二次函数难点突破

合集下载

人教版中考数学解答题压轴题突破 重难点突破七 二次函数的实际应用 类型二:抛物线型问题

人教版中考数学解答题压轴题突破 重难点突破七 二次函数的实际应用 类型二:抛物线型问题

解:∵a=-510,b=190,∴y=-510x2+190x+66, ∵基准点K到起跳台的水平距离为75m, ∴y=-510×752+190×75+66=21, ∴基准点K的高度h为21 m.
9 ②若a=-510时,运动员落地点要超过K点,则b的取值范围为bb>>10 ; 【分层分析】运动员落地点要超过K点,即是x=75时,y>221 1,故- 510×752+75b+66>2211 ,即可解得答案;
(1)求抛物线的解析式; 解:由题意知, 点(5,3.2)是抛物线 y=a(x-h)2 +k的顶点,∴y=a(x-5)2 +3.2. 又∵抛物线经过点(0,0.7), ∴ 0.7=a(0-5)2 + 3.2,解得a=- 0.1. ∴抛物线的解析式为 y=-0.1(x-5)2 +3.2(或y=-0.1x2 +x +0.7).
解: b=6,c=1.
(2)求大棚的最高处到地面的距离;
解:∵y=-16x2+76x+1=-16x-722+7234, ∴当x=72时,y有最大值7234,
73 即大棚最高处到地面的距离为24 m.
37 (3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为 24 m的竹竿支架若 干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共 需要准备多少根竹竿?
【分层分析】运动员飞行的水平距离为25m时,恰好达到最大高度76 m,即是抛物线的顶点为((225,5,76)7,6)设抛物线解析式为y==a(xa-(x225)25+ ,可得抛物线解析式为y=--1225((xx--2255))2+2+7676,当x=777556时,y= 3366,从而可知他的落地点能超超 过K点.
解:令y=-16x2+76x+1=3274, 1 13
解得x1=2,x2= 2 , 1 11

中考数学解答题压轴题突破 重难点突破八 二次函数与几何综合题 类型四:二次函数与特殊四边形问题

中考数学解答题压轴题突破 重难点突破八 二次函数与几何综合题 类型四:二次函数与特殊四边形问题

同Ⅰ)可得 NG=FM=3,OF=t-3,
∵∠OFB=∠FPM,
∴tan ∠OFB=tan ∠FPM,
OB FM 4
3
∴OF=PM,即t-3=-21t2+t+4,
1+ 201 1- 201 解得 t1= 4 ,t2= 4 (舍),
∴F
2014-11,0.
综上,点 F 的坐标为(2,0)或
形问题
[眉山:2022T26;泸州:2022T23;达州:2021T25(3); 凉山州:2021T28;绵阳:2020T24;德阳:2020T25]
4.(2022·眉山第 26 题 12 分)在平面直角坐标系中,抛物线 y=-x2- 4x+c 与 x 轴交于点 A,B(点 A 在点 B 的左侧),与 y 轴交于点 C,且点 A 的坐标为(-5,0). (1)求点 C 的坐标; (2)如图①,若点 P 是第二象限内抛物线上一动点,求点 P 到直线 AC 距 离的最大值;
解:(1)由二次函数 y=x2+bx+c 的图象与 x 轴相交于点 A(-1,0)和
点 B(3,0),得 1-b+c=0, 9+3b+c=0,
b=-2, 解得c=-3.
(2)①∵点 P(m,n)在抛物线 y=x2-2x-3 上, ∴P(m,m2-2m-3), ∵过点 P 作 x 轴的垂线交直线 l:y=x 于点 Q, ∴Q(m,m),∴PQ=-m-232+241,
(2)过点 P 作 PE⊥AC 于点 E,过点 P 作 PF⊥x 轴交 AC 于点 H,如图①. ∵A(-5,0),C(0,5),∴OA=OC, ∴△AOC 是等腰直角三角形,∴∠CAO=45°, ∵PF⊥x 轴,∴∠AHF=45°=∠PHE, ∴△PHE 是等腰直角三角形,
PH ∴PE= 2,∴当 PH 最大时,PE 最大,

中考数学解答题压轴题突破 重难点突破七 二次函数综合题 类型四:二次函数与特殊四边形问题

中考数学解答题压轴题突破 重难点突破七 二次函数综合题 类型四:二次函数与特殊四边形问题
解:存在.令x=0,代入y=-x2+6x-5,得y=-5, ∴点C的坐标为(0,-5).
Ⅰ)如答图①,连接AC,分别过点A,B作对边的平行线交于 点F. 在▱ ACBF中,∵C(0,-5)向右平移1个单位长度,再向上平 移5个单位长度得到A(1,0), ∴B(5,0)按照相同的平移方式得到F(6,5);
解:设点Q的坐标为(a,b),过点Q作QM∥x轴,过点B作BM∥y轴,交QM 于点M,过点F作FN∥y轴交QM于点N,过点E作EK∥x轴交BM于点K, ∴△BMQ≌△QNF≌△EKB, ∴NF=KB=MQ=|a+2|,QN=EK=BM=|b|, ∴点F的坐标为 (a-b,a+b+2), 点E的坐标为 (-2-b,a+2),
Ⅱ)如答图②,分别过点A,C作BC,AB的平行线交于点 F,在▱ ABCF中,∵B(5,0)向左平移5个单位长度,再向 下平移5个单位长度得到C(0,-5), ∴A(1,0)按照相同的平移方式得到F(-4,-5);
Ⅲ)如答图③,连接AC,分别过点B,C作对边的平行线交 于点F.在▱ ACFB中,∵A(1,0)向左平移1个单位长度,再 向下平移5个单位长度得到C(0,-5), ∴B(5,0)按照相同的平移方式得到F(4,-5); 综上所述,满足条件的点F分别为(6,5),(-4,-5)或 (4,-5).
(1)求抛物线的函数解析式; (2)把抛物线 y=x2+bx+c 平移,使得新抛物线的顶点 为点 P(2,-4).M 是新抛物线上一点,N 是新抛物线对 称轴上一点,直接写出所有使得以点 A,B,M,N 为顶点 的四边形是平行四边形的点 M 的坐标,并把求其中一个 点 M 的坐标的过程写出来.
解:(1)该抛物线的函数解析式为y=x2-72x-1. (2)满足条件的点M的坐标为 (2,-4),(6,12),(-2,12). 由题意可知,平移后抛物线的函数解析式为 y=x2-4x, 对称轴为直线x=2,如答图.

《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。

《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。

重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。

教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。

活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。

(3)求方程x2-x-6=0的解。

(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。

(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。

三、例题分析例1.不画图象,判断下列函数与x轴交点情况。

(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。

2023年中考数学复习难点突破专题17 二次函数与实际问题:图形运动问题(含答案)

2023年中考数学复习难点突破专题17 二次函数与实际问题:图形运动问题(含答案)

专题17 二次函数与实际问题:图形运动问题1.如图,在平面直角坐标系xOy 中,将抛物线2y x bx c =-++与直线1y x =-+相交于点()0,1A 和点()3,2B -,交x 轴于点C ,顶点为点F ,点D 是该抛物线上一点.(1)求抛物线的函数表达式;(2)如图1,若点D 在直线AB 上方的抛物线上,求DAB ∆的面积的最大值以及此时点D 的坐标; (3)如图2,若点D 在对称轴左侧的抛物线上,点()1,E t 是射线CF 上一点,当以C 、B 、D 为顶点的三角形与CAE ∆相似时,直接写出所有满足条件的t 的值.2.如图,在平面直角坐标系中,抛物线y =ax 2+bx +4经过点A (4,0),B (-1,0),交y 轴于点C . (1)求抛物线的解析式;(2)点D 是直线AC 上一动点,过点D 作DE 垂直于y 轴于点E ,过点D 作DF ⊥x 轴,垂足为F ,连接EF ,当线段EF 的长度最短时,求出点D 的坐标;(3)在AC 上方的抛物线上是否存在点P ,使得△ACP 是直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由.3.如图,直线y =﹣x +n 与x 轴交于点A (4,0),与y 轴交于点B ,抛物线y =﹣x 2+bx +c 经过点A ,B .(1)求抛物线的解析式;(2)E (m ,0)为x 轴上一动点,过点E 作ED ⊥x 轴,交直线AB 于点D ,交抛物线于点P ,连接BP . ①点E 在线段OA 上运动,若△BPD 直角三角形,求点E 的坐标;②点E 在x 轴的正半轴上运动,若∠PBD +∠CBO =45°.请直接写出m 的值.4.在平面直角坐标系中,抛物线22y x kx k =--(k 为常数)的顶点为N .(1)如图,若此抛物线过点()3,1A -,求抛物线的函数表达式;(2)在(1)的条件下,抛物线与y 轴交于点B ,①求ABO ∠的度数;①连接AB ,点P 为线段AB 上不与点A ,B 重合的一个动点,过点P 作//CD x 轴交抛物线在第四象限部分于点C ,交y 轴于点D ,连接PN ,当BPN BNA △△时,线段CD 的长为___.(3)无论k 取何值,抛物线都过定点H ,点M 的坐标为()2,0,当90MHN ∠=︒时,请直接写出k 的值.5.如图,已知二次函数图象的顶点坐标为C (1,0),直线y =x+m 的图象与该二次函数的图象交于A 、B 两点,其中A 点坐标为(3,4),B 点在y 轴上.(1)求m 的值及这个二次函数的解析式;(2)若P是线段AB下方抛物线上一动点,当△ABP面积最大时,求P点坐标以及△ABP面积最大值;(3)若D为直线AB与这个二次函数图象对称轴的交点,Q为线段AB之间的一个动点,过Q作x轴的垂线,与这个二次函数图象交于点E,问是否存在这样的点Q,使得四边形DCEQ为平行四边形,若存在,请求出Q点的坐标;若不存在,请说明理由.6.在Rt△ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC.(1)试写出四边形DFCE的面积S(cm2)与时间t(s)之间的函数关系式并写出自变量t的取值范围.(2)试求出当t为何值时四边形DFCE的面积为20cm2?(3)四边形DFCE的面积能为40吗?如果能,求出D到A的距离;如果不能,请说明理由.(4)四边形DFCE的面积S(cm2)有最大值吗?有最小值吗?若有,求出它的最值,并求出此时t的值.7.如图,平面直角坐标系中,矩形ABCO的边OA,OC分别在坐标轴上,OA=2,OC=1,以点A为顶点的抛物线经过点C.(1)求抛物线的函数表达式;(2)将矩形ABCO绕点A旋转,得到矩形AB'C'O',使点C'落在x轴上,抛物线是否经过点C'?请说明理由.8.如图,抛物线243y ax ax a =-+(0a >),与y 轴交于点A ,在x 轴的正半轴上取一点B ,使2OB OA =,抛物线的对称轴与抛物线交于点C ,与x 轴交于点D ,与直线AB 交于点E ,连接BC .(1)求点B ,C 的坐标(用含a 的代数式表示);(2)若BCD △与BDE 相似,求a 的值;(3)连接OE ,记OBE △的外心为M ,点M 到直线AB 的距离记为h ,请探究h 的值是否会随着a 的值变化而变化?如果变化,请写出h 的取值范围:如果不变,请求出h 的值.9.已知:直线2l y x =+:与过点(0,2)-且平行于x 轴的直线交于点A ,点A 关于直线1x =- 的对称点为点B .(1)求A B 、两点的坐标;(2)若抛物线2y x bx c =-++的顶点(,)m n 在直线l 上移动.①当抛物线2y x bx c =-++与坐标轴仅有两个公共点,求抛物线解析式;②若抛物线2y x bx c =-++与线段AB 有交点,当抛物线的顶点(,)m n 向上运动时,抛物线与y 轴的交点也向上运动,求m 的取值范围.10.如图,在平面直角坐标系中,O为坐标原点,点A在x轴的正半轴上,△AOB为等腰三角形,且OA =OB,B(8,6),过点B作y轴的垂线,垂足为D,点C在线段BD上,点D关于直线OC的对称点在腰OB上.(1)求AB的长;(2)求点C的坐标;(3)点P从点C出发,以每秒1个单位的速度沿折线CB﹣BA运动;同时点Q从A出发,以每秒1个单位的速度沿AO向终点O运动,当一点停止运动时,另一点也随之停止运动.设△BPQ的面积为S,运动时间为t,求S与t的函数关系式.11.如图,抛物线y=﹣12x2+32x+2,与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求直线BC的解析式;(2)点E①线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,△CBF的面积最大?求出△CBF的最大面积及此时E点的坐标.(3)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;12.如图,正方形ABCD 的边长为4,点P 是BC 边上的一个动点(点P 不与点B 、C 重合),连接AP ,过点P 作PQ ⊥AP 交DC 于点Q .设BP 的长为x ,CQ 的长为y .(1) y 与x 之间的函数关系式,并写出自变量x 的取值范围,(2) 当x 取何值时,y 的值最大?最大值是多少?13.如图,已知二次函数23y ax ax =--的图象交x 轴于点A ,B ,交y 轴于点C ,且5AB =,直线y kx b =+(0k >)与二次函数的图象交于点M ,N (点M 在点N 的右边),交y 轴于点P ,交x 轴于点Q .(1)求二次函数的解析式;(2)若5b =-,254OPQ S =△,求CMN △的面积; (3)若3b k =-,直线AN 与y 轴相交于点H ,求CP CH 的取值范围. 14.已知抛物线26(0)y ax bx a =++≠交x 轴于点()6,0A 和点()1,0B -.(1)求抛物线的解析式和顶点C 的坐标;(2)抛物线对称轴右侧两点M ,N (点M 在点N 的左侧)到对称轴的距离分别为1.5个单位长度和4.5个单位长度,点Q 为抛物线上点M ,N 之间(含点M ,N )的一个动点,求点Q 的纵坐标Q y 的取值范围. 15.如图,已知边长为10的正方形ABCD ,E 是BC 边上一动点(与B 、C 不重合),连结AE ,H 是BC 延长线上的一点,过点E 作AE 的垂线交DCH ∠的角平分线于点F .(1)求证:BAE CEF ∠=;(2)若2EC =时,求CEF △的面积;(3)EC 为何值时,CEF △的面积最大,最大值是多少?16.如图,在Rt ABC 中,90ACB ∠=︒,8AC =,4BC =,动点D 从点B 出发,以每秒1个单位长度的速度沿BA 向点A 运动,到达点A 停止运动,过点D 作ED AB ⊥交射线BC 于点E ,以BD 、BE 为邻边作平行四边形BDFE .设点D 运动时间为t 秒,平行四边形BDFE 与Rt ABC 的重叠部分面积为S .(1)当点F 落在AC 边上时,求t 的值;(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.17.如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =+-≠与x 轴交于(1,0)A 、(3,0)B 两点,与y 轴交于点C ,其顶点为点D ,点E 的坐标为(0,1)-,该抛物线与BE 交于另一点F ,连接BC . (1)求该抛物线的解析式;(2)若点(1,)H y 在BC 上,连接FH ,求FHB △的面积;(3)一动点M 从点D 出发,以每秒1个单位的速度沿平行于y 轴方向向上运动,连接OM ,BM ,设运动时间为t 秒(0)t >,在点M 的运动过程中,当t 为何值时,90OMB ∠=︒?18.如图在平面直角坐标系中,已知抛物线y =x 2﹣2x +c 与两坐标轴分别交于A ,B ,C 三点,且OC =OB ,点G 是抛物线的顶点.(1)求抛物线的解析式.(2)若点M 为第四象限内抛物线上一动点,点M 的横坐标为m ,四边形OCMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是x 轴上的动点,判断有几个位置能够使得点P 、Q 、A 、G 为顶点的四边形为平行四边形,直接写出相应的点P 的坐标.19.在平面直角坐标系xOy中,点A(0,4)、B(3,0),抛物线y=x2﹣4x+3a+2(a为实数).(1)写出抛物线的对称轴;(2)若点(m,y1)(m+2,y2)在抛物线上,且y1>y2,求m的取值范围.(3)若该抛物线图象在﹣1≤x≤3的部分与△AOB两直角边的交点个数为2,求a的取值范围.专题17 二次函数与实际问题:图形运动问题1.如图,在平面直角坐标系xOy 中,将抛物线2y x bx c =-++与直线1y x =-+相交于点()0,1A 和点()3,2B -,交x 轴于点C ,顶点为点F ,点D 是该抛物线上一点.(1)求抛物线的函数表达式;(2)如图1,若点D 在直线AB 上方的抛物线上,求DAB ∆的面积的最大值以及此时点D 的坐标; (3)如图2,若点D 在对称轴左侧的抛物线上,点()1,E t 是射线CF 上一点,当以C 、B 、D 为顶点的三角形与CAE ∆相似时,直接写出所有满足条件的t 的值.【答案】(1)221y x x =-++;(2)面积最大为278,此时37,24D ⎛⎫ ⎪⎝⎭;(3)1t =或2t =或1t =+或1t =.【分析】(1)将A 、B 两点坐标代入即可求解函数解析式;(2)过D 作DM//y 轴交AB 于点M ,设D 点坐标为()2,21a a a -++,则M (),1a a -+,用a 表示出DM ,然后根据割补法表示出DAB ∆的面积,利用二次函数的性质得出最大值和D 点坐标; (3)根据题意,45ACE ACO ∠=∠=︒,则BCD ∆中必有一个内角为45°,有两种情况:①若45CBD ∠=︒,得出BCD ∆是等腰直角三角形,因此ACE ∆也是等腰直角三角形,在对ACE ∆进行分类讨论;②若45CDB ∠=︒,根据圆的性质确定D 1的位置,求出D 1的坐标,在对ACE ∆与1CD B ∆相似分类讨论.【详解】(1)由题意得,将将A 、B 两点坐标代入函数解析式有:100293c b c =++⎧⎨-=-++⎩,解得21b c =⎧⎨=⎩ ∴抛物线解析式为221y x x =-++;(2)如图1,过D 作DM//y 轴交AB 于点M ,设D 点坐标为()2,21a a a -++,则M (),1a a -+, ∴()222113DM a a a a a =-++--+=-+ ()()()221133322ADB ADM BDM S S S a a a a a a ∆∆∆=+=-++-+- =23993244a a ⎛⎫--+- ⎪⎝⎭ =3327228a ⎛⎫--+ ⎪⎝⎭ ∴当32a =时,DAB ∆的面积的最大值278ADB S ∆=,此时D 点坐标为37,24⎛⎫ ⎪⎝⎭; (3)∵OA//OC ,如图2,CF//y 轴∴45ACE ACO ∠=∠=︒∴BCD ∆中必有一个内角为45°,由题意得BCD ∠不能为45°①若45CBD ∠=︒,则BD//x 轴。

专题02 将军饮马(一)-中考数学二次函数压轴题核心考点突破

专题02 将军饮马(一)-中考数学二次函数压轴题核心考点突破
A
N
M
B
D
C
【分析】M 点为折点,作 B 点关于 AD 的对称点,即 C 点,连接 CN,即为所求的最小值.
A
N M
B
D
C
过点 C 作 AB 垂线,利用勾股定理求得 CN 的长为 2 倍根号 7.
A
N
H
M
B
D
C
【隐身的等边三角形】 如图,在 Rt△ABD 中,AB=6,∠BAD=30°,∠D=90°,N 为 AB 上一点且 BN=2AN , M 是 AD 上的动点,连结 BM,MN,则 BM+MN 的最小值是___________.
y A
C P
A. (2, 2)
O
B.(5 , 5) 22
D
Bx
C.(8 , 8) 33
D. (3, 3)
【分析】此处点 P 为折点,可以作点 D 关于折点 P 所在直线 OA 的对称:
y D'
A
P
C
也可以作点 C 的对称:
O
D
Bx
y C' A
C P
O
D
Bx
【隐身的正方形】 (2017·辽宁营口)如图,在△ABC 中,AC=BC,∠ACB =90°,点 D 在 BC 上,BD=3,DC=1,
A . 2 13
B . 2 10
C.3 5
D. 41
D
C
P
A
B
【分析】由 SPAB
1 3 S矩形ABCD
可作出 P
点轨迹为直线
M N(A M =B N =2),作点
B
关于
MN 的对称点 B’,
化折线 PA+PB 为 PA+PB’.

中考数学 精讲篇 中考压轴题重难点突破七 二次函数与几何综合题 类型二


设 M(0,m),直线 BM 的解析式为 y=k2x+b2, 将点 M,B 代入,得m0==b-2,2k2+b2,解得kb22==m2m.,
m ∴直线 BM 的解析式为 y=2x+m,∵点 P为直线 BM 与抛物线的交点,
m y=2x+m, ∴联立方程组得y=-14x2+32x+4,化简得(x+2)(x-8+2m)=0,
∵S△ACD=3,∴-32t2-92t=3,解得 t1=-1,t2=-2.
当 t=-1 时,点 D 的坐标为(-1,-4), 当 t=-2 时,点 D 的坐标为(-2,-3). 综上所述,满足条件的点 D 的坐标为(-1,-4)或(-2,-3).
【思路点拨】 第一步:设点 D 的横坐标为 t, 用含 t 的式子表示△ACD 的面积; 第二步:利用面积关系 S△ACD=3,列关于 t 的方程求解,进而得出点 D 的 坐标.
(4)如图,已知点 P 是直线 AC 下方抛物线上一动点,设点 P 的横坐标为 m,求四边形 APCO 面积的最大值;
解:由(1)(3)可知点 A(-3,0),C(0,-3), lAC:y=-x-3, 设直线 x=m 与直线 AC 交于点 F, 则点 P 的坐标为(m,m2+2m-3), 点 F 的坐标为(m,-m-3). 则 PF=-m-3-(m2+2m-3)=-m2-3m.
∴S 四边形 APCO=S△ACP+S△ACO=12OA·PF+12OA·OC=12×3×(-m2-3m+3) =-32(m2+3m)+92=-32m+322+683.
由题意可知,-3<m<0,
3
63
∴当 m=-2时,S 四边形 APCO 最大值为 8 .
【思路点拨】 第一步:设直线 x=m 与直线 AC 交于点 F,用含 m 的式子表示出 PF 的长; 第二步:由 S 四边形 =S +S APCO △ACP △ACO 列出式子,即可得到最大值.

类型6 二次函数的最值问题(精选20题)2020年中考数学三轮冲刺 难点题型突破(含答案)

二次函数的最值问题1.菱形ABCD边长为4,∠BAD=60°,点E是AD上一动点(不与A、D重合),点F是CD上一动点,AE+CF=4,则△BEF面积的最小值为()A.B.C.D.2.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A.B.C.3D.43.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或4.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2D.﹣1或25.一副三角板(△ABC与△DEF)如图放置,点D在AB边上滑动,DE交AC于点G,DF交BC于点H,且在滑动过程中始终保持DG=DH,若AC=2,则△BDH面积的最大值是()A.3B.3C.D.6.如图,在边长为1的菱形ABCD中,∠ABC=120°,P是边AB上的动点,过点P作PQ⊥AB交射线AD于点Q,连接CP,CQ,则△CPQ面积的最大值是()A.B.C.D.7.二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),直线AB交y轴于点B(0,﹣7),动点C(x,y)在直线AB上,且1<x<7,过点C作x轴的垂线交抛物线于点D,则CD的最值情况是()A.有最小值9B.有最大值9C.有最小值8D.有最大值88.已知二次函数y=x2+mx+n的图象经过点(﹣1,﹣3),则代数式mn+1有()A.最小值﹣3B.最小值3C.最大值﹣3D.最大值39.二次函数y=x2+2ax+a在﹣1≤x≤2上有最小值﹣4,则a的值为.10.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2.11.如图,在Rt△ABC中,∠C=90°,BC=4,BA=5,点D是边AC上的一动点,过点D作DE∥AB交边BC于点E,过点B作BF⊥BC交DE的延长线于点F,分别以DE,EF为对角线画矩形CDGE和矩形HEBF,则在D从A到C的运动过程中,当矩形CDGE 和矩形HEBF的面积和最小时,AD的长度为.12.一个包装盒的设计方法如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.若广告商要求包装盒侧面积S(cm2)最大,试问x 应取的值为cm.13.已知:在面积为7的梯形ABCD中,AD∥BC,AD=3,BC=4,P为边AD上不与A、D重合的一动点,Q是边BC上的任意一点,连接AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F,则△PEF面积最大值是.14.已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.15.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若y=,要使△DEF为等腰三角形,m的值应为多少?16.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.17.如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.18.如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC 上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;(2)设DE=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值.19.如图,线段AD=5,⊙A的半径为1,C为⊙A上一动点,CD的垂直平分线分别交CD,AD于点E,B,连接BC,AC,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,则x=;(3)设△ABC的面积的平方为W,求W的最大值.20.如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=4cm,OC=3cm,D为OA上一动点,点D以1cm/s的速度从O点出发向A点运动,E为AB上一动点,点E以1cm/s的速度从A点出发向点B 运动.(1)试写出多边形ODEBC的面积S(cm2)与运动时间t(s)之间的函数关系式;(2)在(1)的条件下,当多边形ODEBC的面积最小时,在坐标轴上是否存在点P,使得△PDE为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)在某一时刻将△BED沿着BD翻折,使得点E恰好落在BC边的点F处.求出此时时间t的值.若此时在x轴上存在一点M,在y轴上存在一点N,使得四边形MNFE的周长最小,试求出此时点M,点N的坐标.试题解析1.菱形ABCD边长为4,∠BAD=60°,点E是AD上一动点(不与A、D重合),点F是CD上一动点,AE+CF=4,则△BEF面积的最小值为()A.B.C.D.解:连接BD,AC,∵菱形ABCD边长为4,∠BAD=60°;∴△ABD与△BCD为正三角形,∴∠FDB=∠EAB=60°,∵AE+CF=4,DF+CF=4,∴AE=DF,∵AB=BD,∴△BDF≌△BAE,∴BE=BF,∠ABE=∠DBF,∴∠EBF=∠ABD=60°,∴△BEF是等边三角形,∴当BE⊥AD时,△BEF的面积最小,此时BE=2△BEF面积的最小值=3.故选:B.2.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A.B.C.3D.4解:过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM,∵OD=AD=3,DE⊥OA,∴OE=EA=OA=2,由勾股定理得:DE=,设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴=,=,∵AM=PM=(OA﹣OP)=(4﹣2x)=2﹣x,即=,=,解得:BF=x,CM=﹣x,∴BF+CM=.故选:A.3.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选:C.4.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2D.﹣1或2解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故选:D.5.一副三角板(△ABC与△DEF)如图放置,点D在AB边上滑动,DE交AC于点G,DF交BC于点H,且在滑动过程中始终保持DG=DH,若AC=2,则△BDH面积的最大值是()A.3B.3C.D.解:如图,作HM⊥AB于M,∵AC=2,∠B=30°,∴AB=2,∵∠EDF=90°,∴∠ADG+∠MDH=90°,∵∠ADG+∠AGD=90°,∴∠AGD=∠MDH,∵DG=DH,∠A=∠DMH=90°,∴△ADG≌△MHD(AAS),∴AD=HM,设AD=x,则BD=2﹣x,∴S△BDH==BD•AD=x(2﹣x)=﹣(x﹣)2+,∴△BDH面积的最大值是,故选:C.6.如图,在边长为1的菱形ABCD中,∠ABC=120°,P是边AB上的动点,过点P作PQ⊥AB交射线AD于点Q,连接CP,CQ,则△CPQ面积的最大值是()A.B.C.D.解:设菱形的高为h,∵在边长为1的菱形ABCD中,∠ABC=120°,∴∠A=60°,∴h=,若设AP=x,则PB=1﹣x,∵PQ⊥AB,AQ=2x,PQ=x,∴DQ=1﹣2x,∴S△CPQ=S菱形ABCD﹣S△PBC﹣S△P AQ﹣S△CDQ=1×﹣(1﹣x)•﹣x•x﹣(1﹣2x)•=﹣x2+x=﹣(x﹣)2+,∵﹣<0,∴△CPQ面积有最大值为,故选:D.7.二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),直线AB交y轴于点B(0,﹣7),动点C(x,y)在直线AB上,且1<x<7,过点C作x轴的垂线交抛物线于点D,则CD的最值情况是()A.有最小值9B.有最大值9C.有最小值8D.有最大值8解:∵二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),∴,解得,∴二次函数为y=x2﹣7x,∵A(7,0),B(0,﹣7),∴直线AB为:y=x﹣7,设C(x,x﹣7),则D(x,x2﹣7x),∴CD=x﹣7﹣(x2﹣7x)=﹣x2+8x﹣7=﹣(x﹣4)2+9,∴1<x<7范围内,有最大值9,故选:B.8.已知二次函数y=x2+mx+n的图象经过点(﹣1,﹣3),则代数式mn+1有()A.最小值﹣3B.最小值3C.最大值﹣3D.最大值3解:把(﹣1,﹣3)代入y=x2+mx+n得﹣3=1﹣m+n∴n=m﹣4∴mn+1=m(m﹣4)+1=m2﹣4m+1=(m﹣2)2﹣3所以mn+1有最小值﹣3,故选:A.9.二次函数y=x2+2ax+a在﹣1≤x≤2上有最小值﹣4,则a的值为5或.解:分三种情况:当﹣a<﹣1,即a>1时,二次函数y=x2+2ax+a在﹣1≤x≤2上为增函数,所以当x=﹣1时,y有最小值为﹣4,把(﹣1,﹣4)代入y=x2+2ax+a中解得:a=5;当﹣a>2,即a<﹣2时,二次函数y=x2+2ax+a在﹣1≤x≤2上为减函数,所以当x=2时,y有最小值为﹣4,把(2,﹣4)代入y=x2+2ax+a中解得:a=﹣>﹣2,舍去;当﹣1≤﹣a≤2,即﹣2≤a≤1时,此时抛物线的顶点为最低点,所以顶点的纵坐标为=﹣4,解得:a=或a=>1,舍去.综上,a的值为5或.故答案为:5或10.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为3s时,四边形EFGH的面积最小,其最小值是18cm2.解:设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,根据题意得:S四边形EFGH=S正方形ABCD﹣4S△AEH=6×6﹣4×t(6﹣t)=2t2﹣12t+36=2(t﹣3)2+18,∴当t=3时,四边形EFGH的面积取最小值,最小值为18.故答案为:3;1811.如图,在Rt△ABC中,∠C=90°,BC=4,BA=5,点D是边AC上的一动点,过点D作DE∥AB交边BC于点E,过点B作BF⊥BC交DE的延长线于点F,分别以DE,EF为对角线画矩形CDGE和矩形HEBF,则在D从A到C的运动过程中,当矩形CDGE 和矩形HEBF的面积和最小时,AD的长度为.解:在Rt△ABC中,∠C=90°,BC=4,BA=5,∴AC==3,设DC=x,则AD=3﹣x,∵DF∥AB,∴=,即=,∴CE=∴BE=4﹣,∵矩形CDGE和矩形HEBF,∴AD∥BF,∴四边形ABFD是平行四边形,∴BF=AD=3﹣x,则S阴=S矩形CDGE+S矩形HEBF=DC•CE+BE•BF=x•x+(3﹣x)(4﹣x)=x2﹣8x+12,∵>0,∴当x=﹣=时,有最小值,∴DC=,有最小值,即AD=3﹣=时,矩形CDGE和矩形HEBF的面积和最小,故答案为12.一个包装盒的设计方法如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.若广告商要求包装盒侧面积S(cm2)最大,试问x 应取的值为15cm.解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30﹣x),0<x<30.S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,∴当x=15cm时,S取最大值.故答案为:15.13.已知:在面积为7的梯形ABCD中,AD∥BC,AD=3,BC=4,P为边AD上不与A、D重合的一动点,Q是边BC上的任意一点,连接AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F,则△PEF面积最大值是.解:设PD=x,S△PEF=y,S△AQD=z,梯形ABCD的高为h,∵AD=3,BC=4,梯形ABCD面积为7,∴解得∵PE∥DQ,∴∠PEF=∠QFE,∠EPF=∠PFD,又∵PF∥AQ,∴∠PFD=∠EQF,∴∠EPF=∠EQF,∵EF=FE,∴△PEF≌△QFE(AAS),∵PE∥DQ,∴△AEP∽△AQD,同理,△DPF∽△DAQ,∴=,=()2,∵S△AQD=3,∴S△DPF=x2,S△APE=(3﹣x)2,∴S△PEF=(S△AQD﹣S△DPF﹣S△APE)÷2,∴y=[3﹣x2﹣(3﹣x)2]×=﹣x2+x,∵y最大值==,即y最大值=.∴△PEF面积最大值是.14.已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.解:(Ⅰ)当b=2,c=﹣3时,二次函数的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴当x=﹣1时,二次函数取得最小值﹣4;(Ⅱ)当c=5时,二次函数的解析式为y=x2+bx+5,由题意得,x2+bx+5=1有两个相等是实数根,∴△=b2﹣16=0,解得,b1=4,b2=﹣4,∴二次函数的解析式y=x2+4x+5,y=x2﹣4x+5;(Ⅲ)当c=b2时,二次函数解析式为y═x2+bx+b2,图象开口向上,对称轴为直线x=﹣,①当﹣<b,即b>0时,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+b2=3b2为最小值,∴3b2=21,解得,b1=﹣(舍去),b2=;②当b≤﹣≤b+3时,即﹣2≤b≤0,∴x=﹣,y=b2为最小值,∴b2=21,解得,b1=﹣2(舍去),b2=2(舍去);③当﹣>b+3,即b<﹣2,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值,∴3b2+9b+9=21.解得,b1=1(舍去),b2=﹣4;∴b=时,解析式为:y=x2+x+7b=﹣4时,解析式为:y=x2﹣4x+16.综上可得,此时二次函数的解析式为y=x2+x+7或y=x2﹣4x+16.15.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若y=,要使△DEF为等腰三角形,m的值应为多少?解:(1)∵EF⊥DE,∴∠BEF=90°﹣∠CED=∠CDE,又∠B=∠C=90°,∴△BEF∽△CDE,∴=,即=,解得y=;(2)由(1)得y=,将m=8代入,得y=﹣x2+x=﹣(x2﹣8x)=﹣(x﹣4)2+2,所以当x=4时,y取得最大值为2;(3)∵∠DEF=90°,∴只有当DE=EF时,△DEF为等腰三角形,∴△BEF≌△CDE,∴BE=CD=m,此时m=8﹣x,解方程=,得x=6,或x=2,当x=2时,m=6,当x=6时,m=2.16.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.解:(1)当PQ∥AD时,则∠A=∠APQ=90°,∠D=∠DQP=90°,又∵AB∥CD,∴四边形APQD是矩形,∴AP=QD,∵AP=CQ,AP=CD=,∴x=4.(2)如图,连接EP、EQ,则EP=EQ,设BE=y.∴(8﹣x)2+y2=(6﹣y)2+x2,∴y=.∵0≤y≤6,∴0≤≤6,∴≤x≤.(3)S△BPE=•BE•BP=••(8﹣x)=,S△ECQ==•(6﹣)•x=,∵AP=CQ,∴S BPQC=,∴S=S BPQC﹣S△BPE﹣S△ECQ=24﹣﹣,整理得:S==(x﹣4)2+12(),∴当x=4时,S有最小值12,当x=或x=时,S有最大值.∴12≤S≤.17.如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.解:(1)∵CD∥AB,∴∠BAC=∠DCA又∵AC⊥BC,∠ACB=90°,∴∠D=∠ACB=90°,∴△ACD∽△BAC.(2)Rt△ABC中,AC==8cm,∵△ACD∽△BAC,∴=,即,解得:DC=6.4cm.(3)过点E作AB的垂线,垂足为G,∵∠ACB=∠EGB=90°,∠B公共,∴△ACB∽△EGB,∴,即,故;y=S△ABC﹣S△BEF==;故当t=时,y的最小值为19.18.如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC 上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;(2)设DE=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值.解:(1)当正方形DEFG的边GF在BC上时,如图(1),过点A作BC边上的高AM,交DE于N,垂足为M.∵S△ABC=48,BC=12,∴AM=8,∵DE∥BC,△ADE∽△ABC,∴,而AN=AM﹣MN=AM﹣DE,∴,解之得DE=4.8.∴当正方形DEFG的边GF在BC上时,正方形DEFG的边长为4.8,(2)分两种情况:①当正方形DEFG在△ABC的内部时,如图(2),△ABC与正方形DEFG重叠部分的面积为正方形DEFG的面积,∵DE=x,∴y=x2,此时x的范围是0<x≤4.8,②当正方形DEFG的一部分在△ABC的外部时,如图(3),设DG与BC交于点Q,EF与BC交于点P,△ABC的高AM交DE于N,∵DE=x,DE∥BC,∴△ADE∽△ABC,即,而AN=AM﹣MN=AM﹣EP,∴,解得EP=8﹣x.所以y=x(8﹣x),即y=﹣x2+8x,由题意,x>4.8,且x<12,所以4.8<x<12;因此△ABC与正方形DEFG重叠部分的面积需分两种情况讨论,当0<x≤4.8时,△ABC与正方形DEFG重叠部分的面积的最大值为4.82=23.04,当4.8<x<12时,因为,所以当时,△ABC与正方形DEFG重叠部分的面积的最大值为二次函数的最大值:y最大=﹣×62+8×6=24;因为24>23.04,所以△ABC与正方形DEFG重叠部分的面积的最大值为24.19.如图,线段AD=5,⊙A的半径为1,C为⊙A上一动点,CD的垂直平分线分别交CD,AD于点E,B,连接BC,AC,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,则x= 2.4或2.6;(3)设△ABC的面积的平方为W,求W的最大值.解:(1)∵AD=5,AB=x,BE垂直平分CD,∴BC=BD=5﹣x,在△ABC中,AC=1,∴(5﹣x)﹣1<x<1+(5﹣x),解得:2<x<3;(2)∵△ABC为直角三角形,若AB是斜边,则AB2=AC2+BC2,即x2=(5﹣x)2+1,∴x=2.6;若BC是斜边,则BC2=AB2+AC2,即(5﹣x)2=x2+1,∴x=2.4.故答案为:2.4或2.6.(3)在△ABC中,作CF⊥AB于F,设CF=h,AF=m,则W=(xh)2=x2h2,①如图,当2.4<x<3时,AC2﹣AF2=BC2﹣BF2,则1﹣m2=(5﹣x)2﹣(x﹣m)2,得:m=,∴h2=1﹣m2=,∴W=x2h2=﹣6x2+30x﹣36,即W=﹣6(x﹣)2+,当x=2.5时(满足2.4<x<3),W取最大值1.5;②当2<x≤2.4时,同理可得:W=﹣6x2+30x﹣36=﹣6(x﹣)2+,当x=2.4时,W取最大值1.44<1.5,综合①②得,W的最大值为1.5.20.如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=4cm,OC=3cm,D为OA上一动点,点D以1cm/s的速度从O点出发向A点运动,E为AB上一动点,点E以1cm/s的速度从A点出发向点B 运动.(1)试写出多边形ODEBC的面积S(cm2)与运动时间t(s)之间的函数关系式;(2)在(1)的条件下,当多边形ODEBC的面积最小时,在坐标轴上是否存在点P,使得△PDE为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)在某一时刻将△BED沿着BD翻折,使得点E恰好落在BC边的点F处.求出此时时间t的值.若此时在x轴上存在一点M,在y轴上存在一点N,使得四边形MNFE的周长最小,试求出此时点M,点N的坐标.解:(1)设OD=t,AD=4﹣t,AE=t,S△ODEBC=S△ABCD﹣S△DAE===(0≤t≤3)(2)∵∴∴当t=2时,S有最小值;此时:D(2,0)、E(4,2),①当P在x轴上时,设P(a,0),此时:DE2=AD2+EA2=22+22=8,EP2=(a﹣4)2+22=a2﹣8a+20,DP2=(a﹣2)2=a2﹣4a+4,∴当DE2=EP2时,8=a2﹣8a+20,∴a2﹣8a+12=0,(a﹣2)(a﹣6)=0,∴P(2,0),P1(6,0),∵P(2,0)与D重合∴舍去,当EP2=DP2时,a2﹣8a+20=a2﹣4a+4,16=4a,a=4,∴P2(4,0),当DE2=DP2时,8=a2﹣4a+4a2﹣4a﹣4=0,∴,②当P在y轴上时,设P(0,b),则DP2=22+b2=b2+4EP2=42+(b﹣2)2=16+b2﹣4b+4=b2﹣4b+20 DE2=8,∴当DP2=EP2时,b2+4=b2﹣4b+204b=16,b=4,∴P5(0,4),当EP2=DE2时,b2﹣4b+20=8b2﹣4b+12=0b2﹣4ac<0,∴无解.当DP2=DE2时,b2+4=8,b2=4,∴b=±2,∴P6(0,﹣2)(DEP三点共线,舍去),∴综上共有6个这样的P点,使得△PDE为等腰三角形.即P1(6,0),P2(4,0),,,P5(0,4),P6(0,2).(3)设AE=t,则BE=3﹣t.BF=BE=3﹣t,AD=4﹣t,∴CF=4﹣BF=t+1,过D作DP⊥BC于P.则:CP=OD=t,∴PF=1,又DP=3,∴,∴,∴在Rt△DAE中,AD2+AE2=DE2,∴(4﹣t)2+t2=10,∴t2﹣8t+16+t2=10,2t2﹣8t+6=0,t2﹣4t+3=0,∴t1=1,t2=3(舍),∴t=1(9分),∴E(4,1),F(2,3),∵E关于x轴的对称点E′(4,﹣1),F关于y轴的对称点F′(﹣2,3),则E′F′与x轴,y轴的交点即为M点,N点.设直线E′F′的解析式为y=kx+b(k≠0),则,∴,∴y=﹣x+.(10分)∴M(,0),N(0,).(12分)。

专题19 二次函数与实际问题:销售问题(解析版)2021年中考数学二轮复习之难点突破热点解题方法

专题19 二次函数与实际问题:销售问题一、单选题1.某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查反映;如调整价格,每涨价1元,每星期要少卖出10件.则每星期售出商品的利润y (单位:元)与每件涨价x (单位:元)之间的函数关系式是( )A .30010y x =-B .()3006040y x =--C .()()300106040y x x =+--D .()()300106040y x x =--+【答案】D【分析】由每件涨价x 元,可得出销售每件的利润为(60﹣40+x )元,每星期的销售量为(300﹣10x ),再利用每星期售出商品的利润=销售每件的利润×每星期的销售量,即可得出结论.【详解】解:∵每涨价1元,每星期要少卖出10件,每件涨价x 元,∵销售每件的利润为(60﹣40+x )元,每星期的销售量为(300﹣10x ),∵每星期售出商品的利润y =(300﹣10x )(60﹣40+x ).故选:D .【点睛】本题考查了根据实际问题列二次函数关系式,根据各数量之间的关系,找出y 与x 之间的函数关系式.二、解答题2.在2020年新冠肺炎抗疫期间,小明决定在淘宝上销售一批口罩.经市场调研:某类型口罩进价每袋为20元,当售价为每袋25元时,销售量为250袋,若销售单价每提高1元,销售量就会减少10袋.(1)直接写出小明销售该类型口罩销售量y (袋)与销售单价x (元)之间的函数关系式 ;每天所得销售利润w (元)与销售单价x (元)之间的函数关系式 .(2)若小明想每天获得该类型口罩的销售利润2000元时,则销售单价应定为多少元?(3)若每天销售量不少于100袋,且每袋口罩的销售利润至少为17元,则销售单价定位多少元时,此时利润最大,最大利润是多少?【答案】(1)210500,1070010000y x w x x =-+=-+-; (2)30元或40元; (3)销售单价定位37元时,此时利润最大,最大利润是2210元.【分析】(1)根据“若销售单价每提高1元,销售量就会减少10袋,当销售单价为x 元时,销售量为()2501025x --⎡⎤⎣⎦袋”,即可得出y 关于x 的函数关系式,然后再根据销售利润w (元)等于销售数量乘以每袋利润可得销售利润w (元)与销售单价x (元)之间的函数关系式;(2)代入w=2000,建立一元二次方程,解方程求出x 的值,由此即可得出结论;(3)根据题意先求解销售单价x 的范围,利用配方法将w 关于x 的函数关系式变形为:()210352250w x =--+,根据二次函数的性质即可解决最值问题.【详解】解:(1)根据题意得,()250102510500y x x =--=-+; 则()()220105001070010000w x x x x =--+=-+-,故答案为:210500,1070010000.y x w x x =-+=-+-(2)∵w=2000,∵210700100002000x x -+-=,27012000,x x ∴-+=()()30400,x x ∴--=解得:1230,40,x x ==答:销售单价应定为30元或40元,小明每天获得该类型口罩的销售利润2000元;(3)根据题意得,105001002017x x -+≥⎧⎨-≥⎩, ∵x 的取值范围为:3740x ≤≤,∵函数()22107001000010352250x x x w -+-=--+=, ∴ 对称轴为x=35,10a =-<0,∴ 当3740x ≤≤,y 随x 的增大而减小,∵当x=37时,w 最大值=2210.答:销售单价定位每袋37元时,此时利润最大,最大利润是2210元.【点睛】本题考查了一次函数的应用,二次函数的应用,一元一次不等式组的应用,一元二次方程的解法,关键是正确理解题意,找出题目中的等量关系,掌握利用二次函数的性质求最值是解题的关键.3.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润为最大?【答案】(1)标价为200元,进价为155元;(2)10元【分析】(1)设工艺品每件的标价为x元,则根据题意可知进价为(x-45)元,按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等,列一元一次方程求解即可;(2)设每件应降价x元出售,每天获得的利润为y元,根据题意可得y和x的函数关系,利用函数的性质求解即可.【详解】解:(1)设工艺品每件的标价为x元,则进价为x-45 ,8[0.85x-(x-45)]=12[x-35-(x-45)] ,整理得360-1.2x=120,即1.2x=240,解得x=200,则每件进价为:200-45=155(元),∵改商品的每件标价为200元,进价为155元.(2)设利润为y,工艺品降价x元,则y=(45-x)(100+4x)=-4x2+80x+4500=-4(x-10)2+4900,∵a=-4<0,函数有最大值,∵当降价10元,每天获得的利润最大,最大利润4900元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利用函数的增减性来解答,吃透题意,确定变量,建立函数模型是解题的关键.4.某汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价x万元,每辆汽车的销售利润为y 万元.(销售利润=销售价﹣进货价)(1)求y 与x 的函数关系式,在保证商家不亏本的前提下,写出x 的取值范围;(2)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?(3)要使该汽车城平均每周的销售利润不低于48万元,那么销售价应定在哪个范围?【答案】(1)()404y x x =-+≤≤;(2)每辆汽车的定价为27.5万元时,利润最大,最大利润为50万元;(3)27万元至28万元【分析】(1)根据利润等于(29﹣进货价﹣降价)可得出y 关于x 的函数关系式,化简即可;(2)假设这种汽车平均每周的销售利润为S 万元,根据平均每周的销售利润等于每辆汽车的销售利润乘以销售量,可得出S 关于x 的二次函数,将其写成顶点式,根据二次函数的性质可得答案;(3)当S=48时,可得关于x 的一元二次方程,求得方程的解,再根据二次函数的性质可得出符合题意的x 值,再由实际售价等于(29﹣x )万元,可得出销售价的范围.【详解】(1)由题意得:2925y x =--,∵4y x =-+(04x ≤≤);(2)假设这种汽车平均每周的销售利润为S 万元,则()()0.5484S x x =÷⨯+-+282432x x =-++()28 1.550x =--+,∵ 1.5x =时,S 最大为50.∵29 1.527.5-=(万元),∵每辆汽车的定价为27.5万元时,利润最大,最大利润为50万元;(3)当S=48时,28243248x x -++=,解得:1212x x ==,,∵()28 1.550S x =--+,二次项系数为﹣8<0,∵S 为开口向下的二次函数,∵对称轴为直线 1.5x =,∵当1 1.5x ≤≤时,S 随x 的增大而增大;当1.52x <≤时,S 随x 的增大而减小,∵当12x ≤≤时,48S ≥.∵实际售价等于(29x -)万元,∵272928x ≤-≤时,48S ≥.∵销售价格在27万元至28万元之间时(含27万、28万元)该汽车城平均每周的利润不低于48万元.【点评】本题考查了二次函数在销售问题中的应用,明确成本利润问题的基本数量关系并熟练掌握二次函数的性质是解题的关键.5.某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价,据测算,每箱每降价1元,平均每天可以多售出20箱.(1)若要使每天销售该饮料获利1400元,则每箱应降价多少元?(2)每箱降价多少元超市每天获利最大?最大利润是多少?【答案】(1)2元或5元;(2)每箱降价3.5元时获利最大,最大利润是1445元【分析】(1)设每箱应降价x 元,列方程解答;(2)设每天获利W 元,由题意得到(12)(10020)W x x =-+,化为顶点式即可得到答案.【详解】解:(1)要使每天销售饮料获利1400元,设每箱应降价x 元,依据题意列方程得,(12)(10020)1400x x -+=,整理得27100x x -+=,解得12x =,25x =;答:要使每天销售该饮料获利1400元,则每箱应降价2元或5元.(2)设每天获利W 元,则(12)(10020)W x x =-+,2201401200x x =-++,220( 3.5)1445x =--+,∴每箱降价3.5元时获利最大,最大利润是1445元.【点睛】此题考查一元二次方程的实际应用,二次函数的实际应用,二次函数的性质,正确理解题意是解题的关键. 6.我市某超市销售一种文具,进价为5元/件,售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为x 元/件(6x ≥,且x 是按0.5元的倍数上涨),当天销售利润为y 元.(1)求y 与x 的函数关系式(不要求写出自变量的取值范围);(2)若每件文具的利润不超过80%,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.【答案】(1)210210800=-+-y x x ;(2)每件文具售价为9元,最大利润为280元.【分析】(1)根据总利润=每件利润×销售量,列出函数关系式,(2)由题意可知,利润不超过80%即:利润率=(售价-进价)÷进价∵80%,即可求得售价的范围.再结合二次函数的性质,问题可解.【详解】解:由题意(1)26(5)1005102108000.5x y x x x -⎛⎫=--⨯=-+- ⎪⎝⎭故y 与x 的函数关系式为:210210800=-+-y x x(2)∵每件文具利润不超过80% ∵50.85x -≤,得9x ≤ 结合题意得文具的销售单价x 的取值范围为69x ≤≤,由(1)得()22102108001010.5302.5y x x x =-+-=--+∵对称轴为10.5x =∵69x ≤≤在对称轴的左侧,且y 随着x 的增大而增大∵当9x =时,取得最大值,此时()210910.5302.5280y =-⨯-+=即每件文具售价为9元时,利润最大;最大利润为280元.【点睛】考查二次函数的应用.把实际问题转化为函数问题是关键,要注意自变量取值范围.7.某商店购进了一种小商品,每件进价为2元.经市场预测,销售定价为3元时,可售出200件;现为了减少库存,商店决定采取适当降价措施.经调查发现,销售定价每降低0.1元时,销售量将增多40件.(1)商店若希望获利224元,则应该降价多少元?(2)商店若要获得最大利润,应降价多少元?最大利润是多少?【答案】(1)降价0.3元;(2)降价0.25元,最大利润是225元【分析】(1)设每件小商品降价x 元,则可售出(200+400x )件,根据总利润=每件的利润×销售量,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论;(2)根据题意可以得到利润与降价之间的函数关系式,从而可以解答本题.【详解】(1)设每件小商品应该降价x 元,则可售出200+400.1x =(200+400x )件, 依题意,得:(3﹣2﹣x )(200+400x )=224,整理,得:2x 2﹣x +0.12=0,解得:x 1=0.3,x 2=0.2,∵为了减少库存,∵x =0.3,答:商店若希望获利224元,则应该降价0.3元;(2)设每件应降价y 元,利润为w 元,w =(3﹣2﹣y )(200+400y )=﹣400y 2+200y +200=﹣400(y ﹣0.25)2+225,∵当y =0.25时,w 取得最大值,此时w =225,即商店若要获得最大利润,应降价0.25元,最大利润是225元.【点睛】本题考查了一元二次方程的应用,二次函数的最值,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)确定w 与y 的函数关系式,配方可得最值.8.某超市购进一种商品,进货单价为每件10元在销售过程中超市按相关规定.销售单价不低于1元且不高于19元如果该商品的销售单价x (单位:元/件)与日销售量y (单位:件)满足一次函数关系240y x =-+,设该商品的日销售利润为w 元,那么当该商品的销售单价x (元/件)定为多少时,日销售利润最大?最大利润是多少?【答案】当甲商品的销售单价定为15元/件时,日销售利润最大,最大利润是50元【分析】根据利润等于每件的利润乘以销售量,可列出w 关于x 的二次函数,将其写成顶点式,按照二次函数的性质可得答案.【详解】解:根据题意得:w=(-2x+40)(x -10)=-2x 2+60x -400=-2(x -15)2+50,∵当x=15时,w 取得最大值,最大值为50.∵1<15<19,∵x=15符合题意.∵当该商品的销售单价定为15元/件时,日销售利润最大,最大利润是50元.【点睛】本题考查了二次函数在实际问题中的应用,明确题意并熟练掌握二次函数的性质是解题的关键. 9.某水果店批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售将减少20千克.(1)现要保证每天盈利5520元,同时又要让顾客得到实惠,那么每千克应涨价多少元?(2)要使每天获利不少于6000元,求涨价x 的范围.【答案】(1)每千克水果应涨价2元;(2)510x ≤≤【分析】(1)设每千克应涨价x 元,由题意列出方程,解方程即可求解;(2)根据题意表示出每天的利润,然后利用每天的获利等于6000元,解出两个x 的值,然后根据二次函数的性质即可得出答案.【详解】(1)设每千克应涨价x 元,由题意列方程得:(10+x )(500﹣20x )=5520,解得:x =2或x =13,为了使顾客得到实惠,那么每千克应涨价2元;答:每千克水果应涨价2元.(2)根据题意得,每天的获利为()()21050020203005000w x x x x =+-=-++ 令6000w =,即22030050006000x x -++=,解得125,10x x ==,20a =-<,∵要使每天获利不少于6000元,涨价x 的范围为510x ≤≤,答:每千克水果涨价x 的范围是510x ≤≤.【点睛】本题主要考查一元二次方程及二次函数的应用,根据题意列出方程及二次函数是解题的关键.10.某商店经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)在前50天销售过程中,为了给顾客发放福利,每售出一件商品就返还2a元给顾客,且要求售价不低于80元,但是前50天的销售中,仍可以获得最大利润5850元,求出a的值.【答案】(1)y()()22x180x20001x50120x1200050x90⎧-++≤⎪=⎨-+≤≤⎪⎩<;(2)该商品第45天时,当天销售利润最大,最大利润是6050元;(3)a的值为55﹣【分析】(1)根据单价乘以数量,可得利润,分段列出函数关系式可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)在确定函数表达式的基础上,确定函数的对称轴,进而求解.【详解】(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y()()22x180x20001x50120x1200050x90⎧-++≤⎪=⎨-+≤≤⎪⎩<;(2)当1≤x<50时,y=﹣2x2+180x+2000,y=﹣2(x﹣45)2+6050.∵a=﹣2<0,∵二次函数开口下,二次函数对称轴为x=45,当x=45时,y最大=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)根据题意得,y=(200﹣2x)(x+40﹣30﹣2a)=﹣2x2+(180+4a)x+2000﹣400a,x+40≥80,则x≥40,即40≤x<50,函数的对称轴x=45+a,在40≤x<50内(a<5时),当x=45+a时,函数取得最大值,即y=(200﹣2x)(x+40﹣30﹣2a)=(200﹣90﹣2a)(45+a+10﹣2a)=2(55﹣a)(55﹣a)=5850,即(55﹣a)==解得:a=55﹣;故a的值为55﹣【点睛】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值,解答时求出函数的解析式是关键.11.一网店经营一种玩具,购进时的单价是30元.根据市场调查表明:当销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该玩具的销售单价为x 元(40x >),请你分别用x 的代数式来表示销售量y 件和销售该玩具获得利润w 元,并把结果填写在表格中:(2)若该网店要获得了10000元销售利润,求该玩具销售单价x 应定为多少元?(3)若该网店要完成不少于550件的销售任务,求网店销售该品牌玩具获得的最大利润是多少?【答案】(1)101000x -+,210130030000x x -+-;(2)销售单价x 应定为50元或80元;(3)最大利润为8250元.【分析】(1)根据题意可直接进行列式求解即可;(2)由(1)可得210x 1300x 3000010000-+-=,然后求解即可;(3)由题意易得101000550x -+≥,然后可得4045x <≤,最后由二次函数的性质可进行求解.【详解】解:(1)由题意得:销售量()6001040101000y x x =--=-+;销售玩具获得利润()()23010100010130030000w x x x x =--+=-+-; 故答案为101000x -+,210130030000x x -+-;(2)由(1)及题意得:210x 1300x 3000010000-+-=,213040000x x -+=,解得:1250,80x x ==,∵40x >,∵1250,80x x ==;答:销售单价x 应定为50元或80元.(3)由题意得:101000550x -+≥,解得:45x ≤,∵40x >,∵4045x <≤,∵()2210130030000106512250w x x x =-+-=--+,∵100a =-<,对称轴为直线65x =,∵当4045x <≤时,w 随x 的增大而增大,∵当x=45时,w 有最大值,即为()2104565122508250w =-⨯-+=;答:销售该玩具所获最大利润为8250元.【点睛】本题主要考查二次函数的应用,会根据题意正确列式并明确二次函数的相关性质是解题的关键.12.进入冬季,我市空气质量下降,多次出现雾霾天气.商场根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务.(1)试确定周销售量y(包)与售价x(元/包)之间的函数关系式;(2)试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;(3)当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?【答案】(1)y=﹣5x+350;(2)w=﹣5x2+450x﹣7000(30≤x≤40);(3)当售价x定为40元时,商场每周销售这种防尘口罩所获得的利润w(元)最大,最大利润是3000元.【分析】(1)由题意直接写出y与x之间的函数关系式即可;(2)先由题意直接写出w与x之间的函数关系式,由供货厂家规定市场价不得低于30元/包且商场每周完成不少于150包的销售任务列出方程组确定x的取值范围即可;(3)根据第(2)问中的函数解析式和x的取值范围运用二次函数的性质求最值即可.【详解】解:(1)由题意可得:y=200﹣(x﹣30)×5=﹣5x+350即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=﹣5x+350;(2)由题意可得:w=(x﹣20)×(﹣5x+350)=﹣5x2+450x﹣7000且305350150x x ≥⎧⎨-+≥⎩ 解得:30≤x ≤40 即商场每周销售这种防尘口罩所获得的利润w (元)与售价x (元/包)之间的函数关系式是:w =﹣5x 2+450x ﹣7000(30≤x ≤40);(3)∵w =﹣5x 2+450x ﹣7000的二次项系数﹣5<0,∵抛物线对称轴为x =﹣4502(5)⨯-=45, ∵30≤x ≤40,∵当x <45时,w 随x 的增大而增大,∵当x =40时,w 取得最大值,w =﹣5×402+450×40﹣7000=3000,即当售价x (元/包)定为40元时,商场每周销售这种防尘口罩所获得的利润w (元)最大,最大利润是3000元.【点睛】本题主要考查二次函数的应用,明确题意、列出相应的函数解析式并确定自变量的取值范围是解答本题的关键.13.绿水青山,就是金山银山,为了保护环境,凉山州某公司生产了A 、B 两种型号的垃圾处理设备.已知生产4件甲设备和3件乙设备,共需成本62万元;生产3件甲设备和2件乙设备,共需成本44万元. (1)求生产每件甲、乙设备的成本分别是多少万元?(2)设甲设备的销售单价为x (单位:万元/件),该公司在销售过程中发现:甲设备的月销售量y (单位:件)与销售单价x 之间存在一次函数关系,x 、y 之间的部分数值对应关系如表:()1119x ≤≤请求出当1119x ≤≤时,y 与x 之间的函数关系式.(3)在(2)的条件下,设甲设备的月销售利润为w 万元,当甲设备的销售单价x (万元/件)定为多少时,月销售利润最大?最大利润是多少?【答案】(1)生产每件甲、乙设备的成本分别是8万元,10万元;(2)当1119x ≤≤时,函数关系式为240y x =-+;(3)当甲设备的销售单价定为14(万元/件)时,月销售利润最大是72万元.【分析】(1)设甲、乙的成本分别为a ,b 万元,根据题意列出二元一次方程组,求解即可;(2)设一次函数解析式,再代入(11,18),(19,2)利用待定系数法求解即可;(3)利用(2)的结论,列出w 与x 之间的关系式,利用函数的性质求解即可.【详解】(1)设生产每件甲、乙设备的成本分别是a 万元、b 万元,由题意可得:43623244a b a b +=⎧⎨+=⎩解得:810a b =⎧⎨=⎩答:生产每件甲、乙设备的成本分别是8万元,10万元.(2)设()0y kx b k =+≠, 把()11,18,()19,2代入得1811219k b k b =+⎧⎨=+⎩解得:240k b =-⎧⎨=⎩ ∵当1119x ≤≤时,函数关系式为240y x =-+.(3)由题意得:()()8240w x x =--+256320x x =-+-()221472x =--+∵当14x =时,利润最大为72万元答:当甲设备的销售单价定为14(万元/件)时,月销售利润最大是72万元.【点睛】本题考查二元一次方程组,一次函数,二次函数的实际应用,能够准确根据题意列出方程或表达式是解题关键.14.新冠肺炎期间,某超市将购进一批口罩进行销售,已知购进4盒甲口罩和6盒乙口罩需260元,购进5盒甲口罩和4盒乙口罩需220元.两种口罩以相同的售价销售,甲口罩的销售量1y (盒)与售价x (元)之间的关系为14008y x =-;当售价为40元时,乙口罩可销售100盒,售价每提高1元,少销售5盒. (1)求甲、乙两种口罩每盒的进价分别为多少元?(2)当乙口罩的售价为多少元时,乙口罩的销售总利润最大?此时甲乙两种口罩的销售利润总和为多少? (3)当甲口罩的销售量不低于乙口罩的销售量的1415,若使两种口罩的总利润最高,求此时的定价为多少? 【答案】(1)20元、30元;(2)45元,2125元;(3)36元.【分析】(1)设甲、乙两种口罩每盒的进价分别为x 元、y 元,由题意列方程组,求解即可.(2)设乙口罩的销售利润为w 元,由题意可列出关于x 的二次函数,将其改写成顶点式,即可知道乙口罩的售价及此时乙口罩的最大利润,继而求出甲口罩利润,即可求解.(3)根据题意可列出不等式,解得x 的取值范围,在得出两种口罩的利润总和关于x 的二次函数,根据二次函数的性质可得其对称轴,即得到答案.【详解】(1)设甲、乙两种口罩每盒的进价分别为x 元、y 元,由题意得:4626054220x y x y +=⎧⎨+=⎩, 解得:2030x y =⎧⎨=⎩, ∵甲、乙两种口罩每盒的进价分别为20元、30元.(2)设乙口罩的销售利润为w 元,由题意得:()()30100540w x x =---⎡⎤⎣⎦254509000x x =-+-()25451125x =--+,∵当乙口罩的售价为45元时,乙口罩的销售总利润最大,为1125元,当售价为45元时,1400840084540y x =-=-⨯=(盒);∵甲口罩的销售利润为:()4520401000-⨯=(元), ∵此时两种口罩的销售利润总和为:112510002125+=(元),∵当乙口罩的售价为45元时,乙口罩的销售总利润最大,此时两种口罩的销售利润总和为2125元. (3)由题意得:()14400810054015x x -≥--⎡⎤⎣⎦, 解得:36x ≤,∵两种口罩的利润总和()()()240082054509000w x x x x =--+-+-213101017000x x =-+-,∵对称轴为:5053613x =>, ∵当36x =时,两种口罩的利润总和最高,∵若使两种口罩的利润总和最高,此时的定价应为36元.【点睛】本题考查一次函数、二元一次方程组、二次函数及一元一次不等式在实际问题中的应用.根据题干理清它们的数量关系是解题的关键,综合性较强.15.某厂生产一种玩具,成本价是8元∕件,经过调查发现,每天的销售量y (件)与销售单价x (元)存在一次函数关系10600 y x =-+.(1)销售单价定为多少时,该厂每天获得的利润最大?最大利润是多少?(2)若物价部门规定,该产品的最高销售单价不得超过30元,那么销售单价如何定位才能获得最大利润?【答案】(1)34,6760元;(2)当销售单价定为30元时,才能获得最大利润.【分析】(1)根据题意,可以写出利润与销售单价之间的函数关系式,然后根据二次函数的性质,即可得到销售单价定为多少时,该厂每天获取的利润最大,最大利润为多少;(2)根据(1)中利润与单价之间的函数关系式和物价部门规定,该产品的最高销售单价不得超过30元,可以得到当单价为30时,才能获得最大利润.【详解】解:(1)设该厂每天获得的利润为w 元,2810600106804800W x x x x210x346760=时,W有最大值6760元当x34因此,当销售单价定为34元时,该厂每天获得的利润最大,最大利润是6760元.(2)由(1)可知2W x10346760x=,∵函数图像开口向下,对称轴为34∵最高销售单价不得超过30元,∵当x=30时,w取得最大值,此时2W,10303467606600因此,当销售单价定为30元时,才能获得最大利润是6600元.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.16.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y (千克)与售价x (元/千克)满足一次函数关系,对应关系如下表:(1)求y与x的函数关系式;(2)该产品每千克售价为多少元时,批发商获得的利润w (元)最大?此时的最大利润为多少元?【答案】(1)y=﹣x+150(0<x≤90);(2)85,4225.【分析】(1)根据图表中的各数可得出y与x成一次函数关系,从而结合图表的数可得出y与x的关系式.(2)根据题意列出w 与x 的函数关系式,然后配方()221703000854225w x x x =-+-=--+即可求出【详解】(1)设y 与x 的函数关系式为y =kx +b (k ≠0),根据题意得 501006090k b k b +=⎧⎨+=⎩,解得k 1b 150=-⎧⎨=⎩. 故y 与x 的函数关系式为y =﹣x +150(0<x ≤90);(2)根据题意得()()()20+15020w y x x x =-=--()221703000854225w x x x =-+-=--+当=85x 时批发商获得的利润w (元)最大,最大利润4225w =【点睛】本题考查了一次函数与二次函数的应用问题,解题关键是要读懂题目的意思,根据题目给出的条件,利用待定系数法求出一次函数的解析式与列出二次函数解析式,会配方变为顶点式.17.某超市销售一种牛奶,进价为每箱36元,规定售价不低于进价.现在的售价为每箱60元,每月可销售100箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x 元(x 为正整数),每月的销量为y 箱.(1)写出y 与x 之间的函数关系式和自变量x 的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?【答案】(1)10010y x =+,1≤x ≤24,且x 为整数;(2)超市定价为53元时,才能使每月销售牛奶的利润最大,最大利润是2890元.【分析】(1)根据价格每降低1元,平均每月多销售10箱,由每箱降价x元,多卖10x,据此可以列出函数关系式;(2)由利润=(售价-成本)×销售量列出函数关系式,求出最大值.【详解】解:(1)根据题意,得:y=100+10x,由60﹣x≥36得x≤24,∵1≤x≤24,且x为整数;(2)设所获利润为W,则W=(60﹣x﹣36)(10x+100)=﹣10x2+140x+2400=﹣10(x﹣7)2+2890,∵此二次函数的二次项系数小于0,∵函数开口向下,有最大值,∵当x=7时,W取得最大值,最大值为2890,此时售价为60-7=53(元),答:超市定价为53元时,才能使每月销售牛奶的利润最大,最大利润是2890元.【点睛】本题主要考查二次函数应用,由利润=(售价-成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键.18.某企业设计了一款工艺品,每件成本50元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)销售单价为多少元时,每天的销售利润可达4000元?。

二次函数的教学设计与反思.docx

二次函数的概念二次函数的概念教学设计及教学反思—、学习目标和要求:(1) 知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法。

(2) 过程与方法:通过二次函数定义的教学,培养学生善于观察、发现、探索、归纳问题的能力。

(3) 情感、态度与价值观:培养学生主动探索,敢于实践,勇于发现,合作交流的精神。

二、教学重难点学习重点:对二次函数概念的理解。

学习难点:由实际问题确定函数解析式和确定自变量的取值范围。

三、学习方法指导本节课以学生活动为主线,以突出重点、突破难点为目标采用引导探合作为主的教学方法,注重师生互动、生生互动充分发挥学生的主体作用,采用多元评价,激发学生学习的自信和动力。

U!学习过程(—)、复习提问1・什么叫函数?我们之前学过了那些函数?2. 它们的形式是怎样的?3・一次函数(y二kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有20的条件?k值对函数性质有什么影响?【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解・强调k*0的条件,以备与二次函数中的a进行比较.(二)引入新课例K (1)圆的半径是r(cm)H寸,面积s(cm2)与半径之间的关系是什么?解:s=TTr2 ( r>0 )例2、用周长为20m的篱笆围成矩形场地,场地面积y(m2)与矩形一边长x(m)之间的关系是什么?解:y=x(20/2-x)=x(10-x)=-x2+1 Ox (0<x<10)教师提问:以上二个例子所列出的函数与一次函数有何相同点与不同点?老师鼓励学生积极思考,并在小组内展开讨论,然后让小组代表发言,从而导出二次函数的定义。

二次函数的定义形如y=ax2+bx+c (a*0 , a, b, c为常数)的函数叫做二次函数。

巩固对二次函数概念的理解:K函数解析式为整式,并且自变量的最高次数是2次。

2、在y=ax2+bx+c中自变量是x ,它的取值范围是一切实数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二次函数为什么是中考代数部分最难点》 ——2015北京中考五大模块深度剖析之二次函数 学而思北京中考研究中心专家团 顾问:陈金根 主编:魏巍 刘蕾 费新斌 讨论:董小磊 牛丽娟 许秀霞 刘鹏农 林儒强 齐永确 高晓雪

根据2015年北京教育考试院下发的 《北京市高级中等学校招生考试说明——数学》得知,北京中考对二次函数的考试要求达到最高级别C级要求(Tips:C级要求通常以压轴题形式出现),同学们应当引起重视。 北京中考每年主要有两道题目考查二次函数的知识(并且其中一道为压轴题目),涉及分值11分左右,约占全卷总分值的10%,这一比例相当于普通章节的三倍,比重之大,可见一斑。 那么,北京中考对于二次函数的考查,难度系数到底有多大?考点又有哪些?需要掌握哪些解题方法和技巧?接下来,我们就二次函数在北京中考中的考察情况,为参加中考的同学做出以下3点分享:1、难度分析及考点分析;2、方法技巧提炼、针对最难点给出13个原创的题目进行针对性解决;3、限时巩固练习。 一、【二次函数为什么是中考代数部分的最难点?】

1、 二次函数主要以压轴题形式考查,难度高,得分率低 年份 题号 类型 分值 平均分 难度系数 2014 23 综合题 7分 3.64分 0.52 2014 25 综合题 8分 1.44分 0.18 2013 10 填空题 4分 3.24分 0.81 2013 23 综合题 7分 3.22分 0.46 2012 23 综合题 7分 3.01分 0.43 2011 7 选择题 4分 3.12分 0.78 2011 23 综合题 7分 3.08分 0.44 (部分数据来源:北京市教育考试院数据分析统计报告)

北京中考二次函数主要以综合题的形式考查,通常出现在整张试卷的倒数第三题。通过对近4年北京中考二次函数考查情况的分析,我们发现,二次函数综合题得分率低,难度系数小,约为0.4~0.5(Tips:难度系数越小,难度越大。中考数学整体难度系数约0.72。),属于中考数学的压轴题之一。 2、 二次函数综合性强,最后一问考查数形结合思想,区分度大 真题考查 考点 中考要求 分值 难度 2014中考23题(1)问 二次函数的图象和性质、解析式 B 1分 易 2014中考23题(2)问 二次函数与方程和不等式 C 5分 难 2013中考23题(3)问 二次函数与方程和不等式 C 3分 难 2012中考23题(1)问 二次函数的解析式 B 2分 易 2012中考23题(2)问 二次函数的图象和性质 B 1分 中 2012中考23题(3)问 二次函数与方程和不等式 C 3分 难 2011中考23题(1)问 二次函数的图象和性质 B 2分 易 2011中考23题(3)问 二次函数与方程和不等式 C 3分 难

结合2011—2014年的中考23题(Tips:二次函数综合压轴题),概括地说,二次函数综合压轴题是以函数为主线,结合一元二次方程的有关知识,运用几何图形的性质的综合性试题。二次函数综合题一般为3小问, 考点主要是两点: I. 前两问是对开口方向、对称轴、顶点坐标、解析式等基础知识的考查,满分4分,考生平均分2.71分左右。(属于必拿分题目) II. 最后一问是对二次函数与一次函数交点的情况、二次函数与方程不等式的关系等综合的考查,满分3分,考场平均分0.52分左右,最后一问是导致失分,拉开学生之间的差距的关键。(属压轴部分)

3、 如何突破二次函数的最难点,实现二次函数综合题满分? 通过对中考二次函数难度分析和考点分析,学而思北京中考研究中心给初三考生的建议是: I. 二次函数综合题的第(1)问或前两问的正确率在60%以上,再结合2015年北京市教育考试院给出的关于中考改革的意见来看,今年中考综合难度会略有降低,意味着这两问难度继续降低,所以要参加中考的同学一定要把此题前两问分数拿到,以免被拉开差距。 II. 最后一问的正确率在20%以下,得分率低,难度大,这是二次函数压轴题的核心,也是整张试卷中起到中考选拔作用的题目,所以建议要参加中考的同学专项训练二次函数综合题最后一问的典型题目,总结归纳对应的解题方法和技巧。

那么怎么才能把最后一问的分数收入囊中呢?为帮助同学们顺利解决二次函数压轴题,学而思北京中考研究中心团队通过数百道真题分析,提炼两种方法技巧,原创13种变式题,为初三同学们带来权威、实用的解题秘籍。

二、【2个技巧13个原创变式解决二次函数最难点】 1、近两年考试真题剖析,方法技巧提炼 考查方式:从前几年所考二次函数的综合性问题可以看出,命题模式比较固定,都是给出一个含有字母系数的二次函数,通过某些条件确定这个二次函数的解析式,然后基于这个已知的二次函数讨论某个一次函数和它(或它的一部分或它的变化形式)的交点情况.(二次函数压轴题一般有3小问)

【二次函数压轴题第(1)(2)问的解决技巧】: 技巧1. (1)若给出确定的解析式: 第一步:计算出对称轴(利用122xxx或者2bxa) 第二步:再利用因式分解或求根公式求出抛物线与坐标轴的交点 (2)若给出含字母系数的解析式: 第一步:根据各种特定的已知条件求出二次函数解析式(注意二次项系数不为0); 第二步:求出对称轴及抛物线与坐标轴交点坐标; 第三步:若求一次函数与二次函数的交点,只需把两解析式联立解方程组即可; 第四步:若有图像变换直接利用平移结论“上加下减,左加右减”,或对称公式来解决, 这些都是解决最后一问的前提. 注意:求抛物线对称轴最重要!对称轴和交点都定后,之后再怎么变化就都尽在掌握了.

【二次函数压轴题第(3)问的解决技巧】: 技巧2. 搞定它的秘籍首先就是精确作图,一定要用100%的耐心加细心把图象画好,这是中考说明中给出的A级,是最基本的要求,再找出临界点(临界点:图象边缘的两个点,不等式中恰好在边界的那些数值),利用临界点确定字母系数的值或取值范围。

【真题案例对比分析1——2014年北京中考23题】 在平面直角坐标系xOy中,抛物线22yxmxn经过点02A,,34B,. (1)求抛物线的表达式及对称轴; (2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围. 【解析】(1)∵ 22yxmxn经过点(02)A,,(34)B,

代入得:21834nmn,∴42mn ∴ 抛物线的表达式为2242yxx 对称轴4122x.

(2)xy A C B–1–2–3–41234–1–2–3–4–5123450 由题意可知(34)C,,二次函数2242yxx的最小值为4, 由图象可以看出D点纵坐标最小值即为4,最大值即BC与对称轴交点。

直线BC的解析式43yx

技巧1. 给出含字母系数的解析式:那首先根据已知(02)A,,(34)B,两点坐标求出二次函数解析式。确定解析式后,直接计算出对称轴。

技巧2. 首先精确作图,再找到D点的临界位置,发现C点的纵坐标和顶点的纵坐标一样,那么D点最低就是顶点,再连接CA和CB发现哪条直线和对称轴交点比较高?显然是CB,问题就搞定了。直接代入解析式即可。 当1x时,43y ∴443t≤≤. 【真题案例对比分析2——2013年北京中考23题】 在平面直角坐标系xOy中,抛物线2220ymxmxm≠与y轴交于点A,其对称轴与x轴交于点B. (1)求点A,B的坐标; (2)设直线l与直线AB关于该抛物线的对称轴对称,求直线l的解析式; (3)若该抛物线在21x这一段位于直线l的上方,并且在23x这一段位于直线AB的下方,求该抛物线的解析式.

【解析】(1)令0x,得2y, 则02A,,

又对称轴2122bmxam, 则10B,. (2)由(1)可知,直线AB的解析式22yx, 关于对称轴对称后的解析式为22yx. (3)

BA′A

Ox

y

∵抛物线的对称轴为直线x=1, ∴抛物线在23x<<这一段与在10x-<<这一段关于对称轴对称, 结合图象可以观察到抛物线在21x<<-这一段位于直线l的上方,在10x-<<这一段位于直线l的下方, ∴抛物线与直线l的交点的横坐标为1, 当1x时,2124y(-), 所以,抛物线过点14(-,), 当1x时,224mm,解得2m, ∴抛物线的解析式为2242yxx. 2、掌握13个原创变式,完胜二次函数中考最难点

根据近5年北京中考、一二模考试对于二次函数综合题(一般23题)的考查情况以及2015年北京市招生管理办公室和北京市教育考试院给出的关于中考改革的意见,学而思中考研究中心专家,根据历年此题最后一问的考查形式,原创了如下13个变式题目,帮助同学们熟悉考法并彻底掌握此类题型,轻松应对中考。

【例题】已知二次函数2yaxbxc的图象与x轴交于10A,,30B,,与y轴交于03C,.求该二次函数的解析式.

技巧1. 解析式中只有一个字母系数,而且题干中提到了对称轴,那么直接

利用2bxa求出对称轴.你看看,连续两年都考对称轴,它重要不重要?!你再看看2012年,一样也考!

技巧2. 第(3)问说了一堆什么这一段位于直线上方,那一段位于直线下方,是不是很晕很迷茫?精确作图就能搞定了.有没有发现其实整个图形是对称的,观察一下临界位置,就是我们刚才说过的不等式中恰好在边界的数值,2123,,,,有没有发现什么?这么对称的图形,当然是发现对称点了,-1和3是关于对称轴对称的有木有?说明他们俩都恰好在抛物线上,哦了,问题搞定!

相关文档
最新文档