡导团结友爱、共享知识的精神,为广大同学提供一个展示才艺、交流经验的平台。

二、活动时间及地点时间:XX年XX月XX日(星期X)下午X点至X点地点:校内礼堂三、活动内容本次活动由以下项目组成:1.文艺表演:各班级准备一台精彩绝伦的文艺表演,时长不超过X分钟,内容包括歌曲、舞蹈、小品等。

各班级可根据自身特点及兴趣进行选择,创造性展示。

2.才艺展示:学校将组织才艺展示活动,邀请同学们展示自己的特长,例如:乐器演奏、书法、绘画等。

同时,活动将邀请专业人士进行现场点评和指导。

四、组织准备1.各班级需自行组织并策划文艺表演节目,并于X年X月X日前报备给活动筹备组。

届时,请提交节目名称、表演形式、参与人员名单等信息。

2.各班级参赛人员需提前练习并做好准备工作,确保表演达到优秀水平。

3.各班级参赛人员在活动当日需准时到达活动现场,活动前请将音乐、道具等需要用到的物品统一交给工作人员。

五、展示规范1.文艺表演时长不得超过指定时间,否则将进行扣分处理。

2.参与才艺展示的同学需提前将需要用到的器材和道具准备齐全,确保展示质量。

六、奖惩机制1.文艺表演将评选“最佳表演奖”、“最具创意奖”等奖项,并为获奖班级颁发奖杯及证书。

2.才艺展示将评选“最佳才艺奖”、“最佳表现奖”等奖项,并为获奖同学颁发奖状。

七、注意事项1.参赛同学需尊重他人,注意礼仪,文艺表演内容不得含有低级趣味、不健康等内容。

2.活动过程中,大家要保持场内秩序,听从工作人员安排和指示。

3.参与活动的同学请保持手机静音,避免影响他人观看。

最后,希望每位同学能够充分准备,尽情展示自己的才艺,共同度过一个难忘的活动体验。

弦图证明勾股定理

弦图证明勾股定理

弦图证明勾股定理勾股定理(又译作“勾股论”或“勾股弦”),是古希腊数学家勾股在公元前三世纪时发现的三角形的一个定理:在直角三角形中,斜边的平方等于两条直边的平方之和。

:两条直边的平方等于斜边的平方。

勾股定理可以证明有限多边形的公式以及圆形的面积与周长的关系等,是几何学的重要定理,也是三角形讨论的基础。

在上述定理称之为“勾股论”之前,有关数学家都是用弦图来证明勾股定理的,因此,有关勾股定理的证明也被称之为“弦图证明勾股定理”。

弦图证明勾股定理,是几何中最为强有力的证据之一,具有普遍性、精确度和易于演示的优点。

该证明的基本流程如下:首先,将一个正方形的边长放缩到其中的一条直边,就能得到一个直角三角形;其次,将正方形的边长复制到另外一条直边,从而得到另外一个直角三角形;最后,将两个直角三角形的两条直角相连合并,就能得到一个新的正方形,这正是斜边的平方等于两条直边的平方之和的勾股定理。

以上就是弦图证明勾股定理的基本流程,从而可以以图形的形式证明勾股定理,示范性更强而又更加易于理解。

弦图证明勾股定理可以证明有限多边形的公式,并能够证明圆形的面积和周长的关系。

这种特殊的弦图,称之为“等腰三角形弦图”。

其弦图的基本组成是一个等腰三角形的弦图。

在等腰三角形的弦图中,一条从外部接触点指向顶点的弦图是“等腰三角形弦图”的特殊形式。

通过改变三角形的边长,可以得出不同的等腰三角形,并将它们组合成一个正方形。

由于这种组合在改变边长时所形成的正方形是斜边的平方也等于两条直边的平方之和的勾股定理的定理,因此,这种组合方式可以用来证明勾股定理。

经过上述分析,我们可以清楚地看到,弦图是一种有着极大几何意义的图形,它可以用来证明各种形状的面积以及周平等两条边的公式,并且可以用它来证明勾股定理,它拥有普遍性、精确度和易于演示的几何学特性。

总之,弦图证明勾股定理,是几何学中最为强有力的证据之一,具有普遍性、精确度和易于演示的优点。

它不仅可以用来证明一些有限形状的面积公式,还可以证明勾股定理。

弦图证明勾股定理

弦图证明勾股定理

弦图证明勾股定理
勾股定理是三角函数学中最著名的定理,它由古希腊数学家勾股提出,也就是说,在一个直角三角形中,斜边的平方等于它的两条直边的平方之和。

以下用弦图证明这一定理,以便更加清楚地理解它。

弦图是一种用来证明勾股定理的图形。

根据图形中等边三角形的定义,要证明勾股定理是简单的,只需要把三角形内的斜边视为弦图的弦,其余两条边就构成了弦图的圆弧。

然后,根据文献的内容,勾股定理可以用以下式子表达:
斜边的平方=两条直边的平方之和。

弦图证明勾股定理的方法很简单,只需要把直边的平方根取出来,然后把它们加在一起,就得到了斜边的平方根。

例如,有一个等边三角形,它有三条边,a,b,c;a和b是直边,c是斜边,根据勾股定理,c的平方等于a的平方加b的平方,即:
c^2 = a^2 + b^2
拿a=3,b=4为例,根据勾股定理,c = 5,因此:
c^2 = 3^2 + 4^2
= 9 + 16
= 25
根据勾股定理,c的平方等于25,可以得出c =25 = 5;证明了勾股定理是正确的。

从以上的讨论可以看出,勾股定理很容易证明,用弦图的方式更容易理解,而且它也可以用于更多的三角函数学中的问题。

此外,弦
图也可以用于证明其它的定理,如抛物线的定义,以及余弦定理,正弦定理等等。

总之,弦图是一种极为有效的图形计算方式,它使用简单、耐用,它可以很好地提供解决实际问题的思路,有助于更好地理解数学。

专题材料-第3讲:弦图专题-讲义

专题材料-第3讲:弦图专题-讲义

弦图专题弦图弦图1.利用弦图或其衍生图来解决数学问题;2.弦图相关题型中,掌握作辅助线构造图形的方法。

1.勾股定理的应用;2.外弦图;3.内线弦图。

赵爽,又名婴,字君卿。

中国古代数学家、天文学家。

他的主要贡献是约在222年深入研究了《周髀算经》,为该书写了序言,并作了详细注释。

其中一段530余字的“勾股圆方图”注文是数学史上极有价值的文献。

它记述了勾股定理的理论证明,将勾股定理表述为:“勾股各自乘,并之,为弦实。

开方除之,即弦。

”证明方法叙述为:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实。

”勾股定理的利用勾股定理的证明方法是多样的,而它们的共性是利用图形的面积证明。

在解题的过程中灵活的应用勾股定理:直角三角形↔三角形两直角边的平方和等于斜边的平方。

例1.(1)图(a)是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图(b)所示的“数学风车”,则这个风车的外围周长是______。

(2)如图(c)所示,直线L 上有三个正方形a,b,c,若a,c 的面积是5和11,则b 的面积为_________。

练习1.勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,︒=∠90BAC ,3=AB ,4=AC ,点D、E、F、G、H、I都在长方形KLMJ 的边上,则长方形KLMJ 的面积为()A.90 B.100 C.110 D.121方法1:直接利用勾股定理;方法2:把勾股定理和正方形面积联系到一起。

例2.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH 的长为()A.538 B.22 C.514D.25练习1.如图,正方形ABCD 的边长为2,其面积标记为1S ,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为2S ,……,按照此规律继续下去,则9S 的值为()。

小学奥数 勾股定理 知识点+例题+练习 (分类全面)

勾股定理:直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。

也就是说,设直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2o勾膻定理勾股数★满足关系a2+b2=c2的3个正整数a,b,c称为勾股数。

★常见的勾股数有:①3,4,5;②6,8,10;③8,15,17:④7,24,25;⑤5,12,13;⑥9,12,15…注意:①3,4,5既是勾股数,又是三个连续整数,它们非常特殊,不要认为三个连续整数都是勾股数;②每组勾股数的相同倍数也是勾股数;(如:3,4,5;6,8,10;9,12,15)③勾股数必须都是正整数,(如:0.3,0.4,0.5都是小数,因而不是勾股数)3米例2、一棵大树在离地面3米处折断,树的顶端落在离树的底部4米处,那么这棵树折断之前的高度是多少米?巩固、如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要多少米?巩固、飞机在空中水平飞行,某一时刻刚好飞到一个站着不动的女孩头顶正上方4000m 处,过了20秒,飞机距离这个女孩头顶5000m,则飞机速度是多少?例3、暑假中,小明和同学们到某海岛去探宝旅游,按照如图所示的路线探宝.他们登陆后先往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北走6km处往东一拐,仅走1km就找到了宝藏,则登陆点到埋宝藏点的直线距离为km.丄埋宝藏点632登陆点8巩固、轮船从海中岛A出发,先向北航行9km,又往西航行9km,由于遇到冰山,只好又向南航行4km,再向西航行6km,再折向北航行2km,最后又向西航行9km,到达目的地B,求AB 两地间的距离.例4、一个圆桶,底面直径为24cm,高32cm,则桶内所能容下的最长木棒为多少厘米?如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两相对的端点,A点有一只昆虫想到B点去吃可口的食物,则昆虫沿着台阶爬到B点的最短路程是分米?B例5、下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是?巩固、如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积的和是cm2.巩固、如图所示,阴影部分是一个正方形,则此正方形的面积为?例6、如图,已知直角三角形两直角边BC,AC的长分别为3cm和4cm,那么CD有多长?巩固、三角形的三边长分别为6,&10,它的最短边上的高为,最长边上的高为巩固、若直角三角形的三边长分别为X,6,8,则X2=例7、等腰三角形ABC的腰长为10,底边上的高为6,则底边的长为多少?巩固、如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是。

五年级 第一讲勾股定理(超一)

第一讲 勾股定理与弦图一.知识精讲勾股定理:直角三角形中的两直角边平方后的和等于斜边的平方.注:勾——最短的边、股——较长的直角边、弦——斜边。

勾股定理实际上包含两方面的内容:○1如果一个三角形是直角三角形,那么两条直角边的平方之和等于斜边的平方; ② 如果一个三角形有两边的平方和等于第三边的平方,那么它一定是直角三角形.勾股数:满足a 2 +b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。

弦图:外弦图 内弦图二.例题精讲【例题1】(1)求下列体形的周长与面积。

GFEH(2)一块木板如图所示,已知AB=3,BC=4,DC=13,AD=12,木板的面积为。

【例题2】(1)如图在美丽的毕达哥拉斯树中,三角形都是直角三角形,四边形都是正方形,已知所有的正方形面积总共是80,那么最大的正方形面积是多少?(2)下图是由一个直角边都是1的直角三角形向外作直角三角形得到,形成一个美丽的螺旋图案,第8个直角三角形的斜边是多少?如果一直螺旋下去,第几个直角三角形斜边长是100?【例题3】(1)一根竹竿AB紧靠在竖直的墙上,竹竿滑下来,顶端A下滑了0.3米,底端B向左滑了1.5米,那么竹竿有米。

(2)如图,三角形ABC中,AB=9,AC=11,BC=10,过点A作BC边的高AD,求BD,DC的长。

【例题4】下图是一个长为16,宽为10的长方形,沿着图中虚线的位置将这个长方形折叠成一个等腰梯形,则这个梯形的面积是。

【例题5】(1)如图,梯形ABCD中,对角线AC与BD互相垂直。

AB平行于CD,又AB=3,AC=9,BD=12.试求梯形DC的面积.(2)已知梯形的两条对角线互相垂直,其中对角线BD为15厘米,梯形的高DE为12厘米,此梯形的面积为多少平方厘米?【例题6】(1)如图,一个边长为17厘米的正方形木板斜靠在墙角上(木板厚度不计)。

一、弦图与勾股定理的证明

一、弦图与勾股定理的证明【例】图1和图2中的三角形都是直角三角形,四边形都是正方形,利用图1或图2两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为 ,该定理的结论其数学表达是 。

其中图1是中国数学史上有名的 (数学家的名字)弦图,又叫勾股圆方图。

请简单写出两个图的证明过程。

【解析】勾股定理,c 2=a 2+b 2;赵爽(中国数学家,主要贡献是深入研究了《周髀算经》,涉及了勾股定理的理论和证明。

)证明:大正方形面积=四个全等直角三角形面积+中间小正方形面积。

图1:22224()2abc b a a b =⨯+-=+ 图2:22()42ab a b c +=⨯+,即a 2+b 2= c 2。

二、勾股定理如果直角三角形的两直角边长分别为a ,b ,斜边为c ,那么a 2+b 2=c 2。

即直角三角形两直角边的平方和等于斜边的平方。

∵∠C =90°, ∴ a 2+b 2=c 2勾股定理(一)三、常用勾股数1.整数边:(3,4,5);(6,8,10);(5,12,13);(7,24,25);(8,15,17);(9,40,41)2.含特殊角:(30°,60°,90°)的三角形三边之比为1∶3∶2含特殊角:(45°,45°,90°)的三角形三边之比为1∶1∶2 3.如果(a,b,c)是一组勾股数,那么(ak,bk,ck)也是一组勾股数(k为正数)。

【例1】填空1.如图,在△ABC中, ∠C=90°,⑴若a=2,b=3则c=_____。

⑵若a=5,c=13则b=_____。

⑶若a∶c=3∶5且c=20则b=_____。

⑷若∠A=30°,a=1则c=_____,b=_____。

⑸若∠B=60°,b=3则a=_____,c=_____。

2.(2009年湖南长沙)如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5cm,BC =6cm,则AD=______cm。

神奇的勾股圆方图(讲义)

*神奇的勾股圆方图(讲义)➢ 知识点睛1. 勾股定理:在直角三角形中,两条直角边a 、b 的平方和等于斜边c 的平方,即222c b a =+。

2. 赵爽的“勾股圆方图”(又称为赵爽“弦图”),即外弦图。

如下图以a 、b 为直角边(b >a ),以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于12ab 。

把这四个直角三角形拼成如图所示形状,四边形ABCD 是一个边长为c 的正方形,所以四边形EFGH 是一个边长为b -a 的正方形。

3. 内弦图如下图,以a 、b 为直角边,以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于12ab 。

把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上。

四边形EFGH 是一个边长为c 的正方形,四边形ABCD 是一个边长为a +b 的正方形。

➢ 精讲精练【板块一】认识弦图经典例题1(1)由四个完全相同的长方形拼出下图1,大正方形的面积是小正方形面积的______倍。

(2)如下图连接图1中每个长方形的一条对角线,形成图2的虚线正方形ABCD 与中间最小的正方形的面积差为多少?图3图2图132AB CD DC B A 23练一练同样大小的长方形小纸片摆成如图所示的图形。

已知小纸片的宽是12厘米,求阴影部分的总面积。

经典例题2四个完全相同的长方形拼成右图,大正方形的面积是100平方分米,小正方形的面积是16平方分米,求每个长方形的面积是多少?长方形的短边是多少分米?16练一练如图,4个相同的长方形和1个小正方形拼成一个大正方形,已知其中小正方形的面积为4平方厘米,大正方形的面积为400平方厘米,则其中长方形的长为______厘米,宽为______厘米。

第19题【板块二】弦图计算经典例题3请只用不带刻度的直尺和铅笔在右图网格(每格边长为1)中画出一个面积为10的正方形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课前热身
神奇的无字证明
求下面各三角形中未知边的长度。

有一个直角边为1和1的直角三角形,以它的斜边和1为直角边,向外作另一个直角三角形。

重复以上操作,如下图。

求第1023个直角三角形的斜边长度是_____。

第_____个直角三角形的斜边长度是17。

勾股定理与弦图
(★★)
(★★★
(★★★
根据图中所给的条件,求梯形ABCD的面积。

(★★★
如图,请根据所给的条件,计算出大梯形的面积(单位:厘米)。

(★★★
如图,在四边形ABCD中,AB=30 ,AD=48,BC=14 ,CD=40,∠ADB+∠DBC=90°。

请问:四边形ABCD的面积是多少
弦图
⑴大正方形边长为:a+b
⑵小正方形边长为:a-b
⑶中正方形边长为:c
(★★★
一个直角三角形的斜边长8厘米,两个直角边的长度差为2厘米,求这个三角形的面积
(★★★★
从一块正方形玻璃上裁下宽为16分米的一长方形条后,剩下的那块长方形的面积为336平方分米,原来正方形的面积是多少平方分米
本讲总结
重点例题:例1,例2,例6,例7。

相关文档
最新文档