高二数学排列组合二项式定理统计概率测试卷
排列组合和二项式定理测试卷及答案(4套)(已上传)

排列组合与二项式定理(1)【基本知识】1.甲班有四个小组,每组10人,乙班有3个小组,每组15人,现要从甲、乙两班中选1人担任校团委部,不同的选法种数为 852.6人站成一排,甲、乙 、丙三人必须站在一起的排列种数为 1444.用二项式定理计算59.98,精确到1的近似值为( 99004 )5.若2)nx 的项是第8项,则展开式中含1x的项是第 9项6.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 34种7.已知8()a x x-展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是 1或288.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有 38A 种9.设34550500150(1)(1)(1)(1)x x x x a a x a x ++++++++=+++L L ,则3a 的值是 451C10.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有____24______.11.102(2)(1)x x +-的展开式中10x 的系数为____179______.(用数字作答)若1531-++++n n n n n C C C C ΛΛ=32,则n = 612.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第____10_____个数。
13、体育老师把9个相同的足球放入编号为1、2、3的三个箱子里,要求每个箱子放球的个数不少于其编号,则不同的放法有___10___种。
三、解答题15、已知n 展开式中偶数项的二项式系数之和为256,求x 的 系数.【解】由二项式系数的性质:二项展开式中偶数项的二项式系数之和为2n -1,得n =9,由通项92923199C (C (2)r rrrrr r r T x---+==-g g g ,令92123r r --=,得r =3,所以x 的二项式为39C =84, 而x 的系数为339C (2)84(8)672-=⨯-=-g.16、有5名男生,4名女生排成一排:(1)从中选出3人排成一排,有多少种排法?(2)若男生甲不站排头,女生乙不站在排尾,则有多少种不同的排法? (3)要求女生必须站在一起,则有多少种不同的排法? (4)若4名女生互不相邻,则有多少种不同的排法?【解】(1)39504A = (2)287280 (3)17280 (4)211217.从7个不同的红球,3 个不同的白球中取出4个球,问:(1)有多少种不同的取法?(2)其中恰有一个白球的取法有多少种? (3)其中至少有现两个白球的取法有多少种? 【解】(1)210 (2)105 (3)7018、 已知n展开式中偶数项二项式系数和比()2na b +展开式中奇数项二项式系数和小120,求:(1)n展开式中第三项的系数;(2)()2na b +展开式的中间项。
高考数学排列组合二项式定理概率组合试卷文科 试题

2021年高考数学排列组合二项式定理概率组合试卷(文科)卷11.91x ⎫⎪⎭展开式中的常数项是〔 〕A .36-B .36C .84-D .842.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进展食品平安检测。
假设采用分层抽样的方法抽取样本,那么抽取的植物油类与果蔬类食品种数之和是〔A 〕4〔B 〕5〔C 〕6〔D 〕73.一袋中装有大小一样,编号分别为12345678,,,,,,,的八个球,从中有放回...地每次取一个球,一共取2次,那么获得两个球的编号和不小于...15的概率为〔 〕A.132B.164C.332D.3644.设2921101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++++,那么01211a a a a ++++的值是〔 〕A.2-B.1-C.1D.25.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,那么不同的报名方法一共有〔 〕A .10种B .20种C .25种D .32种6.设2921101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++++,那么01211a a a a ++++的值是〔 〕A.2-B.1-C.1D.27.甲、乙、丙三名射箭运发动在某次测试中各射箭20次,三人的测试成绩如下表123s s s ,,绩的HY 差,那么有〔 〕A.312s s s >> B.213s s s >> C.123s s s >>D.213s s s >>8.根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直方图〔如图2〕.从图中可以看出,该水文观测点平均至少一百年才遇到一次的洪水的最低水位是〔 〕A .48米B .49米C .50米D .51米9.将5本不同的书全发给4名同学,每名同学至少有一本书的概率是〔 〕A .1564B .15128C .24125D .4812510.在一个袋子中装有分别标注数字1,2,3,4,5的五水位〔米〕30 31 32 3348 49 50 51图20 13 14 15 16 17 18 19秒个小球,这些小球除标注的数字外完全一样.现从中随机取出2个小球,那么取出的小球标注的数字之和为3或者6的概率是A .310 B .15 C .110 D .11211.某班50名学生在一次百米测试中,成绩全部介 于13秒与19秒之间,将测试结果按如下方式分成六 组:每一组,成绩大于等于13秒且小于14秒;第二 组,成绩大于等于14秒且小于15秒;……第六组, 成绩大于等于18秒且小于等于19秒.右图是按上述 分组方法得到的频率分布直方图,设成绩小于17秒 的学生人数占全班人数的百分比为x ,成绩大于等于 15秒且小于17秒的学生人数为y ,那么从频率分布直方 图中可以分析出x 和y 分别为〔 〕 A .0.935,B .0.945,C .0.135,D .0.145,12.设集合{12}{123}A B ==,,,,,分别从集合A 和B 中随机取一个数a 和b ,确定平 面上的一个点()P a b ,,记“点()P a b ,落在直线x y n +=上〞为事件(25)n C n n ∈N ≤≤,,假设事件n C 的概率最大,那么n 的所有可能值为〔 〕A .3B .4C .2和5D .3和413.621x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是_____.〔用数字答题〕(14.某篮球运发动在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率为.〔用数值答题〕15.在正方体上任意选择两条棱,那么这两条棱互相平行的概率为 .16.55433221024)1(x a x a x a x a x a a x +-+++=-,那么())(531420a a a a a a ++++的值等于17.〔本小题满分是12分〕某气象站天气预报的准确率为80%,计算〔结果保存到小数点后面第2位〕〔1〕5次预报中恰有2次准确的概率;〔4分〕〔2〕5次预报中至少有2次准确的概率;〔4分〕〔3〕5次预报中恰有2次准确,且其中第3次预报准确的概率;〔4分〕18.〔本小题满分是12分〕某地区为下岗人员免费提供财会和计算机培训,以进步低岗人员的再就业才能,每名下岗人员可以选择参加一项培训、参加两项培训或者不参加培训,参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训工程的选择是互相HY 的,且各人的选择互相之间没有影响.〔I 〕任选1名下岗人员,求该人参加过培训的概率;〔II 〕任选3名下岗人员,求这3人中至少有2人参加过培养的概率.19.〔本小题满分是12分〕栽培甲、乙两种果树,先要培育成苗..,然后再进展移栽.甲、乙两种果树成苗..的概率分别为0.6,0.5,移栽后成活..的概率分别为0.7,0.9. 〔1〕求甲、乙两种果树至少有一种果树成苗..的概率; 〔2〕求恰好有一种果树能培育成苗..且移栽成活..的概率.20.(本小题满分是13分)在医学生物学试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇〔此时笼内一共有8只蝇子:6只果蝇和2只苍蝇〕,只好把笼子翻开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.(Ⅰ)求笼内恰好剩下....1只果蝇的概率;〔Ⅱ〕求笼内至少剩下....5只果蝇的概率.21.〔本小题满分是12分〕设有关于x 的一元二次方程2220x ax b ++=.〔Ⅰ〕假设a 是从0123,,,四个数中任取的一个数,b 是从012,,三个数中任取的一个数,求上述方程有实根的概率.〔Ⅱ〕假设a 是从区间[03],任取的一个数,b 是从区间[02],任取的一个数,求上述方程有实根的概率.22.〔本小题满分是12分〕某商场经销某商品,顾客可采用一次性付款或者分期付款购置.根据以往资料统计,顾客采用一次性付款的概率是,经销一件该商品,假设顾客采用一次性付款,商场获得利润200元;假设顾客采用分期付款,商场获得利润250元.〔Ⅰ〕求3位购置该商品的顾客中至少有1位采用一次性付款的概率; 〔Ⅱ〕求3位顾客每人购置1件该商品,商场获得利润不超过650元的概率.卷1答案:1.91x ⎫⎪⎭展开式中的常数项是〔 C〕A .36-B .36C .84-D .842.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进展食品平安检测。
排列组合二项式定理概率单元测试卷 人教版

排列组合、二项式定理、概率单元测试卷一、选择题(每题5分,计60分)1.从7人中选派5人到10个不同交通岗的5个中参加交通协管工作,则不同的选派方法有( )A 、5551057A A C 种 B 、5551057P C A 种 C 、57510C C 种 D 、51057A C2.某乒乓球队共有男女队员18人,现从中选出男女队员各一人组成一对双打组合,由于男队员中有两人主攻单打项目,不参与双打组合,这样共有64种组合方式,则此队中男队员的人数有( )A 、10人B 、8人C 、6人D 、12人3.设34)1(6)1(4)1(234-+-+-+-=x x x x S ,则S 等于( )A 、x 4B 、x 4+1C 、(x-2)4D 、x 4+44.学校要选派4名爱好摄影的同学中的3名参加校外摄影小组的3期培训(每期只派1名),由于时间上的冲突,甲、乙两位同学都不能参加第1期培训,则不同的选派方式有( )A 、6种B 、8种C 、10种D 、12种5.甲、乙、丙三个同学在课余时间负责一个计算机房周一至周六的值班工作,每天1人值班,每人值班2天。
如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有( )A 、36种B 、42种C 、50种D 、72种6.现有甲、乙两骰子,从1点到6点出现的概率都是1/6,掷甲、乙两颗骰子,设分别出现的点数为a 、b 时,则满足aa b a 10|2|2<-<的概率为( )A 、181B 、121C 、91D 、617.(1-2x)7展开式中系数最大的项为( )A 、第4项B 、第5项C 、第7项D 、第8项8.在一次足球赛中,某小组共有5个球队进行双循环赛(每两队之间赛两场),已知胜一场得3分,平一场得1分,负一场得0分。
积分多的前两名可出线(积分相等则要比净胜球数或进球总数),赛完后,一个队的积分可出现的不同情况种数为( )A 、22B 、23C 、24D 、259.若n xx )13(3+)(*∈N n 展开式中含有常数项,则n 的最小值是( )A 、4B 、3C 、12D 、1010..n ∈N ,A =(7+2)2n+1,B 为A 的小数部分,则AB 的值应是( ) A.72n+1 B.22n+1 C.32n+1 D.52n+111.若一个m 、n 均为非负整数的有序数对(m ,n ),在做m+n 的加法时,各位均不进位则称(m ,n )为“简单的有序实数对”,m+n 称为有序实数对(m ,n )之值。
高中数学-排列、组合、概率和统计单元测试题

高中数学-排列、组合、概率和统计单元测试题(考试时间120分钟 总分150分)一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1、二项式(1-x )4n+1的展开式系数最大项为 ( )A .第2n+1项B .第2n+2项C .第2n 项D .第2n+1项和第2n+2项 2、已知(1-3x )9= a 0+a 1x + a 2x 2+ … + a 9x 9,则9210a ++a +a +a 等于 ( ) A .29 B .49 C .29-1 D 。
49-13、设(1+x )3+(1+x )4+ … +(1+x )50 = a 0+a 1x + a 2x 2+ … + a 50x 50, 则a 3等于 ( )A .C 351 B 。
C 451 C 。
2C 350 D 。
C 4504、8个篮球队中有2个强队,先任意将这8个队平分成两组,进行比赛,则2个强队不分在同一组的概率是 ( )A .483622C C AB .4836C C C .483622C C A 2 D .4836C 2C 5、5个人分4张同样的足球票,每人至多分1张,而且票必须分完,那么不同分法种数为 ( )A .54B .45C .5×4×3×2D .!423456、已知(1-2x )n 的展开式中,奇数项的二项式系数之和为32,则该二项展开式的中间项为 ( ) (A )160x 3 (B )-160 x 3 (C )240 x 4 (D )-160 x 3和240x 47、甲、乙两人独立地解同一问题,甲解决这个问题的概率是P 1,乙解决这个问题的概率是P 2,那么其中至少有一人未解决这个问题的概率是 ( )A.P1+P2B.P1·P2C.1-P1P2 D.1-(1-P1)(1-P2)8、一批零件10个,其中有8个合格品,2个次品,每次任取一个零件装配机器,若第一次取到合格品的概率为P1,第二次取得合格品的概率为P2,则()A.P1>P2 B.P1=P2 C.P1<P2 D.P1=2P29、一串节日用装饰彩灯、灯泡串连而成,每串有20个灯泡,只要有一个灯泡坏了,整串彩灯就不亮,则因灯泡损坏致使一串彩灯不亮的可能性的种数是()A.20 B.219C.220 D.220-110、某服务部门有n个服务对象,每个服务对象是否需要服务是独立的,若每个服务对象一天中需要服务的可能性是p,则该部门一天平均需服务的对象个数是()A.np(1-p) B.np C.n D.p(1-p)11、已知样本:108 6 10 13 8 10 12 11 78 9 11 9 12 9 10 11 12 12那么频率为0.2的范围是()A、5.5~7.5B、7.5~9.5C、9.5~11.5D、11.5~13.512、下列说法错误的是()A.s2与s*2 都是总体方差的估计量B.可以用比较两个样本的s2与s*2去估计两总体波动的大小C.当比较两总体波动的大小时,比较s21与s22,s2*1与s2*2,其结果是完全等价的D.用s2比s*2去估计总体方差σ2更具有无偏性.二、填空题:本大题共4个小题,每小题4分,共16分,请将答案填在题中的横线上.13、若(x +a )5的展开式中的第四项是10a 2(a 为大于零的常数),则x= . 14、有面值为1元、2元、5元的邮票各2张,从中任取3张,其面值之和恰好为8元的概率是 .15、容量为100的某个样本数据拆分成10组,并填写频率分布表,若前t 组频率之和为0.79,而剩下的三组的频率成公差为0.5的等差数列,则剩下的三组中频率最大的一组的频率为 . 16、如果一个样本的s 2=2.5,s *2=3,则样本容量n= .三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17、(本小题满分12分)(2003年江苏高考)有三件产品,合格率分别是0.90, 0.95, 0.95, 各抽取一件进行检验. (1)求恰有一件不合格的概率; (2)求至少有两件不合格的概率.(精确到0.001)18、(本小题满分12分)如果在(x +4x 21)n的展开式中,前三项系数成等差数列,求展开式中的有理项.19、(本小题满分12分)在下列条件下,分别求出有多少种不同的方法? (1)5本不同的书,全部分给4个学生; (2)5本不同的书,分给四个学生且每人一本;(3)5本不同的书,全部分给四个学生且每人至少一本.20、(本小题12分)某市共有50万户居民,城市调查队按千分之一的比例进行入户调查,抽样调查的结果如下:求:(1)一般工作人员家庭人均月收入的估计1x 及方差的估计s 21;(2)管理人员家庭人均月收入的估计x及方差的估计s22;(3)总体期望的估计x及总体方差的估计s2.221、(本小题满分12分)两个篮球运动员在罚球线投标的命中率分别是0.7与0.6,每人投球3次,计算甲恰好投进2个球,乙恰好投进1个球的概率.22、(本小题满分14分)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日.评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图如图.已知从左至右各长方形的高的比为2:3:4:6:4:1,第三组的频率为12, 请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪一组获奖率较高?一、选择题1.A 2.B 提示:x 的奇数次方的系数都是负值,∴9210a ++a +a +a = a 0-a 1+a 2-a 3+ … -a 9, ∴已知条件中只须赋值x= -1即可. 3.B 4.A 5.D 6.B 7.C 8.A 9.D 提示:每个灯泡都有坏与不坏两种可能,20个灯泡总的可能数为220,但全不坏的可能只1种,故一串灯不亮的可能性种数为220-1. 10.B 提示:一天需服务的对象个数服从二项分布,其期望是np ,故选B . 11.D 12.D 简解:作为一个估计量,s *2具有“无偏性”,也就是s *2作为一个随机变量,其期望值等于总体方差σ2,而用s 2估计σ2有些偏差,故选D . 二、填空题13.a 1.提示:由通项公式得T 4=C 53(x )2a 3 =10. xa 3 =10a 2, ∴x=a1. 14.52.提示:36121212C C •C •C =5215.0.12 16. 6 .提示:n 1_n =ss 2*2,6=n ,n 1n =35.2. 三、解答题17.(1)176.0295.005.090.095.095.010.0(2)至少有两件不合格的对立事件为有一件不合格与全部合格012.0176.095.095.090.0118.解:展开式中前三项的系数分别为1,2n,8)1_n (n ,由题意得: 2×2n =1+8)1_n (n 得n=8, 设第r+1项为有理项,T r+1=C 4r 316r 8x •r21•,则r 是4的倍数,所以r=0,4,8. 有理项为T 1=x 4, T 5=29x2561=T ,x 835.19.解答(1)每一本书都有4种分法,由乘法原理,共有45(种);(2)A 45=120(种);(3)五本书中选两本C 25,把这两本作为一个整体,构成四组,进行全排列,共有C 25·A 44=240(种) 20.解:分组数据用组中值作为本组数据的代表. (1)1x =4001(20×350+60×650+…+40×1550)=995,s 21=4001[20×(350-995)2+60×(650-995)2+…+40×1550(1550-995)2]=83475;(2)2x =1040,s 22=90900; (3)x =5001(20×350+70×650+250×950+100×1250+55×1550)=1004,s 2=5001[25×(350-1004)2+70(650-1004)2+…+55×(1550-1004)2]=8528421.解答:“甲投球3次,投进2球”的概率是:C 23×0.72×0.3,“乙投球3次,投进1球”的概率是:C 13×0.6×0.42,因此所求的概率为:(C 23×0.72×0.3)×(C 13×0.6×0.42)≈22(1)依题意可算出第三组的频率为:511464324 , 然后,依据频率=样本容量第三组的频数,知本次活动其参评的作品数=60512 (件);(2)根据频率分布直方图,可看出第四组上交的作品数量最多,共有1820660(件);(3)第四组获奖率为951810 第六组获奖率为9632201602,所以,第六组获奖率较高.。
高考数学试题分类汇编D_D概率统计与排列组合二项式定理

概率统计与排列组合二项式定理安徽理(12)设()x a a x a x a x 2122101221-1=+++L ,则 .(12)1120C 【命题意图】本题考查二项展开式.难度中等. 【解析】101110102121(1)a C C =-=-,111011112121(1)a C C =-=,所以a a C C C C C C 1110101110111011212120202120+=-=+-=.(20)(本小题满分13分)工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。
现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,,p p p 123,,p p p 123,假设,,p p p 123互不相等,且假定各人能否完成任务的事件相互独立.(Ⅰ)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率。
若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,,q q q 123,其中,,q q q 123是,,p p p 123的一个排列,求所需派出人员数目X 的分布列和均值(数字期望)EX ;(Ⅲ)假定p p p 1231>>>,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小。
(20)(本小题满分13分)本题考查相互独立事件的概率计算,考查离散型随机变量及其分布列、均值等基本知识,考查在复杂情境下处理问题的能力以及抽象概括能力、合情推理与演绎推理,分类读者论论思想,应用意识与创新意识.解:(I )无论以怎样的顺序派出人员,任务不能被完成的概率都是)1)(1)(1(321p p p ---,所以任务能被完成的概率与三个被派出的先后顺序无关,并等于(II )当依次派出的三个人各自完成任务的概率分别为321,,q q q 时,随机变量X 的分布列为所需派出的人员数目的均值(数学期望)EX 是(III )(方法一)由(II )的结论知,当以甲最先、乙次之、丙最后的顺序派人时,根据常理,优先派出完成任务概率大的人,可减少所需派出的人员数目的均值.下面证明:对于321,,p p p 的任意排列321,,q q q ,都有≥+--212123q q q q ,232121p p p p +--……………………(*)事实上,)23()23(21212121p p p p q q q q +---+--=∆ 即(*)成立.(方法二)(i )可将(II )中所求的EX 改写为,)(312121q q q q q -++-若交换前两人的派出顺序,则变为,)(312121q q q q q -++-.由此可见,当12q q >时,交换前两人的派出顺序可减小均值.(ii )也可将(II )中所求的EX 改写为212123q q q q +--,或交换后两人的派出顺序,则变为313123q q q q +--.由此可见,若保持第一个派出的人选不变,当23q q >时,交换后两人的派出顺序也可减小均值.综合(i )(ii )可知,当),,(),,(321321p p p q q q =时,EX 达到最小. 即完成任务概率大的人优先派出,可减小所需派出人员数目的均值,这一结论是合乎常理的.安徽文(9) 从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于(A )110(B) 18 (C) 16 (D) 15(9)D 【命题意图】本题考查古典概型的概率问题.属中等偏难题.【解析】通过画树状图可知从正六边形的6个顶点中随机选择4个顶点,以它们作为顶点的四边形共有15个,其中能构成矩形3个,所以是矩形的概率为31155=.故选D. (20)(本小题满分10分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(Ⅰ)利用所给数据求年需求量与年份之间的回归直线方程y bx a =+; (Ⅱ)利用(Ⅰ)中所求出的直线方程预测该地2012年的粮食需求量。
高二数学排列组合与二项式定理测试题

高二数学排列、组合与二项式定理 测试(理科)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 若425225+=x x C C ,则x 的值为( )A .4B .7C .4或7D .不存在 2.从5个中国人、4个美国人、3个日本人中各选一人的选法有( )A .12种B .24种C .48种D .60种3.从单词“ctbenjin ”中选取5个不同字母排成一排,含有“en ”(其中“en ”相连且顺序不变)的不同排列共有 ( )A .120个B .480个C .720个D . 840个4.从1、2、3、4、5这五个数字中任取3个组成无重复数字的三位数,当三个数字有2和3时,则2需排在3的前面(不一定相邻),这样的三位数有 ( ) A .9个 B .15个 C .45个 D .51个5.四个编号为1,2,3,4的球放入三个不同的盒子里,每个盒子只能放一个球,编号为1的球必须放入,则不同的方法有 ( ) A .12种 B .18种 C .24种 D .96种6.如图,用5种不同颜色给图中标有1、2、3、4各部分涂色,每部分只涂一种颜色,且相邻两部分涂不同颜色.则不同的涂色方法共有( ) A .160种 B .240种 C .260种 D .360种 7.21(1)n x --展开式中,二项式系数最大的项 ( )A .第n -1项B .第n 项C .第n -1项与第n +1项D .第n 项与第n +1项8.已知()nx 21+的展开式中所有系数之和等于729,那么这个展开式中3x 项的系数是( ) A .56 B .80 C .160 D .1809.由100)233(+x 展开所得的x 的多项式中系数为有理数共有 ( )A .51项B .17项C .16项D .15项10.2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有A. 36种B. 12种C. 18种D. 48种 11.(1)nax by ++展开式中不含x 的项的系数绝对值的和为243,不含y 的项的系数绝对值的和为32,则,,a b n 的值可能为A .2,1,5a b n ==-=B .2,1,6a b n =-=-=C .1,2,6a b n =-==D .1,2,5a b n ===12.下面是高考第一批录取的一份志愿表:现有4所重点院校,每所院校有3 个专业是你较为满意的选择,如果表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有不同的填写方法的种数是( )A .3233)(4A ⋅ B .3233)(4C ⋅ C .32334)(C A ⋅ D .32334)(A A ⋅二、填空题(本大题共4小题,每小题4分,共16分)13.设含有8个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,TS 的值为___________.14.3个人坐在一排8个座位上,若每个人的两边都需要有空位,则不同的坐法种数为 .15.5522105)2(x a x a x a a x +⋅⋅⋅+++=-,则=++++420531a a a a a a .16. 在10(12)x - 的展开式中,下列说法正确的序号有___________ ①所有的二项式系数的和是1024; ②二项式系数最大的项是第5项;③展开式中奇数项系数和与偶数项系数和的差为103;④展开式中系数的绝对值最大的项是第7项.三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分) 17. (本小题满分12分)如果三位数abc 满足a >b ,c >b 这个三位数就称为“凹数”,如104、525都是凹数,试求所有三位数中凹数的个数. 18. (本小题满分12分)已知n xx x )1(3+展开式中前三项系数之和为37.(1)求x 的整数次幂的项;(2)求展开式中二项式系数最大的二项式系数. 19.(本小题满分12分)一个口袋内装有4个不同的红球,6个不同的白球,若取出一个红球记2分,取出一个白球记1分,从口袋中取5个球,使总分不小于7分的取法有多少种? 20.(本小题满分12分) 在nx )21(+的展开式中,前三项的系数和为201(1) 求展开式中第几项的二项式系数最大? (2) 求展开式中第几项的系数最大? 21.(本小题满分12分)4个男同学,3个女同学站成一排,下列情况各有多少种不同排法: (1) 3个女同学必须排在一起; (2) 同学甲和同学乙之间恰好有3人;(3) 女同学从左往右按从高到低排(3个女同学身高互不相等). 22.(本小题满分14分)规定!)1()1(m m x x x C mx +--=Λ,其中x ∈R ,m 是正整数,且10=x C ,这是组合数mn C (n 、m 是正整数,且m ≤n )的一种推广. (1) 求315-C 的值;(2) 设x >0,当x 为何值时,213)(x xC C 取得最小值?(3) 组合数的两个性质;①m n n m n C C -=. ②mn m n m n C C C 11+-=+.是否都能推广到mx C (x ∈R ,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.参考答案一. 选择题:CDBDB CDCAA DD 二. 填空题13.732 14. 120 15. 122121- 16. (1) (3) 三.解答题:17. 解: 分9类: b=0时, 有9×9=81个; b=1时, 有8×8=64个;b=2时,有7×7=49个;b=3时,有6×6=36个,b=4时,有25个……;故1+4+9+16+25+36+49+64+81=285个.18.解:由已知37210=++n n n C C C ,8=∴n 或9-=n (舍去).(1)r r rrrr xC xx x C T 6111283881)1()(--+==,r ∴ 必为6的倍数,且0,80=∴≤≤r r 或6. x ∴ 的整数次幂的项为x T x T 28,7121==.(2)由8=n知展开式共9项,最大的项式系数为5658=C .19. 解:设取x 个红球,y 个白球,于是:572{=+≥+y x y x ,其中6040{≤≤≤≤y x , 14{23{32{======∴y x y x y x 或或 因此所求的取法种数是:164426343624C C C C C C ++=186(种)20.解:(1)由21421n n C C ++=201,得10=n …………………………………………(3分)∴展开式中第6项的二项式系数最大.……………………………………………………(4分)(2)⎩⎨⎧⋅≥⋅⋅≥⋅--++1110101110102222r r r r r r r r C C C C ……(8分) 解得322319≤≤r …………… (10分) ∴7=r ∴展开式中第8项的系数最大.………………………………………………………(12分) 21.解:(1)720 (2)720 (3)840 ……………………………………每小题4分22.解:(1)680!3)17)(16)(15(315-=---=-C . (4分) (2))32(616)2)(1()(2213-+=--=xx x x x x C C x x . (6分) ∵ x > 0 , 222≥+xx .当且仅当2=x 时,等号成立. ∴ 当2=x 时,213)(x xC C 取得最小值. (8分)(3)性质①不能推广,例如当2=x 时,12C 有定义,但122-C 无意义; (10分)性质②能推广,它的推广形式是m x m x m x C C C 11+-=+,x ∈R , m 是正整数. (12分)事实上,当m =1时,有11011+=+=+x x x C x C C . 当m ≥2时.)!1()2()1(!)1()1(1----++--=+-m m x x x m m x x x C C m xm xΛΛ⎥⎦⎤⎢⎣⎡++--+--=11)!1()2()1(mm x m m x x x Λ!)1)(2()1(m x m x x x ++--=Λmx C 1+=.(14分)。
[VIP专享]aoqa雝排列组合、二项式定理、概率单元测试卷
C、50 种
B、42 种
A、36 种
)
天。如果甲同学不排周一,乙同学不排值周六,则可以排出不同的值班表有------------(
5.甲、乙、丙三个人负责一个计算机房周一至周六的值班工作,每天 1 人,每人值班 2
D、12 种
C、10 种
B、8 种
A、6 种
()
名),由于时间上的冲突,甲、乙两位同学都不能参加第 1 期培训,则不同的选派方式有
6.从 1,2,……,9 这九个数中,随机抽取 3 个不同的数,则这 3 个数的和为偶数的概 率是---------------------------------------------------------------------------------------------( )
D、72 种
4.学校要选派 4 名训(每期只派 1
D、x4+4
C、(x-2)4
B、x4+1
) A、x4
3.设 S (x 1)4 4(x 1)3 6(x 1)2 4x 3 ,则 S 等于-----------------------(
int level(BinTreeNodlesevt}r*Beutsl,icnBt(rtrTuiontrcaoTetgtert,_eyapNnpetg)oy;oeN_pddinoeeodtd;fde*esreafc*ttrphsB*au{l)ti;cilrn/duh/tT;ciB/lr/tdo1eiTt;u1ea//NcnrNgoto_loiu(fdn(dtnbe*oetpivdlt{(roe(e}TbidpEititrcfrl(ero!-pbmu>tintrTvritgaey-l(>hlpbulteeie,rtrf=xdt)e,=apr{xkextta,)rt;ru{;k,kr)sd+n;tra+;u1t;ac}0txyBpieTNxv},ooidi{ndet&m*lkac)hi}nil(de)}l;s/e/ js+tr}+uj;cBf+BtoB.+Bid.r.L(;+adikTe+taanN=;t[agojB]e[tdkh=l.se+L+eA1e*+]nr.i;dfc=g(d.-[d;{aiB]1a/it;f/a.;t(dkaA[}ia[]>.kBtdB<}=a];aii.T[BLjt+;aNke.+d[Loni;-]aed-g>t)netahg,B[jt*]+h.)wBd+]{avhi;T=otilareiAedi[n(Be.i{dtm;.<Laive=etAoarngi.0[dLgie],e;jt2Ch=n(o{Sg-0ut9q1h,n/kAL])/t)/iL/[;2s1/e1AtA…aABBmf"…,.S(h+Bq"mniLT6m+irsnet8]e&mhBTen),amidn+dtn&a2Ot*acx(7o10u)n+t)0x{11*ixf=0( nT+o1)d*{ex2i_1f c(+(o!uT2/xn/-*10>tx+l2+cxh=1il;+dnx)o&2/d/h&e=tt_(pn!c:To0o//-duw>1enrw*_c2t/wchx-oi0.1ldu;xon)/)1c*t;cinx6o42.1ucleonfmtt+d/+5ap;t-a5//r7iLg9Cihs4ot8lNuet5nmof9ttdreLp4iegme.=h*ap3tMfAmBol(a[aTrTlit]ex(-;(><i2)nAlccetl[ha0i]}ise=l=ds1,0}A…Tc;[yoine2pu<-nT6ein=-yH>12tp)(]Te;v;enn[Co1-A-ti1o3m1d[u]nA)pHin-[/;in(tv-kL21]ene;]1reyais=A+)nef=[+(t-nm(k1Ta])eAT-p){y>nyA;r-p%c2eh…1iAld3e[2,1]3c,2e1oi20Vn0(u3e=bt×n4i{)n3t1a5)B0);,5b20A}{7,B(2ce[2a150,(l0)ds0cn(a20e,a)]×ie[13j1)1cnr2,a17Af2e0A4,i58g2jtB]b1u(B03}(a5r4,21[En)]06a1B;=07A51([}{0]b937S<A/3)56/HaL([06C0c,sT1b3)]uo[A.>81A0c5u,493]cBn<B0.]=taC5H[L8(0,A1De(4g]k/,Aa5>2EBef0,[)Fy,<]*4C[G)G]b[=2B1,,DHk)g+[]e>,I1AEJy,/[<(,81%C1c]-[8,a5bD1)]C>3C]B,D1<[D1]2Bd62,GFc3E>=41A,V5</1I5EdH475,Gf1231>01+0*J5,91<420G4+0e*30G241,7W1d+*787>13P031,4*9<1L74=41f=0+,515a24953>**/546,17<5+15=0g37413,2*0c5572>/4+517,5<6451*g524,0d+3>956,*5<0315f9+2,3e5W12>14P,12*<3L157g+=56,52f13053>105*693}64*1,{73+80217+9596510*77046873+1*71249264+*9503182+79012*176208590=*2092+8123169831731237*793}W2+531P352L5*0313173+s3T3125158*,21T2052=5,2…915W063…303P5,LTS Tini k1i(2i={a1b,2c,d…e…fg}S0)1,1k10in1i011k11k10n+1kk1Pn21>r+0ikm…00…11+1k0s1=0n11+n21K…ru…snkas1l ns,s=nk,nk a11a121a02K1)aru2s2kaa=2l203*:9(a1i+03/1jA2-03aB(3a131+Aa12=3B+42[…0+]3A…+a3aij1+n3inn149-+iH10-41au+jnfi84+fnm4+16a5B8n+58F1544):52=5706305306.986,2T76:0150,D811:00148110683171,F10ST6:06D413S024H515,1H12:007412101402H*1291u60+22f{f7m4*63a2+n58307*71836+21102*72306+722774*0674128+493}*()4+86*312=513219 5:13/5671(130+7822+6261+p03a1+341352+401143,41)p0=83,21a.8425,913,,p66331:121,0A1a24B13G,,CP4pJ9AD3KG21EHD12AFDaJ3GBH,EPaDHKBApGIBM3J2HEKIF1AJMCKCAEFCMFIIM
高二数学排列组合二项式定理单元测试题(带答案)
排列、组合、二项式定理与概率测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、如图所示的是2008年北京奥运会的会徽,其中的“中国印”的外边是由四个色块构成,可以用线段在不穿越另两个色块的条件下将其中任意两个色块连接起来(如同架桥),如果用三条线段将这四个色块连接起来,不同的连接方法共有 ( )A. 8种B. 12种C. 16种D. 20种2、从6名志愿者中选出4个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选排方法共有( )A .96种B .180种C .240种D .280种 3、五种不同的商品在货架上排成一排,其中a 、b 两种必须排在一起,而c 、d 两种不能排在一起,则 不同的选排方法共有( )A .12种B .20种C .24种D .48种 4、编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是( )A . 10种 B. 20种 C. 30种 D . 60种 5、设a 、b 、m 为整数(m >0),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余.记为a ≡b (modm )。
已知a =1+C 120+C 220·2+C 320·22+…+C 2020·219,b ≡a (mod 10),则b 的值可以是( ) A.2015 B.2011 C.2008 D.20066、在一次足球预选赛中,某小组共有5个球队进行双循环赛(每两队之间赛两场),已知胜一场得3分,平一场得1分,负一场得0分.积分多的前两名可出线(积分相等则要比净胜球数或进球总数).赛完后一个队的积分可出现的不同情况种数为( ) A .22种 B .23种 C .24种 D .25种7、令1)1(++n n x a 为的展开式中含1-n x项的系数,则数列}1{na 的前n 项和为 ( )A .2)3(+n n B .2)1(+n n C .1+n n D .12+n n8、若5522105)1(...)1()1()1(-++-+-+=+x a x a x a a x ,则0a = ( )A .32B .1C .-1D .-329、二项式23nx ⎛⎝*()n N ∈展开式中含有常数项,则n 的最小取值是 ( )A 5B 6C 7D 810、四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,则不同的取法共有( )A .150种B .147种C .144种D .141种 11、两位到北京旅游的外国游客要与2008奥运会的吉祥物福娃(5个)合影留念,要求排成一排,两位游客相邻且不排在两端,则不同的排法共有 ( ) A .1440 B .960 C .720 D .480 12、若x ∈A 则x 1∈A ,就称A 是伙伴关系集合,集合M={-1,0,31,21,1,2,3,4} 的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25二、填空题(每小题4分,共16分,把答案填在题中横线上)13.四封信投入3个不同的信箱,其不同的投信方法有_________种. 14、在72)2)(1(-+x x 的展开式中x 3的系数是 .15、已知数列{n a }的通项公式为121+=-n n a ,则01n C a +12n C a + +33n C a +n n n C a 1+=16、对于任意正整数,定义“n 的双阶乘n!!”如下:对于n 是偶数时,n!!=n·(n -2)·(n -4)……6×4×2;对于n 是奇数时,n!!=n·(n -2)·(n -4)……5×3×1. 现有如下四个命题:①(2005!!)·(2006!!)=2006!;②2006!!=21003·1003!;③2006!!的个位数是0;④2005!!的个位数是5.正确的命题是________.三、解答题(本大题共6小题,前5小题每小题12分,最后1小题14分,共74分.解答应写出必要的文字说明、证明过程或演算步骤.)17、某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种竞赛,要求每科均有1人参加,共有180种不同的选法.那么该小组中男、女同学各有多少人?18、设m,n∈Z+,m、n≥1,f(x)=(1+x)m+(1+x)n的展开式中,x的系数为19.(1)求f(x)展开式中x2的系数的最值;(2)对于使f(x)中x2的系数取最小值时的m、n的值,求x7的系数.19、7位同学站成一排.问:(1)甲、乙两同学必须相邻的排法共有多少种?(2)甲、乙和丙三个同学都相邻的排法共有多少种?(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起的排法有多少种?20、已知(nx 的展开式中前三项的系数成等差数列.(Ⅰ)求n的值;(Ⅱ)求展开式中系数最大的项.21、由0,1,2,3,4,5这六个数字。
高二数学排列组合与二项式定理试题
高二数学排列组合与二项式定理试题1.的二项展开式中,项的系数是()A.45B.90C.135D.270【答案】C【解析】的二项展开式中,,令r=4得,项的系数是=135,选C。
【考点】二项展开式的通项公式点评:简单题,二项式展开式的通项公式是,。
2.在的展开式中,常数项是()A.B.C.D.【答案】C【解析】根据题意,由于展开式中,由于当,故可知常数项为7,故答案为C.【考点】二项式定理点评:主要是考查了二项式定理的运用,属于基础题。
3.已知:(1)当时,求的值。
(2)设,求证:。
【答案】(1)(2)利用不等式的放缩法来得到证明。
【解析】(1)根据题意,由于(1),那么当时,表示的为的值,且为80.故可知(2)由于,令x=1,则可知,那么可知当n=1时,可以知道不等式左边为成立,假设当n=k,时,,那么当n=k+1时,则可知,则可知即可,那么结合假设推理论证并分析可知成立。
【考点】不等式的证明,以及二项式定理点评:主要是考查了二项式定理以及不等式证明的运用,属于难度题。
4.…除以88的余数是()A.-1B.-87C.1D.87【答案】C【解析】根据题意,由于…=(1-90)10=8910=(88+1)10,展开式可知展开式的最后一项不能被88整除,可知答案为C.【考点】二项式定理点评:主要是考查了二项式定理的逆用,属于基础题。
5.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,问实验顺序的编排方法共有A.96种B.48种C.34种D.144种【答案】A【解析】首先确定了程序A只能出现在第一或最后一步,由两种办法,然后将B,C捆绑起来有2种,这样将捆绑后的作为整体与剩余的3个程序排列有,根据分步乘法计数原理可知共有96种,选A.【考点】排列组合点评:主要是考查了排列组合与相邻问题的运用,属于基础题。
6.已知,且展开式的各式系数和为243.(I)求a的值。
高二数学排列组合与二项式定理试题答案及解析
高二数学排列组合与二项式定理试题答案及解析1.已知的展开式前三项中的的系数成等差数列.(1)求展开式中所有的的有理项;(2)求展开式中系数最大的项.【答案】(1)第1项和第5项和第9项。
(2),【解析】(1)根据题意,由于的展开式前三项中的的系数成等差数列.,故可知n=8则可知有理项为,,(2)系数最大项,【考点】二项式定理点评:主要是考查了二项式定理的运用,属于基础题。
2.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是A.168B.96C.72D.144【答案】D【解析】本题可以采用‘挡板法”来解题,任选三个插入挡板把数分成四组,把两个连续的空未插入挡板出现三个数字相连的情况去掉,把分成的四部分在四个位置上排列,得到结果解:∵要把6张票分给4个人,∴要把票分成四份,∵1,2,3,4,5,6之间有五个空,任选三个插入挡板把数分成四组共有C53种结果,其中如果有两个连续的空未插入挡板,则出现三个数字相连,共有4种情况要排除掉(具体为第一、二;第二、三;第三、四;第四、五空隙未插挡板),把分成的四部分在四个位置上排列,∴有(C53-4)×A44=144,故选D.【考点】排列组合问题点评:本题是一个限制条件比较多的问题,是一个实际问题,排列组合问题在实际问题中的应用,在计算时要求做到兼顾所有的条件,先排约束条件多的元素,做到不重不漏,注意实际问题本身的限制条件3.已知,求(1)的值。
(2)的值。
(3)的值。
【答案】(1)1093(2)(3)【解析】解:令①令②(①--②)得(①+②)得即展开式中各项系数和。
=【考点】二项式定理点评:主要是考查了二项式定理的运用,属于基础题。
4.乒乓球运动员10人,其中男女运动员各5人,从这10名运动员中选出4人进行男女混合双打比赛,选法种数为()A.B.C.D.【答案】D【解析】首先从5名男运动员中选2人有种方法,从5名女运动员中选2人有种方法,将4人按照男女混双分成2组有种方法,所以不同的选法共有种【考点】排列组合点评:此类题目的求解一般按照先选择后排列的方法分步完成5.甲、乙等5人站成一排,其中甲、乙不相邻的不同排法共有()A.144种B.72种C.36 种D.12种【答案】B【解析】根据题意,由于甲、乙等5人站成一排,所有的情况有 ,而对于甲、乙相邻的情况有,那么可知不相邻的情况有-=72,选B.【考点】排列与组合点评:本题主要考查排列与组合及两个基本原理,求出甲、乙两人恰好相邻的方法数为A22•A44,是解题的关键.6.教育局组织直属学校的老师去新疆地区支教,现甲学校有2名男老师和3名女老师愿意去支教,乙学校有3名男老师和3名女老师愿意去支教,由于名额有限,教育局决定从甲学校选2人去支教,乙学校选1人去支教,若被选去支教的3名老师中必须有男老师,则乙学校被选去支教的老师是女老师的概率为【答案】【解析】根据题意,由于被选去支教的3名老师中必须有男老师,那么从甲学校选2人去支教,乙学校选1人去支教所有的情况有 ,而对于选去支教的3名老师中必须有男老师,则乙学校被选去支教的老师是女老师的情况有,那么可知其概率为,故答案为【考点】排列组合点评:本题考查排列组合知识,考查学生分析解决问题的能力,属于中档题.7.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为()A.42B.30C.20D.12【答案】A【解析】原定的5个节目之间有6个位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
育才学社培训学校:精品班型--7.1.3战队(选用题)排列组合、二项式定理、概率及统计二、典例剖析题型一:排列组合应用题解决此类问题的方法是:直接法,先考虑特殊元素(或特殊位置),再考虑其他元素(或位置);间接法,所有排法中减去不合要求的排法数;对于复杂的应用题,要合理设计解题步骤,一般是先分组,后分步,要求不重不漏,符合条件.例1、(08安徽理12)12名同学合影,站成了前排4人后排8人.现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()A.B.C.D.解:从后排8人中选2人共种选法,这2人插入前排4人中且保证前排人的顺序不变,则先从4人中的5个空挡插入一人,有5种插法;余下的一人则要插入前排5人的空挡,有6种插法,故为;综上知选C.例2、(08湖北理6)将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为()A.540B.300C.180D.150解:将5分成满足题意的3份有1,1,3与2,2,1两种,所以共有种方案,故D正确.例3、四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为()A.96B.48C.24D.0解:由题意分析,如图,先把标号为1,2,3,4号化工产品分别放入①②③④4个仓库内共有种放法;再把标号为5,6,7,8号化工产品对应按要求安全存放:7放入①,8放入②,5放入③,6放入④;或者6放入①,7放入②,8放入③,5放入④;两种放法.综上所述:共有种放法.故选B.例4、在正方体中,过任意两个顶点的直线中成异面直线的有____________对.解法一:连成两条异面直线需要4个点,因此在正方体8个顶点中任取4个点有种取法.每4个点可分共面和不共面两种情况,共面的不符合条件得去掉.因为在6个表面和6个体对角面中都有四点共面,故有种.但不共面的4点可构成四面体,而每个四面体有3对异面直线,故共有对.解法二:一个正方体共有12条棱、12条面对角线、4条体对角线,计28条,任取两条有种情况,除去其中共面的情况:(1)6个表面,每个面上有6条线共面,共有条;(2)6个体对角面,每个面上也有6条线共面,共有条;(3)从同一顶点出发有3条面对角线,任意两条线都共面,共有,故共有异面直线---=174对.题型二:求展开式中的系数例5、(08广东理10)已知(是正整数)的展开式中,的系数小于120,则__________.解:按二项式定理展开的通项为,我们知道的系数为,即,也即,而是正整数,故只能取1.等于()例6、若多项式,则a9 A.9B.10C.-9D.-10解:=∴.例7、展开式中第6项与第7项的系数的绝对值相等,求展开式中系数最大的项和系数绝对值最大的项.解:,依题意有,∴n=8.则展开式中二项式系数最大的项为.设第r+1项系数的绝对值最大,则有.则系数绝对值最大项为.例8、求证:.证:(法一)倒序相加:设①又∵②∵,∴,由①+②得:,∴,即.(法二):左边各组合数的通项为,∴.(法三):题型三:求复杂事件的概率例9、(08福建理5)某一批花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是()A.B.C.D.解:由.例10、甲、乙两个围棋队各5名队员按事先排好的顺序进行擂台赛,双方1号队员先赛,负者被淘汰,然后负方的队员2号再与对方的获胜队员再赛,负者又被淘汰,一直这样进行下去,直到有一方队员全被淘汰时,另一方获胜,假设每个队员的实力相当,则甲方有4名队员被淘汰,且最后战胜乙方的概率是多少?解:根据比赛规则可知,一共比赛了9场,并且最后一场是甲方的5号队员战胜乙方的5号队员,而甲方的前4名队员在前8场比赛中被淘汰,也就是在8次独立重复试验中该事件恰好发生4次的概率,可得,又第9场甲方的5号队员战胜乙方的5号队员的概率为,所以所求的概率为.题型四:求离散型随机变量的分布列、期望和方差例11、某先生居住在城镇的A处,准备开车到单位B处上班. 若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图.(例如:A→C→D算作两个路段:路段AC发生堵车事件的概率为,路段CD 发生堵车事件的概率为(1)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率最小;(2)若记路线A→C→F→B中遇到堵车次数为随机变量,求的数学期望解:(1)记路段MN发生堵车事件为MN.因为各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,所以路线A→C→D→B中遇到堵车的概率P1为=1-[1-P(AC)][1-P(CD)][1-P(DB)]=1-;同理:路线A→C→F→B中遇到堵车的概率P为1-P((小于).2路线A→E→F→B中遇到堵车的概率P为1-P((小于).3显然要使得由A到B的路线途中发生堵车事件的概率最小.只可能在以上三条路线中选择.因此选择路线A→C→F→B,可使得途中发生堵车事件的概率最小.(2)路线A→C→F→B中遇到堵车次数可取值为0,1,2,3.答:路线A→C→F→B中遇到堵车次数的数学期望为例12、如图所示,甲、乙两只小蚂蚁分别位于一个单位正方体的点和点,每只小蚂蚁都可以从每一个顶点处等可能地沿各条棱向各个方向移动,但不能按原线路返回.比如,甲在处时可以沿、、三个方向移动,概率都是;到达点时,可能沿、两个方向移动,概率都是,已知小蚂蚁每秒钟移动的距离为1个单位.(Ⅰ)若甲、乙两只小蚂蚁都移动1秒钟,则它们所走的路线是异面直线的概率是多少?它们之间的距离为的概率是多少?(Ⅱ)若乙蚂蚁不动,甲蚂蚁移动3秒钟后,甲、乙两只小蚂蚁之间的距离的期望值是多少?解:(Ⅰ)甲蚂蚁移动1秒可以有三种的走法:即沿、、三个方向,当沿C方向走,概率为方向时,要使所走的路线成异面直线,乙蚂蚁只能沿、C1,同理当甲蚂蚁沿方向走时,乙蚂蚁走、CC,概率为,甲蚂蚁沿1时,乙蚂蚁走、,概率为,因此他们所走路线为异面直线的概率为;甲蚂蚁移动1秒可以有三种走法:即沿、、三个方向,当甲沿方向时,要使他们之间的距离为,则乙应走,此时的概率为,同理,甲蚂蚁沿方向走时、甲蚂蚁沿方向走时,概率都为,所以距离为的概率为.(Ⅱ)若乙蚂蚁不动,甲蚂蚁移动3秒后,甲乙两个蚂蚁之间距离的取值有且只有两个:和,当时,甲是按以下路线中的一个走的:、、、、、,所以其概率为,当时,甲是按以下路线中的一个走的:、、、、、、所以其概率为,所以三秒后距离期望值为.例13、(08湖北理17)袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n个(n=1,2,3,4).现从袋中任取一球.ξ表示所取球的标号.(Ⅰ)求ξ的分布列,期望和方差;(Ⅱ)若η=aξ-b,Eη=1,Dη=11,试求a,b的值.解:(1)的分布列为:所以.(2)由,得,即,又,所以当时,由,得;当时,由,得.,或,即为所求.题型五:统计知识例14、(08广东)某校共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()A .24B .18C .16D .12解:依题意我们知道二年级的女生有380人,那么三年级的学生的人数应该是500,即总体中各个年级的人数比例为,故在分层抽样中应在三年级抽取的学生人数为.答案:C例15、在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布.已知成绩在90分以上(含90分)的学生有12名.(Ⅰ)试问此次参赛学生总数约为多少人?(Ⅱ)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可共查阅的(部分)标准正态分布表.解:(Ⅰ)设参赛学生的分数为,因为~N(70,100),由条件知,P(≥90)=1-P(<90)=1-F(90)=1-=1-(2)=1-0.9772=0.0228.这说明成绩在90分以上(含90分)的学生人数约占全体参赛人数的2.28%,因此,参赛总人数约为≈526(人).(Ⅱ)假定设奖的分数线为x分,则P(≥x)=1-P(<x)=1-F(90)=1-==0.0951,即=0.9049,查表得≈1.31,解得x=83.1.故设奖的分数线约为83.1分.冲刺练习一、选择题1、在这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有()A.36个B.24个C.18个D.6个2、从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有()A.108种B.186种C.216种D.270种3、某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有()A.16种B.36种C.42种D.60种4、的展开式中含x的正整数指数幂的项数是()A.0B.2C.4D.65、已知的展开式中第三项与第五项的系数之比为-,其中=-1,则展开式中常数项是()A.-45i B.45iC.-45D.456、高三(一)班学生要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是()A.1800B.3600C.4320D.50407、袋中有40个小球,其中红色球16个、蓝色球12个,白色球8个,黄色球4个,从中随机抽取10个球作为一个样本,则这个样本恰好是按分层抽样方法得到的概率为()A.B.C.D.8、在正方体上任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为()A.B.C.D.9、为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在的学生人数是()A.20B.30C.40D.5010、下图中有一个信号源和五个接收器.接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是()A.B.C.D.[提示]二、填空题11、某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人. 现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是__________分.12、安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有__________种.(用数字作答)13、展开式中的系数为___________(用数字作答).14、电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有__________种不同的播放方式(结果用数值表示).15、若的展开式中的系数是-80,则实数的值是__________.16、设离散型随机变量可能取的值为1,2,3,4.(1,2,3,4).又的数学期望,则___________.[答案]三、解答题17、某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:(Ⅰ)游泳组中,青年人、中年人、老年人分别所占的比例;(Ⅱ)游泳组中,青年人、中年人、老年人分别应抽取的人数.[答案]18、在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较.在试制某种牙膏新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验.用表示所选用的两种不同的添加剂的芳香度之和.(Ⅰ)写出的分布列;(以列表的形式给出结论,不必写计算过程)(Ⅱ)求的数学期望.(要求写出计算过程或说明道理)[答案]19、每次抛掷一枚骰子(六个面上分别标以数字(I)连续抛掷2次,求向上的数不同的概率;(II)连续抛掷2次,求向上的数之和为6的概率.[答案]20、某运动员射击一次所得环数的分布如下:现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为.(I)求该运动员两次都命中7环的概率;(II)求的分布列;(Ⅲ)求的数学期望.[答案]1-5BBDBD 6-10 BACCD提示:1、依题意,所选的三位数字有两种情况:(1)3个数字都是奇数,有种方法(2)3个数字中有一个是奇数,有种方法,故共有+=24种方法,故选B.2、从全部方案中减去只选派男生的方案数,合理的选派方案共有=186种,选B.3、有两种情况,一是在两个城市分别投资1个项目、2个项目,此时有种方案,二是在三个城市各投资1个项目,有种方案,共计有60种方案,选D.4、的展开式通项为,因此含x的正整数次幂的项共有2项,选B.5、第三项的系数为-,第五项的系数为,由第三项与第五项的系数之比为-可得n=10,则=,令40-5r=0,解得r =8,故所求的常数项为=45,选D.6、不同排法的种数为=3600,故选B.7、依题意,各层次数量之比为4∶3∶2∶1,即红球抽4个,蓝球抽3个,白球抽2个,黄球抽一个,故选A.8、在正方体上任选3个顶点连成三角形可得=56个三角形,要得等腰直角三角形共有6×4=24个(每个面内有4个等腰直角三角形),得,所以选C.9、根据该图可知,组距为2,得这100名学生中体重在的学生人数所占的频率为(0.03+0.05+0.05+0.07)×2=0.4,所以该段学生的人数是40,选C.10、将六个接线点随机地平均分成三组,共有种结果,五个接收器能同时接收到信号必须全部在同一个串联线路中,有种结果,这五个接收器能同时接收到信号的概率是,选D.答案:11、85 12、2400 13、-96014、48 15、-2 16、提示:11、某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人. 现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是分.12、先安排甲、乙两人在后5天值班,有=20种排法,其余5人再进行排列,有=120种排法,所以共有20×120=2400种安排方法.13、展开式中的项为,的系数为-960.14、分二步:首尾必须播放公益广告的有种;中间4个为不同的商业广告有种,从而共有种,从而应填48.15、的展开式中的系数=x3,则实数a的值是-2.16、设离散性随机变量可能取的值为,所以,即,又的数学期望,则,即,,∴.17、解:(Ⅰ)设登山组人数为,游泳组中,青年人、中年人、老年人各占比例分别为a、b、c,则有,解得b=50%,c=10%.故a=100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人各占比例分别为40%、50%、10%.(Ⅱ)游泳组中,抽取的青年人数为(人);抽取的中年人数为50%=75(人);抽取的老年人数为10%=15(人).18、解:(Ⅰ)(Ⅱ).19、解:(I)设A表示事件“抛掷2次,向上的数不同”,则答:抛掷2次,向上的数不同的概率为(II)设B表示事件“抛掷2次,向上的数之和为6”.向上的数之和为6的结果有、、、、5种,答:抛掷2次,向上的数之和为6的概率为20、解:(Ⅰ)该运动员两次都命中7环的概率为;(Ⅱ)的可能取值为7、8、9、10分布列为(Ⅲ) 的数学期望为.。