原子物理学 课后答案 全

合集下载

《原子物理学》杨福家第四版课后答案

《原子物理学》杨福家第四版课后答案

② m1 为α粒子, m2 为静止的 He 核,则
( L )max 90
1-9)解:根据 1-7)的计算,靶核将入射粒子散射到大于 的散射几率是
P( ) nt

4
a 2ctg 2

2
当靶中含有两种不同的原子时,则散射几率为
0.71 0.32
将数据代入得:
-5-
0
2
2
d a 1 181 4 103 tg 2100 c ( ) d 4 sin 4 4 2 10 2 6.02 10 23 sin 4 300 依题: 2 28 2 24 10 m / sr 24b / sr
1-10)解: ① 金核的质量远大于质子质量,所以,忽略金核的反冲,入射粒子被靶核散时 则: 之间得几率可用的几率可用下式求出:
nt ( )2
a 4
2 sin sin
4

t a
( )2 A 4
2 sin sin 4

2
2
a
Z1Z 2e2 1 79 1.44Mev fm 94.8 fm 4 ER 1.2Mev
1 2 1 1 2 2 Mv mve Mv 2 2 2 Mv Mv mve
m v v ve M v 2 v2 m v 2 e M
(1)
p m v p = em v p= m vee,其大小:

180
2 3 ,即为所求 1 d sin 2 sin 3
3
90

2
1-7)解
P ( 0 1800 )
1800

原子物理学 杨福家 第四版(完整版)课后答案

原子物理学 杨福家 第四版(完整版)课后答案
6 (Å), r,4r,1.06v,,C,2.19,10(m/s)221
1++6 Li离子:r,,0.529,0.176(Å), v,3,c,6.57,10(m/s)113
36 (Å), r,4r,0.704v,,C,3.29,10(m/s)2212(2) H原子: E,,Rhc,,13.6(eV)1
22,,,,,ZZe2sindsinZZed221212,,()NNnt,1-10 ,2()Nnt,4,4,4,Esin4Esin22
2ZZe12,2b12, N2nt()4[sin] ,,,,,a24E2
12,49,N,9.38,10,6.24,10,0.242,1.41,10(1) 12,410,N,9.38,10,6.24,10,3,1.76,10(2) ,12,411(3) ,N(,,10),9.38,10,6.24,10,131,7.68,10,121112 ?,N(,,10),9.38,10,7.68,10,8.61,10
原子物理学 杨福家 第四版(完整版)课后答案
原子物理习题库及解答
第一章
111,222,,mvmvmv,,,,,,,ee222,1-1 由能量、动量守恒
,,,mvmvmv,,,,,,ee,
(这样得出的是电子所能得到的最大动量,严格求解应用矢量式子)
Δp θ
mv2,,,得碰撞后电子的速度 p v,em,m,e
24Ze4,79,.5mv,,
24Ze4,3,1.44Li核: r,,,1.92(fm)m22,4.5mv,,
2ZZe1,79,1.4412E,,,16.3(Mev)1-4 (1) pr7m
2ZZe1,13,1.4412E,,,4.68(Mev)(2) pr4m

原子物理学习题标准答案(褚圣麟)很详细

原子物理学习题标准答案(褚圣麟)很详细

1.原子的基本状况1.1解:根据卢瑟福散射公式:20222442K Mvctgb bZeZea qpepe ==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg bK oqape p ---´´===´´´´´´米式中212K Mv a =是a 粒子的功能。

1.2已知散射角为q 的a 粒子与散射核的最短距离为222121()(1)4sinm Ze r Mvqpe =+,试问上题a 粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min 22121()(1)4sinZe r Mvqpe =+1929619479(1.6010)1910(1)7.6810 1.6010sin 75o --´´´=´´´+´´´143.0210-=´米1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最解:当入射粒子与靶核对心碰撞时,散射角为180o。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min 124p ZeMv K r pe ==,故有:2min 04pZe r K pe =19291361979(1.6010)910 1.141010 1.6010---´´=´´=´´´米由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-´米。

1.7能量为3.5兆电子伏特的细a 粒子束射到单位面积上质量为22/1005.1米公斤-´的银箔上,a 粒解:设靶厚度为't 。

原子物理学 课后答案

原子物理学  课后答案

目录第一章原子的位形 (2)第二章原子的量子态:波尔模型 (8)第三章量子力学导论 (12)第四章原子的精细结构:电子的自旋....................... 错误!未定义书签。

第五章多电子原理:泡利原理 (23)第六章X射线 (28)第七章原子核物理概论.......................................... 错误!未定义书签。

1.本课程各章的重点难点重点:α粒子散射实验公式推导、原子能量级、氢原子的玻尔理论、原子的空间取向量子化、物质的波粒二象性、不确定原则、波函数及其物理意义和薛定谔方程、电子自旋轨道的相互作用、两个价电子的原子组态、能级分裂、泡利原理、电子组态的原子态的确定等。

难点:原子能级、电子组态、不确定原则、薛定谔方程、能级分裂、电子组态的原子态及基态的确定等。

2.本课程和其他课程的联系本课程需在高等数学、力学、电磁学、光学之后开设,同时又是理论物理课程中量子力学部分的前导课程,拟在第三学年第一学期开出。

3.本课程的基本要求及特点第一章原子的位形:卢瑟福模型了解原子的质量和大小、原子核式模型的提出;掌握粒子散射公式及其推导,理解α粒子散射实验对认识原子结构的作用;理解原子核式模型的实验验证及其物理意义。

第二章原子的量子态:玻尔模型掌握氢原子光谱规律及巴尔末公式;理解玻尔原子模型的基本假设、经典轨道、量子化条件、能量公式、主量子数、氢能级图;掌握用玻尔理论来解释氢原子及其光谱规律;了解伏兰克---赫兹实验的实验事实并掌握实验如何验证原子能级的量子化;理解索菲末量子化条件;了解碱金属光谱规律。

第三章量子力学导论掌握波粒二象性、德布罗意波的假设、波函数的统计诠释、不确定关系等概念、原理和关系式;理解定态薛定谔方程和氢原子薛定谔方程的解及n,l,m 三个量子数的意义及其重要性。

第四章 原子的精细结构:电子的自旋理解原子中电子轨道运动的磁矩、电子自旋的假设和电子自旋、电子量子态的 确定;了解史特恩—盖拉赫实验的实验事实并掌握实验如何验证角动量取向的量子化;理解碱金属原子光谱的精细结构;掌握电子自旋与轨道运动的相互作用;了解外磁场对原子的作用,理解史特恩—盖拉赫实验的结果、塞曼效应。

原子物理学杨福家1_6章_课后习题答案

原子物理学杨福家1_6章_课后习题答案

原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为Mα,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。

电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。

α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)θϕμϕθμ222sin sin )(sin +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有 令,则 sin2(θ+φ)-sin2φ=0 即2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8) (2)若cos(θ+2φ)=0 ,则 θ=90º-2φ(9)将(9)式代入(7)式,有θϕμϕμ2202)(90si n si n si n +=-θ≈10-4弧度(极大)此题得证。

1.2(1)动能为5.00MeV的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来.(问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa2 sin注意到即单位体积内的粒子数 为密度除以摩尔质量数乘以阿伏加德罗常数。

原子物理学习题标准答案(褚圣麟)很详细

原子物理学习题标准答案(褚圣麟)很详细

1.1解:根据卢瑟福散射公式:可能达到的最粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:79 (1.60 10 19 )213 6诂 1.14 10 一1310 6 1.60 10 _19由上式看出:r min 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核 代替质子时,其与靶核的作用的最小距离仍为1.14 10“米。

1 .原子的基本状况ctg0—b = 4- 2 Ze 2「b Ze 2得到:e24二;°K79 (1.60 1019)2ctg 曹6…,小二915 r(4 二 8.85 10-12) (7.68 106 10J9^ 3.97 10 米 式中K 一. =2 Mv 2是〉粒子的功能。

1.2已知散射角为二的:•粒子与散射核的最短距离为212 Z e 2 1r m =()77^(1-),4 二; 试问上题:•粒子与散射的金原子核之间的最短距离r m 多大?212 Ze 21解:将1.1题中各量代入r m 的表达式,得:r min = ()^(1)192=9 109 I :。

俨寫10)。

靑心02 10_14 米1.3若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核解:当入射粒子与靶核对心碰撞时,散射角为180:。

当入射粒子的动能全部转化为两1 Mv 2Ze 24 二;0 r min,故有:r minZe 2oK p1・7能量为3.5兆电子伏特的细「粒子束射到单位面积上质量为1.05 10-公斤/米2的银 箔上,:•粒解:设靶厚度为t '。

非垂直入射时引起:粒子在靶物质中通过的距离不再是靶物质的 厚度t ',而是t=t '/si n60,,如图1-1所示。

因为散射到与之间茁立体角内的粒子数dn 与总入射粒子数n 的比为:式中立体角元 d ; -ds/L 2,t =t '/sin60° =2t '/-3门-20°N 为原子密度。

《原子物理学》杨福家第四版课后答案

《原子物理学》杨福家第四版课后答案

《原子物理学》杨福家第四版课后答案目录第一章原子的位形 ...................................... - 1 - 第二章原子的量子态:波尔模型 ............................ - 7 - 第三章量子力学导论 (12)第四章原子的精细结构:电子的自旋 ............................ 16 第五章多电子原理:泡利原理 (23)第六章 X 射线 ............................................. 28 第七章原子核物理概论 ................... 没有错误!未定义书签。

第一章原子的位形 1-1)解:α粒子与电子碰撞,能量守恒,动量守恒,故有:+'='+=e e v m v M v M v M mv Mv ρρρ222212121='-='-?222e e v M m v v v Mm v v ρρρ e v m p ρρ=?e p=mv p=mv ∴??,其大小: (1) 222(')(')(')e m v v v v v v v M-≈+-=近似认为:(');'p M v v v v ?≈-≈22e m v v v M∴??=有 212e p p Mmv ??=亦即: (2)(1)2/(2)得22422210e e m v m p Mmv M-?===p亦即:()ptg rad pθθ?≈=-4~10 1-2) 解:① 22a b ctg Eθπε=228e ;库仑散射因子:a=4)2)(4(420202E Z e E Ze a πεπε==22279()() 1.44()45.545eZ a fmMev fm E Mev πε?=== 当901θθ=?=时,ctg2122.752b a fm ∴== 亦即:1522.7510b m -=?② 解:金的原子量为197A =;密度:731.8910/g m ρ=? 依公式,λ射α粒子被散射到θ方向,d Ω立体角的内的几率: nt d a dP 2sin16)(42θθΩ=(1)式中,n 为原子核数密度,()AA m n n N ρ∴=?= 即:A V n Aρ=(2)由(1)式得:在90o→180 o范围内找到α粒子得几率为:(θP 18022490a nt 2sin ()164sin 2d a nt πθθπρθθ?==?将所有数据代入得)(θP 5()9.410ρθ-=?这就是α粒子被散射到大于90o范围的粒子数占全部粒子数得百分比。

原子物理学杨福家第四版课后答案

原子物理学杨福家第四版课后答案

原子物理学杨福家第四版课后答案在学习原子物理学这门课程时,杨福家第四版教材是许多同学的重要参考资料。

然而,课后习题的解答往往成为同学们巩固知识、加深理解的关键环节。

以下是为大家精心整理的原子物理学杨福家第四版课后答案。

第一章主要介绍了原子的基本概念和卢瑟福模型。

课后习题中,关于α粒子散射实验的相关问题较为常见。

例如,计算α粒子在不同散射角度下的散射几率,这需要我们深刻理解库仑散射公式以及散射截面的概念。

答案的关键在于正确运用公式,代入相关参数进行计算。

第二章重点是玻尔的氢原子理论。

在课后习题中,经常会出现让我们根据玻尔理论计算氢原子的能级、轨道半径以及跃迁时辐射的光子能量等问题。

以计算氢原子从激发态跃迁到基态辐射的光子能量为例,首先要明确能级公式,然后根据初末态的能级差来计算光子能量。

第三章讲述了量子力学初步。

其中涉及到的薛定谔方程的应用是重点也是难点。

比如,求解一维无限深势阱中粒子的波函数和能量本征值。

在解答这类问题时,需要熟练掌握薛定谔方程的求解方法,结合边界条件确定波函数和能量的表达式。

第四章是原子的精细结构。

这一章的课后习题中,对于碱金属原子光谱的精细结构和塞曼效应的考察较多。

比如,解释碱金属原子光谱精细结构的产生原因,答案要从电子的自旋轨道耦合作用入手,分析能级的分裂情况。

第五章是多电子原子。

在这部分的习题中,经常会要求分析多电子原子的能级结构和电子组态。

例如,确定某个多电子原子的基态电子组态,需要遵循泡利不相容原理、能量最低原理和洪特规则。

第六章是在磁场中的原子。

关于原子在外磁场中的塞曼分裂以及顺磁共振等问题是常见的考点。

解答这类题目时,要清楚磁场对原子能级和光谱的影响机制。

第七章是原子的壳层结构。

会涉及到原子核外电子的填充规则以及原子基态的确定等问题。

第八章是 X 射线。

对于 X 射线的产生机制、波长和强度的计算等是常见的习题类型。

第九章是原子核物理概论。

重点是原子核的基本性质、结合能的计算以及核反应等内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原子物理学课后答案全原子物理学课后答案全原子物理学习题解答刘富义第一章原子的基本状况1.1若卢瑟福散射用的?粒子是放射性物质镭c放射的,其动能为'求解:将1.1题中各量代入rm的表达式,得:rmin7.68?106电子伏特。

000散射物质是原子序数z?79的金箔。

试问散射角??150所对应的对准距离b多小?解:根据卢瑟福散射公式:2ze21()(1)240mvsin219479(1.601019)21910(1)6197.68?10?1.60?10sin75ctg获得:240kmv2b40b1.3若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子222zeze与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个?e电荷而质量就是质子的两倍,就是氢的一种同位素的原子核)替代质子,其与金箔原子核的最小距离多大?3.02?10?14米ze2ctg?79?(1.60?1019)2ctg150180?。

当入射粒子的动解:当入射粒子与靶核对心碰撞时,散射角为?1522b3.97?10?126?194??0k?(4??8.85?10)?(7.68?10?10)能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

米2式中k??12mv是?粒子的功能。

根据上面的分析可以得:1.2已知散射角为?的?粒子与散射核的最短距离为1ze22mv?kp?,故存有:24??0rminrm2ze21?()(1?),何况上题?粒子与2?4??0mvsin21rminze2?4??0kp9散射的金原子核之间的最短距离rm多大?79?(1.60?10?19)2?13?9?10??1.14?10米6?1910?1.60?101原子物理学习题解答刘富义由上式窥见:rmin与入射光粒子的质量毫无关系,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为1.14?10?13米。

1.4钋放射治疗的一种?粒子的速度为1.597?107米/秒,负面横向入射光于厚度为10?7米、密度为1.932?104公斤/米3的金箔。

试求所有反射在90?的?粒子占全部入射粒子数的百分比。

已知金的原子量为197。

求解:散射角在d?之间的?粒子数dn与入射光至箔上的总粒子数n的比是:dnn?ntd?其中单位体积中的金原子数:n??/mau??n0/aau而散射角大于900的粒子数为:dn'??dn?nntd2?dn'?所以有:n?nt??d2?2??n02180?cos?2a?t?(1au4??)2?(2ze0mu2)?90?d?sin3?2dsin等式右边的分数:i??180?cos90?sin3?2d??2?180?90??2?12sin32故dn'?n0122n?a?t?()?(ze222)au4??0mu?8.5?10?6?8.5?10?400即速度为1.597?107米/秒的?粒子在金箔上散射,散射角大于90?以上的粒子数大约就是8.5?10?400。

1.5?粒子散射实验的数据在散射角很小(??15?)时与理论值差得较离,时什么原因?答:?粒子散射的理论值是在“一次散射“的假定下得出的。

而?粒子通过金属箔,经过好多原子核的附近,实际上经过多次散射。

至于实际观察到较小的?角,那是多次小角散射合成的结果。

既然都是小角散射,哪原子物理学习题解答刘富义一个也无法忽略,一次反射的理论就不适用于。

所以,?粒子反射的实验数据在散射角很小时与理论值差得较离。

1.6已知?粒子质量比电子质量大7300倍。

试利用中性粒子碰撞来证明:?粒子散射“受电子的影响是微不足道的”。

证明:设立相撞前、后?粒子与电子的速度分别为:v,v',0,v'e。

根据颤抖量守恒定律,得:mv??'?'??mv??mve由此得:v??'m?'??v??mv?'1e?7300ve……(1)又根据能量守恒定律,得:121'12mv2'2??2mv??2mvev2'2??v??mmv'2e……(2)将(1)式代入(2)式,得:v2?v'27300(v??'2v?)整理,得:v2'2?7300v'?(7300?1)?v?(7300?1)?2?v?cos??073001上式可写为:7300(v??'2??v?)?0?v??'??v??0即?粒子散射“受电子的影响是微不足道的”。

1.7能量为3.5兆电子伏特的细?粒子束箭至单位面积上质量为的银箔上,?粒子与银箔表面成60?角。

在离l=0.12米处放一窗口面积为6.0?10?5米2的计数器。

测得反射进此窗口的?粒子就是全部入射光?粒子的百万分之29。

若已知银的原子量为107.9。

试求银的核电荷数z。

求解:设立靶厚度为t'。

非横向入射光时引发?粒子在靶物质中通过的距离t'?t'/sin60?20o不再就是靶物质的厚度,而是t,例如图1-1右图。

因为反射至?与??d?之间d?立体60°角内的粒子数dn与总入射粒子数n的比为:dnt,n?ntd?(1)而d?为:60ot2图1.1d??(122d?4??)(ze(2)0mv2)sin4?2把(2)式代入(1)式,得:dn12ze22dn?nt(4??)(?2) (3)0mvsin4?2式中立体角元d??ds/l2,t?t'/sin600?2t'/3,??200原子物理学习题答疑刘富义n为原子密度。

nt为单位面上的原子数,nt'??/mag??(aag/n0)?1,'2223们分别为:f?2ze/4??0r和f?2zer/4??0r。

可知,原子表面其中?是单位面积式上的质量;mag是银原子的质量;aag是银原子的原子量;n0是阿佛加德罗常数。

将各量代入(3)式,得:dnn?2?n012ze22d?3a()(ag4??0mv2)sin4?2由此,得:z=471.8设想铅(z=82)原子的正电荷不是分散在不大的核上,而是均匀分布在半径约为10?10米的球形原子内,如果存有能量为106电子伏特的?粒子射向这样一个“原子”,试通过计算论证这样的?粒子不可能被具有上述设想结构的原子产生散射角大于900的散射。

这个结论与卢瑟福实验结果差的很远,这说明原子的汤姆逊模型是不能成立的(原子中电子的影响可以忽略)。

求解:设立?粒子和铅原子对心相撞,则?粒子抵达原子边界而不步入原子内部时的能量有下式同意:12mv2?2ze2/4??0r?3.78?10?16焦耳?2.36?103电子伏特由此可见,具有106电子伏特能量的?粒子能够很容易的穿过铅原子球。

粒子在抵达原子表面和原子内部时,所受到原子中正电荷的排斥力相同,它处?粒子所受的斥力最大,越靠近原子的中心?粒子所受的斥力越小,而且瞄准距离越小,使?粒子发生散射最强的垂直入射方向的分力越小。

我们考虑粒子散射最强的情形。

设?粒子擦原子表面而过。

此时受力为f?2ze2/4??0r2。

可以指出?粒子只在原子大小的范围内受原子中正电荷的作用,即作用距离为原子的直径d。

并且在作用范围d之内,力的方向始终与入射方向垂直,大小不变。

这是一种受力最大的情形。

根据上述分析,力的促进作用时间为t=d/v,?粒子的动能为1mv22?k,因此,v?2k/m,所以,t?d/v?dm/2k根据动量定理:?t00fdt?p??p??mv??0而t2t0fdt2ze2/40r0dt2ze2t/40r2所以存有:2ze2t/4??20r?mv?由此可以得:v22??2zet/4??0rm粒子所受的平行于入射方向的合力近似为0,入射方向上速度不变。

据此,存有:tg??v??2ze2t/4??0r2mv?2ze2d/4??2v0r2mv?2.4?10?34原子物理学习题答疑刘富义这时?很小,因此tg2.4?10?3弧度,大约是8.2‘。

这就是说,按题中假设,能量为1兆电子伏特的?粒子被铅原子反射,不可能将产生散射角??900的反射。

但是在卢瑟福的原子存有核模型的情况下,当?粒子无穷紧邻原子核时,可以受原子核的无限大的排斥力,所以可以产生??900的反射,甚至可以产生??1800的反射,这与实验相符合。

因此,原子的汤姆逊模型就是不设立的。

第二章原子的能级和辐射2.1试排序氢原子的第一玻尔轨道上电子拖核旋转的频率、线速度和加速度。

解:电子在第一玻尔轨道上即年n=1。

根据量子化条件,p??mvr?nh2?v可得:频率??2?a?nhh2?212?ma12?ma1?6.58?1015赫兹速度:v?2?a1??h/ma1?2.188?106米/秒加速度:w?v2/r?v2/a1?9.046?1022米/秒22.2试由氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。

求解:电离能为erhc/n2i?e??e1,把氢原子的能级公式en??代入,得:e11i?rhhc(12??)?rhc=13.60电子伏特。

电离电势:veii?e?13.60伏特第一唤起能够:e1133i?rhhc(12?22)?4rhc?4?13.60?10.20电子伏特第一激发电势:v1?e1e?10.20伏特2.3用能量为12.5电子伏特的电子去激发基态氢原子,问受激发的氢原子向高能量基为光子时,可以发生那些波长的光谱线?解:把氢原子有基态激发到你n=2,3,4……等能级上去所需要的能量是:e?hcr11h(12?n2)其中hcrh?13.6电子伏特e?13.6?(1?1122)?10.2电子伏特5。

相关文档
最新文档