2020-2021学年内蒙古包头市青山区七年级(上)期末数学试卷(含解析)
2020-2021学年初一(上)期中考试数学试卷(含答案)

2020-2021学年初一(上)期中考试数 学(考试时间90分钟 满分100分)18分)1.如图是加工零件尺寸的要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .44.98D .Φ45.012.下列运算中正确的是( )A .2(2)4-=- B .224-= C .3(3)27-=- D .236= 3.若37x =是关于x 的方程70x m +=的解,则m 的值为( ) A .3- B .13- C .3 D .134.若单项式12m a b -与212n a b 是同类项,则mn 的值是( ) A .3 B .6 C .8 D .95.下列各式中,是一元一次方程的是( )A .852020x y -=B .26x -C .212191y y =+D .582x x +=6.下列计算正确的是( )A .8(42)8482÷+=÷+÷B .1(1)(2)(1)(1)12-÷-⨯=-÷-= C .3311311636624433434⎛⎫⎛⎫⎛⎫-÷=-⨯=-⨯+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ D .[](2)(2)40--+÷= 7.下列方程的解法,其中正确的个数是( ) ①14136x x ---=,去分母得2(1)46x x ---= ②24132x x ---=,去分母得2(2)3(4)1x x ---= ③2(1)3(2)5x x ---=,去括号得22635x x ---=④32x =-,系数化为1得32x =- A .3 B .2 C .1 D .08.2020年国庆档电影《我和我的家乡》上映13天票房收入达到21.94亿元,并连续10天拿下票房单日冠军.其中21.94亿元用科学记数法可表示为( )A .821.9410⨯元B .82.19410⨯元C .100.219410⨯元D .92.19410⨯元9.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是( )A .pB .qC .mD .n二、填空题(本题共有9小题,每小题3分,共27分)10.如果数轴上A 点表示3-,那么与点A 距离2个单位的点所表示的数是 .11.比较大小:78- 89-(填“>”“<”或“=”) 12.历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示,例如多项式2()25f x x x =+-,则(1)f -= .13.用四舍五入法将3.694精确到0.01,所得到的近似值为 .14.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如()2222153x x x x --+=-+-,则所捂住的多项式为 .15.“☆”是新规定的某种运算符号,设a ☆b =ab a b +-,若2 ☆8n =-,则n = .16.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知2m n +=-,4mn =-,则2(3)3(2)mn m n mn ---的值为 .17.某校为学生购买名著《三国演义》100套、《西游记》80套,共用12 000元,《三国演义》每套比《西游记》每套多16元,求《三国演义》和《西游记》每套各多少元?设西游记每套x 元,可列方程为 .18.观察下列一组算式:2231881-==⨯,22531682-==⨯,22752483-==⨯,22973284-==⨯……根据你所发现的规律,猜想22201920178-=⨯ .三、按要求解答(第19小题8分,第20小题5分,第21小题10分,共23分)19.计算题(每小题4分,共8分) ①3511114662⎛⎫---- ⎪⎝⎭ ②[]31452(3)5211⎛⎫-⨯-÷-+ ⎪⎝⎭20.(本题5分)化简并求值:222212(2)()2x xy y xy x y ⎡⎤⎛⎫---+- ⎪⎢⎥⎝⎭⎣⎦,其中x 、y 的取值如图所示.21.解方程(每小题5分,共10分)①3(202)10y y --= ②243146x x --=-四、解答题(第22、23小题4分,第24小题5分,共13分)22.(本题4分)解一元一次方程的过程就是通过变形,把一元一次方程转化为x a =的形式.下面是解方程20.30.410.50.3x x -+-=的主要过程,请在如图的矩形框中选择与方程变形对应的依据,并将它前面的序号填入相应的括号中.解:原方程可化为4153x +-=( ) 去分母,得3(203)5(104)15x x --+=( )去括号,得609502015x x ---=( )移项,得605015920x x -=++( )合并同类项,得1044x =(合并同类项法则) 系数化为1,得 4.4x =(等式的基本性质2)23.(本题4分)阅读材料,回答问题.计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭解:原式的倒数为211213106530⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭ =2112(30)31065⎛⎫-+-⨯- ⎪⎝⎭=203512-+-+=10-故原式=110- 根据材料中的方法计算113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭. 24.(本题5分)在某地住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示). (1)用含m ,n 的代数式表示该广场的面积S ;(2)若m ,n 满足2(6)50m n -+-=,求出该广场的面积.五、解答题(第25、26小题6分,第27小题7分,共19分)25.(本题6分)列代数式或一元一次方程解应用题请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打8折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由.26.(本题6分)下表中的字母都是按一定规律排列的.我们把某格中的字母的和所得多项式称为特征多项式,例如第1格的“特征多项式”为62x y +,第2格的“特征多项式”为94x y +,回答下列问题.(1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n 格的“特征多项式”为 ;(n 为正整数)(2)求第6格的“特征多项式”与第5格的“特征多项式”的差.27.(本题7分)在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的13倍,我们就把点C叫做【A,B】的理想点.例如:图中,点A表示的数为-1,点B表示的数为3.表示数0的点C到点A的距离是1,到点B的距离是3,那么点C是【A,B】的理想点;又如,表示数2的点D到点A的距离是3,到点B的距离是1,那么点D 就不是【A,B】的理想点,但点D是【B,A】的理想点.(1)当点A表示的数为-1,点B表示的数为7时,①若点C表示的数为1,则点C(填“是”或“不是”)【A,B】的理想点;②若点D是【B,A】的理想点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为-2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止.请直接写出点C运动多少秒时,C,A,B中恰有一个点为其余两点的理想点?参考答案一、选择题(每小题2分,共18分)二、填空题(每小题3分,共27分)19.计算题(每小题4分,共8分)①原式=3511114662--+┈┈┈┈┈┈┈┈┈┈1分 =5131116642--++ =1224-+┈┈┈┈┈┈┈┈┈┈3分 =14┈┈┈┈┈┈┈┈┈┈4分 ②原式=14582211⎛⎫-⨯-÷ ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈2分 =24--┈┈┈┈┈┈┈┈┈┈3分=6-┈┈┈┈┈┈┈┈┈┈4分20.解:原式=22221242x xy y xy x y ⎛⎫---+- ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈1分 =22221242x xy y xy x y --+-+┈┈┈┈┈┈┈┈┈┈2分 =272x xy -┈┈┈┈┈┈┈┈┈┈3分 当2x =,1y =-时┈┈┈┈┈┈┈┈┈┈4分原式=2722(1)112-⨯⨯-=┈┈┈┈┈┈┈┈┈┈5分21.解方程(每小题5分,共10分)①3(202)10y y --=解:60610y y -+=┈┈┈┈┈┈┈┈┈┈2分61060y y +=+┈┈┈┈┈┈┈┈┈┈3分770y =┈┈┈┈┈┈┈┈┈┈4分10y =┈┈┈┈┈┈┈┈┈┈5分 ②243146x x --=- 解:3(2)122(43)x x -=--┈┈┈┈┈┈┈┈┈┈1分361286x x -=-+┈┈┈┈┈┈┈┈┈┈2分361286x x -=-+┈┈┈┈┈┈┈┈┈┈3分310x -=┈┈┈┈┈┈┈┈┈┈4分103x =-┈┈┈┈┈┈┈┈┈┈5分 四、解答题(第22、23小题4分,第24小题5分,共13分)22.③;②;④;①┈┈┈┈┈┈┈┈┈┈4分23.解:原式的倒数为132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭┈┈┈┈┈┈┈┈┈┈1分 1322(42)61437⎛⎫=-+-⨯- ⎪⎝⎭792812=-+-+14=-┈┈┈┈┈┈┈┈┈┈3分故原式=114-┈┈┈┈┈┈┈┈┈┈4分 24.解:(1)S 7220.52m n n m mn =⋅-⋅=┈┈┈┈┈┈┈┈┈┈2分 (2)由题意得6050m n -=⎧⎨-=⎩,解得65m n =⎧⎨=⎩┈┈┈┈┈┈┈┈┈┈3分当6m =,5n =时 S 7651052=⨯⨯=┈┈┈┈┈┈┈┈┈┈5分五、解答题(第25、26小题6分,第27小题7分,共19分)25.解:(1)设一个水瓶x 元,则一个水杯是(48)x -元┈┈┈┈┈┈┈┈┈┈1分34(48)152x x +-=┈┈┈┈┈┈┈┈┈┈2分40x =┈┈┈┈┈┈┈┈┈┈3分∴4848408x -=-=┈┈┈┈┈┈┈┈┈┈4分答:一个水瓶40元,一个水杯8元.(2)甲商场需付款:80%(540208)288⨯⨯+⨯=(元)┈┈┈┈┈┈┈┈┈┈5分 乙商场需付款:5408(2052)280⨯+⨯-⨯=(元)┈┈┈┈┈┈┈┈┈┈6分 ∴选择乙商场更划算.26.解:(1)126x y +;158x y +;3(1)2n x ny ++┈┈┈┈┈┈┈┈┈┈3分(2)(2112)(1810)x y x y +-+┈┈┈┈┈┈┈┈┈┈5分32x y =+┈┈┈┈┈┈┈┈┈┈6分27.(1)①是┈┈┈┈┈┈┈┈┈┈1分②5或11┈┈┈┈┈┈┈┈┈┈3分(2)设运动时间为t 秒,则BC t =,6AC t =-依题意,得C 是【A ,B 】的理想点时有16=3t t -,∴92t = C 是【B ,A 】的理想点时有1(6)3t t =-,∴32t = A 是【C ,B 】的理想点时有16=63t -⨯,∴4t =B 是【C ,A 】的理想点时有1=6=23t ⨯ 答:点C 运动92秒、32秒、4秒、2秒时,C ,A ,B 中恰有一个点为其余两点的理想点.┈┈┈┈┈┈┈┈┈┈7分。
2020-2021学年山东省济宁市附中七年级(上)期未数学试卷五四制

1、下列说法正确的是:A、一个有理数不是整数就是分数B、正分数、零、负分数统称为分数C、一个有理数不是正数就是负数D、正数、负数统称为有理数(解析:有理数包括整数和分数,其中整数包括正整数、0和负整数。
分数则是非整数的有理数。
A选项正确概括了有理数的范围;B选项错误地将0归为分数;C选项忽略了0也是有理数但不是正数也不是负数;D选项错误地认为所有正数和负数都是有理数,忽略了无理数的存在。
)(答案)A2、下列计算中,结果正确的是:A、3² = 6B、(-2)³ = -6C、√4 = ±2D、|-5| = 5(解析:A选项3²实际上等于9,不等于6;B选项(-2)³等于-8,不等于-6;C选项√4等于2,不等于±2,因为算术平方根只取非负值;D选项|-5|等于5,因为绝对值表示数的“大小”,不考虑正负。
)(答案)D3、下列图形中,一定是轴对称图形的是:A、等腰三角形B、直角三角形C、平行四边形D、梯形(解析:轴对称图形指的是可以沿一条直线折叠,使得两边完全重合的图形。
A选项等腰三角形有一条对称轴,即高,能使其对称;B选项直角三角形不一定是轴对称的,除非它是等腰直角三角形;C选项平行四边形不一定是轴对称的,除非是特殊的平行四边形如矩形、菱形;D选项梯形也不一定是轴对称的,除非是等腰梯形。
)(答案)A4、下列哪个数是最小的正整数?A、0B、1C、-1D、2(解析:正整数是大于0的整数。
A选项0不是正整数;B选项1是最小的正整数;C选项-1是负整数;D选项2虽然也是正整数,但不是最小的。
)(答案)B5、下列关于角的说法,错误的是:A、角的大小与边的长短无关B、角是由两条射线组成的图形C、角的度量单位是“度”D、直角是最大的角(解析:A选项正确,角的大小由其所夹的度数决定,与边的长短无关;B选项正确,角是由一个顶点和从这个顶点出发的两条射线组成的;C选项正确,角的度量单位是度(°);D选项错误,直角是90度的角,而角可以大于90度,如钝角、平角等。
第一章有理数本章检测2021--2022学年七年级上学期数学人教版(课堂过关试卷)

四川省绵阳南山双语学校2021--2022学年七年级上学期数学课堂过关试卷班级姓名第一章有理数本章检测一、选择题(每小题3分,共30分)1.(2021内蒙古呼和浩特期末)我国古代著作《九章算术》在世界数学史上首次正式引入负数,若气温升高3℃,气温变化记作+3℃,那么气温下降10℃,气温变化记作()A.-13℃B.-10℃C.-7℃D.+7℃2.(2021辽宁大连旅顺期中)下列四个数中,是负分数的是()A.32B.4 C.-5 D.-133.下列说法错误的是()A.-2的相反数是2B.3的倒数是13C.(-3)-(-5)=2D.-11,0,4这三个数中最小的数是04.(2021独家原创试题)2021年春节假期,北京市接待旅游总人数为663.2万人次,同比增长3.5倍.将663.2万用科学记数法表示为()A.663.2×104B.6.632×104C.6.632×106D.663.2×1025.(2021山东邹城期中)有理数a,b在数轴上的对应点的位置如图1-6-1所示,则下列结论错误的是()图1-6-1<0A.a+b<0B.a-b<0C.ab>0D.ab6.(2021山西阳泉平定期末)把笔尖放在数轴的原点,沿数轴先向左(负方向)移动6个单位长度,再向右移动3个单位长度,用算式表示上述过程与结果,正确的是()A.6+3=9B.-6-3=-9C.6-3=3D.-6+3=-37.(2021河南南阳卧龙期中)下列计算正确的是()A.-42=-8B.(-5)÷1×4=-54C.-6-1=-5D.(-1)2-22=-38.下列说法正确的是()A.近似数3.6与3.60精确度相同B.数2.9954精确到百分位为3.00C.近似数1.3×104精确到十分位D.近似数3.61万精确到百分位9.(2021新疆乌苏期末)若|x-2|+(y+3)2=0,则y x的值为()A.-6B.6C.9D.-910.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=-|a1+1|,a3=-|a2+2|,a4=-|a3+3|,……依此类推,则a2021的值为()A.2020B.-2020C.-1010D.1010二、填空题(每小题3分,共30分)11.(2021江苏常州天宁月考)4的相反数是,绝对值是4的数是.12.(2020湖南长沙雨花模拟)如果ab=-1,则称a、b互为“负倒数”.那么-2的“负倒数”等于.13.(2021天津和平期末)已知a,b互为相反数,c,d互为倒数,x是数的值轴上到原点的距离为1的点表示的数,则x2020-cd+a+bcd为.14.把-22,(-2)2,-|-2|,-1按从小到大的顺序排列2是.15.(2021吉林长春双阳期末)如图1-6-2是一个计算程序,若输入a 的值为-2,则输出的结果应为.图1-6-216.(2021云南文山期末)若a是最大的负整数,b是绝对值最小的有理数,数c在数轴上对应的点与原点的距离为1,则a+b2+|c|=.17.(2021广东广州天河期末)定义一种新运算:对任意有理数a,b都有a▽b=-a-b2,例如:2▽3=-2-32=-11,则(2020▽1)▽2=. 18.若|m|=7,则m=;若n2=36,则n=,m+n=.19.若数轴上点A表示的数是-1,点B到点A的距离为2020,则点B表示的数是.20.猜数字游戏中,小明写出如下一组数:25,47,811,1619,3235,…,小亮猜测出第六个数是6467,根据此规律,第n(n为正整数)个数是.三、解答题(共40分)21.(2021云南师大实验中学期中)(4分)把下列各数填在相应的数集内:1,-35,+3.2,0,-6.5,+108,-(-2)2,-|-6|.(1)正数集合:{…};(2)整数集合:{…};(3)负分数集合:{…};(4)非负整数集合:{…}.22.(6分)小琼和小凤都十分喜欢唱歌,她们两个一起参加社区的文艺汇演,在汇演前,主持人让她们自己确定一个出场顺序,可她们俩争着先出场,最后,主持人想了一个主意,如图1-6-3所示.图1-6-323.(2021重庆北碚期末)(12分)计算下列各题: (1)(-2)3-|2-5|-(-15);(2)(-12+56-38+512)÷(-124);(3)-32-[(112)3×(-29)-6÷|-23|].24.(8分)一辆货车从仓库出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A ,B ,C ,D ,E ,最后回到仓库.货车行驶的记录(单位:千米)如下:+1,+3,-6,-1,-2,+5.请问: (1)请以仓库为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A ,B ,C ,D ,E 的位置;(2)试求出该货车共行驶了多少千米;(3)如果货车运送的水果以100千克为标准质量,超过的千克数记为正数,不足的千克数记为负数,则运往A ,B ,C ,D ,E 五个地点的水果质量可记为+50,-15,+25,-10,-15,则该货车运送的水果总质量是多少千克?25.(2020北京四中期中)(10分)阅读理解题:如图1-6-4,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.-…1 ●○x 73图1-6-4(1)可知x=,●=,○=;(2)试判断第2021个格子中的数是多少,并给出相应的理由;(3)判断:前n个格子中所填整数之和能否为2021?若能,求出n的值,若不能,请说明理由;(4)若在前三个格子中任取两个数并用大数减去小数得到差值,而后将所有的这样的差值累加起来称为累差值.例如:前三项的累差值为|1-●|+|1-○|+|●-○|,则前三项的累差值为;若取前十项,那么前十项的累差值为多少?(请给出必要的计算过程)一、选择题1.B 若气温升高3℃,气温变化记作+3℃,那么气温下降10℃,气温变化记作-10℃.故选B .2.D 32是正分数,4是正整数,-5是负整数,-13是负分数,故选D .3.D -11,0,4这三个数中最小的数是-11,所以D 说法错误,故选D .4.C 663.2万=6632000=6.632×106.故选C .5.C 因为a <0<b ,且|a |>|b |,所以a +b <0,a -b <0,ab <0,ab <0,故选C .6.D 由题意可知-6+3=-3,故选D .7.D -42=-16,故选项A 错误;(-5)÷14×4=-5×4×4=-80,故选项B 错误;-6-1=-7,故选项C 错误;(-1)2-22=1-4=-3,故选项D 正确.故选D . 8.B 近似数3.6精确到十分位,近似数3.60精确到百分位,所以A 选项错误;数2.9954精确到百分位为3.00,所以B 选项正确;近似数1.3×104精确到千位,所以C 选项错误;近似数3.61万精确到百位,所以D 选项错误.故选B .9.C 由题意得,x -2=0,y +3=0,解得x =2,y =-3,所以y x =(-3)2=9.故选C .10.C 因为a 1=0,a 2=-|a 1+1|=-|0+1|=-1, a 3=-|a 2+2|=-|-1+2|=-1, a 4=-|a 3+3|=-|-1+3|=-2, a 5=-|a 4+4|=-|-2+4|=-2,……所以n 是奇数时,a n =-12(n -1),n 是偶数时,a n =-n2,所以a 2021=-12×(2021-1)=-1010.故选C.二、填空题 11.答案 -4;±4解析 4的相反数是-4,绝对值是4的数是±4. 12.答案 12解析 因为(-2)×12=-1,所以-2的“负倒数”等于12.13.答案 0解析 因为a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,所以a +b =0,cd =1,x =±1,所以x 2020=1,所以x 2020-cd +a+bcd =1-1+0=0.14.答案 -22<-|-2|<-12<(-2)2解析 因为-22=-4,(-2)2=4,-|-2|=-2,且-4<-2<-12<4,所以-22<-|-2|<-12<(-2)2.15.答案 -2 解析由题图可得,当a =-2时,(a 2-2)×(-3)+4=[(-2)2-2]×(-3)+4=(4-2)×(-3)+4=2×(-3)+4=(-6)+4=-2. 16.答案 0解析 根据题意得a =-1,b =0,c =1或-1,即|c |=1,则原式=-1+0+1=0. 17.答案 2017解析 根据题中的新定义得2020▽1=-2020-1=-2021,则原式=(-2021)▽2=2021-4=2017. 18.答案 ±7;±6;13或-13或1或-1 解析 易知m =±7,n =±6. 当m =7,n =6时,m +n =7+6=13, 当m =7,n =-6时,m +n =7-6=1, 当m =-7,n =6时,m +n =-7+6=-1, 当m =-7,n =-6时,m +n =-7-6=-13. 19.答案 2019或-2021解析 数轴上点A 表示的数是-1,点B 到点A 的距离为2020,则点B 表示的数是-1+2020=2019或-1-2020=-2021. 20.答案2n 2n +3解析 由题意可知分子存在的规律为21,22,23,…,2n . 因为分母比分子大3,所以分母存在的规律为21+3,22+3,23+3,…,2n +3, 则第n 个数是2n 2n +3.三、解答题21.解析 (1)正数集合:{1,+3.2,+108,…}. (2)整数集合:{1,0,+108,-(-2)2,-|-6|,…}. (3)负分数集合:{-35,-6.5,…}.(4)非负整数集合:{1,0,+108,…}.22.解析 -|-5|=-5,-(-3)=3,-0.4的倒数是-52,(-1)5=-1,0的相反数是0,比-2大72的数是32.将化简后的数在数轴上表示如下:所以-5<-52<-1<0<32<3. 23.解析 (1)(-2)3-|2-5|-(-15)=(-8)-3+15=4.(2)(-12+56-38+512)÷(-124) =(-12+56-38+512)×(-24) =-12×(-24)+56×(-24)-38×(-24)+512×(-24) =12+(-20)+9+(-10)=-9.(3)-32-[(112)3×(-29)-6÷|-23|] =-9-[(32)3×(-29)-6÷23] =-9-[278×(-29)-6×32] =-9-(-34-9) =-9+34+9 =34. 24.解析 (1)如图所示,以1个单位长度表示1千米.(2)1+3+|-6|+|-1|+|-2|+5=18(千米).答:该货车共行驶了18千米.(3)100×5+50-15+25-10-15=535(千克).答:货车运送的水果总质量是535千克.25.解析 (1)根据题意得x =1,●=7,○=-3.(2)7.理由如下:根据题意得格子中的数从左到右是1,7,-3,1,7,-3,…,以1,7,-3为一组循环出现,因为2021=3×673+2,所以第2021个格子中的数为7.(3)能.因为1+7+(-3)=5,2021=5×404+1,所以n=404×3+1=1213.(4)前三项的累差值为20.因为前十个数中1出现了4次,而7与-3各出现了3次,所以前十项的累差值=|1-7|×4×3+|1-(-3)|×4×3+|7-(-3)|×3×3=12×6+12×4+9×10=210.。
2020—2021 学年七年级上期数学期末质量监测试题(含答案解析)

2020—2021学年七年级上期数学期末质量监测试题注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.12.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A 重合的点是()A.点B ,IB.点C ,EC.点B ,ED.点C ,H8.下列各组数中,相等的是()A.()23-与23- B.()32-与32-C.23与23- D.32-与()32-9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.9410.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +-> D.0b c a +->11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +312.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x⨯++= D.3(20)5109x x ⨯++=+二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.14.若5a =,3b =-,且0a b +>,则ab =_______.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg 4741体重与平均体重的差值/kg+302-+416.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.20.如图,已知点A ,B ,C ,利用尺规,按要求作图:(1)作线段AB ,AC ,过B ,C 作射线BQ ;在射线CQ 上截取CD=BC ,在射线DQ 上截取DE=BD ;(2)连接AE ,在线段AE 上截取AF=AC ,作直线AD 、线段DF ;(3)比较BC 与DF 的大小,直接写出结果.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.22.解方程:(1)()235x x +=-;(2)325123y y ---=.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/325.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h,骑车速度是步行速度的4倍,从学校到家有2km的路程,通过计算发现,方案1比方案2多用6min.(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km,用含x的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.-和10的位置上,沿数轴做向东、向西移动的游戏.26.如图,甲、乙两人(看成点)分别在数轴10移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m次,乙猜对了n次.(1)请用含m,n的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.2020—2021学年七年级上期数学期末质量监测试题答案解析注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.1【答案】B【解析】【分析】直接利用有理数的加法法则计算即可.-+=-【详解】211故选:B.【点睛】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.2.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.【分析】从运动的观点来看,点动成线,线动成面,面动成体,根据“面动成体”可得答案.【详解】解:根据“面动成体”可得,旋转后的几何体为两个底面重合的圆锥的组合体,因此选项B中的几何体:符合题意,故选:B.【点睛】本题考查“面动成体”,解题的关键是明确点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.【答案】D【解析】【分析】根据主视图定义,由此观察即可得出答案.【详解】解:从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为D【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱【详解】解:上述四个几何体中,圆柱、圆锥和球的截面图都有可能是圆;只有棱柱的截面图不可能是圆.故选D .5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+【答案】A 【解析】【分析】根据绝对值的性质化简化简求解.【详解】A.()()94---=9455-+=-=,故正确;B.()()94941313-+-=--=-=,故错误;C.949413-+-=+=,故错误;D .9+4-+=9413+=,故错误;故选A .【点睛】此题主要考查绝对值的运算,解题的关键是熟知绝对值的定义.6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③ B.①③⑤C.②③④D.②④⑤【答案】C 【解析】【分析】根据体育项目的隶属包含关系,以及“户外体育项目”与“其它体育项目”的关系,综合判断即可.【详解】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.【点睛】此题主要考查统计调查的应用,解题的关键是熟知体育运动项目的定义.7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A重合的点是()A.点B,IB.点C,EC.点B,ED.点C,H【答案】B【解析】【分析】首先能想象出来正方形的展开图,然后作出判断即可.【详解】由正方形的展开图可知A、C、E重合,故选B.【点睛】本题考查了正方形的展开图,比较简单.8.下列各组数中,相等的是()A.()23-与23-B.()32-与32-C.23与23-D.32-与()32-【答案】D【解析】【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】∵(-3)2=9,-32=-9,故选项A不符合题意,-=,故选项B不符合题意,∵(-2)3=-8,328∵32=9,-32=-9,故选项C不符合题意,∵-23=-8,(−2)3=-8,故选项D 符合题意,故选D .【点睛】此题考查有理数的乘法,有理数的乘方,解题关键在于掌握运算法则.9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.94【答案】B 【解析】【分析】根据给出的※的含义,以及有理数的混合运算的运算法则,即可得出答案.【详解】解: a ※2(1)b a b =÷-,∴()3-※4()()2=341933-÷-=÷=,故选B .【点睛】本题考查了新定义的运算以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,后算加减;同级运算,应按从左往右的顺序进行计算,如果有括号,要先计算括号里的.10.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +->D.0b c a +->【答案】D 【解析】【分析】根据数轴上点的位置确定出a ,b ,c 的正负及绝对值大小,利用有理数的加减法则判断即可.【详解】解:根据数轴上点的位置得:a <0<b <c ,且|b|<|a|<|c|,∴a+b <0,故选项A 错误,不符合题意;0a c +>,故选项B 错误,不符合题意;0a b c +-<,故选项C 错误,不符合题意;0b c a +->,故选项D 正确,符合题意;故选:D .【点睛】此题考查了有理数的减法,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +3【答案】C 【解析】【分析】先求出从甲盒子中取出2枚后剩下的棋子数,再求出从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数,把它们相减即可求解.【详解】解:依题意可知,乙盒中的围棋子的枚数是n +2+3-(n -2)=7.故选:C .【点睛】考查了列代数式,关键是得到从甲盒子中取出2枚后剩下的棋子数,从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数.12.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x ⨯++=D.3(20)5109x x ⨯++=+【答案】D 【解析】【分析】直接利用表示十位数的方法进而得出等式即可.【详解】解:设“”内数字为x ,根据题意可得:3×(20+x )+5=10x+9.故选:D .【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.【答案】2;【解析】【分析】方程移项合并后,将x 的系数化为1,即可求出方程的解.【详解】解:213x -=23+1x =2x=4,解得:x=2.故答案为:2.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,将x 的系数化为1,求出解.14.若5a =,3b =-,且0a b +>,则ab =_______.【答案】15-;【解析】【分析】根据绝对值的意义及a+b>0,可得a ,b 的值,再根据有理数的乘法,可得答案.【详解】解:由|a|=5,b=-3,且满足a+b >0,得a=5,b=-3.当a=5,b=-3时,ab=-15,故答案为:-15.【点睛】本题考查了绝对值、有理数的加法、有理数的乘法,确定a 、b 的值是解题的关键.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg4741体重与平均体重+302-+4的差值/kg【答案】7;【解析】【分析】根据题目中的平均体重即可分别求出体重与平均体重的差值及体重,然后填表即可得出最重的和最轻的同学体重,再相减即可得出答案.【详解】解: 某中学七年级学生的平均体重是44kg,∴小润的体重与平均体重的差值为4744=3-kg;+kg;小华的体重为443=47+kg;小颖的体重为440=44-kg;小丽的体重为442=42--kg;小惠的体重与平均体重的差值为4144=3+kg;小胜的体重为444=48填表如下:姓名小润小华小颖小丽小惠小胜体重/kg474744424148体重与平均体重+3+302--3+4的差值/kg可知,最重的同学的体重是48kg,最轻的同学的体重是41kg∴最重和最轻的同学体重相差4841=7-kg.故答案为:7.【点睛】本题考查了有理数加减的应用,熟练掌握有理数的加减运算法则是解题的关键.16.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).【答案】2αβ-【解析】【分析】由,AOD AOC DOC ∠=∠+∠,DOC BOD BOC ∠=∠-∠可得:,AOD AOC BOD BOC ∠=∠+∠-∠从而可得答案.【详解】解:,AOD AOC DOC ∠=∠+∠ ,DOC BOD BOC ∠=∠-∠,AOD AOC BOD BOC ∴∠=∠+∠-∠,,AOC BOD BOC αβ∠=∠=∠= 2.AOD ααβαβ∴∠=+-=-故答案为:2.αβ-【点睛】本题考查的是角的和差关系,掌握利用角的和差关系进行计算是解题的关键.17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).【答案】20125400x π-+;【解析】【分析】根据题意和图形可知,水池的面积是长方形的面积减去两个扇形的面积,本题得以解决.【详解】解:由图可得,水池的面积为:20×(x +20)−π×102×14−π×202×14=20125400x π-+(m 2),故答案为:20125400x π-+.【点睛】本题考查列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.【答案】66.【解析】【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为1,3,5,6可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4,5.丁所购票数最多,即可得出丁应该为6,8,10,12,14,16,再将所有数相加即可.【详解】解: 甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.∴丙选座要尽可能得小,选择:1,2,3,4,5.此时左边剩余5个座位,右边剩余6个座位,∴丁选:6,8,10,12,14,16.∴丁所选的座位号之和为681012141666+++++=;故答案为:66.【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.【答案】(1)-6;(2)5【解析】【分析】(1)根据有理数的混合运算法则先算乘除后算加减即可;(2)根据有理数混合运算法则先算括号里面的再算乘除.【详解】解:(1)原式=93-+6=-;(2)原式123+12234⎛⎫=-⨯ ⎪⎝⎭12312+×1212234=⨯-⨯6+89=-5=.【点睛】此题考查了有理数混合运算的运算法则,难度一般,认真计算是关键,注意能简便运算的尽量简便运算.20.如图,已知点A,B,C,利用尺规,按要求作图:(1)作线段AB,AC,过B,C作射线BQ;在射线CQ上截取CD=BC,在射线DQ上截取DE=BD;(2)连接AE,在线段AE上截取AF=AC,作直线AD、线段DF;(3)比较BC与DF的大小,直接写出结果.【答案】(1)见解析;(2)见解析;(3)BC=DF【解析】【分析】(1)利用几何语言画出对应的图形即可;(2)利用几何语言画出对应的图形即可;(3)利用作图特征和等量代换即可得出答案.【详解】解:(1)、(2)如图所示,要求有作图痕迹;(3)BC=DF.证明:由作图知CD=DF ,又 CD=BC ,∴BC=DF .【点睛】本题考查了尺规作图-线段,利用圆规和直尺的特征作图是解题的关键.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.【答案】(1)2ab c -;(2)236x xy --+【解析】【分析】(1)原式先去括号,然后合并同类项即可得到答案;(2)原式先去括号,然后合并同类项即可得到答案.【详解】解:(1)()()222ab c ab c -+-+242ab c ab c =--+2ab c =-.(2)()22233(2)x xy x xy --+-+2262+336x xy x xy =-+-+236x xy =--+.【点睛】本题考查整式的加法运算,要先去括号,然后合并同类项.运用去括号法则进行多项式化简.合并同类项时,注意只把系数想加减,字母与字母的指数不变.22.解方程:(1)()235x x +=-;(2)325123y y ---=.【答案】(1)11x =-;(2)5y =-【解析】【分析】(1)按照去括号,移项、合并同类项、将系数化为1的步骤计算即可;(2)按照去分母、去括号、移项、合并同类项、将系数化为1的步骤计算即可.【详解】解:(1)去括号,得265x x +=-移项,得256x x -=--合并同类项,将系数化为1,得11x =-.(2)去分母,得3(3)62(25)y y --=-去括号,得396410y y --=-移项,得341096y y -=-++合并同类项,得5-=y 系数化为1,得5y =-.【点睛】本题考查了解一元一次方程,熟练掌握解方程的一般步骤是解题的关键.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).【答案】(1)6至11月三种品牌电脑销售量总量最多是B 品牌,11月份,A 品牌的销售量为270台;(2)221台;(3)答案不唯一,如,建议买C 品牌电脑;或建议买A 品牌电脑,或建议买B 产品,见解析【解析】【分析】(1)从条形统计图、折线统计图可以得出答案;(2)根据A品牌电脑销售量及A品牌电脑所占百分比即可求出11月份电脑的总的销售量,再减去A、B、C品牌的销售量即可得出答案;(3)从所占的百分比、每月销售量增长比等方面提出建议即可.【详解】解:(1)6至11月三种品牌电脑销售量总量最多是B品牌;11月份,A品牌的销售量为270台;(2)11月,A品牌电脑销售量为270台,A品牌电脑占27%,÷=(台).所以,11月份电脑的总的销售量为27027%1000---=(台).其它品牌的电脑有:1000234270275221(3)答案不唯一.如,建议买C品牌电脑.销售量从6至11月,逐月上升;11月份,销售量在所有品牌中,占的百分比最大.或:建议买A品牌电脑.销售量从6至11月,逐月上升,且每月销售量增长比C品牌每月的增长量要快.或:建议买B产品.因为B产品6至11月的总的销售量最多.【点睛】本题考查了条形图、折线统计图、扇形统计图,熟练掌握和理解统计图中各个数量及数量之间的关系是解题的关键.24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/3【答案】(1)见解析;(2)()22v b a b =-;(3)见解析,剪去的小正方形的边长可能是3cm 【解析】【分析】(1)将正方形的四个角的小正方形大小要一致即可;(2)根据图形中的字母表示的长度即可得出()22v b a b =-;(3)将18a =cm 结合容积公式及表格即可得出答案.【详解】解:(1)如图所示(可以不标出a ,b ,但四个角上的正方形大小要一致).(2)无盖厂长方体盒子的容积v 为()22v b a b =-(3)当18a =,b=1时,()2221(1821)256v b a b =-=⨯-⨯=,当18a =,b=2时,()2222(1822)392v b a b =-=⨯-⨯=,当18a =,b=3时,()2223(1832)432v b a b =-=⨯-⨯=,当18a =,b=4时,()2224(1842)400v b a b =-=⨯-⨯=,当18a =,b=5时,()2225(1825)320v b a b =-=⨯-⨯=,当18a =,b=6时,()2226(1826)216v b a b =-=⨯-⨯=,填表如下:剪去小正方形的边长/cm 123456……无盖长方体的容积/3cm 256392432400320216……有表可知,无盖长方体容积取得最大值时,剪去的小正方形的边长可能是3cm .【点睛】本题考查了代数式求值的实际应用,结合题意得到等量关系是解题的关键.25.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km ,用含x 的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.【答案】(1)见解析;(2)2210=52020x x +++,或62156010x x --=;(3)需要的时间为48min 【解析】【分析】(1)根据题意可知小区在学校的左边,标出即可;(2)根据“步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .”解答即可;(3)设学校到图书馆的路程为x km ,根据题意得出226554560x x +=++⨯,求解后即可得出方案1需要的时间.【详解】解:(1)如图所示;(2)根据题意,得2210=52020x x +++,或62156010x x --=(3)设学校到图书馆的路程为x km ,根据题意,得226554560x x +=++⨯解方程,得4x =.所以,455x =.460=485⨯.答:方案1中,需要的时间为48min .【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找到命题中隐含的等量关系式是解题的关键.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.26.如图,甲、乙两人(看成点)分别在数轴10-和10的位置上,沿数轴做向东、向西移动的游戏.移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m 次,乙猜对了n 次.(1)请用含m ,n 的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.【答案】(1)甲在数轴上的位置上的点代表的数为:640m -,其中010m ≤≤,且m 为整数;乙在数轴上的位置上的点代表的数为:405n -,其中010n ≤≤,且n 为整数;(2)n 的值2n =或6n =【解析】【分析】(1)甲猜对了m 次,则猜错了()10m -次,根据“如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位”即可表示出甲在数轴上的位置上的点;乙猜对了n 次,则猜错了()10n -次,根据“如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位”即可表示出乙在数轴上的位置上的点;(2)分两种情况:当甲在乙西面,甲乙相距10个单位及当甲在乙东面,甲乙相距10个单位,列关于m 、n 的方程,将10m =求n 的值即可.【详解】解:(1)甲猜对了m 次,则猜错了()10m -次,10次游戏结束后,甲在数轴上的位置上的点,代表的数为:()103310640m m m -+--=-,其中010m ≤≤,且m 为整数;乙猜对了n 次,则猜错了()10n -次,10次游戏结束后,乙在数轴上的位置上的点,代表的数为:()102310405n n n -+-=-,其中010n ≤≤,且n 为整数.(2)当甲在乙西面,甲乙相距10个单位,可得64010405m n -+=-,其中,=10m ,010n ≤≤,即60570n +=,解得2n =.当甲在乙东面,甲乙相距10个单位,可得。
内蒙古包头青山区2020-2021学年七年级上学期期中数学试题

内蒙古包头青山区2020-2021学年七年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.﹣12020的倒数是()A.2020 B.﹣2020 C.12020D.﹣120202.在下列几何体中,( ) 几何体是将一个三角尺绕它的斜边所在直线旋转一周得到的A.B.C.D.3.华为Mate 30 5G系列是近期相当火爆的5G国产手机,它采用的麒麟990 5G芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为()A.1.03×109B.10.3×109C.1.03×1010D.1.03×10114.在代数式12m,0,13a-,2x,a bπ+,a ba b-+中,整式有()A.3个B.4个C.5个D.6个5.如图,将4×3的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余下的部分(小正方形之间至少要有一条边相连)恰好能折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是()A.7 B.6 C.5 D.46.下面各组数中,相等的一组是( )A .-22与(-2)2B .323与323⎛⎫ ⎪⎝⎭C .2--与-(-2)D .(-3)3与-33 7.有理数a ,b 在数轴上的位置如图所示,则下列各式一定成立的个数有( ) ①a ﹣b >0; ②|b |>a ; ③ab <0; ④1ab >-.A .4个B .3个C .2个D .1个 8.下列运算错误的是( )A .﹣3﹣(﹣3+19)=﹣3+3﹣19B .5×[(﹣7)+(﹣45)]=5×(﹣7)+5×(﹣45)C .[14×(﹣73)]×(﹣4)=(﹣73)×[14×(﹣4)]D .﹣7÷2×(﹣12)=﹣7÷[2×(﹣12)]9.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++10.下列说法:①用一个平面去截正方体,截面不可能是七边形;②数轴上与表示﹣2的点距离3个长度单位的点所表示的数是1;③零减去任何一个有理数,其差是该数的相反数;④-22a 2b 的次数是5;⑤在数轴上与原点距离越远的点表示的数越大;⑥若|x |=﹣x ,则x <0.其中正确的个数是( )A .2个B .3个C .4个D .5个二、填空题11.单项式22x y π-的系数是______.12.冰箱冷冻室的温度为-6℃,此时房间内的温度为20℃,则房间内的温度比冰箱冷冻室的温度高________℃.13.如图是一个正方体的平面展开图,若将展开图折叠成正方体后,相对面上所标的两个数互为相反数,则a ﹣b ﹣c 的值为________.14.若|m ﹣4|+(n +2)2=0,则n m ﹣mn =_____.15.同时符合下列条件:①同时含有字母a ,b ;②常数项是﹣12,且最高次项的系数是2的一个4次2项式,请你写出满足以上条件的一个整式_________.16.数轴上有A 、B 两点,点A 表示5的相反数,点B 表示绝对值最小的数,一动点P 从点B 出发,沿数轴以1个单位长度/秒的速度运动,3秒后,点P 到点A 的距离为____个单位长度.17.已知一个正棱柱有18条棱,它的底面边长都是4cm ,侧棱长为5cm ,则其侧面积为______2cm .18.如图是一个运算程序,若输入的是x =﹣5,则输出的x 的值为_________.三、解答题19.计算:(1)(﹣12)﹣5+(﹣14)﹣(﹣39) (2)31111125(1)45254-⨯+÷+⨯- (3)()()225183639⎛⎫--⨯-+- ⎪⎝⎭ (4)()324211220.28210-⎛⎫⎛⎫-+-⨯÷- ⎪ ⎪⎝⎭⎝⎭(5)()()21440.251254-÷-⨯-⨯--- 20.如图是一些棱长均为2cm 的小立方块所搭几何体从上面看到的形状图,小正方形中的数字表示该位置的小立方块的个数.(1)请画出从正面和左面看到的这个几何体形状图;(2)这个几何体的体积是 cm 3.21.当今,人们对健康愈加重视,跑步锻炼成了人们的首要选择,许多与运动有关的手机APP 应运而生,聪聪给自己定了目标,每天跑步a 公里.以目标路程为基准,超过的部分记为正,不足的部分记为负,他记下了七天的跑步路程:(1)分别用含a 的代数式表示22日及23日的跑步路程;(2)如图所示是聪聪24日跑步路程是7.07公里,求a 的值;(3)若跑步一公里消耗的热量为60千卡,请问聪聪跑步七天一共消耗了多少热量? 22.小明房间窗户的装饰物如图所示,它们由三个半圆组成(它们的半径相同).解答下列问题(结果保留π)()1用代数式表示装饰物所占的面积是()2用代数式表示窗户中能射进阳光部分面积是 (窗框面积忽略不计)()3若3,2a b ==,则窗户中部分能射进阳光的面积是23.某景区的部分景点和游览路径恰好都在一条直线上,一电瓶小客车接到任务从景区大门出发,向东走2千米到达A景点,继续向东走2.5千米到达B景点,然后又回头向西走8.5千米到达C景点,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴,请在数轴上表示出上述A、B、C三个景点的位置,并写出A、C两景点之间的距离为______千米;(2)若电瓶车充足一次电能行走15千米,则该电瓶车能否在一开始充好电而途中不充电的情况下完成此次任务?(3)十一黄金周的某一天,小明和小阳一同去该景区游玩,由于人太多,他们在景区内走散了,在电话中,小阳说:“我在B景区”,小明说:“我在离C景区2千米的地方”,于是他们决定相向步行会合.如果他们行走的速度相同,则他们会合的地点距景区大门多少千米?参考答案1.B【分析】直接根据倒数的求法进行求解即可.【详解】解:12020的倒数是:﹣2020.故选:B.【点睛】本题主要考查倒数的概念,熟练掌握倒数的求法是解题的关键.2.D【分析】根据三角形旋转的特征进行判断即可得解.【详解】根据题意,将一个三角尺绕它的斜边所在直线旋转一周得到的图形是D,故选:D.【点睛】本题主要考查了立体图形形成的相关知识,建立相关空间思维是解决本题的关键.3.C【分析】根据科学记数法的表示方法解答即可.【详解】解:103亿=103 0000 0000=1.03×1010.故选:C.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.B【解析】试题分析:整式包括单项式和多项式,12m ,0,1-3a ,a b π+是整式,共有4个. 故选B .考点:整式的定义.5.C【分析】 由平面图形的折叠及正方体的表面展开图的特点解题.注意只要有“田”字格的展开图都不是正方体的表面展开图.【详解】根据只要有“田”字格的展开图都不是正方体的表面展开图,应剪去的小正方形的编号是5. 故选C .6.D【分析】根据有理数的乘方运算和绝对值、相反数的定义判断选项的正确性.【详解】A 选项错误,224-=-,()224-=,不相等; B 选项错误,32833=,328327⎛⎫= ⎪⎝⎭,不相等; C 选项错误,22--=-,()22--=,不相等;D 选项正确.故选:D .【点睛】本题考查有理数的乘方运算和绝对值、相反数的定义,解题的关键是掌握有理数的乘方运算法则.7.A【分析】根据数轴的定义、绝对值运算、有理数的减法与乘除法逐个判断即可得.【详解】 由数轴的定义得:0,b a b a <<>,则0a b ->,式子①成立; ,b a a a >=,b a ∴>,式子②成立;0,0b a <>, 0ab ∴<,式子③成立; ,,b a a a b b >==-,b a ∴->,1a b∴>-,式子④成立; 综上,各式一定成立的个数有4个,故选:A .【点睛】 本题考查了数轴、绝对值运算、有理数的减法与乘除法,熟练掌握数轴的定义是解题关键. 8.D 【分析】根据各个选项中的式子可以写出正确的变形,从而可以解答本题.【详解】解:∵-3-(-3+19)=-3+3-19,故选项A 正确; ∵5×[(-7)+(-45)]=5×(-7)+5×(-45),故选项B 正确; ∵[14×(-73)]×(-4)=(-73)×[14×(-4)],故选项C 正确; ∵-7÷2×(-12)=-7÷[2÷(-12)],故选项D 错误; 故选:D .【点睛】此题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.9.B【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案.【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形;()232S S x x +=++正方形小矩形;()36S S x x +=++小矩形小矩形.故选:B.【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握. 10.A【分析】根据所学知识对每一项的正确性作出判断,然后算出正确项的数目即可得到答案.【详解】解:∵正方体只有6个面,而截面与正方体的每个面最多只有一条交线,∴用一个平面去截正方体,截面不可能是七边形,①正确;∵数轴上与表示﹣2的点距离3个长度单位的点所表示的数是1或-5,∴②错误; ∵零减去任何一个有理数,等于加上该数的相反数,而任何数加上0都等于它本身, ∴零减去任何一个有理数,其差是该数的相反数,③正确;∵222a b -的次数是3,∴④错误;∵数轴左边点与原点距离越远的点表示的数越小,∴⑤错误;∵x=0时,|x|=-x 也是成立的,∴⑥错误;故选A .【点睛】本题考查有理数及正方体的截面,熟练掌握有关概念和性质是解题关键.11.-2π.【分析】根据单项式系数的定义得出答案即可.单项式22x y π-的系数是-2π. 故答案为: -2π.【点睛】 本题考查单项式系数的定义,关键在于熟记定义.12.26【分析】根据有理数的减法即可解答.【详解】根据题意,房间内的温度比冰箱冷冻室的温度高20-(-6)=26℃.故答案为26℃.【点睛】本题考查了有理数的减法,熟练掌握有理数减法法则是解题关键.13.-2【分析】根据正方体展开图相对的面之间相隔一个正方形这一的特点,求得a 、b 、c 的值,代入代数式中求解即可.【详解】解:由正方体展开图可知,a 与﹣1相对,b 与﹣5相对,c 与2相对,∵相对面上所标的两个数互为相反数,∴a=1,b=5,c=﹣2,∴a ﹣b ﹣c=1﹣5﹣(﹣2)=1﹣5+2=﹣2,故答案为:﹣2.【点睛】本题考查了正方体的展开图、代数式求值、有理数的加减法,熟知正方体展开图的特点,正确求得a 、b 、c 值是解答的关键.14.24【分析】先根据绝对值的非负性、偶次方的非负性求出m 、n 的值,再代入计算有理数的运算即可得.由绝对值的非负性、偶次方的非负性得:4020m n -=⎧⎨+=⎩,解得42m n =⎧⎨=-⎩, 则()()424216824m n mn -=--⨯-=+=,故答案为:24.【点睛】本题考查了绝对值的非负性、偶次方的非负性、含乘方的有理数混合运算,熟练掌握绝对值和偶次方的非负性是解题关键.15.22122a b -(答案不唯一) 【分析】根据多项式的定义即可得.【详解】 由题意,满足条件的一个整式为22122a b -, 故答案为:22122a b -(答案不唯一). 【点睛】本题考查了构造多项式,熟记多项式的定义是解题关键.16.8或2【分析】求出点A 、B 所表示的数,再根据点P 移动后所表示的数,由数轴上两点距离的计算方法求出结果即可.【详解】解:∵点A 表示5的相反数,点B 表示绝对值最小的数,∴点A 表示的数是-5,点B 表示的数是0,点P 移动的距离为1×3=3(单位长度),①若点P 从点B 向右移动,则点P 所表示的数为3,此时PA=|-5-3|=8,②若点P 从点B 向左移动,则点P 所表示的数为-3,此时PA=|-5+3|=2,故答案为:2或8.【点睛】本题考查数轴表示数的意义和方法,符号和绝对值是确定有理数的必要条件.17.120【分析】一个正棱柱有18条棱,故为正六棱柱,故有6个相同的侧面,且宽为4cm ,高为5cm 的长方形,侧面积等于6个长方形面积之和.【详解】∵一个正棱柱有18条棱,故为正六棱柱,∴有6个相同的侧面,且宽为4cm ,高为5cm 的长方形,侧面积等于6个长方形面积之和,∴2456120S cm =⨯⨯=侧.故答案为120.【点睛】本题考查了正棱柱表面积和侧面积的计算,熟记表面积计算公式是解答此题的关键. 18.102【分析】根据运算程序列出运算式子,再计算有理数的乘方、乘法与加减法即可得.【详解】将5x =-输入得:()2125111x -+=-⨯-+=,因为11不是偶数,所以将11x =输入得:()()22121112102x -+=-+=,因为102是偶数,所以输出的结果为102,故答案为:102.【点睛】本题考查了有理数的乘方、乘法与加减法,读懂运算程序图是解题关键.19.(1)8;(2)110-;(3)11;(4)30-;(5)1-. 【分析】(1)先去括号,再计算有理数的加减法即可得;(2)先将除法转化为乘法,再利用有理数乘法的分配律进行计算即可得;(3)先计算有理数的乘方、括号内的减法,再有理数的乘法与加减法即可得;(4)先计算有理数的乘方、化简绝对值,再计算有理数的加减乘除法即可得;(5)先计算有理数的乘方、化简绝对值、小数化为分数,再计算有理数的加减乘除法即可得.【详解】(1)原式1251439,171439=--+,3139=-+,8=;(2)原式311111121452554⎛⎫=-⨯+⨯+⨯- ⎪⎝⎭, 31111214245⎛⎫=-+-⨯ ⎪⎝⎭, 1125⎛⎫=-⨯ ⎪⎝⎭, 110=-; (3)原式51896969⎛⎫=-⨯--⎪⎝⎭, 186991=-⨯-, 1816=--,11=;(4)原式114160.281800-=-+⨯÷, 4228=-+-,228=--,30=-;(5)原式()()1141254641-÷-⨯-⨯--=, 14354+=⨯-, 135=+-,1=-.【点睛】本题考查了含乘方的有理数混合运算、有理数乘法的分配律、绝对值,熟练掌握运算法则和运算律是解题关键.20.(1)见解析;(2)80.【分析】(1)由已知条件可知,从正面看到的图形有3列,每列小正方形的数目分别为3、1、3,从左面看到的图形有2列,每列小正方形的数目分别为3、3,据此画出图形即可;(2)从已知中可得出组成这个几何体的小正方体的个数,根据小正方体的棱长,根据正方体的体积公式进行计算即可得.【详解】(1)如图所示:;(2)由已知可知这个几何体由3+1+1+2+3=10个小正方体组成,所以这个几何体的体积为:23×10=80cm3,故答案为80.【点睛】本题考查了从不同方向看几何体,由几何体的俯视图及小正方形内的数字确定出从正面看与从左面看得到的图形是解题的关键.21.(1)22日的跑步路程为:(a-1.88) 公里,23日的跑步路程为:(a+3.3) 公里;(2)a=7;(3)聪聪跑步七天一共消耗了3152.4千卡热量.【分析】(1)根据正负数的意义表示即可;(2)由表格可知24日跑步路程可表示为a+0.07,故a+0.07=7.07,求出a即可;(3)将表格中数据相加得到超过或不足部分的总和,然后加上7天的总目标路程,得出的结果乘以60即可得出答案.【详解】解:(1)∵目标路程a公里为基准,超过的部分记为正,不足的部分记为负,∴22日的跑步路程为:(a -1.88) 公里,23日的跑步路程为:(a+3.3) 公里;(2)由题意得:a+0.07=7.07,∴a =7;(3)1.72+3.20+(-1.91)+(-0.96)+ (-1.88)+3.3+0.07=3.54(公里),(3.54+7×7)×60=3152.4(千卡),答:聪聪跑步七天一共消耗了3152.4千卡热量.【点睛】本题考查了有理数加法的实际应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.22.(1)224b π;(2)224b ab π-;(3)66π-【分析】(1)根据半圆的面积求法先求出一个半圆的面积,再乘3即可得解;(2)用长方形窗户的面积减去装饰物的面积即可得解;(3)将32a b ==,代入(2)中表达式进行计算即可得解.【详解】(1)根据题意,半圆的半径6b r =,则半圆的面积为2212672b b ππ⎛⎫⋅= ⎪⎝⎭, 则装饰物的面积为2237224b b ππ⨯=;(2)根据题意,窗户的面积为ab ,则可射进阳光部分面积是224b ab π-;(3)将32a b ==,代入得2432624246b ab πππ⨯-=⨯-=-.【点睛】 本题主要考查了整式得应用,熟练掌握相关数量关系列式求解是解决本题的关键.23.(1)数轴见解析,6;(2)不能完成此次任务,理由见解析;(3)他们会合的地点距景区大门0.75千米或1.25千米.【分析】(1)根据数轴的定义将A 、B 、C 三个点表示出来即可;再得出A 、B 、C 三个点在数轴上表示的数,由此即可得A 、C 两景点之间的距离;(2)先求出电瓶车此次任务所走的路程,再与15千米进行比较即可得;(3)分小明在离C 景区西边2千米的地方和小明在离C 景区东边2千米的地方两种情况,再分别根据数轴的定义即可得.【详解】(1)由题意,在数轴上表示A 、B 、C 三个景点的位置如下所示:点A 表示的数为2,点B 表示的数为2 2.5 4.5+=,点C 表示的数为()4.58.54+-=-, 则A 、C 两景点之间的距离是()24246--=+=(千米),故答案为:6;(2)不能完成此次任务,理由如下: 电瓶车一共走的路程为2 2.58.542 2.58.5417++++-++=+++=(千米), 因为1715>,所以不能完成此次任务;(3)由题意,分以下两种情况:①当小明在离C 景区西边2千米的地方时,则[]4.5(42)2(4.56)2+--÷=-÷,1.52=-÷,0.75=-,即此时他们会合的地点距景区大门0.75千米;②当小明在离C 景区东边2千米的地方时,则[]4.5(42)2(4.52)2+-+÷=-÷,2.52=÷,1.25=,即此时他们会合的地点距景区大门1.25千米;答:他们会合的地点距景区大门0.75千米或1.25千米.【点睛】本题考查了数轴、绝对值、有理数的除法与加减法运算,熟练掌握数轴的定义是解题关键.。
2020—2021学年度第一学期七年级数学月考试卷(含解析)

2020—2021学年度第一学期月考试卷七年级数学2020.12一、选择题(本题共20分,每小题2分)1.若代数式x+4的值是2,则x等于()A.2B.﹣2C.6D.﹣62.在国庆70周年的联欢活动中,参与表演的3290名群众演员,每人手持一个长和宽都为80厘米的光影屏,每一块光影屏上都有1024颗灯珠,约3369000颗灯珠共同构成流光溢彩的巨幅光影图案,给观众带来了震撼的视觉效果.将3369000用科学记数法表示为()A.0.3369×107B.3.369×106C.3.369×105D.3369×1033.在解方程时,去分母正确的是()A.3(x﹣1)﹣2(2x+3)=6B.3(x﹣1)﹣2(2x+3)=1C.2(x﹣1)﹣2(2x+3)=6D.3(x﹣1)﹣2(2x+3)=34.如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是()A.两点之间,线段最短B.两点确定一条直线C.两点之间,直线最短D.直线比线段长5.下列解方程的步骤中正确的是()A.由x﹣5=7,可得x=7﹣5B.由8﹣2(3x+1)=x,可得8﹣6x﹣2=xC.由x=﹣1,可得x=﹣D.由,可得2(x﹣1)=x﹣36.已知3a2﹣a=1,则代数式6a2﹣2a﹣5的值为()A.﹣3B.﹣4C.﹣5D.﹣77.有理数a,b,c在数轴上的对应点的位置如图所示,有如下四个结论:①|a|>3;②ab >0;③b+c<0;④b﹣a>0.上述结论中,所有正确结论的序号是()A.①②B.②③C.②④D.③④8.下列说法中正确的是()A.如果|x|=7,那么x一定是7B.﹣a表示的数一定是负数C.射线AB和射线BA是同一条射线D.一个锐角的补角比这个角的余角大90°9.下列图形中,可能是右面正方体的展开图的是()A.B.C.D.10.居民消费价格指数是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.据统计,从2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率如图所示:根据上图提供的信息,下列推断中不合理的是()A.2018年12月的增长率为0.0%,说明与2018年11月相比,全国居民消费价格保持不变B.2018年11月与2018年10月相比,全国居民消费价格降低0.3%C.2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率中最小的是﹣0.4%D.2019年1月到2019年8月,全国居民消费价格每月比上个月的增长率一直持续变大二.填空题(共8小题)11.如图所示的网格是正方形网格,∠ABC∠DEF(填“>”,“=”或“<”)12.用四舍五入法将0.0586精确到千分位,所得到的近似数为.13.已知x=3是关于x的一元一次方程ax+b=0的解,请写出一组满足条件的a,b的值:a=,b=.14.若(x+1)2+|y﹣2020|=0,则x y=.15.《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”.《九章算术》大约成书于公元前200年~公元前50年,是以应用问题解法集成的体例编纂成书的,全书按题目的应用范围与解题方法划分为“方田”、“粟米”、“衰分”等九章.《九章算术》中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数,金价各几何?其大意是:假设合伙买金,每人出400钱,还剩余3400钱;每人出300钱,还剩余100钱.问人数、金价各是多少?如果设有x个人,那么可以列方程为.16.我们把称为二阶行列式,且=ad﹣bc如:=1×(﹣4)﹣3×2=﹣10.(1)计算:=;(2)若=6,则m的值为.17.已知线段AB如图所示,延长AB至C,使BC=AB,反向延长AB至D,使AD=BC,点E是线段CD的中点.(1)依题意补全图形;(2)若AB的长为30,则BE的长为.18.一件商品的包装盒是一个长方体(如图1),它的宽和高相等.小明将四个这样的包装盒放入一个长方体大纸箱中,从上面看所得图形如图2所示,大纸箱底面长方形未被覆盖的部分用阴影表示.接着小明将这四个包装盒又换了一种摆放方式,从上面看所得图形如图3所示,大纸箱底面未被覆盖的部分也用阴影表示.设图1中商品包装盒的宽为a,则商品包装盒的长为,图2中阴影部分的周长与图3中阴影部分的周长的差为(都用含a的式子表示).三、计算题(本题共12分,每小题3分)19.(1) 5-15x+=x;(2)13(x-1)=17(2x-3);(3)0.60.4x-+x=0.110.3x+;(4)13(2x-5)=14( x-3)-112.四、解答题20.(本题6分)当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m=3m的解大2?21.(本题8分)小明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟,如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,求他推车步行了多少分钟?22.(本题8分)已知:如图,O是直线AB上一点,OD是∠AOC的平分线,∠COD与∠COE互余.求证:∠AOE与∠COE互补.请将下面的证明过程补充完整:证明:∵O是直线AB上一点∴∠AOB=180°∵∠COD与∠COE互余∴∠COD+∠COE=90°∴∠AOD+∠BOE=°∵OD是∠AOC的平分线∴∠AOD=∠(理由:)∴∠BOE=∠COE(理由:)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE与∠COE互补23.(本题6分)某同学模仿二维码的方式为学校设计了一个身份识别图案系统:在4×4的正方形网格中,黑色正方形表示数字1,白色正方形变式数字0.如图1是某个学生的身份识别图案.约定如下:把第i行,第j列表示的数字记为a ij(其中i,j=1,2,3,4),如图1中第2行第1列的数字a ij=0;对第i行使用公式A i=8a i1+4a i2+2a i3+a i4进行计算,所得结果A1表示所在年级,A2表示所在班级,A3表示学号的十位数字,A4表示学号的个位数字.如图1中,第二行A2=8×0+4×1+2×0+1=5,说明这个学生在5班.(1)图1代表的学生所在年级是年级,他的学号是;(2)请仿照图1,在图2中画出八年级4班学号是36的同学的身份识别图案24.(本题6分)学校计划在某商店购买秋季运动会的奖品,若买5个篮球和10个足球需花费1150元,若买9个篮球和6个足球需花费1170元.(1)篮球和足球的单价各是多少元?(2)实际购买时,正逢该商店进行促销.所有体育用品都按原价的八折优惠出售,学校购买了若干个篮球和足球,恰好花费1760元.请直接写出学校购买篮球和足球的个数各是多少.25.(本题8分)点O为数轴的原点,点A、B在数轴上的位置如图所示,点A表示的数为5,线段AB的长为线段OA长的1.2倍.点C在数轴上,M为线段OC的中点.(1)点B表示的数为;(2)若线段BM的长为4.5,则线段AC的长为;(3)若线段AC的长为x,求线段BM的长(用含x的式子表示).26.(本题6分)对于平面内给定射线OA,射线OB及∠MON,给出如下定义:若由射线OA、OB组成的∠AOB的平分线OT落在∠MON的内部或边OM、ON上,则称射线OA 与射线OB关于∠MON内含对称.例如,图1中射线OA与射线OB关于∠MON内含对称.已知:如图2,在平面内,∠AOM=10°,∠MON=20°.(1)若有两条射线OB1,OB2的位置如图3所示,且∠B1OM=30°,∠B2OM=15°,则在这两条射线中,与射线OA关于∠MON内含对称的射线是;(2)射线OC是平面上绕点O旋转的一条动射线,若射线OA与射线OC关于∠MON 内含对称,设∠COM=x°,求x的取值范围;(3)如图4,∠AOE=∠EOH=2∠FOH=20°,现将射线OH绕点O以每秒1°的速度顺时针旋转,同时将射线OE和OF绕点O都以每秒3°的速度顺时针旋转.设旋转的时间为t秒,且0<t<60.若∠FOE的内部及两边至少存在一条以O为顶点的射线与射线OH关于∠MON内含对称,直接写出t的取值范围.参考答案与试题解析一.选择题1.【分析】根据已知条件列出关于x的一元一次方程,通过解一元一次方程来求x的值.【解答】解:依题意,得x+4=2移项,得x=﹣2故选:B.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将3369000用科学记数法表示为3.369×106,故选:B.3.【分析】去分母的方法是:方程左右两边同时乘以各分母的最小公倍数,这一过程的依据是等式的基本性质,注意去分母时分数线起到括号的作用,容易出现的错误是:漏乘没有分母的项,以及去分母后忘记分数线的括号的作用,符号出现错误.【解答】解:方程左右两边同时乘以6得:3(x﹣1)﹣2(2x+3)=6.故选:A.4.【分析】依据线段的性质,即可得出结论.【解答】解:点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是:两点之间,线段最短,故选:A.5.【分析】各项方程变形得到结果,即可作出判断.【解答】解:A、由x﹣5=7,可得x=7+5,不符合题意;B、由8﹣2(3x+1)=x,可得8﹣6x﹣2=x,符合题意;C、由x=﹣1,可得x=﹣6,不符合题意;D、由=﹣3,可得2(x﹣1)=x﹣12,不符合题意,故选:B.6.【分析】原式变形后,把已知等式代入计算即可求出值.【解答】解:∵3a2﹣a=1,∴原式=2(3a2﹣a)﹣5=2﹣5=﹣3,故选:A.7.【分析】根据图示,可得:﹣3<a<﹣2,﹣2<b<﹣1,3<c<4,据此逐项判断即可.【解答】解:∵﹣3<a<﹣2,∴|a|<3,∴选项①不符合题意;∵a<0,b<0,∴ab>0,∴选项②符合题意;∵﹣2<b<﹣1,3<c<4,∴b+c>0,∴选项③不符合题意;∵b>a,∴b﹣a>0,∴选项④符合题意,∴正确结论有2个:②④.故选:C.8.【分析】根据绝对值,负数,射线,余角和补角的定义一一判断即可.【解答】解:A、∵|x|=7,∴x=±7,故本选项不符合题意.B、﹣a不是的数不一定是负数,本选项不符合题意.C、射线AB和射线BA不是同一条射线,本选项不符合题意.D、一个锐角的补角比这个角的余角大90°,正确,本选项符合题意,故选:D.9.【分析】利用正方体及其表面展开图的特点解题.【解答】解:A、折叠后,圆不是与两个空白小正方形相邻,故与原正方体不符,故此选项错误;B、折叠后,圆与三角形成对面,与原正方体不符,故此选项错误;C、折叠后与原正方体相同,与原正方体符合,故此选项正确;D、折叠后,两个三角形的短边不是与两个空白小正方形相邻,与原正方体不符,故此选项错误.故选:C.10.【分析】根据统计图中的数据可以判断各个选项中的说法是否合理,从而可以解答本题.【解答】解:由统计图可知,2018年12月的增长率为0.0%,说明与2018年11月相比,全国居民消费价格保持不变,故选项A合理;2018年11月与2018年10月相比,全国居民消费价格降低0.3%,故选项B合理;2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率中最小的是﹣0.4%,故选项C合理;2019年1月到2019年8月,全国居民消费价格每月比上个月的增长率先增大,后减小,再增大,故选项D不合理;故选:D.二.填空题11.【分析】依据图形即可得到∠ABC=45°,∠DEF<45°,进而得出两个角的大小关系.【解答】解:由图可得,∠ABC=45°,∠DEF<45°,∴∠ABC>∠DEF,故答案为:>.12.【分析】把万分位上的数字6进行四舍五入即可.【解答】解:0.0586≈0.059(精确到千分位).故答案为0.059.13.【分析】把x=3代入关于x的一元一次方程ax+b=0得到3a+b=0,依此写出一组满足条件的a,b的值.【解答】解:把x=3代入关于x的一元一次方程ax+b=0得到3a+b=0,则一组满足条件的a,b的值:a=1,b=﹣3.故答案为:1,﹣3(答案不唯一).14.【分析】直接利用绝对值和偶次方的性质得出x,y的值,进而得出答案.【解答】解:∵(x+1)2+|y﹣2020|=0,∴x+1=0,y﹣2020=0,解得:x=﹣1,y=2020,所以x y=(﹣1)2020=1.故答案为:1.15.【分析】设有x个人,根据金的价钱不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有x个人,依题意,得:400x﹣3400=300x﹣100.故答案为:400x﹣3400=300x﹣100.16.【分析】(1)根据:=ad﹣bc,求出的值是多少即可.(2)根据:=6,可得:﹣4m﹣2×7=6,据此求出m的值为多少即可.【解答】解:(1)=2×5﹣(﹣3)×6=10﹣(﹣18)=28(2)∵=6,∴﹣4m﹣2×7=6,∴﹣4m﹣14=6,∴m=﹣5.故答案为:28、﹣5.17.【分析】(1)根据题意画出图形;(2)由图,根据线段中点的意义,根据线段的和与差进一步解决问题.【解答】解:(1)如图所示;(2)∵AB=30,BC=AB,∴BC=AB=30,∵AD=BC=10,∴BD=AD+AB=10+30=40,∵点E是线段CD的中点,∴DE=CD=(10+30+30)=35,∴BE=BD﹣DE=5,故答案为:5.18.【分析】根据摆放情况可得,包装盒的一个长等于两个宽,即长为2a,用含有a的代数式表示出长方体纸箱的长和宽,再表示出图2和图3的周长,最后求差即可.【解答】解:根据摆放情况可得,包装盒的一个长等于两个宽,即长为2a,大纸箱的长为4a,宽为3a,图2中阴影部分的周长为:3a×2+2a×2+2a=12a,图3中阴影部分的周长为:4a×2+2a=10a,图2与图3周长的差为12a﹣10a=2a,故答案为:2a,2a.三.解答题19.(1) x=4 (2) 2x=-(3)0.60.4x-+x=0.110.3x+;(4)13(2x-5)=14( x-3)-112.20.【分析】分别解两个方程求得方程的解,然后根据x的方程5m+3x=1+x的解比关于x 的方程2x+m=3m的解大2,即可列方程求得m的值.【解答】解:解方程5m+3x=1+x得:x=,解2x+m=3m得:x=m,根据题意得:﹣2=m,解得:m=﹣.21.【分析】根据关键语句“到学校共用时15分钟,骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米”可得方程,解方程即可求解.【解答】解:设他推车步行了x分钟,依题意得:80x+250(15﹣x)=2900,解得x=5.答:他推车步行了5分钟.22.【分析】根据余角的定义可得∠COD+∠COE=90°,再根据平角的定义可得∠AOD+∠BOE=90°;根据角平分线的定义可得∠AOD=∠COD,再根据等式性质可得∠BOE=∠COE,进而得证.【解答】证明:∵O是直线AB上一点∴∠AOB=180°∵∠COD与∠COE互余∴∠COD+∠COE=90°∴∠AOD+∠BOE=90°∵OD是∠AOC的平分线∴∠AOD=∠COD(理由:角平分线的定义)∴∠BOE=∠COE(理由:等式性质)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE与∠COE互补.故答案为:90;COD;角平分线的定义;等式性质.23.【分析】(1)根据所给公式分别求出A1=8×0+4×1+2×1+1=7,A3=8×0+4×0+2×1+0=2,A4=8×1+4×0+2×0+0=8,即可求解;(2)由所给信息画出图形即可.【解答】解:(1)A1=8×0+4×1+2×1+1=7,A3=8×0+4×0+2×1+0=2,A4=8×1+4×0+2×0+0=8,故答案为7,28;(2)如图:24.【分析】(1)设篮球的单价为x元,足球的单价为y元,根据“若买5个篮球和10个足球需花费1150元,若买9个篮球和6个足球需花费1170元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设学校购买篮球m个,足球n个,根据总价=单价×数量,即可得出关于m,n的二元一次方程,再结合m,n均为非负整数,即可得出结论.【解答】解:(1)设篮球的单价为x元,足球的单价为y元,依题意,得:,解得:.答:篮球的单价为80元,足球的单价为75元.(2)设学校购买篮球m个,足球n个,依题意,得:0.8(80m+75n)=1760,∴m=.∵m,n均为非负整数,∴或.答:学校购买篮球20个、足球8个或者篮球5个、足球24个.25.【分析】(1)根据点A表示的数为5,线段AB的长为线段OA长的1.2倍.即可得点B 表示的数;(2)根据线段BM的长为4.5,即可得线段AC的长;(3)根据数轴,结合(2)的过程即可用含x的式子表示BM的长.【解答】解:(1)∵点A表示的数为5,线段AB的长为线段OA长的1.2倍,∴AB=1.2×5×=×6∵OA=5,∴OB=AB﹣OA=1,∴点B表示的数为﹣1.故答案为﹣1;(2)∵BM=4.5,∴OM=4.5﹣1=3.5(点M在原点右侧)或OM=|﹣1﹣4.5|=5.5(点M在原点左侧)∵M为线段OC的中点∴OC=2OM=7或11∴AC=7﹣5=2(点C在原点右侧)或AC=11+5=16(点C在原点左侧)∴线段AC的长为2或16.故答案为2或16;(3)当AC=x,点C在点A右侧,OC=5+x∴OM=OC=(5+x)∴BM=OB+OM=1+(5+x)=x+点C在线段OA上,OC=OA﹣AC=5﹣x∴OM=OC=(5﹣x)∴BM=OM﹣OB=(5﹣x)+1=﹣x+.当点C在线段OB上时,OC=x﹣5,OM=(x﹣5),BM=1﹣(x﹣5)=﹣x,当点C在点B的左侧时,OC=x﹣5,OM=(x﹣5),BM=|1﹣(x﹣5)|=﹣x 或x﹣,答:线段BM的长为:x+或x﹣或﹣x.26.【分析】(1)由∠MON内含对称的定义可求解;(2)由∠MON内含对称的定义可得10°≤(x+10)°≤30°,可求解;(3)分两种情况讨论,利用∠MON内含对称的定义列出不等式,即可求解.【解答】解:(1)∵∠AOB1在∠MON的外部,∴射线OA、OB1组成的∠AOB1的平分线在∠MON的外部,∴OB1不是与射线OA关于∠MON内含对称的射线,∵∠B2OM=15°,∠AOM=10°,∴∠AOB2=25°,∴射线OA、OB2组成的∠AOB2的平分线在∠MON的内部,∴OB2是与射线OA关于∠MON内含对称的射线,故答案为:OB2;(2)由(1)可知,当OC在直线OA的下方时,才有可能存在射线OA与射线OC关于∠MON内含对称,∵∠COM=x°,∠AOM=10°,∠MON=20°,∴∠AOC=(x+10)°,∠AON=30°,∵射线OA与射线OC关于∠MON内含对称,∴10°≤(x+10)°≤30°,∴10≤x≤50;(3)∵∠AOE=∠EOH=2∠FOH=20°,∴∠HOM=50°,∠HON=70°,∠EOM=30°,∠FOM=40°,若射线OE与射线OH关于∠MON内含对称,∴50﹣t≤≤70﹣t,∴20≤t≤30;若射线OF与射线OH关于∠MON内含对称,∴50﹣t≤≤70﹣t,∴22.5≤t≤32.5,综上所述:20≤t≤32.5.。
2021-2022学年湖北省武汉市青山区七年级(上)期中数学试卷

2021-2022学年湖北省武汉市青山区七年级(上)期中数学试卷一、你一定能选对!(本大题共有10小题,每小题3分,共30分)下列各题均有四个备选答案,其中有且只有一个是正确的,请将正确答案的代号在答题卡上将对应的答案标号涂黑。
1.(3分)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元,那么﹣60元表示( ) A .收入60元B .收入40元C .支出60元D .支出40元2.(3分)﹣3的倒数是( ) A .3B .﹣3C .13D .−133.(3分)2021年5月22日,我国自主研发的“祝融号”火星车成功到达火星表面.已知火星与地球的最近距离约为55000000千米,数据55000000用科学记数法表示为( ) A .55×106B .5.5×107C .5.5×108D .0.55×1084.(3分)单项式−25a 3b 的系数与次数分别是( ) A .−25,3B .25,4C .−25,4D .﹣2,35.(3分)下列运算中,正确的是( ) A .3a +2b =5ab B .5a 3﹣4a 2=a C .﹣x 2+3x 2=2x 2D .4x 2y ﹣3y 2x =x 2y6.(3分)下列各组数中,互为相反数的是( ) A .24与(﹣2)4 B .﹣(﹣2)与﹣|﹣2| C .(﹣2)3与﹣23D .(﹣1)4与﹣1×47.(3分)有理数a ,b 在数轴上对应的点的位置如图所示,则下列结论错误的是( )A .|a |<|b |B .﹣a <bC .a ﹣b <0D .(a +1)(b ﹣1)<08.(3分)一种商品每件成本为a 元,原来按成本增加40%定出售价,现在由于库存积压减价,打八折出售,则每件盈利( )元. A .0.1aB .0.12aC .0.15aD .0.2a9.(3分)有理数a ,b 在数轴上对应的点分别为A 、B ,要使算式﹣12﹣|a □b |计算出来的值最大,则在“□”所在位置,填入的运算符号为( )A .+B .﹣C .×D .÷10.(3分)如图,将形状大小完全相同的★按照一定规律摆成下列图形,第1幅图中★的个数为a 1,第2幅图中★的个数为a 2,第3幅图中★的个数为a 3…,以此类推,第n 幅图中★的个数为a n ,则n a 1+n a 2+n a 3+⋯+n a 2021的值为( )A .20202021B .2020n 2021C .20212022D .2021n 2022二、填空题(本大题共有6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结论直接填写在答题卷的指定位置11.(3分)2021的相反数为 .12.(3分)用四舍五入法取近似数:1.2068≈ (精确到0.01).13.(3分)多项式ax 2﹣y +3xy 4﹣5是 次 项式,常数项是 . 14.(3分)已知m 为最大的负整数,x −12y =−12,则(y ﹣2x )2021+m 2020= .15.(3分)下列说法:①若ab <0,则|b ﹣a |=|b |+|a |;②若a 3=b 3则a 2=b 2;③两个四次多项式的和一定是四次多项式;④多项式x 2﹣3kxy ﹣3y 2+13xy ﹣8合并同类项后不含xy 项,则k 的值是19.其中一定正确的是 .(填序号)16.(3分)如图,王明家的住房平面图是一个长方形,被分割成3个正方形和2个长方形,其中标号相同的两个图形形状大小一样,若原住房平面图(长方形)的周长为m ,则标号为②的正方形边长为 .三、解下列各题(本大题共8小题,共72分)下列各题需要在答题卷的指定位置写出文字说明、证明过程、演算步骤或画出图形。
2020-2021学年华东师大 版七年级上册数学期末复习试卷(有答案)

2020-2021学年华东师大新版七年级上册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.﹣3的相反数为()A.﹣3B.﹣C.D.32.国家主席习近平提出“金山银山,不如绿水青山”,国家环保部大力治理环境污染,空气质量明显好转,将惠及13.75亿中国人,这个数字用科学记数法表示为()A.13.75×106B.13.75×105C.1.375×108D.1.375×109 3.单项式﹣的系数和次数是()A.系数是,次数是3B.系数是﹣;,次数是5C.系数是﹣,次数是3D.系数是5,次数是﹣4.某大楼地上共有12层,地下共有4层.某人乘电梯从地下2层升至地上9层,电梯一共升了()A.7层B.8层C.9层D.10层5.如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥6.下列各式中,正确的是()A.x2y﹣2x2y=﹣x2y B.2a+3b=5abC.7ab﹣3ab=4D.a3+a2=a57.下列5个数中:2,1.0010001,,0,﹣π,有理数的个数是()A.2B.3C.4D.58.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°9.若x=3n+1,y=3×9n﹣2,则用x的代数式表示y是()A.y=3(x﹣1)2﹣2B.y=3x2﹣2C.y=x3﹣2D.y=(x﹣1)2﹣210.已知a+2b=5,则代数式3(2a﹣3b)﹣4(a﹣3b+1)+b的值为()A.14B.10C.6D.不能确定二.填空题(共5小题,满分15分,每小题3分)11.比较大小:﹣﹣(填“<”或“>”).12.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=°.13.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体有个.14.已知a表示一个一位数,b表示一个两位数,把a放到b的左边组成一个三位数,则这个三位数可以表示为.15.如图,用围棋子按某种规律摆成的一行“七”字,按照这种规律,第n个“七”字中的围棋子有个.三.解答题(共8小题,满分75分)16.计算题:(1)﹣23﹣[﹣0.2÷×(﹣2)2﹣|﹣5|];(2)(﹣+﹣)÷(﹣).17.化简求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣.18.阅读与计算:出租车司机小李某天上午营运时是在太原迎泽公园门口出发,沿东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接送八位乘客的行车里程(单位:km)如下:﹣3,+6,﹣2,+1,﹣5,﹣2,+9,﹣6.(1)将最后一位乘客送到目的地时,小李在什么位置?(2)将第几位乘客送到目的地时,小李离迎泽公园门口最远?(3)若汽车消耗天然气量为0.2m3/km,这天上午小李接送乘客,出租车共消耗天然气多少立方米?(4)若出租车起步价为5元,起步里程为3km(包括3km),超过部分每千米1.2元,问小李这天上午共得车费多少元?19.育杰中学七年级一班3名教师决定带领本班a名学生利用假期去某地旅游.甲旅行社的收费标准为:教师全价,学生半价;乙旅行社的收费标准为:不管老师还是学生一律八折优惠,这两家旅行社的全价都是每人500元.(1)请分别用含a的式子表示三名教师和a名学生选择这两家旅行社所需的费用;(2)当a=55时,选择哪一家旅行社更合算?20.如图,点C是AB上一点,点D是AC的中点,若AB=12,BD=7,求CB的长.21.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=72°,OF⊥CD,垂足为O,求∠EOF的度数.22.如图,已知直线AB∥CD,直线MN分别交AB、CD于M、N两点,若ME、NF分别是∠AMN、∠DNM的角平分线,试说明:ME∥NF解:∵AB∥CD,(已知)∴∠AMN=∠DNM()∵ME、NF分别是∠AMN、∠DNM的角平分线,(已知)∴∠EMN=∠AMN,∠FNM=∠DNM(角平分线的定义)∴∠EMN=∠FNM(等量代换)∴ME∥NF()由此我们可以得出一个结论:两条平行线被第三条直线所截,一对角的平分线互相.23.阅读并填空问题:在一条直线上有A,B,C,D四个点,那么这条直线上总共有多少条线段?要解决这个问题,我们可以这样考虑,以A为端点的线段有AB,AC,AD3条,同样以B为端点,以C为端点,以D为端点的线段也各有3条,这样共有4个3,即4×3=12(条),但AB和BA是同一条线段,即每一条线段重复一次,所以一共有条线段.那么,如果在一条直线上有5个点,则这条直线上共有条线段.如果在一条直线上有n 个点,那么这条直线上共有条线段.知识迁移:如果在一个锐角∠AOB内部画2条射线OC,OD,那么这个图形中总共有个角,若在∠AOB内画n条射线,则总共有个角.学以致用:一段铁路上共有5个火车端,若一列客车往返过程中,必须停靠每个车站,则铁路局需为这段线路准备种不同的车票.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:﹣3的相反数是3.故选:D.2.解:13.75亿这个数字用科学记数法表示为1.375×109.故选:D.3.解:单项式﹣的系数和次数是:﹣,5.故选:B.4.解:根据题意得:9﹣(﹣2)﹣1=10,则某人乘电梯从地下2层升至地上9层,电梯一共升了10层,故选:D.5.解:观察图形可知,这个几何体是三棱柱.故选:A.6.解:A、x2y﹣2x2y=﹣x2y,故A正确;B、不是同类项,不能进一步计算,故B错误;C、7ab﹣3ab=4ab,故C错误;D、a3+a2=a5,不是同类项,故D错误.故选:A.7.解:有理数有2,1.0010001,,0,共4个.故选:C.8.解:∵AB∥CD,∴∠A=∠3=40°,∵∠1=120°,∴∠2=∠1﹣∠A=80°,故选:A.9.解:∵x=3n+1,y=3×9n﹣2=3×32n﹣2,∴y=3(x﹣1)2﹣2.故选:A.10.解:∵a+2b=5,∴原式=6a﹣9b﹣4a+12b﹣4+b=2a+4b﹣4=2(a+2b)﹣4=10﹣4=6,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.解:|﹣|=,|﹣|=,﹣,故答案为:>.12.解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.13.解:由主视图与左视图可以在俯视图上标注数字为:主视图有三列,每列的方块数分别是:2,1,1,左视图有两列,每列的方块数分别是:1,2,俯视图有三列,每列的方块数分别是:2,1,2,∴总个数为1+2+1+1+1=6个.故答案为6.14.解:这个三位数可以表示为100a+b.故答案是:100a+b.15.解:∵第1个图形有1+4×1+2=7个棋子,第2个图形有1+4×2+3=12个棋子,第3个图形有1+4×3+4=17个棋子,…∴第n个“七”字中的棋子个数是:1+4n+(n+1)=5n+2.故答案为:5n+2.三.解答题(共8小题,满分75分)16.解:(1)=﹣8﹣(﹣××4﹣5)=﹣8﹣(﹣1﹣5)=﹣8+6=﹣2;(2)===9﹣8+6=7.17.解:原式=3x2y﹣(2xy2﹣2xy+3x2y+xy)+3xy2,=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2,=xy2+xy,当中x=3,y=﹣时,原式=3×+3×(﹣)=﹣1=﹣.18.解:(1)﹣3+6﹣2+1﹣5﹣2+9﹣6=﹣2km,答:将最后一位乘客送到目的地时,小李在迎泽公园门口西边2km处.(2)|﹣3|=3,|﹣3+6|=3,|﹣3+6﹣2|=1,|﹣3+6﹣2+1|=2,|﹣3+6﹣2+1﹣5|=3,|﹣3+6﹣2+1﹣5﹣2|=5,|﹣3+6﹣2+1﹣5﹣2+9|=4,|﹣3+6﹣2+1﹣5﹣2+9﹣6|=2.∵5>4>3=3=3>2=2>1,∴将第6位乘客送到目的地时,小李离迎泽公园门口最远.(3)(|﹣3|+|6|+|﹣2|+|1|+|﹣5|+|﹣2|+|9|+|﹣6|)×0.2=6.8m3答:这天上午小李接送乘客,出租车共消耗天然气6.8立方米.(4)[(6+5+9+6)﹣3×4]×1.2+8×5=56.8元,答:小李这天上午共得车费56.8元.19.解:(1)根据题意得:甲旅行社费用:(250a+1500)元;乙旅行社费用:(400a+1200)元;(2)当a=55时,250a+1500=15250,400a+1200=23200,∵15250<23200,∴选择甲旅行社更合算.20.解:∵AB=12,BD=7,∴AD=AB﹣BD=12﹣7=5.∵点D是AC的中点,∴AC=2AD=2×5=10.∴CB=AB﹣AC=12﹣10=2.21.解:∵直线AB和CD相交于点O,∴∠BOD=∠AOC=72°,∵OF⊥CD,∴∠BOF=90°﹣72°=18°,∵OE平分∠BOD,∴∠BOE=∠BOD=36°,∴∠EOF=36°+18°=54°.22.解:∵AB∥CD,(已知),∴∠AMN=∠DNM(两直线平行,内错角相等),∵ME、NF分别是∠AMN、∠DNM的角平分线(已知),∴∠EMN=∠AMN,∠FNM=∠DNM(角平分线的定义),∴∠EMN=∠FNM(等量代换),∴ME∥NF(内错角相等,两直线平行),由此我们可以得出一个结论:两条平行线被第三条直线所截,一对内错角的平分线互相平行,故答案为:两直线平行,内错角相等,,,内错角相等,两直线平行,内错,平行.23.解:问题:如果在一条直线上有5个点,则这条直线上共有=10条线段.如果在一条直线上有n个点,那么这条直线上共有条线段.;知识迁移:在∠AOB内部画2条射线OC,OD,则图中有6个不同的角,在∠AOB内部画n条射线OC,OD,OE,…,则图中有1+2+3+…+n+(n+1)=个不同的角;学以致用:5个火车站共有线段条数×5×4=10,需要车票的种数:10×2=20(种).故答案为:10,,6,,20.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年内蒙古包头市青山区七年级(上)期末数学试卷
(考试时间:90分钟满分:100分)
一、选择题(每小题3分,满分30分)
1.高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是()
A.两点确定一条直线
B.两点之间,线段最短
C.两条直线相交,只有一个交点
D.直线是向两个方向无限延伸的
2.2020年新华社日内瓦5月5日电,世卫组织公布中国以外新冠肺炎确诊病例达340多万例,将340万用科学记数法表示应为()
A.34×106B.3.4×105C.0.34×107D.3.4×106
3.某学习小组将要进行一次统计活动,下面是四位同学分别设计的活动序号,其中正确的是()A.实际问题→收集数据→表示数据→整理数据→统计分析合理决策
B.实际问题→表示数据→收集数据→整理数据→统计分析合理决策
C.实际问题→收集数据→整理数据→表示数据→统计分析合理决策
D.实际问题→整理数据→收集数据→表示数据→统计分析合理决策
4.下列说法正确的是()
A.﹣xy一定是负数B.m2﹣2m+3是二次三项式
C.﹣5不是单项式D.的系数是
5.如图,是小明同学在数学实践课上,所设计的正方体盒子的平面展开图,每个面上都有一个汉字,请你判断,正方体盒子上与“善”字相对的面上的字是()
A.文B.明C.诚D.信
6.如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80cm2、100cm2,且甲容器装满水,乙容器是空的.若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲的水位高度低了8cm,则甲的容积为.
7.单项式x a﹣1y3与﹣2xy b的和是单项式,则b a的值是()
A.3 B.6 C.8 D.9
8.下列说法正确的个数为()
①用一个平面去截一个圆锥,截面的形状可能是一个三角形;②若2AB=AC,则点B是AC的中点;③连接两点的线段叫做这两点之间的距离;④在数轴上,点A、B分别表示有理数a、b,若a>b,则A到原点的距离比B到原点的距离大.
A.1个B.2个C.3个D.4个
9.如图是由同型号黑白两种颜色的正三角形瓷砖按一定规律铺设的图形.请仔细观察图形,则在第n个图中白色瓷砖比黑色瓷砖多()块.
A.2n B.n﹣1 C.n D.n+1
10.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()
A.点A B.点B C.AB之间D.BC之间
二、填空题(每小题3分,满分24分)
11.﹣3的相反数与﹣0.5的倒数的和是.
12.如图,OA是北偏东30°一条射线,若∠AOB=90°,则OB的方向角是.
13.在半径为1的圆中,圆心角是60°的扇形的面积是.
14.关于x,y的代数式(﹣3kxy+3y)+(9xy﹣8x+1)中不含二次项,则k=.
15.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°,则∠AOD=°.
16.为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:
由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为天.
17.如图是某几何体从不同方向看到的图形.若从正面看的高为10cm,从上面看的圆的直径为4cm,求这个几何体的侧面积(结果保留π)为.
18.如图,用一块长5cm、宽2cm的长方形纸板,和一块长4cm、宽1cm的长方形纸板,与一块正方形纸板以及另两块长方形纸板,恰好拼成一个大正方形,则拼成的大正方形的面积是cm2.
三、解答题(满分46分):
19.(6分)计算:
(1)计算:(﹣+﹣)×12+(﹣1)2020.(2)计算:﹣22+(﹣4)÷2×﹣|﹣3|.
20.(8分)解方程
(1)10(x+1)﹣5(0.2x+1)=1 (2)
21.(3分)如图,已知A,B,C,D四点,按下列要求画图形:
(1)画射线CD;
(2)画直线AB;
(3)连接DA,并延长至E,使得AE=DA.
22.(6分)老师设计了一个数学实验,给甲、乙、丙三名同学各一张写有已化为最简的代数式的卡片,规则是两位同学的代数式相减等于第三位同学的代数式,则实验成功.甲、乙、丙的卡片如下,丙的卡片有一部分看不清楚了
(1)计算出甲减乙的结果,并判断甲减乙能否使实验成功;
(2)嘉琪发现丙减甲可以使实验成功,请求出丙的代数式.
23.(8分)“文明城市,你我共建”一起助力包头市创建全国文明城市.下面是某校“数学之星”课外兴趣小组的同学们,在对4个自行车骑行规则进行调查时设计的问卷,
自行车骑行规则知多少
您好:
我们来自课外兴趣小组,为了了解我市市民骑行自行车的安全意识,请您抽出一点时间填写这份问卷.谢谢合作!
规则1不准在机动车道内骑行.____
A.知道 B.不知道
规则2不准闯红灯. ____
A.知道 B.不知道
规则3不准骑车带人.____
A.知道 B.不知道
规则4横过人行横道时不准骑行.____
A.知道 B.不知道
小组的同学们随机抽取了部分市民进行调查,并将结果制成了两幅不完整的统计图.
请根据统计图解答下列问题:
(1)求被调查的市民人数;
(2)在扇形统计图中,求“4个规则全知道”所对圆心角的度数;
(3)请补全条形统计图;
(4)请根据调查结果,谈谈你的看法.
24.(6分)这个星期周末,七年级准备组织观看电影《我和我的祖国》,由各班班长负责买票,每班人数都多于50人,票价每张20元,一班班长问售票员买团体票是否可以优惠,售票员说:50人以上的团体票有两个优惠方案可选择:
方案一:全体人员可打8折;方案2:若打9折,有7人可以免票.
(I)2班有61名学生,他该选择哪个方案?
(II)一班班长思考一会儿说我们班无论选择哪种方案要付的钱是一样的,问你知道一班有几人吗?
25.(9分)综合与实践
在数学综合与实践课上,老师以“出行方式的选择“为主题,请同学们发现和提出问题并分断和解决问题.问题情境
随着互联网的普及和城市交通的多样化,人们出行的时间与方式有了更多的选择.某市有出租车.滴滴快车和神州专车三种网约车,收费标准见下图(该市规定网约车行驶的平均速度为40公里/时)
问题一
“奋进小组”提出的问题是:如果乘坐这三种网约车的里程数都是10公里.他们发现乘坐出租车最节省钱.费用为元;
问题二
“质疑小组”提出了两个问题,请从A,B两个问题中任选一问作答,
A.从甲地到乙地,乘坐出租车比滴滴快车节省13.6元,求甲.乙两地间的里程数.
B.神州专车和滴滴快车对第一次下单的乘客有如下优惠活动:神州专车收费打八折,另外加5.3元的空车费;滴滴快车超过8公里收费立减6.5元.如果两位顾客都是第一次下单.分别乘坐神州专车、滴滴快车且收费相同,求这两位顾客乘车的里程数.
1.B.
2.D.
3.C.
4.B.
5.A.
6.A.
7.D.
8.A.
9.D.
10.A.
11.1,
12.北偏西60°.
13..
14.2.
15.145.
16.12.
17.40πcm2.
18.36.
19.(1)﹣10.5;
(2)﹣8.
20.(1)x=﹣;(2)y=﹣6.21.解:如图所示,
(1)射线CD即为所求作的图形;(2)直线AB即为所求作的图形;
(3)连接DA,并延长至E.
22.解:(1)根据题意得:(2x2﹣6x﹣1)﹣(x2﹣8x+3)=2x8﹣3x﹣1﹣x2+2x﹣3=x6﹣x﹣4,
则甲减乙不能使实验成功;
(2)根据题意得:丙表示的代数式为2x4﹣3x﹣1+x6﹣2x+3=3x2﹣5x+7.
23.解:(1)被调查的市民人数:50÷25%=200(人);
(2)“4个规则全知道”所对圆心角的度数:360°×=72°;
(3)知道3个规则的人数:200×30%=60人,
4个规则全不知道的人数:200﹣50﹣40﹣60﹣46=4人;
补全条形统计图如图所示,
(4)从图中可以看出,仍有一部分市民“4条规则”全不知道 部分人不全知道“6条规则”.24.解:(Ⅰ)∵方案一:61×20×0.8=976(元),
方案二:(61﹣3)×0.9×20=972(元),
∴选择方案二.
(Ⅱ)假设3班有x人,根据题意得出:
x×20×0.8=(x﹣6)×0.9×20,
解得:x=63,
答:5班有63人.
25.解:问题一:14+2.4×(10﹣6)=30.8(元)
问题二:A 解:设甲、乙两地间里程数为x公里
①若
解得:(舍)
②若x>3,
解得:x=12
答:甲、乙两地间里程数为12公里B.
B 解:设两位顾客的里程数为x公里
①若x≤8,
解得:x=7
②
解得:x=30
答:两位顾客的里程数为5或30公里。