电子技术基础--第三章--场效应管及其放大电路

合集下载

第三章 多级放大电路

第三章  多级放大电路
U CEQ 2 = V CC I EQ 2 R 6
(2)求解 A u ,Ri和Ro.
为了求出第一级的电压放大倍数A 为了求出第一级的电压放大倍数 u1,首先应求出其负载 电阻,即第二级的输入电阻: 电阻,即第二级的输入电阻:
R i 2 = R 5 // [r be 2 + (1 + β )( R 6 // R L ) ]
【 】
内容 回顾
场效应管同样有三个极; 场效应管同样有三个极;其功能和三极管对应 相似;只是三极管用电流控制电流, 相似;只是三极管用电流控制电流,场效应管用电 压控制电流. 压控制电流. 场效应管放大电路的组成原则和三极管放大 电路相似, 电路相似,即: 场效应管必须工作在恒流区.( .(电路的静态工 1,场效应管必须工作在恒流区.(电路的静态工 作点合适) 作点合适) 交流信号能顺畅传输.(交流通路合理) .(交流通路合理 2,交流信号能顺畅传输.(交流通路合理) 场效应管放大电路仅要求了解即可. 场效应管放大电路仅要求了解即可.
2,交流信号在放大电路中能顺畅传输. ,交流信号在放大电路中能顺畅传输.
3. 输入信号能通过输入回路作用于放大管. 输入信号能通过输入回路作用于放大管. 4. 输出回路将变化的电流作用于负载. 输出回路将变化的电流作用于负载.
当ui=0时,称放大电路处于静态. 时
【 】
内容 回顾
(IBQ,UBEQ) ( ICQ,UCEQ )
Au =
(1+ β ) Re Rb + rbe + (1+ β ) Re
Au =
βRc r + (1 + β ) R e
be
R i = R b + rbe + (1 + β ) R e

场效应管原理及放大电路

场效应管原理及放大电路

图6-47 分压式偏置电路
/info/flashshow/0079614.html(第 8/10 页)2010-9-6 19:00:12
场效应管原理及放大电路
图6-47为分压式偏置电路,RG1和RG2为分压电阻。 栅-源电压为(电阻RG中并无电流通过) (6-24) 式中,UG为栅极电位。对N沟道耗尽型场效应管,UGS为负值,所以RSID>UG;对N沟道增强型场效应管,UGS为正值,所以RSID<UG。 当有信号输入时,我们对放大电路进行动态分析,主要是分析它的电压放大倍数及输入电阻与输出电阻。图6-48是图6-47所示分压式偏置放大电路的交流通 路,设输入信号为正弦量。 在图6-47的分压式偏置电路中,假如RG= 0,则放大电路的输入电阻为
故其输出电阻是很高的。在共源极放大电路中,漏极电阻RD和场效应管的输出电阻rDS是并联的,所以当rDS ro≈RD (6-26)
RD时,放大电路的输出电阻
这点和晶体管共发射极放大电路是类似的。 输出电压为 (6-27) 式中 ,由式(6-23)得出 。
电压放大倍数为
/info/flashshow/0079614.html(第 9/10 页)2010-9-6 19:00:12
场效应管原理及放大电路
图6-43 N沟道耗尽型场效应管的输出特性曲线
图6-44 N沟道耗尽型场效应管的转移特性曲线 以上介绍了N沟道绝缘栅场效应增强型和耗尽型管,实际上P沟道也有增强型和耗尽型,其符号如图6-45所示。
/info/flashshow/0079614.html(第 6/10 页)2010-9-6 19:00:12
场效应管原理及放大电路
(6-28) 式中的负号表示输出电压和输入电压反相。 【例6-7】 在图6-47所示的放大电路中,已知UDD=20 V,RD=10 kΩ,RS=10 kΩ,RG1=100 kΩ,RG2=51 kΩ,RG=1 MΩ,输出电阻为RL=10 kΩ。场效应管的 参数为IDSS=0.9 mA,UP= 4 V,gm=1.5 mA。试求:(1)静态值;(2)电压放大倍数。 解:(1) 由电路图可知

第3章场效应管

第3章场效应管
2阻 区
0
放大区
10
20
截止区
电子技术基础
各区的特点:
6


① 可变电阻区
电4

区2
a. uDS较小,沟道尚未夹断
0
10
b. uDS < uGS- |UGS(th)|
c.管子相当于受uGS控制的压控电阻
2020年4月13日星期一
第 3章
20
电子技术基础
第 3章
② 放大区(饱和区、恒流区)
a. 沟道予夹断
2020年4月13日星期一
电子技术基础
第 3章
2. N沟道增强型管的工作原理
由结构图可见,N+型漏区和N+型源区之间被P型
衬底隔开,漏极和源极之间是两个背靠背的PN结。
S
D
当栅源电压UGS = 0 时, 不管漏极和源极之间所 加电压的极性如何,其 中总有一个PN结是反向 偏置的,反向电阻很高, 漏极电流近似为零。
8(1
UGS 4
)2
C1 +
+
T
ui _
RG
+UGS_ RS
uo IS +CS _
解出 UGS1 = –2V、UGS2 = –8V、ID1=2mA、ID2=8mA 因UGS2 <UGS(off) 故舍去 ,
所求静态解为UGS = –2V ID=2mA、 UDS= 20 – 2( 3 + 1 )= 12 V

S

+G
+
D
iD>0
N+
N+
2020年4月13日星期一
uDS
P

完整版)模拟电子技术基础-知识点总结

完整版)模拟电子技术基础-知识点总结

完整版)模拟电子技术基础-知识点总结共发射极、共基极、共集电极。

2.三极管的工作原理---基极输入信号控制发射结电流,从而控制集电极电流,实现信号放大。

3.三极管的放大倍数---共发射极放大倍数最大,共集电极放大倍数最小。

三.三极管的基本放大电路1.共发射极放大电路---具有电压放大和电流放大的作用。

2.共集电极放大电路---具有电压跟随和电流跟随的作用。

3.共基极放大电路---具有电压放大的作用,输入电阻较低。

4.三极管的偏置电路---通过对三极管的基极电压进行偏置,使其工作在放大区,保证放大电路的稳定性。

四.三极管的应用1.放大器---将弱信号放大为较强的信号。

2.开关---控制大电流的通断。

3.振荡器---产生高频信号。

4.稳压电源---利用三极管的负温度系数特性,实现稳定的输出电压。

模拟电子技术复资料总结第一章半导体二极管一.半导体的基础知识1.半导体是介于导体和绝缘体之间的物质,如硅Si、锗Ge。

2.半导体具有光敏、热敏和掺杂特性。

3.本征半导体是纯净的具有单晶体结构的半导体。

4.载流子是带有正、负电荷的可移动的空穴和电子,是半导体中的两种主要载流体。

5.杂质半导体是在本征半导体中掺入微量杂质形成的半导体。

根据掺杂元素的不同,可分为P型半导体和N型半导体。

6.杂质半导体的特性包括载流子的浓度、体电阻和转型等。

7.PN结是由P型半导体和N型半导体组成的结,具有单向导电性和接触电位差等特性。

8.PN结的伏安特性是指在不同电压下,PN结的电流和电压之间的关系。

二.半导体二极管半导体二极管是由PN结组成的单向导电器件。

1.半导体二极管具有单向导电性,即只有在正向电压作用下才能导通,反向电压下截止。

2.半导体二极管的伏安特性与PN结的伏安特性相似,具有正向导通压降和死区电压等特性。

3.分析半导体二极管的方法包括图解分析法和等效电路法等。

三.稳压二极管及其稳压电路稳压二极管是一种特殊的二极管,其正常工作状态是处于PN结的反向击穿区,具有稳压的作用。

《模拟电子技术(B)》教学大纲

《模拟电子技术(B)》教学大纲

《模拟电子技术(B)》教学大纲(033204,计算机科学与技术、教育技术、软件工程、网络工程、电子信息与科学、应用物理学、微电子科学与工程,学科基础课,56学时,3.5学分)一、课程内容第1章二极管及其基本电路1.1 半导体基础理论知识1.2 PN结1.3 二极管及其应用电路1.4 特殊二极管第2章双极结型晶体管及放大电路基础2.1 双极结型晶体管2.2 基本共射极放大电路2.3 放大电路的分析方法2.4 放大电路静态工作点的选择和稳定问题2.5共集电极放大电路和共基极放大电路2.6 放大电路的频率响应第3章场效应管放大电路3.1 结型场效应管3.2 绝缘栅型场效应管3.3 场效应管放大电路第4章模拟集成电路4.1 集成运算放大器概述4.2 电流源电路4.3 差动放大电路第5章反馈5.1反馈简介5.2反馈的分类5.3 负反馈放大电路的四种组态5.4 负反馈放大电路增益的一般表达式5.5 负反馈放大电路的分析和近似计算5.6 负反馈对放大电路性能的影响第6章信号的运算与处理6.1 基本运算放大电路6.2 滤波电路的基本概念与分类6.3 一阶有源滤波电路第7章信号产生电路7.1 正弦波振荡电路7.2 RC正弦波振荡电路7.3 LC正弦波振荡电路第8章功率放大电路8.1 功率放大电路的一般问题8.2甲类功率放大电路8.3乙类双电源互补对称功率放大电路8.4甲乙类互补对称功率放大电路第9章直流稳压电路9.1 整流电路9.2 滤波电路9.3 稳压电路9.4 集成三端稳压器二、课程说明(一)课程性质、目的、任务模拟电子技术基础是计算机科学与技术、教育技术、微电子、电子信息科学与技术、应用物理等专业在电子技术方面入门的技术基础课,它具有自身的体系,是实践性很强的课程。

本课程的任务是使学生获得电子技术方面的基本理论、基本知识和基本技能,培养学生分析问题和解决问题的能力,为以后深入学习电子技术某些领域中的内容以及为电子技术在专业中的应用打好基础。

电子技术基础第三章场效应管及其放大电路

电子技术基础第三章场效应管及其放大电路
• JFET是利用PN结反向电压对耗尽层厚度的控制, 来改变导电沟道的宽窄,从而控制漏极电流的大小。
• 预夹断前iD与vDS呈近似线性关系;预夹断后, iD趋于 饱和。
2019/10/20
思考:为什么JFET的输入电阻比BJT高得多?
场效应管的应用小结
• 一是当作压控可变电阻,即非线性电阻来使用, VGS的绝对值 越大,导电沟道就越窄,对应的导电沟道电阻越大,即电压 V电G阻S控使制用电时阻,的导大电小沟,道管还子没工有作出在现可预变夹电断阻;区,当作压控可变
2019/10/20
场效应管的分类
场效应管 FET
结型
JFET
IGFET ( MOSFET ) 绝缘栅型
N沟道 P沟道 增强型
耗尽型
2019/10/20
N沟道 P沟道
N沟道 P沟道
第二节 结型场效应管(JFET)的 结构和工作原理
一、结型场效应管的结构
二、结型场效应管的工作原理
三、结型场效应管的特性曲线 及参数
UDS(sat) ≤│Up│。
JFET的三个状态
• 恒流区(放大区、饱和区) • 可变电阻区 • 截止区
2019/10/20
小结
• 沟道中只有一种类型的多数载流子参与导电,所以 场效应管也称为单极型三极管。
• JFET栅极与沟道间的PN结是反向偏置的,因此 iG0,输入电阻很高。
• JFET是电压控制电流器件,iD受vGS控制。
第一节 场效应管概述 第二节 结型场效应管的结构和工作原理 第三节 绝缘栅场效应管的结构和工作原理 第四节 场效应管放大电路
2019/10/20
• 3-1 • 3-4 • 3-6 • 3-12
作业
2019/10/20

模拟电子技术基础A 第3章习题的答案-PPT课件


U GS 2 ID ID S( 1 ) S U GS (o f) f
2. 两种基本接法电路的分析:CS、CD
2)动态性能指标的计算:微变等效电路
2 gm ID ID O Q U G S (th )
2 g ID ID m S S Q U G S (o ff)
3-3已知某N沟道结型场效应管的UGS(off)=- 5V。下表给出 四种状态下的UGS和UDS 的值,判断各状态下的管子工作在什 么区。( a.恒流区 b.可变电阻区 c.截止区 )
2. 两种基本接法电路的分析:CS、CD 1)静态工作点的分析计算。 • 利用场效应管栅极电流为0,得到栅源电压与 漏极电流之间关系式。 • 列出场效应管在恒流区的电流方程。 联立上述两方程,求解UGSQ和IDQ,并推算 UDSQ。 • 注意解算后应使得管子工作在恒流区。
5
U 2 GS ID IDO ( 1 ) U GS (th )

3-7:如图所表示的电路图。已知 UGS=-2V,场 效应管子的IDSS=2mA,UGS(off)=-4V。
• 1.计算ID和Rs1的值。
解:
I I ( 1 ) 0 . 5 m A D Q D S S U G S ( o f f)
2
U G S Q
U GSQ U GQ U SQ 2V RS1 U GSQ ID 2V 4 k 0 . 5 mA
3-4: 判断图所示的电路能否正常放大 ,并说明原因。
• 绝缘栅型N沟道耗尽型ห้องสมุดไป่ตู้场效应管。 • 因为没有漏极电阻, 使交流输出信号到地 短路uo无法取出。 • 不能。
3-4: 判断图所示的电路能否正常放大 ,并说明原因。
• 满足正常放大条件。 如在输入端增加大电 阻RG,可有效提高输入 电阻。 • 能。

电子技术基础

(1)正向特性:
图1-1二极管的伏安特性曲线①OA段:死区。
死区电压:硅管为05V,锗管为02V
②AB段:正向导通区。
导通电压:锗管为07V,硅管为03V。
(2)反向特性:
①OC段:反向截止区。
反向截止区的特点:
随反向电压增加,反向电流基本不变,电流值比较小。只有当温度升高时,反向电流才会增加。
(2)求交流放大系数时,取△IB=20μA,△IC=1 mA,则交流放大系数β=△IC/△IB=50。
(3)当基极IB=0时,对应集电极电流即为ICEO的值,根据三极管的输出特性,IB=0的曲线对应的集电极电流IC约为02 mA。
第一章半导体器件的基础知识
第二章二极管应用电路
第三章三极管基本放大电路
第四章负反馈放大器
第五章正弦波振荡器
第六章集成运算放大器
第七章功率放大器
第八章直流稳压电源
第九章晶闸管及应用电路
第十章逻辑门电路
第十一章数字逻辑基础
第十二章组合逻辑电路
第十三章集成触发器
第十四章时序逻辑电路
6 PN结:经过特殊的工艺加工,将P型半导体和N型半导体紧密地结合在一起,则在两种半导体的交界处就会出现一个特殊的接触面,称为PN结。
7 PN结内电场的方向:由N区指向P区。内电场将阻碍多数载流子的继续扩散,又称为阻档层或耗尽层。
8 PN结的反向击穿是指PN结两端外加的反向电压增加到一定值时,反向电流急剧增大,称为PN结的反向击穿。
半导体器件是各种电子线路的核心,晶体二极管和晶体三极管及场效应管是应用广泛的半导体器件之一,熟悉并掌握这些半导体器件的结构、特性及主要参数是本章的重点。

电子技术基础第三章 多级放大电路


单端输出时,Ad减小近一倍, Ro为一半,Ac与Re有关。 3、单端输入时,输入信号中有 共模成分。
四、改进型差分放大电路
图3.3.13 恒流源电路
图3.3.14 增加调零电位器
图3.3.15 场效应管差 分放大电路
3.3.3 直接耦合互补输出级 基本要求: 输出电阻低;最大不失真输出电压尽可能大. 一、基本电路
图 3.3.16
二、消除交越失真的互补输出级
图 3.3.18
UB1、B2=UD1+UD2
对动态信号而言,ub1ub2 ui。
图 3.3.18
UBE倍增 (扩大)电路
3.3.4 直接耦合多级放大电路
图 3.3.19
本章要求:
1、掌握以下概念及定义:零点漂移、共模信号与 共模放大倍数,差模信号与差模放大倍数,共 模抑制比,互补。 2、掌握各种耦合方式的优缺点,能够正确估算多 级放大电路的Au、Ri和Ro。 3、掌握双端输入差动放大电路静态工作点和放大 倍数的计算方法,理解单端输入差动放大电路 静态工作点和放大倍数的计算方法。 4、掌握互补输出级(OCL电路)的正确接法和输入 输出关系。
二、长尾式差分放大电路
1、静态分析
根据基极回路方程
图 3uIC Re的共模负反馈作用 共模电压放大倍数:
图 3.3.4
理想情况
3、对差模信号的放大作用
图 3.3.5
差模电压放大倍数
从图(b)可知,
共模抑制比
理想情况
4、电压传输特性 uO=f(uI)
3.3 直接耦合放大电路
3.3.1 直接耦合放大电路的零点漂移现象 一、零点漂移现象及其产生的原因
图3.3.1
二、抑制零点漂移的方法 1、在电路中引入直流负反馈,如静态工作点 稳定电路。 2、采用温度补偿电路。 3、采用特性相同的管子,使它们的温漂相互 抵消,构成“差分放大电路”。 3.3.1 差分放大电路 一、电路的组成 1、静态工作点稳定电路不能使IC绝对不变; 2、受温度控制的直流电源来补偿UC的变化; 3、用电路参数完全相同、管子特性也完全 相同的电路来补偿—差分放大电路。

《模拟电子技术基础》第3章 双极型晶体管及其基本放大电路


3.2 双极型晶体管
3.2.4 晶体管的共射特性曲线
2.输出特性曲线—— iC=f(uCE) IB=const
以IB为参变量的一族特性曲线
(1)当UCE=0V时,因集电极无收集
作用,IC=0;
(2)随着uCE 的增大,集电区收集电
子的能力逐渐增强,iC 随着uCE 增加而
增加;
(3)当uCE 增加到使集电结反偏电压
电压,集电结应加反向偏置电压。
3.2 双极型晶体管
3.2.3 晶体管的电流放大作用
1. 晶体管内部载流子的传输
如何保证注入的载流
子尽可能地到达集电区?
P
N
IE=IEN + IEP
IEN >> IEP
IC= ICN +ICBO
ICN= IEN – IBN
IEN>> IBN
ICN>>IBN
N
IEP
IE
3. 晶体管的电流放大系数
(1) 共基极直流电流放大系数
通常把被集电区收集的电子所形成的电流ICN 与发射极电流
IE之比称为共基电极直流电流放大系数。

I CN

IE
由于IE=IEP+IEN=IEP+ICN+IBN,且ICN>> IBN,ICN>>IEP。通常ത
的值小于1,但≈1,一般

为0.9-0.99。

3.2 双极型晶体管
3.2.3 晶体管的电流放大作用
3. 晶体管的电流放大系数
(2) 共射极直流电流放大系数
I C I CN I CBO I E I CBO ( I C I B ) I CBO
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档