2019年初二数学下期末试卷(附答案)

合集下载

2019-2020硚口区八下期末考试数学试卷(详解答案)

2019-2020硚口区八下期末考试数学试卷(详解答案)

20-21-硚口区-8下-期末一、选择题(本大题共小10题,每小题3分,共30分)1x的取值范围是( )A.x≥0B.x≥-1C.x≥1D.x≤-1答案:B2.下列计算正确的是( )A2B.2=6C D答案:D3.五名女生的体重(单位kg)分别为:37,40,38,42,42.这组数据的众数和中位数分别是( ) A.2,40B.42,38C.40,42D.42,40答案:D4.下列边长的三角形不是直角三角形的是( )A.1B.3,4,5C D.5,12,13答案:C5.下列命题正确的是( )A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形答案:A6.“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底孔均匀出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t表示水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是( )A.B.C.D.答案:D7.将直线y=2x-3向上平移2个单位长度后,所得的直线的解析式为( )A.y=2x+4B.y=2x+2C.y=2x-1D.y=2x-5答案:C8.顺次连接四边形ABCD的四边中点所得的四边形是正方形,则下列判断正确的是( ) A.四边形ABCD一定是正方形B.四边形ABCD一定是菱形C.四边形ABCD一定是矩形D.四边形ABCD的对角线一定互相垂直且相等答案:D9.甲,乙两车从A出发前往B城,在整个行程中,甲、乙两车离开A城的距离y与时t的对应关系如图所示,则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③甲车的平均速度比乙车的平均速度每小时慢40千米;④当甲、乙两车相距20千米时,t=7或8其中正的结论个数为( )C .3个D .4个答案:C解析:①A ,B 两城相距300千米,正确;②甲车比乙车先出发1小时,却晚1小时到B 城,正确; ③甲车的平均速度为:300÷(10-5)=60(千米/时); 乙车的平均速度为:300÷(9-6)=100(千米/时); 甲车的平均速度比乙车每小时慢40千米;正确; ④甲、乙两车相距20千米,t =7,8或293错误; 10.如图,平面直角坐标系中,点A 的坐标为(9,6),AB ⊥y 轴,垂足为B ,点P 从原点O 出发向x 轴正方向运动,同时,点Q 从点A 出发向点B 运动,当点Q 到达点B 时,点P 、Q 同时停止运动,若点P 与点Q 的速度之比为1:2,则下列说法正确的是( ) A .线段PQ 始终经过点(2,3) B .线段PQ 始终经过点(3,2) C .线段PQ 始终经过点(2,2) D .线段PQ 不可能始终经过某一定点答案:B解析:Q (9-2t ,6),P (t ,0),直线PQ 为:y =23t(x -t ),则一定过定点(3,2) 二、填空题(本大题共6小题,每小题3分,共18分) 11.的结果是 . 答案:312.某公司欲招聘一名员工,对甲进行了笔试和面试,其笔试和面试的成分别为80分和90分,若按笔试成占40%,面试成绩占60%计算综合成绩,则甲的综合成为 分. 答案:8613.在正方形ABCD 的外侧,作等边△DCE ,则∠AEC 的大小是 . 答案:45°14.“赏金1号”玉米种子的价格为5元/kg ,如果一次购买2kg 以上的种子,超过2kg 部分的种子的价格打8折,若购买种子数量为x kg ,付款金额为y 元,当0≤x ≤2时,y 与x 的函数解析式为 ;当x >2时,y 与x 的函数解析式为 . 答案:y =5x ,y =4x +215.已知一次函数y 1=kx -2和y 2=2x +3,当自变量x >-1时,y 1<y 2,则k 的取值范围为 .00t答案:-3≤k ≤2 且k ≠0解析:∵y 1<y 2 ∴kx -2<2x +3 ∴(k -2)x <5 经分析得:k -2≤0 且52k -≥-1 解得:-3≤k <0或 0<k ≤2 16.如图,动点E 、F 分别在正方形ABCD 的边AD 、BC 上,AE =CF ,过点C 作CG ⊥EF ,垂足为 G ,连接BG ,若AB =4,则线段BG 长的最小值为 .解析:连接AC ,取OC 中点K ,连接GK ,BK ,过K 作KH ⊥BC 于H ,易证EF 过对角线的交点O ,则BG ≥BK -CK三、解答题(本大题共8小题,共72分)17.(8分)已知一次函数y =x +b 的图象经过点(1,-1)(1)着直线y =x +b 与直线y =x 平行,求这个一次函数的解析式; (2)若直线y =x +b 经过点(-1,3),(m ,7),求m 的值. 答案:(1)∵直线y =kx +b 与直线y =x 平行,∴k =1,……………2分把(1,-1)代入y =x +b 得:b +1=-1,∴b =-2, ………………………………3分 (2)把(1,-1),(-1,3)代入y =kx +b 得:13k b k b +=-⎧⎨-+=⎩, 解得:21k b =-⎧⎨=⎩, ……………………………6分 把(m ,7)代入y =-2x +1得:-2m +1=7, ∴m =-3,……………………………8分18.(8分)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,E 是CD 的中点,连接OE ,过点C 作CF ∥BD 交OE 的延长线于点F ,连接DF . 求:(1)△ODE ≌△FCE ;(2)四边形OCFD 是矩形.G FDE C B A HOKABC EDFG OFEDCBA答案:(1)∵E 是CD 的中点,∴DE =CE , …………………1分∵CF //OD ,∴∠ODE =∠FCE , ………………………………………3分在△EDO 和△ECF 中,,,,ODE FCE DE CE DEO BEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△EDO ≌△ECF ,…………………4分(2)∵△EDO ≌△ECF ∴OD =CF , ……………………………………5分 ∵CF //OD ,∴四边形OCFD 是平行四边形形, ……………………………………6分 ∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COD =90°, ……………………………7分 ∴四边形OCFD 是矩形. ……………………………………8分 19.(8分)中央电视台的(朗读者)节目发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的数量最少的是5本,最多的是8本,并根据调查结果绘制了如下不完整的图表 (1)扇形统计图中的a =______,b =______;(2)扇形统计图中课外阅读5本的扇形的圆心角大小为______; (3)求被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请估计该校八年级学生课外阅读至少7本的人数.答案:(1)a =20,b =28, ………………………………2分 (2)72°, ………………………………3分 (3)105186147881018148⨯+⨯+⨯+⨯+++=6.4, ………………………………5分答:所有被调查学生课外阅读的平均本数为6.4本.………………………………6分 (4)1481018148++++×1200=528, ……………………………7分答:估计该校八年级学生课外阅读7本及以上的人数约有528人.………………8分20.(8分)如图是由边长为1的小正方形构成的8×8格,每个小正方形的点做格点.四边形ABDC 的顶点是格点,点M 是边AB 与格线的交点,仅用无刻度的直尺在给定网格中按步骤完成下列画图,画图过程用虚线表示,画图结果用实线表示.7本b %6本36%8本16%5本a %(1)过点C 画线段CE ,使CE ∥AB ,且CE =AB ;(2)在边AB 上画一点F ,使直线DF 平分四边形ABEC 的面积; (3)过点M 画线段MN ,使MN ∥CD ,且MN =C D .答案:(1)画图如图:………3分 (2)画图如图:………6分(3)画图如图:………8分21.(8分)如图,直线y =kx +7交x 轴于点A ,交y 轴于点B ,与直线y =x -2交于点 D (3,m )(1)求k ,m 的值;(2)已知点P (m ,n ),过点P 作垂直于y 轴的直线与直线y =x -2交于点M ,过点P 作垂直于 x 轴的直线与直线y =kx +7交于点N (P 与N 不重合).若PN =2PM ,求n 的值.答案:M DCBA NF EA BCD M(1)把D (3,m )代入y =x -2得:m =3-2=1, ………1分 ∴点D 的坐标为(3,1)把D (3,1)代入y =kx +7得:3k +7=1,∴k = -2, …………………………3分 (2)由(1)得:直线AB 的解析式为y = -2x +7,当y =n 时,x -2=n ,x = n +2 ∴点M 的坐标为(n +2,n )当x =n 时,y = -2n +7 ∴点N 的坐标为(n ,-2n +7) …………………………5分 ∵点P (n ,n ), ∴PM = 2,PN =|3n -7|, ∵PN =2PM , ∴|3n -7|=4, ∴n =1或113, …………………………8分 22.(10分)A 城有肥料200t ,B 城有肥料300t ,现要把这些肥料全部运往C 、D 两乡,C 乡需肥料240t ,D 乡需要肥料260t ,从A 城运往C 、D 两乡的运费分别为20元/t 和25元/t ;从B 城运往C 、D 两乡的运费分别为15元/t 和35元/t .设从B 城运往D 乡的肥料为xt . (1)(2)从A 城运往两乡的总运费为y 1元,从B 城运柱两乡的总运费为y 2元. ①分别写出y 1、y 2与x 之间的函数关系式(不要求写自变量的取值范围); ②试比较A 、B 两城总运费的大小.(3)由于从B 城到D 乡的路况得到改,缩短了运输时间,运费每吨减少a 元(a >0),其余路 运费不变,若A 、B 两城总运费和的最小值不小于10160元,求a 的取值范围. 答案:(1)(每空1(2)①y 1 = -5x +5300;y 2 = 20x +4500; ………………………………5分②由题意得:600300026000x x x x ≥⎧⎪≥⎪⎨≥⎪⎪≥⎩---,解得60≤x ≤260, ………………………………6分 ∴y 1 -y 2= -25x +800<0,∴y 1<y 2,∴A 城总运费比B 城总运费少 ………………………………7分 (3)设两城总运费为W 元,则W = -5x +5300+15(300-x )+(35-a )x =(15-a )x +9800; 若0<a <15时15-a >0,W 随x 的增大而增大, ∴当x =60时y 取最小值,∴60(15-a )+9800≥10160,解得a ≤9, ∴0<a ≤9 ………………8分若a =15时W =9800,不符合题意;若a >15时15-a <0,W 随x 的增大而减少, ∴当x =260时y 取最小值,∴260(15-a )+9800≥10160,解得a ≤13813,不符合题意; ………………9分 综合可得:0<a ≤9. ……………………………………………10分 23.(10分)已知四边形ABCD 是矩形.(1)如图1,E 、F 分别是AB 、AD 上的点,CE 垂直平分BF ,垂足为G ,连接DG . ①求证:DG =CG ;②若BC =2AB ,求∠DGC 的大小;(2)如图2,AB =BC =6,M 、N 、P 分别是AB 、CD 、AD 上的点,MN 垂直平分BP ,点Q 是CD 的中点,连接MP ,PQ ,若PQ ⊥MP ,直接写出CN 的长.答案:(1)①证明:连接AG ,∵四边形ABCD 是矩形, ∴∠ABC =∠BAD =90°,AD =BC ,Q P N MABCDDCB A GF ESTQHEF GA BCDD C BAMNP Q 6-x666-x6-x x TKQ P NM A B C D∵∠BAD=90°,BG=GF,∴AG=BG,……………………………………1分∴∠BAG=∠ABG,∴∠GAD=∠GBC,………………………2分在△GAD和△GBC中,AD BCDAG CBGAG BG=⎧⎪∠=∠⎨⎪=⎩∴△GAD≌△GBC,∴DG=CG;…………………………………………………………………………3分②解:连接FC交DG于点Q,取FC的中点H,连接DH,∵CE垂直平分BF,∴FC=BC,∵四边形ABCD是矩形,∴AD=BC,AB=DC,∵BC=2AB,∴FC=2CD,∵∠FDC=90°,FH=HC,∴FH=HC=DH,∴CD=HC=DH,∴△CDH是等边三角形,∴∠FCD=60°,∴∠DFC=90°-∠FCD=30°,………………5分∵FC=BC,BG=GF,∴∠FCG=∠BCG,∵△GAD≌△GBC,∴∠ADG=∠BCG,∴∠ADG=∠FCG,∴∠FQG-∠ADG=∠FQG-∠FCG,∴∠DGC=∠DFC=30°;………………7分(2)43;…………………………………………………………………………10分易求(12-2x)2+62=(12-x)2,解得x=2,易知:CNQN=CTTQ=45,∴CN=4324.(12分)如图1,直线y=kx-3 k+4经过第一象限内的定点P.(1)求点P的坐标;(2)如图2,已知点A(6,t),过点A作AB∥y轴交第一象限内的直线y=kx-3k+4于点B,连接OB,若BP平分∠OBA,求k的值;(3)如图3,点M是x轴正半轴上的一个动点,连接PM,把线段PM绕点M顺时针旋转90°至线段NM(∠PMN=90°且PM=MN),连接OP,ON,PN,当△OPN周长最小时,求点N的坐标.答案:(1)∵y =k (x -3)+4∴当x =3时,y =4 ∴点P 的坐标为(3,4). ……………………………………3分 (2)延长AB 交x 轴于点E ,直线y =kx -3k +4交y 轴于点G ,∵当x =0时,y =4-3k , ∴G (0,4-3k ), ∴OG =4-3k .……………………4分 ∵BP 平分∠OBA , ∴∠ABP =∠OBP ,∵AB //y 轴, ∴∠ABP =∠OGB , ……………5分 ∴∠OBG =∠OGB , ∴OB =OG =4-3k . ……………6分 在Rt △OBE 中,OE 2+BE 2=OB 2, ∴62+(4+3k )2=(4-3k )2,∴k =-34. …………………………………………7分 (3)作PS ⊥x 轴于点S ,, 在Rt △OPS 中,OP =5, 设M (m ,0) 当m =3时,PM =NM =4, ∴N (7,0) 当0<m <3时,可证△PMS ≌△MNT ,PS =MT =4,MS =NT =3-m , ∴N (4+m ,m -3) 当m >3时,可证△PMS ≌△MNT ,PS =MT =4,MS =NT =m -3, ∴N (4+m ,m -3) ∴点N 在直线y =x -7上 ………………………9分若直线y =x -7与y 轴交于点Q (0,7),则∠OQN =45°,作点O 关于直线y =x -7的对称点O '(7,-7),当点P 、N 、O '三点共线时,ON +PN 最小为P O ',此时,△OPN 的周长最小为OP +P O ',在Rt △O 'PR 中,PO ′,………………10分 设直线P O '的解析式为y =kx +b ,把(3,4),(7,-7)代入得:3477k b k b +=⎧⎨+=-⎩, 解得:114494k b ⎧=-⎪⎪⎨⎪=⎪⎩………11分 ∴直线P O '的解析式为y =-114x +494, 7114944y x y x =-⎧⎪⎨=-+⎪⎩, 解得:77152815x y ⎧=⎪⎪⎨⎪=-⎪⎩∴点N的坐标为(7715,-2815).………12分重要工具栏(文档编辑完成后请将本页面删除)一、选择题工具栏选择题答案样式:答案:A.必用括号样式:( )选项备选形式(不需要可删除):1:A.B.C.D.2:A.B.C.D.二、解答题工具栏原题有小序号,按下列方式对齐(1);(2).(3);(4).(1);(2);(3).①;②;③.三、解答题答案格式答案:(此处空着不写,换行输入)(辅助线图形全部放在“答案:”的下一行,文字部分在图形后另起一行输入)(1)(2)(3)①②③。

2019-2020学年吉林省吉林市八年级(下)期末数学试卷(解析版)

2019-2020学年吉林省吉林市八年级(下)期末数学试卷(解析版)

2019-2020学年吉林省吉林市八年级(下)期末数学试卷一.选择题(共8小题,满分24分,每小题3分)1.要使式子有意义,则x的值可以是()A.2 B.0 C.1 D.92.下列各式属于最简二次根式的是()A.B.C.D.3.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁4.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,235.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②关于x的方程kx+b=3的解为x=0;③当x>2时,y<0;④当x<0时,y<3.其中正确的是()A.①②③B.①③④C.②③④D.①②④6.若三角形的各边长分别是8cm、10cm和16cm,则以各边中点为顶点的三角形的周长为()A.34cm B.30cm C.29cm D.17cm7.菱形和矩形一定都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分8.将点P(5,3)向左平移4个单位,再向下平移1个单位后,落在函数y=kx﹣2的图象上,则k 的值为()A.k=2 B.k=4 C.k=15 D.k=36二.填空题(共6小题,满分18分,每小题3分)9.=.10.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有个.11.对于函数y=(m﹣2)x+1,若y随x的增大而增大,则m的取值范围.12.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2==,那么6※3=.13.如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm 的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是cm.14.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A的坐标为(1,0),过点1A 1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n∁nDn的面积是.三.解答题(共10小题,满分78分)15.(5分)已知a=,b=,(1)求ab,a+b的值;(2)求的值.16.(5分)如图,AD是△ABC的高,CE是△ABC的中线.(1)若AD=12,BD=16,求DE;(2)已知点F是中线CE的中点,连接DF,若∠AEC=57°,∠DFE=90°,求∠BCE的度数.17.(6分)某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了三项素质测试.各项测试成绩如表格所示:(1)如果根据三次测试的平均成绩确定人选,那么谁将被录用?(2)根据实际需要,公司将专业知识、语言能力和综合素质三项测试得分按4:3:1的比例确定每个人的测试总成绩,此时谁将被录用?(3)请重新设计专业知识、语言能力和综合素质三项测试得分的比例来确定每个人的测试总成绩,使得乙被录用,若重新设计的比例为x:y:1,且x+y+1=10,则x=,y=.(写出x与y的一组整数值即可).18.(6分)直线AB:y=﹣x+b分别与x,y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.(1)求点B的坐标.(2)求直线BC的解析式.(3)直线EF的解析式为y=x,直线EF交AB于点E,交BC于点F,求证:S△EBO =S△FBO.19.(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点(1)在图1中以格点为顶点画一个面积为5的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2,,.20.(8分)某校300名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)条形图中存在错误的类型是,人数应该为人;(2)写出这20名学生每人植树量的众数棵,中位数棵;(3)估计这300名学生共植树棵.21.(9分)如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD的中点.(1)求证:四边形ADCE是为平行四边形;(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.22.(9分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.23.(11分)如图,△ABC中,∠ACB=90°,AC=CB=2,以BC为边向外作正方形BCDE,动点M 从A点出发,以每秒1个单位的速度沿着A→C→D的路线向D点匀速运动(M不与A、D重合);过点M作直线l⊥AD,l与路线A→B→D相交于N,设运动时间为t秒:(1)填空:当点M在AC上时,BN=(用含t的代数式表示);(2)当点M在CD上时(含点C),是否存在点M,使△DEN为等腰三角形?若存在,直接写出t 的值;若不存在,请说明理由;(3)过点N作NF⊥ED,垂足为F,矩形MDFN与△ABD重叠部分的面积为S,求S的最大值.24.(11分)(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.2017-2018学年吉林省吉林市昌邑区八年级(下)期末数学试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.【分析】根据二次根式的性质意义,被开方数大于等于0,即可求得.【解答】解:依题意得:x﹣5≥0,解得:x≥5.观察选项,只有选项D符合题意.故选:D.【点评】此题主要考查了二次根式的定义,首先利用二次根式的定义求出字母的取值范围,然后利用x取整数的要求即可解决问题.2.【分析】最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,由此结合选项可得出答案.【解答】解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.【点评】此题考查了最简二次根式的知识,解答本题的关键是熟练掌握最简二次根式满足的两个条件,属于基础题,难度一般.3.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵=>=,∴从乙和丙中选择一人参加比赛,∵S乙2<S丙2,∴选择乙参赛,故选:B.【点评】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.4.【分析】根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.【点评】此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.5.【分析】根据一次函数的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.【解答】解:由图象得:①关于x的方程kx+b=0的解为x=2,正确;②关于x的方程kx+b=3的解为x=0,正确;③当x>2时,y<0,正确;④当x<0时,y>3,错误;故选:A.【点评】本题主要考查了一次函数的性质,一次函数与一元一次方程、一元一次不等式的关系,利用数形结合是求解的关键.6.【分析】根据三角形中位线定理分别求出DE、EF、DF,根据三角形的周长公式计算即可.【解答】解:∵D、E分别为AB、BC的中点,∴DE=AC=5,同理,DF=BC=8,FE=AB=4,∴△DEF的周长=4+5+8=17(cm),故选:D.【点评】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.7.【分析】根据矩形的对角线的性质(对角线互相平分且相等),菱形的对角线性质(对角线互相垂直平分)可解.【解答】解:菱形的对角线互相垂直且平分,矩形的对角线相等且平分.菱形和矩形一定都具有的性质是对角线互相平分.故选:D.【点评】此题主要考查矩形、菱形的对角线的性质.熟悉菱形和矩形的对角线的性质是解决本题的关键.8.【分析】根据点的平移规律,得出平移后的点的坐标,将该点坐标代入y=kx﹣2中求k即可.【解答】解:将点P(5,3)向左平移4个单位,再向下平移1个单位后点的坐标为(1,2),将点(1,2)代入y=kx﹣2中,得k﹣2=2,解得k=4.故选:B.【点评】本题考查了一次函数图象上点的坐标特点,点的坐标平移规律.关键是找出平移后点的坐标.二.填空题(共6小题,满分18分,每小题3分)9.【分析】根据简=|a|得到原式=|2﹣|,然后根据绝对值的意义去绝对值即可.【解答】解:原式=|2﹣|=﹣(2﹣)=﹣2.故答案为﹣2.【点评】本题考查了二次根式的性质与化简:=|a|.也考查了绝对值的意义.10.【分析】估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案.【解答】解:因为共摸了200次球,发现有60次摸到黑球,所以估计摸到黑球的概率为0.3,所以估计这个口袋中黑球的数量为20×0.3=6(个),则红球大约有20﹣6=14个,故答案为:14.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.11.【分析】根据图象的增减性来确定(m﹣2)的取值范围,从而求解.【解答】解:∵一次函数y=(m﹣2)x+1,若y随x的增大而增大,∴m﹣2>0,解得,m>2.故答案是:m>2.【点评】本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <0;函数值y 随x 的增大而增大⇔k >0.12.【分析】根据※的运算方法列式算式,再根据算术平方根的定义解答.【解答】解:6※3==1.故答案为:1.【点评】本题考查了算术平方根的定义,读懂题目信息,理解※的运算方法是解题的关键.13.【分析】先根据勾股定理求出玻璃棒在容器里面的长度的最大值,再根据线段的和差关系即可求解.【解答】解:6×2=12(cm ),由勾股定理得=20(cm ), 则玻璃棒露在容器外的长度的最小值是28﹣20=8(cm ).故答案为8.【点评】考查了勾股定理的应用,关键是运用勾股定理求得玻璃棒在容器里面的长度的最大值,此题比较常见,难度适中.14.【分析】根据正比例函数的性质得到∠D 1OA 1=45°,分别求出正方形A 1B 1C 1D 1的面积、正方形A 2B 2C 2D 2的面积,总结规律解答.【解答】解:∵直线l 为正比例函数y =x 的图象,∴∠D 1OA 1=45°,∴D 1A 1=OA 1=1,∴正方形A 1B 1C 1D 1的面积=1=()1﹣1,由勾股定理得,OD 1=,D 1A 2=,∴A 2B 2=A 2O =,∴正方形A 2B 2C 2D 2的面积==()2﹣1,同理,A 3D 3=OA 3=,∴正方形A 3B 3C 3D 3的面积==()3﹣1, …由规律可知,正方形A n B n ∁n D n 的面积=()n ﹣1,故答案为:()n ﹣1.【点评】本题考查的是正方形的性质、一次函数图象上点的坐标特征,根据一次函数解析式得到∠D 1OA 1=45°,正确找出规律是解题的关键.三.解答题(共10小题,满分78分)15.【分析】(1)直接利用平方差公式分别化简各式进而计算得出答案;(2)利用(1)中所求,结合分母有理化的概念得出有理化因式,进而化简得出答案.【解答】解:(1)∵a ===+,b ===﹣,∴ab =(+)×(﹣)=1,a +b =++﹣=2;(2)=+=(﹣)2+(+)2=5﹣2+5+2 =10. 【点评】此题主要考查了分母有理化,正确得出有理化因式是解题关键.16.【分析】(1)根据勾股定理和直角三角形斜边上的中线等于斜边的一半即可得到结论;(2)由DE=DC得到∠DEC=∠DCE,由DE=BE得到∠B=∠EDB,由此根据外角的性质来求∠BCE 的度数.【解答】解:(1)∵AD⊥BC,∴∠ADB=90°,∴AB==20,∵CE是中线,∴DE是斜边AB上的中线,∴DE=AB=10;(2)∵DF⊥CF,F是CF的中点,∴DE=DC,∴∠DEC=∠DCE,∴∠EDB=∠DEC+∠DCE=2∠BCE,∵DE=BE,∴∠B=∠EDB,∴∠B=2∠BCE,∴∠AEC=3∠BCE=57°,则∠BCE=19°.【点评】本题考查了勾股定理,也考查了直角三角形斜边上的中线性质,熟练掌握勾股定理是解题的关键.17.【分析】(1)运用求平均数公式即可求出三人的平均成绩,比较得出结果;(2)将三人的总成绩按比例求出测试成绩,比较得出结果.(3)根据专业知识、语言能力和综合素质三项测试得分可知,乙的语言能力最好,可将语言能力的比例提高,乙将被录用.【解答】解:(1),,.∵73>70>68,∴甲将被录用;(2)综合成绩:4+3+1=8,,,,∵77.5>76.625>69.625,∴丙将被录用;(3)x=1,y=8或x=2,y=7或x=3,y=6或x=4,y=5时,乙被录用.(答案不唯一,写对一种即可)故答案为:1,8.【点评】本题考查了平均数和加权成绩的计算.平均数等于所有数据的和除以数据的个数.18.【分析】(1)先把A点坐标代入y=﹣x+b求出b=6,得到直线AB的解析式为y=﹣x+6,然后求自变量为0时的函数值即可得到点B的坐标;(2)利用OB:OC=3:1得到OC=2,C点坐标为(﹣2,0),然后利用待定系数法求直线BC的解析式;(3)根据两直线相交的问题,通过解方程组得E(3,3),解方程组得F(﹣3,﹣3),然后根据三角形面积公式可计算出S △EBO =9,S △FBO =9,S △EBO =S △FBO .【解答】(1)解:把A (6,0)代入y =﹣x +b 得﹣6+b =0,解得b =6,所以直线AB 的解析式为y =﹣x +6,当x =0时,y =﹣x +6=6,所以点B 的坐标为(0,6);(2)解:∵OB :OC =3:1,而OB =6,∴OC =2,∴C 点坐标为(﹣2,0),设直线BCy =mx +n ,把B (0,6),C (﹣2,0)分别代入得,解得, ∴直线BC 的解析式为y =3x +6;(3)证明:解方程组得,则E (3,3),解方程组得,则F (﹣3,﹣3),所以S △EBO =×6×3=9,S △FBO =×6×3=9,所以S △EBO =S △FBO .【点评】本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.19.【分析】(1)直接利用勾股定理结合网格得出符合题意的答案;(2)直接利用勾股定理结合网格得出符合题意的答案.【解答】解:(1)如图1所示:正方形ABCD 即为所求;(2)如图2所示:三角形ABC即为所求.【点评】此题主要考查了应用设计与作图,正确应用勾股定理是解题关键.20.【分析】(1)利用总人数乘对应的百分比求解即可;(2)根据众数、中位数的定义即可直接求解;(3)首先求得调查的20人的平均数,乘以总人数300即可.【解答】解:(1)D错误,理由:20×10%=2≠3;故答案为:D,2;(2)由题意可知,植树5棵人数最多,故众数为5,共有20人植树,其中位数是第10、11人植树数量的平均数,即(5+5)=5,故中位数为5;故答案为:5,5;(3)(4×4+5×8+6×6+7×2)÷20=5.3,∴300名学生共植树5.3×300=1590(棵).故答案为:1590.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.【分析】(1)首先证明△AFE≌△DFB可得AE=BD,进而可证明AE=CD,再由AE∥BC可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE是平行四边形;(2)图中所有与AE相等的边有:AF、DF、BD、DC.理由平行四边形的性质、等腰三角形的判定即可解决问题;【解答】(1)证明:∵AD是△ABC的中线,∴BD=CD,∵AE∥BC,∴∠AEF=∠DBF,在△AFE和△DFB中,,∴△AFE≌△DFB(AAS),∴AE=BD,∴AE=CD,∵AE∥BC,∴四边形ADCE是平行四边形;(2)图中所有与AE相等的边有:AF、DF、BD、DC.理由:∵四边形ADCE是平行四边形,∴AE=DC,AD∥EC,∵BD=DC,∴AE=BD,∵BE平分∠AEC,∴∠AEF=∠CEF=∠AFE,∴AE=AF,∵△AFE≌△DFB,∴AF=DF,∴AE=AF=DF=CD=BD.【点评】此题主要考查了平行四边形的判定,全等三角形的判定和性质.等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.22.【分析】(1)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9﹣3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h,快车的速度为bkm/h,依此列出方程组,求解即可;(2)点C表示快车到达乙地,然后求出快车行驶完全程的时间从而求出点C的横坐标,再求出相遇后两辆车行驶的路程得到点C的纵坐标,从而得解;(3)分相遇前相距500km和相遇后相遇500km两种情况求解即可.【解答】解:(1)设慢车的速度为akm/h,快车的速度为bkm/h,根据题意,得,解得,故答案为80,120;(2)图中点C的实际意义是:快车到达乙地;∵快车走完全程所需时间为720÷120=6(h),∴点C的横坐标为6,纵坐标为(80+120)×(6﹣3.6)=480,即点C(6,480);(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km.即相遇前:(80+120)x=720﹣500,解得x=1.1,相遇后:∵点C(6,480),∴慢车行驶20km两车之间的距离为500km,∵慢车行驶20km需要的时间是=0.25(h),∴x=6+0.25=6.25(h),故x=1.1 h或6.25 h,两车之间的距离为500km.【点评】本题考查了一次函数的应用,主要利用了路程、时间、速度三者之间的关系,(3)要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.23.【分析】(1)由等腰直角三角形的性质知AB=2,MN=AM=t,AN=AM=t,据此可得;(2)先得出MN=DM=4﹣t,BP=PN=t﹣2,PE=4﹣t,由勾股定理得出NE=,再分DN=DE,DN=NE,DE=NE三种情况分别求解可得;(3)分0≤t<2和2≤t≤4两种情况,其中0≤t<2重合部分为直角梯形,2≤t≤4时重合部分为等腰直角三角形,根据面积公式得出面积的函数解析式,再利用二次函数的性质求解可得.【解答】解:(1)如图1,∵∠ACB=90°,AC=BC=2,∴∠A=∠ABC=45°,AB=2,∵AM=t,∠AMN=90°,∴MN=AM=t,AN=AM=t,则BN=AB﹣AN=2﹣t,故答案为:2﹣t.(2)如图2,∵AM=t,AC=BC=CD=2,∠BDC=∠DBE=45°,∴DM=MN=AD﹣AM=4﹣t,∴DN=DM=(4﹣t),∵PM=BC=2,∴PN=2﹣(4﹣t)=t﹣2,∴BP=t﹣2,∴PE=BE﹣BP=2﹣(t﹣2)=4﹣t,则NE==,∵DE=2,∴①若DN=DE,则(4﹣t)=2,解得t=4﹣;②若DN=NE,则(4﹣t)=,解得t=3;③若DE=NE,则2=,解得t=2或t=4(点N与点E重合,舍去);综上,当t=4﹣或t=3或t=2时,△DNE是等腰三角形.(3)①当0≤t<2时,如图3,由题意知AM=MN=t,则CM=NQ=AC﹣AM=2﹣t,∴DM=CM+CD=4﹣t,∵∠ABC=∠CBD=45°,∠NQB=∠GQB=90°,∴NQ=BQ=QG=2﹣t,则NG=4﹣2t,∴S=•t•(4﹣2t+4﹣t)=﹣(t﹣)2+,当t=时,S取得最大值;②当2≤t≤4时,如图4,∵AM=t,AD=AC+CD=4,∴DM=AD﹣AM=4﹣t,∵∠DMN=90°,∠CDB=45°,∴MN=DM=4﹣t,∴S=(4﹣t)2=(t﹣4)2,∵2≤t≤4,∴当t=2时,S取得最大值2;综上,当t=时,S取得最大值.【点评】本题是四边形的综合问题,解题的关键是掌握正方形的性质和等腰直角三角形的判定与性质,等腰三角形的判定及二次函数性质的应用等知识点.24.【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH=FH.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG ≌△DEM,再证明△ECM是直角三角形即可解决问题.【解答】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【点评】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.。

2019年常德市初二数学下期末模拟试卷及答案

2019年常德市初二数学下期末模拟试卷及答案
12.D
解析:D 【解析】
【分析】
根据两图象的交点坐标满足方程组,方程组的解就是交点坐标.
【详解】
由图可知,交点坐标为(﹣3,﹣2),
x 3
所以方程组的解是
y
2

故选 D.
【点睛】
本题考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象
上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
三、解答题
21.如图,在平行四边形 ABCD 中,点 E 为 AD 的中点,延长 CE 交 BA 的延长线于点 F. (1)求证:AB=AF; (2)若 BC=2AB,∠BCD=100°,求∠ABE 的度数.
22.如图,点 B、E、C、F 在一条直线上,AB=DF,AC=DE,BE=FC. (1)求证:△ABC≌△DFE; (2)连接 AF、BD,求证:四边形 ABDF 是平行四边形.
14.在函数 y x 4 中,自变量 x 的取值范围是______. x 1
15.一次函数的图象过点 1,3 且与直线 y 2x 1平行,那么该函数解析式为
__________.
16. 2+1 的倒数是____.
17.菱形
的边长为 5,一条对角线长为 6,则该菱形的面积为__________.
∴DF= 1 AC; 2
∵FD=8 ∴AC=16 又∵E 是线段 AC 的中点,AH⊥BC,
∴EH= 1 AC, 2
∴EH=8. 故选 D. 【点睛】 本题综合考查了三角形中位线定理、直角三角形斜边上的中线.熟记性质与定理并准确识 图是解题的关键.
11.C
解析:C 【解析】 【分析】
根据勾股定理可得①中第三条边长为 5 或 7 ,根据勾股定理逆定理可得②中应该是

2019年初二数学下期末一模试卷(带答案)

2019年初二数学下期末一模试卷(带答案)

2019年初二数学下期末一模试卷(带答案)一、选择题1.如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A .5.5B .5C .6D .6.52.直角三角形两直角边长为a ,b ,斜边上高为h ,则下列各式总能成立的是( ) A .ab=h 2 B .a 2+b 2=2h 2C .111a b h +=D .222111a b h += 3.三角形的三边长为22()2a b c ab +=+,则这个三角形是( )A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形 4.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S 四边形∆=中正确的有 A .4个 B .3个 C .2个 D .1个5.下列有关一次函数y =﹣3x +2的说法中,错误的是( )A .当x 值增大时,y 的值随着x 增大而减小B .函数图象与y 轴的交点坐标为(0,2)C .函数图象经过第一、二、四象限D .图象经过点(1,5)6.如图,以 Rt △ABC 的斜边 BC 为一边在△ABC 的同侧作正方形 BCEF,设正方形的中心为 O ,连接 AO ,如果 AB =4,AO =2,那么 AC 的长等于( )A.12B.16C.43D.827.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.39.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m210.如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A .2B .3C .4D .611.如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于点G ,下列结论:①15BAE DAF ∠=∠=o ;②AG=3GC ;③BE +DF =EF ;④2CEF ABE S S ∆∆=.其中正确的是( )A .①②③B .①③④C .①②④D .①②③④12.如图,已知△ABC 中,AB=10 ,AC=8 ,BC = 6 ,DE 是AC 的垂直平分线,DE 交AB 于点D ,交AC 于点E ,连接CD ,则CD 的长度为( )A .3B .4C .4.8D .5二、填空题13.若x=2-1, 则x 2+2x+1=__________.14.函数y =21x x -中,自变量x 的取值范围是_____. 15.已知20n 是整数,则正整数n 的最小值为___16.如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,EF 交AD 于点H ,那么DH 的长是______.17.菱形两条对角线的长分别为6和8,它的高为 .18.182=__________. 19.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:笔试 面试 体能甲83 79 90 乙85 80 75 丙 80 90 73该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,可判定_____被录用.20.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≦x ≦5)的函数关系式为___三、解答题21.小颖用的签字笔可在甲、乙两个商店买到.已知两个商店的标价都是每支签字笔2元.但甲商店的优惠条件是:购买10支以上,从第11支开始按标价的7折卖;乙商店的优惠条件是:从第1支开始就按标价的8.5折卖.(1)小颖要买20支签字笔,到哪个商店购买较省钱?(2)小颖现有40元,最多可买多少支签字笔?22.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“每天在校体育活动时间”的问题随机抽样调查了321名初中学生.根据调查结果将学生每天在校体育活动时间t (小时)分成A ,B ,C ,D 四组,并绘制了统计图(部分).A 组:0.5tB <组:0.51tC <„组:1 1.5tD <„组: 1.5t …请根据上述信息解答下列问题:(1)C 组的人数是 ;(2)本次调查数据的中位数落在 组内;(3)若该市约有12840名初中学生,请你估算其中达到国家规定体育活动时间的人数大约有多少.23.某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为9元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE 表示日销售量y (件)与销售时间x (天)之间的函数关系,已知线段DE 表示的函数关系中,时间每增加1天,日销售量减少4件,(1)请直接写出y 与x 之间的函数关系式;(2)日销售利润不低于960元的天数共有多少天?试销售期间,日销售最大利润是多少元?(3)工作人员在统计的过程中发现,有连续两天的销售利润之和为1980元,请你算出是哪两天.24.已知:如图,在▱ABCD 中,设BA u u u r =a r ,BC uuu r =b r . (1)填空:CA u u u r = (用a r 、b r 的式子表示)(2)在图中求作a r +b r .(不要求写出作法,只需写出结论即可)25.如图,将□ABCD 的对角线BD 向两个方向延长至点E 和点F ,使BE=DF ,证:四边形AECF 是平行四边形.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】连接BD 交AC 于E ,由矩形的性质得出∠B=90°,AE=12AC ,由勾股定理求出AC ,得出OE ,即可得出结果.【详解】连接BD 交AC 于E ,如图所示:∵四边形ABCD 是矩形,∴∠B=90°,AE=12AC , ∴222251213AB BC +=+=,∴AE=6.5,∵点A 表示的数是-1,∴OA=1,∴OE=AE-OA=5.5,∴点E 表示的数是5.5,即对角线AC 、BD 的交点表示的数是5.5;故选A .【点睛】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.2.D解析:D【解析】【分析】【详解】解:根据直角三角形的面积可以导出:斜边c=ab h. 再结合勾股定理:a 2+b 2=c 2. 进行等量代换,得a 2+b 2=222a b h , 两边同除以a 2b 2, 得222111a b h+=. 故选D . 3.C解析:C【解析】【分析】利用完全平方公式把等式变形为a 2+b 2=c 2,根据勾股定理逆定理即可判断三角形为直角三角形,可得答案.【详解】∵22()2a b c ab +=+,∴a 2+2ab+b 2=c 2+2ab ,∴a 2+b 2=c 2,∴这个三角形是直角三角形,故选:C .【点睛】本题考查了勾股定理的逆定理,如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角.4.B解析:B【解析】【分析】根据正方形的性质得AB=AD=DC ,∠BAD=∠D=90°,则由CE=DF 易得AF=DE ,根据“SAS”可判断△ABF ≌△DAE ,所以AE=BF ;根据全等的性质得∠ABF=∠EAD , 利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE ⊥BF ;连结BE ,BE >BC ,BA≠BE ,而BO ⊥AE ,根据垂直平分线的性质得到OA≠OE ;最后根据△ABF ≌△DAE 得S △ABF =S △DAE ,则S △ABF -S △AOF =S △DAE -S △AOF ,即S △AOB =S 四边形DEOF .【详解】解:∵四边形ABCD 为正方形,∴AB=AD=DC ,∠BAD=∠D=90°,而CE=DF ,∴AF=DE ,在△ABF 和△DAE 中AB DA BAD ADE AF DE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DAE ,∴AE=BF ,所以(1)正确;∴∠ABF=∠EAD ,而∠EAD+∠EAB=90°,∴∠ABF+∠EAB=90°,∴∠AOB=90°,∴AE ⊥BF ,所以(2)正确;连结BE ,∵BE>BC,∴BA≠BE,而BO⊥AE,∴OA≠OE,所以(3)错误;∵△ABF≌△DAE,∴S△ABF=S△DAE,∴S△ABF-S△AOF=S△DAE-S△AOF,∴S△AOB=S四边形DEOF,所以(4)正确.故选B.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.5.D解析:D【解析】【分析】A、由k=﹣3<0,可得出:当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、利用一次函数图象上点的坐标特征,可得出:函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、由k=﹣3<0,b=2>0,利用一次函数图象与系数的关系可得出:一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、利用一次函数图象上点的坐标特征,可得出:一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.此题得解.【详解】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、当x=1时,y=﹣3x+2=﹣1,∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.【点睛】此题考查一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.6.B解析:B【解析】【分析】首选在AC 上截取4CG AB ==,连接OG ,利用SAS 可证△ABO ≌△GCO ,根据全等三角形的性质可以得到:62OA OG ==,AOB COG ∠=∠,则可证△AOG 是等腰直角三角形,利用勾股定理求出12AG =,从而可得AC 的长度.【详解】解:如下图所示,在AC 上截取4CG AB ==,连接OG ,∵四边形BCEF 是正方形,90BAC ∠=︒,∴OB OC =,90BAC BOC ∠=∠=︒,∴点B 、A 、O 、C 四点共圆,∴ABO ACO ∠=∠,在△ABO 和△GCO 中,{BA CGABO ACO OB OC=∠=∠=,∴△ABO ≌△GCO ,∴62OA OG ==,AOB COG ∠=∠,∵90BOC COG BOG ∠=∠+∠=︒,∴90AOG AOB BOG ∠=∠+∠=︒,∴△AOG 是等腰直角三角形,∴()()22626212AG =+=,∴12416AC =+=.故选:B .本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.7.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

2019年初二数学下期末一模试卷(及答案)(1)

2019年初二数学下期末一模试卷(及答案)(1)

2019年初二数学下期末一模试卷(及答案)(1)一、选择题1.下列各命题的逆命题成立的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等2.一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥3.估计()-⋅1230246的值应在( ) A .1和2之间 B .2和3之间C .3和4之间D .4和5之间 4.下列说法: ①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分 其中正确的有( )个.A .4B .3C .2D .15.若函数()0y kx k =≠的值随自变量的增大而增大,则函敷2y x k =+的图象大致是( )A .B .C .D .6.如图,菱形中,分别是的中点,连接,则的周长为()A.B.C.D.7.下列结论中,错误的有()①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;A.0个B.1个C.2个D.3个8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.39.若正比例函数的图象经过点(,2),则这个图象必经过点().A.(1,2)B.(,)C.(2,)D.(1,)10.如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A.2B.3C.4D.611.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A .6B .12C .24D .不能确定12.如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于点G ,下列结论:①15BAE DAF ∠=∠=o ;②AG=3GC ;③BE +DF =EF ;④2CEF ABE S S ∆∆=.其中正确的是( )A .①②③B .①③④C .①②④D .①②③④二、填空题13.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB=_________°.14.将一次函数y=3x ﹣1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为__.15.如图,一次函数y =kx+b 的图象与x 轴相交于点(﹣2,0),与y 轴相交于点(0,3),则关于x 的方程kx =b 的解是_____.16.20n n 的最小值为___17.182=__________. 18.在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB=60°,AC=10,则AB= .19.将直线y =2x 向下平移3个单位长度得到的直线解析式为_____.20.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.三、解答题21.如图所示,在△ABC 中,点O 是AC 上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的平分线于E ,交∠BCA 的外角平分线于F .(1)请猜测OE 与OF 的大小关系,并说明你的理由;(2)点O 运动到何处时,四边形AECF 是矩形?写出推理过程;(3)点O 运动到何处且△ABC 满足什么条件时,四边形AECF 是正方形?(写出结论即可)22.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x 名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y (元)与x (人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?23.如图,在△ABC 中,已知AB =6,AC =10,AD 平分∠BAC ,BD ⊥AD 于点D ,点E 为BC 的中点,求DE 的长.24.先阅读下列材料,再解决问题: 2a b ±m 、n ,使22m n a +=,且mn b =2a b ±2222()m n mn m n m n +±=±=±,从而达到化去一层根号的目的. 22232212221(2)212(12)-=+-=+-⨯⨯=-1221==仿照上例完成下面各题:填上适当的数:②试将1263743-++予以化简.25.如图,在正方形ABCD 中,E 、F 分别是边AB 、BC 的中点,连接AF 、DE 相交于点G ,连接CG .(1)求证:AF ⊥DE ;(2)求证:CG=CD .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A 、逆命题是三个角对应相等的两个三角形全等,错误;B 、绝对值相等的两个数相等,错误;C 、同位角相等,两条直线平行,正确;D 、相等的两个角都是45°,错误.故选C .2.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式+≤的解集是解题的关键.4kx b3.B解析:B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】(==2,而,所以2<2<3,所以估计(2和3之间,故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.4.C解析:C【解析】【分析】【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.5.C解析:C【解析】根据正比例函数和一次函数的图像与性质逐项判断即可求解.【详解】∵函数()0y kx k =≠的值随自变量的增大而增大,∴k >0,∵一次函数2y x k =+,∴1k =1>0,b=2k >0,∴此函数的图像经过一、二、四象限;故答案为C.【点睛】本题考查了正比例函数和一次函数的图像与性质,熟练掌握正比例函数和一次函数的图像特点是解题的关键.6.D解析:D【解析】【分析】首先根据菱形的性质证明△ABE ≌△ADF ,然后连接AC 可推出△ABC 以及△ACD 为等边三角形.根据等边三角形三线合一的性质又可推出△AEF 是等边三角形.根据勾股定理可求出AE 的长,继而求出周长.【详解】解:∵四边形ABCD 是菱形,∴AB =AD =BC =CD =2cm ,∠B =∠D ,∵E 、F 分别是BC 、CD 的中点,∴BE =DF ,在△ABE 和△ADF 中,,∴△ABE ≌△ADF (SAS ),∴AE =AF ,∠BAE =∠DAF .连接AC ,∵∠B =∠D =60°,∴△ABC 与△ACD 是等边三角形,∴AE ⊥BC ,AF ⊥CD ,∴∠BAE =∠DAF =30°,∴∠EAF =60°,BE=AB=1cm ,∴△AEF 是等边三角形,AE =, ∴周长是. 故选:D .【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.7.C解析:C【解析】【分析】根据勾股定理可得①中第三条边长为57∠C =90°,根据三角形内角和定理计算出∠C =90°,可得③正确,再根据勾股定理逆定理可得④正确.【详解】①Rt △ABC 中,已知两边分别为3和4,则第三条边长为5,说法错误,第三条边长为5或7.②△ABC 的三边长分别为AB ,BC ,AC ,若2BC +2AC =2AB ,则∠A =90°,说法错误,应该是∠C =90°.③△ABC 中,若∠A :∠B :∠C =1:5:6,此时∠C=90°,则这个三角形是一个直角三角形,说法正确.④若三角形的三边比为3:4:5,则该三角形是直角三角形,说法正确.故选C .【点睛】本题考查了直角三角形的判定,关键是掌握勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.8.D解析:D【解析】【分析】已知ab =8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长.【详解】a b -由题意可知:中间小正方形的边长为:,11ab 8422=⨯=Q 每一个直角三角形的面积为:, 214ab a b 252(),∴⨯+-=2(),∴-=-=a b25169∴-=,a b3故选D.【点睛】本题考查勾股定理的推导,有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.9.D解析:D【解析】设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(-1,2),所以2=-k,解得:k=-2,所以y=-2x,把这四个选项中的点的坐标分别代入y=-2x中,等号成立的点就在正比例函数y=-2x的图象上,所以这个图象必经过点(1,-2).故选D.10.C解析:C【解析】【分析】【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2∴AE+AF=4故选C11.B解析:B【解析】【分析】由矩形ABCD 可得:S △AOD =14S 矩形ABCD ,又由AB=15,BC=20,可求得AC 的长,则可求得OA 与OD 的长,又由S △AOD =S △APO +S △DPO =12OA •PE+12OD •PF ,代入数值即可求得结果.【详解】连接OP ,如图所示:∵四边形ABCD 是矩形,∴AC =BD ,OA =OC =12AC ,OB =OD =12BD ,∠ABC =90°, S △AOD =14S 矩形ABCD , ∴OA =OD =12AC , ∵AB =15,BC =20, ∴AC 22AB BC +221520+25,S △AOD =14S 矩形ABCD =14×15×20=75, ∴OA =OD =252, ∴S △AOD =S △APO +S △DPO =12OA •PE +12OD •PF =12OA •(PE +PF )=12×252(PE +PF )=75,∴PE +PF =12. ∴点P 到矩形的两条对角线AC 和BD 的距离之和是12.故选B .【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.12.C解析:C【解析】【分析】易证Rt ABE Rt ADF V V ≌,从而得到BE DF =,求得15BAE DAF ∠=∠=︒;进而得到CE CF =,判断出AC 是线段EF 的垂直平分线,在Rt AGF n 中,利用正切函数证得②正确;观察得到BE GE ≠,判断出③错误;设BE x =,CE y =,在Rt ABE V 中,运用勾股定理就可得到2222x xy y +=,从而可以求出CEF V 与ABE V 的面积比.【详解】∵四边形ABCD 是正方形,AEF V 是等边三角形,∴90B BCD D AB BC DC AD AE AF EF ∠=∠=∠=︒=====,,.在Rt ABE V 和Rt ADF V 中, AB AD AE AF⎧⎨⎩==∴()Rt ABE Rt ADF HL V V ≌. ∴BE DF =,∠BAE =∠DAF ∴()()1190601522BAE DAF BAD EAF ∠=∠=∠-∠=︒-︒=︒ 故①正确;∵BE DF BC DC ==,,∴CE BC BE DC DF CF =-=-=,∵AE AF =,CE CF =,∴AC 是线段EF 的垂直平分线,∵90ECF ∠=︒,∴GC GE GF ==,在Rt AGF n 中,∵tan tan 60AG AG AFG GF GC∠=︒===∴AG =,故②正确;∵BE DF GE GF ==,,15BAE ∠=︒,30GAE ∠=︒,90B AGE ∠=∠=︒∴BE GE ≠∴BE DF EF +≠,故③错误;设BE x =,CE y =,则CF CE y ==,AB BC x y AE EF ==+====,. 在Rt ABE V 中,∵90B ∠=︒,AB x y BE x AE =+==,,,∴222())x y x ++=.整理得:2222x xy y +=.∴CEF S V :ABE S V 11CE ?CF :AB?BE 22⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭()()•:?CE CF AB BE ==2y :()x y x ⎡⎤+⎣⎦()()2222:2:1x xy x xy =++=.∴CEF ABE 2S S =V V ,故④正确;综上:①②④正确故选:C.【点睛】本题考查了正方形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识,而采用整体思想(把2x xy +看成一个整体)是解决本题的关键. 二、填空题13.15°【解析】【分析】【详解】解:由题意可知:是等腰三角形故答案为 解析:15°【解析】【分析】【详解】解:由题意可知:90,60.BAD DAE ∠=∠=o o.AB AD AE ==150.BAE o ∴∠= ABE △是等腰三角形15.AEB ∴∠=o 故答案为15.o14.y=3x+2【解析】【详解】将一次函数y=3x ﹣1的图象沿y 轴向上平移3个单位后可得y=3x ﹣1+3=3x+2故答案为y=3x+2解析:y=3x+2.【解析】【详解】将一次函数y =3x ﹣1的图象沿y 轴向上平移3个单位后,可得y =3x ﹣1+3=3x +2. 故答案为y =3x +2.15.x=2【解析】【分析】依据待定系数法即可得到k 和b 的值进而得出关于x 的方程kx =b 的解【详解】解:∵一次函数y =kx+b 的图象与x 轴相交于点(﹣20)与y 轴相交于点(03)∴解得∴关于x 的方程kx =解析:x=2【解析】【分析】依据待定系数法即可得到k 和b 的值,进而得出关于x 的方程kx =b 的解.【详解】解:∵一次函数y =kx+b 的图象与x 轴相交于点(﹣2,0),与y 轴相交于点(0,3),∴0=-2k+b3=b⎧⎨⎩,解得323kb⎧=⎪⎨⎪=⎩,∴关于x的方程kx=b即为:32x=3,解得x=2,故答案为:x=2.【点睛】本题主要考查了待定系数法的应用,任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.16.5【解析】【分析】因为是整数且则5n是完全平方数满足条件的最小正整数n为5【详解】∵且是整数∴是整数即5n是完全平方数;∴n的最小正整数值为5故答案为:5【点睛】主要考查了二次根式的定义关键是根据乘解析:5【解析】【分析】,则5n是完全平方数,满足条件的最小正整数n为5.【详解】∴5n是完全平方数;∴n的最小正整数值为5.故答案为:5.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.17.【解析】【分析】【详解】试题分析:先根据二次根式的性质化简根号再合并同类二次根式即可得到结果考点:二次根式的化简点评:本题属于基础应用题只需学生熟练掌握二次根式的性质即可完成【解析】【分析】【详解】试题分析:先根据二次根式的性质化简根号,再合并同类二次根式即可得到结果. 18222222-=-= 考点:二次根式的化简点评:本题属于基础应用题,只需学生熟练掌握二次根式的性质,即可完成.18.5【解析】试题分析:∵四边形ABCD 是矩形∴OA=OB 又∵∠AOB=60°∴△AO B 是等边三角形∴AB=OA=12AC=5故答案是:5考点:含30度角的直角三角形;矩形的性质解析:5。

2019-2020学年新疆乌鲁木齐市沙依巴克区八年级下学期期末数学试卷 (解析版)

2019-2020学年新疆乌鲁木齐市沙依巴克区八年级下学期期末数学试卷 (解析版)

2019-2020学年新疆乌鲁木齐市沙依巴克区八年级第二学期期末数学试卷一、选择题(共8小题).1.如果代数式有意义,那么x的取值范围是()A.x≥2B.x>2C.x≠2D.x<22.一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7B.7,6.5C.5.5,7D.6.5,73.直角三角形的两边长分别是6,8,则第三边的长为()A.10B.2C.10或2D.无法确定4.在▱ABCD中,∠A,∠B的度数之比为5:4,则∠C等于()A.60°B.80°C.100°D.120°5.若点A(﹣2,m)在函数y=﹣x的图象上,则m的值是()A.1B.﹣1C.D.﹣6.下列各式计算错误的是()A.B.C.D.7.关于x的一次函数y=kx+k2+1的图象可能正确的是()A.B.C.D.8.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC 交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.4B.3C.2D.1二、填空题(共6小题).9.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是.10.作图判断直线y=3x+4与y=3x﹣4的位置关系是.11.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是分.12.一株美丽的勾股树如图所示,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的面积分别为2,5,1,2,则最大的正方形E的面积是.13.如图,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为.14.直线y=kx+b(k>0)与x轴的交点坐标为(2,0),则关于x的不等式kx+b>0的解集是.三、计算下列各题(第15题5分,第16题、17题每题6分,共17分)15.化简:.16.已知x=2﹣,y=2+,求下列代数式的值:(1)x2+2xy+y2;(2)x2﹣y2.17.如图,正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)判断△ABC是什么形状?并说明理由.(2)求AC边上的高.四、解答题(第18题、19题、21题、22题每题8分,第20题9分,共41分)18.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.(1)某月该单位用水3200吨,水费是元;若用水2800吨,水费是元;(2)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式;(3)若某月该单位缴纳水费1540元,则该单位这个月的用水多少吨?19.已知:如图,菱形ABCD的周长为16cm,∠ABC=60°,对角线AC和BD相交于点O,(1)求AC和BD的长;(2)求菱形ABCD的面积.20.如图.在△ABC中,D是AB的中点.E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.(1)求证:DB=CF;(2)如果AC=BC.试判断四边形BDCF的形状.并证明你的结论.21.“勤劳”是中华民族的传统美德,我校要求同学们在家里帮助父母做些力所能及的家务.王刚同学在本学期开学初对部分同学寒假在家做家务的时间进行了抽样调查(时间取整数小时),所得数据统计如表:时间分组0.5~20.520.5~40.540.5~60.560.5~80.580.5~100.5频数2025301510(1)抽取样本的容量是.(2)根据表中数据补全图中的频数分布直方图.(3)样本的中位数所在时间段的范围是.(4)若我学校共有学生1600人,那么大约有多少学生在寒假做家务的时间在40.5~100.5小时之间?22.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴相交于P,且使OP=2OA,求直线BP的解析式.参考答案一、选择题(本大题共8小题,每小题3分,共24分)每小题给出的四个选项中,只有一项是正确的,请把正确的选项填写在答题卷中相应的表格内.1.如果代数式有意义,那么x的取值范围是()A.x≥2B.x>2C.x≠2D.x<2【分析】直接利用二次根式有意义的条件分析得出答案.解:代数式有意义,则x﹣2>0,解得:x>2.故选:B.2.一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7B.7,6.5C.5.5,7D.6.5,7【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解:在这一组数据中7是出现次数最多的,故众数是7,而将这组数据从小到大的顺序排列后,处于中间位置的数是6,7,那么由中位数的定义可知,这组数据的中位数是(6+7)÷2=6.5.故选:D.3.直角三角形的两边长分别是6,8,则第三边的长为()A.10B.2C.10或2D.无法确定【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即较长是斜边或直角边的两种情况,然后利用勾股定理求解.解:长为8的边可能为直角边,也可能为斜边.当8为直角边时,根据勾股定理,第三边的长==10;当8为斜边时,根据勾股定理,第三边的长==2.故选:C.4.在▱ABCD中,∠A,∠B的度数之比为5:4,则∠C等于()A.60°B.80°C.100°D.120°【分析】根据平行四边形的性质可知∠A,∠B互补,根据已知可以求出∠A,∠B的度数,而∠C是∠A的对角,所以相等.解:在▱ABCD中,∵AD∥BC,∴∠A+∠B=180°,∠A,∠B的度数之比为5:4,∴∠A=100°,∠B=80°,∴∠C=∠A=100°故选:C.5.若点A(﹣2,m)在函数y=﹣x的图象上,则m的值是()A.1B.﹣1C.D.﹣【分析】将x=﹣2代入一次函数解析式中求出y值,此题得解.解:当x=﹣2时,y=﹣×(﹣2)=1.故选:A.6.下列各式计算错误的是()A.B.C.D.【分析】利用二次根式的乘法法则对A、C进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对D进行判断.解:A、原式=3,所以A选项的计算正确;B、原式==,所以B选项的计算正确;C、原式=+2,所以C选项的计算错误;D、原式===3,所以D选项的计算正确.故选:C.7.关于x的一次函数y=kx+k2+1的图象可能正确的是()A.B.C.D.【分析】根据图象与y轴的交点直接解答即可.解:令x=0,则函数y=kx+k2+1的图象与y轴交于点(0,k2+1),∵k2+1>0,∴图象与y轴的交点在y轴的正半轴上.故选:C.8.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC 交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.4B.3C.2D.1【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE,再通过比较大小就可以得出结论.解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故③正确).设EC=x,由勾股定理,得EF=x,CG=x,AG=AE sin60°=EF sin60°=2×CG sin60°=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,(故④错误),∵S△CEF=,S△ABE==,∴2S△ABE==S△CEF,(故⑤正确).综上所述,正确的有4个,故选:A.二、填空题(本大题共6小题,每小题3分,共18分)把答案直接填写在答题卷中相应的各题的横线上.9.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是小李.【分析】根据图中的信息找出波动性大的即可.解:根据图中的信息可知,小李的成绩波动性大,则这两人中的新手是小李;故答案为:小李.10.作图判断直线y=3x+4与y=3x﹣4的位置关系是平行.【分析】根据直线与直线的关系知,当两条直线的解析式中的k相同时,则两条直线平行.解:∵直线y=3x+4与直线y=3x﹣4的斜率相同,∴y=3x+4与y=3x﹣4的位置关系是平行.11.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是88分.【分析】根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.解:∵笔试按60%、面试按40%,∴总成绩是(90×60%+85×40%)=88分,故答案为:88.12.一株美丽的勾股树如图所示,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的面积分别为2,5,1,2,则最大的正方形E的面积是10.【分析】根据正方形的面积公式,结合勾股定理,能够导出正方形A,B,C,D的面积和即为最大正方形的面积.解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1+S2,即S3=2+5+1+2=10.故答案是:10.13.如图,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为10.【分析】根据矩形性质求出BD=2BO,OA=OB,求出∠AOB=60°,得出等边三角形AOB,求出BO=AB,即可求出答案.解:∵四边形ABCD是矩形,∴AC=2AO,BD=2BO,AC=BD,∴OA=OB,∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OB=AB=5,∴BD=2BO=10,故答案为:10.14.直线y=kx+b(k>0)与x轴的交点坐标为(2,0),则关于x的不等式kx+b>0的解集是x>2.【分析】根据一次函数的性质得出y随x的增大而增大,当x>2时,y>0,即可求出答案.解:∵直线y=kx+b(k>0)与x轴的交点为(2,0),∴y随x的增大而增大,当x>2时,y>0,即kx+b>0.故答案为:x>2.三、计算下列各题(第15题5分,第16题、17题每题6分,共17分)15.化简:.【分析】先将式中的根式化为最简二次根式,然后合并最简二次根式即可.解:原式==.16.已知x=2﹣,y=2+,求下列代数式的值:(1)x2+2xy+y2;(2)x2﹣y2.【分析】(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x2+2xy+y2=(x+y)2,然后利用整体代入的方法计算;(2)根据已知条件先计算出x+y=4,x﹣y=﹣2,再利用平方差公式得到x2﹣y2=(x+y)(x﹣y),然后利用整体代入的方法计算.解:(1)∵x=2﹣,y=2+,∴x+y=4,∴x2+2xy+y2=(x+y)2=42=16;(2))∵x=2﹣,y=2+,∴x+y=4,x﹣y=﹣2,∴x2﹣y2=(x+y)(x﹣y)=4×(﹣2)=﹣8.17.如图,正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)判断△ABC是什么形状?并说明理由.(2)求AC边上的高.【分析】(1)根据勾股定理分别求出AB、BC、AC的长,再根据勾股定理的逆定理判断出三角形ABC的形状;(2)设AC边上的高为h.根据△ABC的面积不变列出方程AC•h=AB•BC,得出h=,代入数值计算即可.解:(1)△ABC是直角三角形.理由如下:在Rt△ABC中,AB==;在Rt△AEC中,AC==;在Rt△BDC中,BC==;∴AB2+BC2=AC2,∴∠B=90°,△ABC是直角三角形;(2)设AC边上的高为h.∵S△ABC=AC•h=AB•BC,∴h===.四、解答题(第18题、19题、21题、22题每题8分,第20题9分,共41分)18.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.(1)某月该单位用水3200吨,水费是1660元;若用水2800吨,水费是1400元;(2)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式;(3)若某月该单位缴纳水费1540元,则该单位这个月的用水多少吨?【分析】(1)根据3000吨以内,用水每吨收费0.5元,超计划部分每吨按0.8元收费,即可求解;(2)根据收费标准,分x≤3000吨,和x>3000吨两种情况进行讨论,分两种情况写出解析式;(3)该单位缴纳水费1540元一定是超过3000元,根据超过3000吨的情况的水费标准即可得到一个关于用水量的方程,即可求解.解:(1)某月该单位用水3200吨,水费是:3000×0.5+200×0.8=1660元;若用水2800吨,水费是:2800×0.5=1400元.(2)(3)因为缴纳水费1540元,所以用水量应超过3000吨,故令,设用水x吨.1500+0.8(x﹣3000)=1540x=3050即该月的用水量是3050吨.19.已知:如图,菱形ABCD的周长为16cm,∠ABC=60°,对角线AC和BD相交于点O,(1)求AC和BD的长;(2)求菱形ABCD的面积.【分析】(1)由题意易得△ABC是等边三角形从而可得到AC的长,再根据菱形的性质及勾股定理即可求得OB的长,得出BD的长;(2)菱形的面积等于两条对角线长积的一半,代入计算即可.解:(1)∵菱形ABCD的周长为16cm,∠ABC=60°,∴AB=BC=4cm,△ABC是等边三角形,AC、BD互相垂直平分,∴AC=AB=4cm,OA=AC=2cm,OB=OD,∴OB=(cm),∴BD=cm;(2)菱形ABCD的面积=(cm2).20.如图.在△ABC中,D是AB的中点.E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.(1)求证:DB=CF;(2)如果AC=BC.试判断四边形BDCF的形状.并证明你的结论.【分析】(1)根据CF∥AB,可知∠DAE=∠CFE,得出△ADE≌△FCE,再根据等量代换可知DB=CF,(2)根据DB=CF,DB∥CF,可知四边形BDCF为平行四边形,再根据AC=BC,AD =DB,得出四边形BDCF是矩形.【解答】(1)证明:∵CF∥AB,∴∠DAE=∠CFE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS),∴AD=CF,∵AD=DB,∴DB=CF;(2)四边形BDCF是矩形,证明:∵DB=CF,DB∥CF,∴四边形BDCF为平行四边形,∵AC=BC,AD=DB,∴CD⊥AB,∴平行四边形BDCF是矩形.21.“勤劳”是中华民族的传统美德,我校要求同学们在家里帮助父母做些力所能及的家务.王刚同学在本学期开学初对部分同学寒假在家做家务的时间进行了抽样调查(时间取整数小时),所得数据统计如表:时间分组0.5~20.520.5~40.540.5~60.560.5~80.580.5~100.5频数2025301510(1)抽取样本的容量是100.(2)根据表中数据补全图中的频数分布直方图.(3)样本的中位数所在时间段的范围是40.5~60.5.(4)若我学校共有学生1600人,那么大约有多少学生在寒假做家务的时间在40.5~100.5小时之间?【分析】(1)各组的频数的和就是样本容量;(2)根据表中数据即可补全图中的频数分布直方图;(3)根据中位数的概念即可求解;(4)用样本估计总体可知,用1600乘以样本中在寒假做家务的时间在40.5~100.5小时之间所占的比例即可求解.解:(1)20+25+30+15+10=100.故答案为:100;(2)如图:(3)数据共有100个,中位数是第50,51个数的平均数,中位数落在40.5~60.5内;故答案为:40.5~60.5;(4)1600×=880人.答:大约有880名学生在寒假做家务的时间在40.5~100.5小时之间.22.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴相交于P,且使OP=2OA,求直线BP的解析式.【分析】(1)根据坐标轴上点的坐标特征确定A点和B点坐标;(2)由OA=,OP=2OA得到OP=3,分类讨论:当点P在x轴正半轴上时,则P 点坐标为(3,0);当点P在x轴负半轴上时,则P点坐标为(﹣3,0),然后根据待定系数法求两种情况下的直线解析式.解:(1)把x=0代入y=2x+3,得y═3,则B点坐标为(0,3);把y=0代入y=2x+3,得0=2x+3,解得x=﹣,则A点坐标为(﹣,0);(2)∵OA=,∴OP=2OA=3,当点P在x轴正半轴上时,则P点坐标为(3,0),设直线BP的解析式为:y=kx+b,把P(3,0),B(0,3)代入得,解得,∴直线BP的解析式为:y=﹣x+3;当点P在x轴负半轴上时,则P点坐标为(﹣3,0),设直线BP的解析式为y=mx+n,把P(﹣3,0),B(0,3)代入得,解得,所以直线BP的解析式为:y=x+3;综上所述,直线BP的解析式为y=x+3或y=﹣x+3.。

上海市静安区2019-2020学年八年级(下)期末数学试卷(解析版)

2019-2020学年上海市静安区八年级(下)期末数学试卷一、选择题(本大题共6题,每题3分,满分18分)【每题只有一个正确选项,在答题纸相应位置填涂】1.当a<0时,|a﹣1|等于()A.a+1 B.﹣a﹣1 C.a﹣1 D.1﹣a2.下列方程中,是无理方程的为()A.B.C.D.3.某市出租车计费办法如图所示.根据图象信息,下列说法错误的是()A.出租车起步价是10元B.在3千米内只收起步价C.超过3千米部分(x>3)每千米收3元D.超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+44.下列关于向量的运算,正确的是()A.B.C.D.5.有一个不透明的袋子中装有3个红球、1个白球、1个绿球,这些球只是颜色不同.下列事件中属于确定事件的是()A.从袋子中摸出1个球,球的颜色是红色B.从袋子中摸出2个球,它们的颜色相同C.从袋子中摸出3个球,有颜色相同的球D.从袋子中摸出4个球,有颜色相同的球6.已知四边形ABCD中,AB与CD不平行,AC与BD相交于点O,那么下列条件中能判定四边形ABCD是等腰梯形的是()A.AC=BD=BC B.AB=AD=CD C.OB=OC,AB=CD D.OB=OC,OA=OD二、填空题(本大题共12题,每题3分,满分36分)【请将结果直接填入答题纸的相应位置上】7.如果一次函数y=(k﹣2)x+1的图象经过一、二、三象限,那么常数k的取值范围是.8.方程x3+1=0的根是.9.方程的根是.10.用换元法解方程组时,如果设,,那么原方程组可化为关于u、v的二元一次方程组是.11.已知函数,那么=.12.从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数是素数的概率是.13.如果一个n边形的内角和是1440°,那么n=.14.如果菱形的边长为5,相邻两内角之比为1:2,那么该菱形较短的对角线长为.15.在Rt△ABC中,∠C=90°,AC=6,BC=8,点D、E分别是AC、AB边的中点,那么△CDE的周长为.16.如图,已知正方形ABCD的边长为1,点E在边DC上,AE平分∠DAC,EF⊥AC,点F为垂足,那么FC=.17.一次函数y=x+2的图象经过点A(a,b),B(c,d),那么ac﹣ad﹣bc+bd的值为.18.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠BCD=60°,CD=5.将梯形ABCD 绕点A旋转后得到梯形AB1C1D1,其中B、C、D的对应点分别是B1、C1、D1,当点B1落在边CD上时,点D1恰好落在CD的延长线上,那么DD1的长为.附加题(本题最高得3分,当整卷总分不满120分时,计入总分,整卷总分不超过120分)19.如果关于x的方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,那么m=.三、解答题(本大题共8题,满分66分)[将下列各题的解答过程,做在答题纸上] 20.先化简,再求值:,其中x=.21.解方程:.22.解方程组:.23.如图,在梯形ABCD中,AD∥BC,BC=2AD,过点A作AE∥DC交BC于点E.(1)写出图中所有与互为相反向量的向量:;(2)求作:、.(保留作图痕迹,写出结果,不要求写作法)24.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.求证:四边形AGCH是平行四边形.25.某公司生产的新产品需要精加工后才能投放市场,为此王师傅承担了加工300个新产品的任务.在加工了80个新产品后,王师傅接到通知,要求加快新产品加工的进程,王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务.问接到通知后,王师傅平均每天加工多少个新产品?26.在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A、与反比例函数(k是常数,k≠0)的图象交于点B(a,3),且这个反比例函数的图象经过点C(6,1).(1)求出点A的坐标;(2)设点D为x轴上的一点,当四边形ABCD是梯形时,求出点D的坐标和四边形ABCD 的面积.27.已知:如图,在矩形ABCD中,AB=3,点E在AB的延长线上,且AE=AC,联结CE,取CE的中点F,联结BF、DF.(1)求证:DF⊥BF;(2)设AC=x,DF=y,求y与x之间的函数关系式,并写出定义域;(3)当DF=2BF时,求BC的长.2019-2020学年上海市静安区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题3分,满分18分)【每题只有一个正确选项,在答题纸相应位置填涂】1.当a<0时,|a﹣1|等于()A.a+1 B.﹣a﹣1 C.a﹣1 D.1﹣a【考点】绝对值.【分析】根据负有理数的绝对值是它相反数得结论做出正确判断.【解答】解:当a<0时,即a<1,则|a﹣1|=1﹣a;故选D.2.下列方程中,是无理方程的为()A.B.C.D.【考点】无理方程.【分析】可以判断各选项中的方程是什么方程,从而可以得到哪个选项是正确的.【解答】解:是一元二次方程,是无理方程,=0是分式方程,是一元一次方程,故选B.3.某市出租车计费办法如图所示.根据图象信息,下列说法错误的是()A.出租车起步价是10元B.在3千米内只收起步价C.超过3千米部分(x>3)每千米收3元D.超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4【考点】一次函数的应用.【分析】根据图象信息一一判断即可解决问题.【解答】解:由图象可知,出租车的起步价是10元,在3千米内只收起步价,设超过3千米的函数解析式为y=kx+b,则,解得,∴超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4,超过3千米部分(x>3)每千米收2元,故A、B、D正确,C错误,故选C.4.下列关于向量的运算,正确的是()A.B.C.D.【考点】*平面向量.【分析】由三角形法则直接求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、+=,故本选项正确;B、﹣=,故本选项错误;C、﹣=,故本选项错误;D、﹣=,故本选项错误.故选:A.5.有一个不透明的袋子中装有3个红球、1个白球、1个绿球,这些球只是颜色不同.下列事件中属于确定事件的是()A.从袋子中摸出1个球,球的颜色是红色B.从袋子中摸出2个球,它们的颜色相同C.从袋子中摸出3个球,有颜色相同的球D.从袋子中摸出4个球,有颜色相同的球【考点】随机事件.【分析】根据袋子中装有3个红球、1个白球、1个绿球以及必然事件、不可能事件、随机事件的概念解答即可.【解答】解:从袋子中摸出1个球,球的颜色是红色是随机事件;从袋子中摸出2个球,它们的颜色相同是随机事件;从袋子中摸出3个球,有颜色相同的球是随机事件;从袋子中摸出4个球,有颜色相同的球是不可能事件,故选:D.6.已知四边形ABCD中,AB与CD不平行,AC与BD相交于点O,那么下列条件中能判定四边形ABCD是等腰梯形的是()A.AC=BD=BC B.AB=AD=CD C.OB=OC,AB=CD D.OB=OC,OA=OD【考点】等腰梯形的判定.【分析】根据等腰梯形的判定推出即可.【解答】解:A、AC=BD=BC,不能证明四边形ABCD是等腰梯形,错误;B、AB=AD=CD,不能证明四边形ABCD是等腰梯形,错误;C、OB=OC,AB=CD,不能证明四边形ABCD是等腰梯形,错误;D、∵OB=OC,OA=OD,∴∠OBC=∠OCB,∠OAD=∠ODA,在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴∠ABO=∠DCO,AB=CD,同理:∠OAB=∠ODC,∵∠ABC+∠DCB+∠CDA+∠BAD=360°,∴∠DAB+∠ABC=180°,∴AD∥BC,∴四边形ABCD是梯形,∵AB=CD,∴四边形ABCD是等腰梯形.故选D二、填空题(本大题共12题,每题3分,满分36分)【请将结果直接填入答题纸的相应位置上】7.如果一次函数y=(k﹣2)x+1的图象经过一、二、三象限,那么常数k的取值范围是k >2.【考点】一次函数图象与系数的关系.【分析】根据一次函数图象所经过的象限确定k的符号.【解答】解:∵一次函数y=(k﹣2)x+1(k为常数,k≠0)的图象经过第一、二、三象限,∴k﹣2>0.解得:k>2,故填:k>2;8.方程x3+1=0的根是﹣1.【考点】立方根.【分析】先求出x3,再根据立方根的定义解答.【解答】解:由x3+1=0得,x3=﹣1,∵(﹣1)3=﹣1,∴x=﹣1.故答案为:﹣1.9.方程的根是x=0.【考点】分式方程的解.【分析】先去分母,再解整式方程,最后检验即可.【解答】解:去分母得,x2+3x=0,解得x=0或﹣3,检验:把x=0代入x+3=3≠0,∴x=0是原方程的解;把x=﹣3代入x+3=﹣3+3=0,∴x=﹣3不是原方程的解,舍去;∴原方程的解为x=0,故答案为x=0.10.用换元法解方程组时,如果设,,那么原方程组可化为关于u、v的二元一次方程组是.【考点】换元法解分式方程.【分析】设,,则=3u,=2v,从而得出关于u、v的二元一次方程组.【解答】解:设,,原方程组变为,故答案为.11.已知函数,那么=.【考点】函数值.【分析】把自变量x=﹣代入函数解析式进行计算即可得解.【解答】解:∵,∴=;故答案为.12.从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数是素数的概率是.【考点】概率公式.【分析】列表列举出所有情况,看两位数是素数的情况数占总情况数的多少即可解答.【解答】解:列表如下:2 3 42 (2,2)(2,3)(2,4)3 (3,2)(3,3)(3,4)4 (4,2)(4,3)(4,4)共有9种等可能的结果,其中是素数的有3种,概率为;故答案为:13.如果一个n边形的内角和是1440°,那么n=10.【考点】多边形内角与外角.【分析】根据多边形的内角和公式:(n﹣2)×180°,列出方程,即可求出n的值.【解答】解:∵n边形的内角和是1440°,∴(n﹣2)×180°=1440°,解得:n=10.故答案为:10.14.如果菱形的边长为5,相邻两内角之比为1:2,那么该菱形较短的对角线长为5.【考点】菱形的性质.【分析】根据已知可得较小的内角为60°,从而得到较短的对角线与菱形的一组邻边组成一个等边三角形,从而可求得较短对角线的长度.【解答】解:如图所示:∵菱形的边长为5,∴AB=BC=CD=DA=5,∠B+∠BAD=180°,∵菱形相邻两内角的度数比为1:2,即∠B:∠BAD=1:2,∴∠B=60°,∴△ABC是等边三角形,∴AC=AB=5;故答案为:5.15.在Rt△ABC中,∠C=90°,AC=6,BC=8,点D、E分别是AC、AB边的中点,那么△CDE的周长为12.【考点】三角形中位线定理.【分析】利用勾股定理求得边AB的长度,然后结合三角形中位线定理得到DE=AB,则易求△CDE的周长.【解答】解:∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB===10.又∵点D、E分别是AC、AB边的中点,∴CE=BC=4,CD=AC=3,ED是△ABC的中位线,∴DE=AB=5,∴△CDE的周长=CE+CD+ED=4+3+5=12.故答案是:12.16.如图,已知正方形ABCD的边长为1,点E在边DC上,AE平分∠DAC,EF⊥AC,点F为垂足,那么FC=﹣1.【考点】正方形的性质;角平分线的性质.【分析】根据正方形的性质和已知条件可求得AF,AC的长,从而不难得到FC的长.【解答】解:∵四边形ABCD是正方形,∴AB=BC=AD=CD=1,∠D=∠B=90°,∴AC==,∵AE平分∠DAC,EF⊥AC交于F,∴AF=AD=1,∴FC=AC﹣AF=﹣1,故答案为:;17.一次函数y=x+2的图象经过点A(a,b),B(c,d),那么ac﹣ad﹣bc+bd的值为4.【考点】一次函数图象上点的坐标特征.【分析】先根据点A、B的坐标代入解析式,再代入代数式计算即可求解.【解答】解:把点A、B的坐标代入解析式,可得:a+2=b,c+2=d,所以ac﹣ad﹣bc+bd=ac﹣a(c+2)﹣(a+2)c+(a+2)(c+2)=4;故答案为:418.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠BCD=60°,CD=5.将梯形ABCD 绕点A旋转后得到梯形AB1C1D1,其中B、C、D的对应点分别是B1、C1、D1,当点B1落在边CD上时,点D1恰好落在CD的延长线上,那么DD1的长为.【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;直角梯形.【分析】先根据旋转的性质得出△DAB≌△D1AB1,再根据全等三角形的性质以及等腰三角形的性质,得出∠2=∠3,然后根据平行线的性质,得出∠2=∠4,若设∠1=∠2=∠3=∠4=α,则根据∠2+∠3+∠5=180°,可以求得α的度数为60°,最后根据△ADD1、△BCD都是等边三角形,求得DD1=AD=.【解答】解:如图,将梯形ABCD绕点A旋转后得到梯形AB1C1D1,连接BD,由旋转得:AD=AD1,AB=AB1,∠DAD1=∠BAB1,∴∠DAB=∠D1AB1,且∠1=∠3,在△DAB和△D1AB1中,,∴△DAB≌△D1AB1(SAS),∴∠1=∠2,∴∠2=∠3,∵AD∥BC,∴∠2=∠4,设∠1=∠2=∠3=∠4=α,则∠5=180°﹣∠4﹣∠C=120°﹣α,∵∠2+∠3+∠5=180°,∴α+α+120°﹣α=180°,解得α=60°,∴∠1=∠2=∠3=∠4=60°,∴△ADD1、△BCD都是等边三角形,∴BD=CD=5,∠ABD=30°,∴Rt△ABD中,AD=BD=,∴DD1=AD=.故答案为:附加题(本题最高得3分,当整卷总分不满120分时,计入总分,整卷总分不超过120分)19.如果关于x的方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,那么m=﹣1.【考点】根与系数的关系.【分析】先根据根与系数的关系得到=1,解得m=﹣1或m=1,然后根据判别式的意义确定满足条件的m的值.【解答】解:∵方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,∴=1,解得m=1或m=﹣1,当m=1时,方程变形为x2+x+1=0,△=1﹣4×1×1=﹣3<0,方程没有实数解,所以m的值为﹣1.故答案为:﹣1.三、解答题(本大题共8题,满分66分)[将下列各题的解答过程,做在答题纸上] 20.先化简,再求值:,其中x=.【考点】分式的化简求值.【分析】要熟悉混合运算的顺序,分式的除法转化为分式的乘法运算,最后算减法,注意化简后,将x=代入化间后的式子求出即可.【解答】解:原式=÷+,=×+,=+,=,当x=+1,原式=21.解方程:.【考点】无理方程.【分析】分析:将方程中左边的一项移项得:,两边平方得,,两边再平方得x﹣3=1,解得x=4,最后验根,可求解.【解答】解:,,,x﹣3=1,x=4.经检验:x=4是原方程的根,所以原方程的根是x=4.22.解方程组:.【考点】高次方程.【分析】先把第二个方程因式分解,把二元二次方程组转化为二元一次方程组,求解即可.【解答】解:由②得x﹣4y=0或x+3y=0,原方程组可化为(Ⅰ)(Ⅱ),解方程组(Ⅰ)得,方程组(Ⅱ)无解,所以原方程组的解是.23.如图,在梯形ABCD中,AD∥BC,BC=2AD,过点A作AE∥DC交BC于点E.(1)写出图中所有与互为相反向量的向量:,,;(2)求作:、.(保留作图痕迹,写出结果,不要求写作法)【考点】*平面向量;梯形.【分析】(1)根据平行四边形的性质即可解决问题.(2)根据向量和差定义即可解决.【解答】解:(1)∵AD∥EC,AE∥DC,∴四边形AECD是平行四边形,∴AD=EC,∵BC=2AD,∴BE=EC,∴所有与互为相反向量的向量有、、.(2)如图﹣=, +=+=,图中.就是所求的向量.24.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.求证:四边形AGCH是平行四边形.【考点】平行四边形的判定与性质.【分析】法1:由平行四边形对边平行,且CF与AD垂直,得到CF与BC垂直,根据AE 与BC垂直,得到AE与CF平行,得到一对内错角相等,利用等角的补角相等得到∠AGB=∠DHC,根据AB与CD平行,得到一对内错角相等,再由AB=CD,利用AAS得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到AG=CH,利用一组对边平行且相等的四边形为平行四边形即可得证;法2:连接AC,与BD交于点O,利用平行四边形的对角线互相平分得到OA=OC,OB=OD,再由AB与CD平行,得到一对内错角相等,根据CF与AD垂直,AE与BC垂直,得一对直角相等,利用ASA得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到BG=DH,根据等式的性质得到OG=OH,利用对角线互相平分的四边形为平行四边形即可得证.【解答】证明:法1:在□ABCD中,AD∥BC,AB∥CD,∵CF⊥AD,∴CF⊥BC,∵AE⊥BC,∴AE∥CF,即AG∥CH,∴∠AGH=∠CHG,∵∠AGB=180°﹣∠AGH,∠DHC=180°﹣∠CHG,∴∠AGB=∠DHC,∵AB∥CD,∴∠ABG=∠CDH,∴△ABG≌CDH,∴AG=CH,∴四边形AGCH是平行四边形;法2:连接AC,与BD相交于点O,在□ABCD中,AO=CO,BO=DO,∠ABE=∠CDF,AB∥CD,∴∠ABG=∠CDH,∵CF⊥AD,AE⊥BC,∴∠AEB=∠CFD=90°,∴∠BAG=∠DCH,∴△ABG≌CDH,∴BG=DH,∴BO﹣BG=DO﹣DH,∴OG=OH,∴四边形AGCH是平行四边形.25.某公司生产的新产品需要精加工后才能投放市场,为此王师傅承担了加工300个新产品的任务.在加工了80个新产品后,王师傅接到通知,要求加快新产品加工的进程,王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务.问接到通知后,王师傅平均每天加工多少个新产品?【考点】分式方程的应用.【分析】根据关键句子“王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务”找到等量关系列出方程求解即可.【解答】解:设接到通知后,王师傅平均每天加工x个新产品.根据题意,得.x2﹣65x+550=0,x1=55,x2=10.经检验:x1=55,x2=10都是原方程的解,但x2=10不符合题意,舍去.答:接到通知后,王师傅平均每天加工55个新产品.26.在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A、与反比例函数(k是常数,k≠0)的图象交于点B(a,3),且这个反比例函数的图象经过点C(6,1).(1)求出点A的坐标;(2)设点D为x轴上的一点,当四边形ABCD是梯形时,求出点D的坐标和四边形ABCD 的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)首先利用C点坐标计算出反比例函数中的k的值,进而可得反比例函数解析式,再利用反比例函数解析式计算出B的坐标,把B点坐标代入y=x+b可得B的值,进而可得一次函数解析式,然后可得一次函数y=x+b的图象与x轴交点A的坐标;(2)点D为x轴上的一点,因此不可能出现AD∥BC的情形,只有可能AB∥CD,设直线CD的解析式为y=x+m,把C点坐标代入可得m的值,然后可得D点坐标,分别过点B、C 作BE⊥x轴、CF⊥x轴,垂足分别为E、F,然后利用图形中的面积关系计算出四边形ABCD 的面积即可.【解答】解:(1)方法一:∵反比例函数经过点C(6,1),∴,∴k=6,∴反比例函数解析式为.∵B(a,3)在该反比例的图象上,∴,∴a=2,即B(2,3),∵y=x+b经过点B(2,3),∴y=x+1,令y=x+1=0,得x=﹣1,∴A(﹣1,0).方法二:∵点C(6,1)与点B(a,3)都在反比例函数的图象上,∴6×1=a×3=k,∴a=2,∴B(2,3).∵y=x+b经过点B(2,3),∴y=x+1,令y=x+1=0,得x=﹣1,∴A(﹣1,0).(2)∵四边形ABCD是梯形,且点D为x轴上的一点,∴不可能出现AD∥BC的情形,只有可能AB∥CD,∵直线AB 的解析式为y=x +1,∴可设直线CD 的解析式为y=x +m ,∵y=x +m 经过点C (6,1),∴y=x ﹣5,令y=x ﹣5=0,得x=5,∴D (5,0),分别过点B 、C 作BE ⊥x 轴、CF ⊥x 轴,垂足分别为E 、F ,则S 梯形ABCD =S △ABE +S 梯形BEFC ﹣S △DCF ,===12.27.已知:如图,在矩形ABCD 中,AB=3,点E 在AB 的延长线上,且AE=AC ,联结CE ,取CE 的中点F ,联结BF 、DF .(1)求证:DF ⊥BF ;(2)设AC=x ,DF=y ,求y 与x 之间的函数关系式,并写出定义域;(3)当DF=2BF 时,求BC 的长.【考点】四边形综合题.【分析】(1)方法一:如图1中,连接AF,只要证明△ABF≌DCF即可.方法二:如图2中,连接BD,与AC相交于点O,联结OF,只要证明OB=OF=OD即可.(2)由y=DF=即可解决问题.(3)首先证明CE=DF=AF,列出方程即可解决.【解答】(1)证明:方法一:如图1中,连接AF,∵AE=AC,点F为CE的中点,∴AF⊥CE,即∠AFC=90°,∵在矩形ABCD中,AB=CD,∠ABC=∠DCB=90°,∴∠CBE=180°﹣∠ABC=90°,∴EF=BF=CF=,∴∠FBC=∠FCB,即∠ABC+∠FBC=∠DCB+∠FCB,∴∠ABF=∠DCF,在△ABF和△DCF中,,∴△ABF≌DCF,∴∠AFB=∠DFC,∴∠BFD=∠AFB+∠AFD=∠AFD+∠DFC=∠AFC=90°,即DF⊥BF;方法二:如图2中,连接BD,与AC相交于点O,联结OF,∵在矩形ABCD中,AC=BD,OA=OC,OB=OD,∴OA=OC=OB=OD=AC=BD,∵点F是CE的中点,∴OF=AE,∵AE=AC,∴OF=AC=BD,∴OF=OB=OD,∴∠OBF=∠OFB,∠OFD=∠ODF,∵∠OBF+∠OFB+∠OFD+∠ODF=180°,∴2∠OFB+2∠OFD=180°,∴∠OFB+∠OFD=90°,即∠BFD=90°,∴DF⊥BF;(2)解:在Rt△ABC中,BC2=AC2﹣AB2=x2﹣9,∵AE=AC=x,∴BE=x﹣3,∴EC===,∴BF==,∴y=DF===,∴y=(x>3).(3)∵△ABF≌DCF,∴AF=DF,∵在Rt△ABC中,CE=2BF,又∵DF=2BF,∴CE=DF=AF,∴=,∴x1=0,x2=5.经检验,x1=0,x2=5都是方程的根,但x=0不符合题意.∴BC===4.。

2019-2020学年湖南省益阳市赫山区八年级(下)期末数学试卷 解析版

2019-2020学年湖南省益阳市赫山区八年级(下)期末数学试卷一、选择题:本题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)下列几组数中,能作为直角三角形三边长度的是()A.2,3,4B.4,4,5C.5,6,7D.5,12,13 2.(4分)剪纸是我国的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.3.(4分)若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.134.(4分)顺次连接矩形的各边中点,所得的四边形一定是()A.正方形B.菱形C.矩形D.梯形5.(4分)在平面直角坐标系中,点P(﹣3,4)关于x轴的对称点的坐标是()A.(﹣4,﹣3)B.(﹣3,﹣4)C.(3,4)D.(3,﹣4)6.(4分)如图,在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0)、(5,0)、(2,3),则点C的坐标是()A.(8,2)B.(5,3)C.(7,3)D.(3,7)7.(4分)小红把一枚硬币抛掷10次,结果有4次正面朝上,那么()A.正面朝上的频数是0.4B.反面朝上的频数是6C.正面朝上的频率是4D.反面朝上的频率是68.(4分)如图,CD是△ABC的边AB上的中线,且CD=AB,则下列结论错误的是()A.AD=BD B.∠A=30°C.∠ACB=90°D.AC2+BC2=AB29.(4分)正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k 的图象大致是()A.B.C.D.10.(4分)如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A.x>0B.0<x<1C.1<x<2D.x>2二、填空题:本题共8小题,每小题4分,把答案填在答题卡中对应题号后的横线上. 11.(4分)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,则点D到AB的距离是.12.(4分)五边形从某一个顶点出发可以引条对角线.13.(4分)已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为cm2.14.(4分)将点P(﹣3,4)先向下平移3个单位,再向右平移2个单位后得到点Q,则点Q的坐标是.15.(4分)在函数y=中,自变量x的取值范围是.16.(4分)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.则下列说法中,正确的序号为.①小明中途休息用了20分钟.②小明休息前爬山的平均速度为每分钟70米.③小明在上述过程中所走的路程为6600米.④小明休息前爬山的平均速度大于休息后爬山的平均速度.17.(4分)一次函数y=kx+b(k≠0)中,x与y的部分对应值如表:x﹣2﹣1012y9630﹣3那么,一元一次方程kx+b=0的解为.18.(4分)如图Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为.三、解答题:本题共8小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(8分)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5cm,求AB的长.20.(8分)已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于F、F.求证:四边形AFCE是菱形.21.(8分)在平面直角坐标系xOy中,已知直线l:y=kx+b(k≠0经过点A(﹣4,0),与y轴交于点B,如果△AOB的面积为4,求直线l的表达式.22.(10分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.23.(10分)某班同学为了解2019年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.月均用水量频数频率0<x≤560.125<x≤10m0.2410<x≤15160.3215<x≤20100.2020<x≤254n25<x≤3020.04请解答以下问题:(1)求出上面的频数分布表中的m、n的值,并把频数分布直方图补充完整;(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过10t的家庭大约有多少户?24.(10分)阅读与探究我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.请结合上述阅读材料,解决下列问题:(1)在我们所学过的特殊四边形中,是勾股四边形的是;(写出一种即可)(2)下面图1,图2均为6×6的正方形网格,点A,B,C均在格点上,请在图中标出格点D,并连接AD,CD,使得四边形ABCD符合下列要求:图1中的四边形ABCD是勾股四边形,并且是中心对称图形;图2中的四边形ABCD是勾股四边形且对角线相等,但不是中心对称图形.25.(12分)如图,已知四边形ABCD是正方形,点E、F分别在AD、DC上,BE与AF 相交于点G,且BE=AF.(1)求证:△ABE≌△DAF;(2)求证:BE⊥AF;(3)如果正方形ABCD的边长为5,AE=2,点H为BF的中点,连接GH.求GH的长.26.(12分)如表是某摩托车厂2019年前3个月摩托车各月产量:x(月)123y(辆)550600650(1)根据表格中的数据,求y(辆)与x(月)之间的函数表达式;(2)按照此趋势,你能预测该摩托车厂2019年4月摩托车月产量吗?(3)能够利用(1)中所建立函数模型预测2019年12月摩托车月产量吗?为什么?2019-2020学年湖南省益阳市赫山区八年级(下)期末数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)下列几组数中,能作为直角三角形三边长度的是()A.2,3,4B.4,4,5C.5,6,7D.5,12,13【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.【解答】解:A、∵22+32≠42,∴不能构成直角三角形;B、∵42+42≠52,∴不能构成直角三角形;C、∵52+62≠72,∴不能构成直角三角形;D、∵52+122=132,∴能构成直角三角形.故选:D.2.(4分)剪纸是我国的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:A.3.(4分)若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.13【分析】根据多边形的内角和定理:180°•(n﹣2)求解即可.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.4.(4分)顺次连接矩形的各边中点,所得的四边形一定是()A.正方形B.菱形C.矩形D.梯形【分析】根据菱形的定义:只需证明四边相等即可.【解答】解:顺次连接矩形的各边中点,根据矩形的对角线相等和中位线定理可知所得的四边形四边相等,所以是菱形.故选:B.5.(4分)在平面直角坐标系中,点P(﹣3,4)关于x轴的对称点的坐标是()A.(﹣4,﹣3)B.(﹣3,﹣4)C.(3,4)D.(3,﹣4)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.【解答】解:点A(﹣3,4)关于x轴的对称点的坐标是(﹣3,﹣4),故选:B.6.(4分)如图,在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0)、(5,0)、(2,3),则点C的坐标是()A.(8,2)B.(5,3)C.(7,3)D.(3,7)【分析】平行四边形的对边相等且互相平行,所以AB=CD,AB=5,D的横坐标为2,加上5为7,所以C的横坐标为7,因为CD∥AB,D的纵坐标和C的纵坐标相同为3.【解答】解:在平行四边形ABCD中,∵AB∥CDAB=5,∴CD=5,∵D点的横坐标为2,∴C点的横坐标为2+5=7,∵AB∥CD,∴D点和C点的纵坐标相等为3,∴C点的坐标为(7,3).故选:C.7.(4分)小红把一枚硬币抛掷10次,结果有4次正面朝上,那么()A.正面朝上的频数是0.4B.反面朝上的频数是6C.正面朝上的频率是4D.反面朝上的频率是6【分析】根据实验结果得出结论即可.【解答】解:小红做抛硬币的实验,共抛了10次,4次正面朝上,6次反面朝上,则正面朝上的频数是4,反面朝上的频数是6,故选:B.8.(4分)如图,CD是△ABC的边AB上的中线,且CD=AB,则下列结论错误的是()A.AD=BD B.∠A=30°C.∠ACB=90°D.AC2+BC2=AB2【分析】根据CD是△ABC的边AB上的中线,且CD=AB,可以得到AD、BD和CD 的关系,从而可以判断A是否正确,再根据等腰三角形的性质和三角形内角和,可以得到∠ACB的度数,从而可以得到∠ACB的度数,即可判断C是否正确,最后根据勾股定理,可以判断D是否正确;对于∠A,由题目中的条件,无法判断角的度数,从而可以判断B是否正确.【解答】解:∵CD是△ABC的边AB上的中线,且CD=AB,∴AD=BD=CD,故选项A正确,∴∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴∠2+∠3=90°,即∠ACB=90°,故选项C正确;∴AC2+BC2=AB2,故选项D正确;无法判断∠A的度数,故选项B错误;故选:B.9.(4分)正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k 的图象大致是()A.B.C.D.【分析】根据正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选:A.10.(4分)如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A.x>0B.0<x<1C.1<x<2D.x>2【分析】先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.【解答】解:把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),所以当x>1时,2x>kx+b,∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选:C.二、填空题:本题共8小题,每小题4分,把答案填在答题卡中对应题号后的横线上. 11.(4分)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,则点D到AB的距离是2.【分析】首先根据已知易求CD=2,利用角平分线的性质可得点D到AB的距离是2.【解答】解:∵BC=6,BD=4∴CD=2∵∠C=90°,AD平分∠CAB∴点D到AB的距离=CD=2.故填2.12.(4分)五边形从某一个顶点出发可以引2条对角线.【分析】从n边形的一个顶点出发有(n﹣3)条对角线,代入求出即可.【解答】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为:2.13.(4分)已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为24cm2.【分析】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【解答】解:由已知得,菱形的面积等于两对角线乘积的一半即:6×8÷2=24cm2.故答案为:24.14.(4分)将点P(﹣3,4)先向下平移3个单位,再向右平移2个单位后得到点Q,则点Q的坐标是(﹣1,1).【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【解答】解:根据题意,知点Q的坐标是(﹣3+2,4﹣3),即(﹣1,1),故答案为:(﹣1,1).15.(4分)在函数y=中,自变量x的取值范围是x>1.5.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得2x﹣3>0,解得x>1.5.故答案为:x>1.5.16.(4分)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.则下列说法中,正确的序号为①②④.①小明中途休息用了20分钟.②小明休息前爬山的平均速度为每分钟70米.③小明在上述过程中所走的路程为6600米.④小明休息前爬山的平均速度大于休息后爬山的平均速度.【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800﹣2800)米,爬山的总路程为3800米,根据路程、速度、时间的关系进行解答即可.【解答】解:①、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;②、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;③、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;④、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;综上所述,正确的有①②④.故答案为:①②④17.(4分)一次函数y=kx+b(k≠0)中,x与y的部分对应值如表:x﹣2﹣1012y9630﹣3那么,一元一次方程kx+b=0的解为x=1.【分析】利用函数值为0时对应的自变量的值为方程kx+b=0(k≠0)的解得到答案.【解答】解:∵x=1时,y=0,∴一元一次方程kx+b=0的解为x=1.故答案为x=1.18.(4分)如图Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为.【分析】以PA,PC为邻边作平行四边形PAQC,由平行四边形的性质可知O是AC中点,PQ最短也就是PO最短,所以应该过O作BC的垂线P′O,然后根据△P′OC和△ABC相似,利用相似三角形的性质即可求出PQ的最小值.【解答】解:∵∠BAC=90°,AB=3,AC=4,∴BC==5,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∵∠ACB=∠P′CO,∠CP′O=∠CAB=90°,∴△CAB∽△CP′O,∴,∴,∴OP′=,∴则PQ的最小值为2OP′=,故答案为:.三、解答题:本题共8小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(8分)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5cm,求AB的长.【分析】根据角平分线的定义、直角三角形的性质计算.【解答】解:在Rt△ABC中,∠C=90°,∠A=∠30°,∴∠ABC=60°.∵BD是∠ABC的平分线,∴∠ABD=∠CBD=30°.∴∠ABD=∠BAD,∴AD=DB,在Rt△CBD中,CD=5cm,∠CBD=30°,∴BD=10cm.由勾股定理得,BC=5,∴AB=2BC=10cm.20.(8分)已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于F、F.求证:四边形AFCE是菱形.【分析】根据EF是对角线AC的垂直平分线,可以求证△AOE≌△COF,证明四边形的对角线互相平分,垂直,就可以证出.【解答】解:∵EF是对角线AC的垂直平分线,∴OA=OC,AC⊥EF,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,∵∠AOE=∠COF,∴在△AOE和△COF中,∴△AOE≌△COF(ASA).∴OE=OF.∴四边形AFCE是平行四边形,又∵AC⊥EF,∴四边形是AFCE菱形.21.(8分)在平面直角坐标系xOy中,已知直线l:y=kx+b(k≠0经过点A(﹣4,0),与y轴交于点B,如果△AOB的面积为4,求直线l的表达式.【分析】先把A点坐标代入y=kx+b得到b=4k,则y=kx+4k,所以B(0,4k),利用三角形面积公式得到×4×|4k|=4,解得k=或﹣,从而得到直线l的表达式.【解答】解:把A(﹣4,0)代入y=kx+b得﹣4k+b=0,解得b=4k,∴y=kx+4k,当x=0时,y=kx+4k+4k,则B(0,4k),∵△AOB的面积为4,∴×4×|4k|=4,解得k=或﹣,∴直线l的表达式为y=x+2或y=﹣x﹣2.22.(10分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.【分析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可;(3)找出点A关于x轴的对称点A′,连接A′B与x轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点P的位置,然后连接AP、BP并根据图象写出点P的坐标即可.【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)△PAB如图所示,P(2,0).23.(10分)某班同学为了解2019年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.月均用水量频数频率0<x≤560.125<x≤10m0.2410<x≤15160.3215<x≤20100.2020<x≤254n25<x≤3020.04请解答以下问题:(1)求出上面的频数分布表中的m、n的值,并把频数分布直方图补充完整;(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过10t的家庭大约有多少户?【分析】(1)根据0<x≤5中频数为6,频率为0.12,则调查总户数为6÷0.12=50,进而得出在5<x≤10范围内的频数以及在20<x≤25范围内的频率;(2)根据(1)中所求即可得出不超过15t的家庭总数即可求出,不超过15t的家庭占被调查家庭总数的百分比;(3)根据样本数据中超过10t的家庭数,即可得出1000户家庭超过10t的家庭数.【解答】解:(1)∵被调查的总户数为6÷0.12=50(户),∴m=50×0.24=12,n=4÷50=0.08,补全频数分布直方图如下:(2)该小区用水量不超过15t的家庭占被调查家庭总数的百分比为0.12+0.24+0.32=0.68=68%;(3)该小区月均用水量超过10t的家庭大约有1000×(1﹣0.12﹣0.24)=640(户).24.(10分)阅读与探究我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.请结合上述阅读材料,解决下列问题:(1)在我们所学过的特殊四边形中,是勾股四边形的是矩形;(写出一种即可)(2)下面图1,图2均为6×6的正方形网格,点A,B,C均在格点上,请在图中标出格点D,并连接AD,CD,使得四边形ABCD符合下列要求:图1中的四边形ABCD是勾股四边形,并且是中心对称图形;图2中的四边形ABCD是勾股四边形且对角线相等,但不是中心对称图形.【分析】(1)根据勾股四边形的定义判断即可.(2)根据要求结合数形结合的思想画出图形即可.【解答】解:(1)矩形是勾股四边形.故答案为:矩形.(2)如图1中,四边形ABCD即为所求.如图2中,四边形ABCD即为所求.25.(12分)如图,已知四边形ABCD是正方形,点E、F分别在AD、DC上,BE与AF 相交于点G,且BE=AF.(1)求证:△ABE≌△DAF;(2)求证:BE⊥AF;(3)如果正方形ABCD的边长为5,AE=2,点H为BF的中点,连接GH.求GH的长.【分析】(1)根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE =∠D=90°,然后利用“斜边直角边”证明Rt△ABE≌Rt△DAF;(2)结合(1)得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°即可;(3)根据直角三角形斜边上的中线等于斜边的一半得GH=BF,利用勾股定理求出BF 的长即可得出答案.【解答】解:(1)证明:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在Rt△ABE和Rt△DAF中,,∴Rt△ABE≌Rt△DAF(HL);(2)证明:∵Rt△ABE≌Rt△DAF,∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,知识像烛光,能照亮一个人,也能照亮无数的人。

2019-2020学年江苏省苏州市相城区八年级下学期期末数学试卷 (解析版)

2019-2020学年江苏省苏州市相城区八年级第二学期期末数学试卷一、选择题(共10小题).1.式子在实数范围内有意义,则x的取值范围是()A.x>1B.x≥1C.x<1D.x≤12.下列调查中,适宜采用普查方式的是()A.了解卫星“嫦娥一号”零部件的质量情况B.了解一批灯泡的使用寿命C.了解江苏省中学生观看电影《厉害了,我的国》的情况D.了解苏州市中小学生的课外阅读时间3.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个4.使式子÷有意义的x值是()A.x≠3且x≠﹣5B.x≠3且x≠4C.x≠4且x≠﹣5D.x≠3且x≠4且x≠﹣55.下列整数中,与1+最接近的是()A.3B.4C.5D.66.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3;1,连接AE交BD于点F,则△DEF的面积与△DAF的面积之比为()A.9:16B.3:4C.9:4D.3:27.如图,菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,将△BOC绕着点C 旋转180°得到△B′O′C′,则点A与点B′之间的距离为()A.6B.8C.10D.128.函数y=(k为常数)的图象经过点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y39.如图,已知点E是正方形ABCD的边AB边上的黄金分割点,且AE>EB,若S1表示AE为边长的正方形面积,S2表示以BC为长,BE为宽的矩形面积,S3表示正方形ABCD 除去S1和S2剩余的面积,则S3:S2的值为()A.B.C.D.10.如图,Rt△OAB中,∠OAB=90°,OB=6,反比例函数y=(k≠0)的图象经过点B,将Rt△OAB沿着x轴向右平移6个单位,得到Rt△CDE,反比例函数图象恰好经过CE的中点F,则k的值为()A.B.2C.4D.8二、填空题(共8小题).11.化简:=.12.在一幅比例尺为1:400000的地图上,某条道路的长度为1.5cm,则这条道路的实际长度为km.13.一个不透明的袋子里有5个红球和3个白球,每个球除颜色以外都相等,从袋中任意摸出一个球,是红球的可能性(填“大于”“小于”或“等于”)是白球的可能性.14.如果反比例函数y=(k为常数)的图象在二、四象限,那么k的取值范围是.15.实数a在数轴上的位置如图所示,则化简后为.16.如图,矩形OBCD的顶点C的坐标为(1,3),则BD=.17.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当AD平分∠BAC时,AP的长为.18.如图,在△ABC中,AB=AC=10,BC=12,点D是BC的中点,以点D为顶点作∠MDN=∠B,当△DEF的面积等于△ABC面积的时,线段EF=.三、解答题(本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.计算:|﹣|﹣()2.20.解方程:=1﹣.21.(1)先化简,再求值:(1﹣)÷,其中x=﹣1.(2)已知m是的小数部分,求的值.22.某校组织八年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:成绩x/分频数频率第1段x<6020.04第2段60≤x<7060.12第3段70≤x<809b第4段80≤x<90a0.36第5段90≤x≤100150.30请根据所给信息,解答下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)样本中,第5段成绩对应的圆心角度数是°;(4)已知该年级有400名学生参加这次比赛,若成绩在80分以上(含80分)的为优,估计该年级成绩为优的有多少人?23.正比例函数y1=2x的图象与反比例函数y2=的图象有一个交点的横坐标是2.(1)求k的值和两个函数图象的另一个交点坐标;(2)直接写出y1<y2的解集.24.如图,在△ABC中,AB=AC,若AB2=BD•BC.求证:△ABD是等腰三角形.25.码头工人往一艘轮船上装载货物,装完货物所需时间y(min)与装载速度x(t/min)之间的函数关系如图.(1)这批货物的质量是多少?(2)写出y与x之间的函数表达式;(3)轮船到达目的地后开始卸货,如果以5t/min的速度卸货,那么需要多少时间才能卸完货物?26.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是线段BC、AD、OB、OD的中点,连接EH、HF、FG、GE.(1)求证:四边形GEHF是平行四边形;(2)当EF和BD满足条件时,四边形GEHF是矩形;(3)当EF和BD满足条件时,四边形GEHF是菱形.27.如图,在平面直角坐标xOy中,直线y=2x+b经过点A(﹣2,0),与y轴交于点B,与反比例函数y=(x>0)的图形交于点C(m,6),过B作BD⊥y轴,交反比例函数y=(x>0)的图形于点D,连接AD、CD.(1)求b,k的值;(2)求△ACD的面积;(3)在坐标轴上是否存在点E(除点O),使得△ABE与△AOB相似,若存在,请求出点E的坐标;若不存在,请说明理由.28.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.①求证:△ABC∽△DCA;②求证:△ABC是比例三角形;(3)如图2,在(2)的条件下,当∠ADC=90°时,求出的值.参考答案一、选择题(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.)1.式子在实数范围内有意义,则x的取值范围是()A.x>1B.x≥1C.x<1D.x≤1【分析】根据被开方数大于等于0列式计算即可得解.解:由题意得,x﹣1≥0,解得x≥1.故选:B.2.下列调查中,适宜采用普查方式的是()A.了解卫星“嫦娥一号”零部件的质量情况B.了解一批灯泡的使用寿命C.了解江苏省中学生观看电影《厉害了,我的国》的情况D.了解苏州市中小学生的课外阅读时间【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.解:A、了解卫星“嫦娥一号”零部件的质量情况,适合普查方式,故A选项正确;B、了解一批灯泡的使用寿命,适合抽样调查,故B选项错误;C、了解江苏省中学生观看电影《厉害了,我的国》的情况,适合抽样调查,故C选项错误;D、了解苏州市中小学生的课外阅读时间,适合抽样调查,故D选项错误;故选:A.3.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.解:第1个图形,是轴对称图形,也是中心对称图形,符合题意;第2个图形,是轴对称图形,不是中心对称图形,不合题意;第3个图形,是轴对称图形,也是中心对称图形,符合题意;第4个图形,是轴对称图形,也是中心对称图形,符合题意.故选:C.4.使式子÷有意义的x值是()A.x≠3且x≠﹣5B.x≠3且x≠4C.x≠4且x≠﹣5D.x≠3且x≠4且x≠﹣5【分析】根据分式有意义的条件可得x﹣3≠0,x﹣4≠0,根据除数不能为零可得x+5≠0,再解即可.解:由题意得:x﹣3≠0,x﹣4≠0,x+5≠0,解得:x≠3,4,﹣5,故选:D.5.下列整数中,与1+最接近的是()A.3B.4C.5D.6【分析】先确定的范围和最接近的整数,再确定与1+最接近的整数.解:因为3.12=9.61,3.22=10.24,所以3.1<<3.2.所以接近整数3.所以1+最接近4.故选:B.6.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3;1,连接AE交BD于点F,则△DEF的面积与△DAF的面积之比为()A.9:16B.3:4C.9:4D.3:2【分析】先根据平行四边形的性质得到AB=CD,AB∥CD,则DE:AB=3:4,再证明△DEF∽△BAF,利用相似比得到=,然后根据三角形面积公式求△DEF的面积与△DAF的面积之比.解:∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∵DE:EC=3;1,∴DE:AB=DE:DC=3:4,∵DE∥AB,∴△DEF∽△BAF,∴==,∴△DEF的面积与△DAF的面积之比=EF:AF=3:4.故选:B.7.如图,菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,将△BOC绕着点C 旋转180°得到△B′O′C′,则点A与点B′之间的距离为()A.6B.8C.10D.12【分析】根据菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,可得AC⊥BD,所以∠BOC=90°,根据△BOC绕着点C旋转180°得到△B′O′C,所以∠CO′B′=∠BOC=90°,AO′=6,OB′=8,再根据勾股定理即可求出点A与点B′之间的距离.解:∵菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,∴AC⊥BD,∴∠BOC=90°,∵△BOC绕着点C旋转180°得到△B′O′C,∴∠CO′B′=∠BOC=90°,∴O′C=OC=OA=AC=2,∴AO′=6,∵OB=OD=OB′=BD=8,在Rt△AO′B′中,根据勾股定理,得AB′==10.则点A与点B′之间的距离为10.故选:C.8.函数y=(k为常数)的图象经过点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.解:∵反比例函数y=(k为常数)中,则﹣k2﹣1<0,∴此函数的图象在二、四象限,在每一象限内y随x的增大而增大,∵x1<x2<0<x3,∴y1>0、y2>0,y3<0,∵x1<x2,∴y1<y2,∴y2>y1>y3.故选:C.9.如图,已知点E是正方形ABCD的边AB边上的黄金分割点,且AE>EB,若S1表示AE为边长的正方形面积,S2表示以BC为长,BE为宽的矩形面积,S3表示正方形ABCD 除去S1和S2剩余的面积,则S3:S2的值为()A.B.C.D.【分析】根据黄金分割的定义:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB,进行计算即可.解:如图,设AB=1,∵点E是正方形ABCD的边AB边上的黄金分割点,且AE>EB,∴AE=GF=,∴BE=FH=AB﹣AE=,∴S3:S2=(GF•FH):(BC•BE)=(×):(1×)=.故选:A.10.如图,Rt△OAB中,∠OAB=90°,OB=6,反比例函数y=(k≠0)的图象经过点B,将Rt△OAB沿着x轴向右平移6个单位,得到Rt△CDE,反比例函数图象恰好经过CE的中点F,则k的值为()A.B.2C.4D.8【分析】设B(a,b),根据平移性质用a、b表示E、C点,进而由中点公式求得E点坐标,再将B、E坐标代入反比例函数解析式中,求得a的值,再用k表示B点坐标,进而由两点距离公式列出k的方程解得k便可.解:设B(a,b),由平移知,E(a+6,b),C(6,0),∵F是CE的中点,∴F(a+6,b),∵B、F点在双曲线y=上,∴k=ab=(a+6),∴a=4,∵B(4,),∴OB=∵OB=6,∴,∵k>0,∴k=故选:D.二、填空题(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上)11.化简:=.【分析】直接利用分式的性质分别化简得出答案.解:原式==.故答案为:.12.在一幅比例尺为1:400000的地图上,某条道路的长度为1.5cm,则这条道路的实际长度为6km.【分析】设这条道路的实际长度是xcm,利用比例尺的意义得到1.5:x=1:400000,然后利用比例性质求出x,再把单位化为km即可.解:设这条道路的实际长度是xcm,根据题意得1.5:x=1:400000,解得x=600000.600000cm=6km.所以这条道路的实际长度是6km.故答案为:6.13.一个不透明的袋子里有5个红球和3个白球,每个球除颜色以外都相等,从袋中任意摸出一个球,是红球的可能性大于(填“大于”“小于”或“等于”)是白球的可能性.【分析】根据“哪种球的数量大哪种球的可能性就大”直接确定答案即可.解:∵袋子里有5个红球,3个白球,∴红球的数量大于白球的数量,∴从中任意摸出1只球,是红球的可能性大于白球的可能性.故答案为:大于.14.如果反比例函数y=(k为常数)的图象在二、四象限,那么k的取值范围是k >2.【分析】由反比例函数的图象位于第二、四象限,得出2﹣k<0,即可得出结果.解:∵反比例函数的图象位于第二、四象限,∴2﹣k<0,∴k>2,故答案为:k>2.15.实数a在数轴上的位置如图所示,则化简后为7.【分析】根据数轴得到a的范围,从而得到a﹣4与a﹣11的符号,然后利用二次根式的性质即可求解.解:根据数轴得:5<a<10,∴a﹣4>0,a﹣11<0,∴原式=a﹣4+11﹣a=7.故答案是:7.16.如图,矩形OBCD的顶点C的坐标为(1,3),则BD=.【分析】连接OC,因为四边形OBCD是矩形,所以OC=BD,C的坐标为(1,3),就可求出OC的长度,那么就可求出BD的长度.解:连接OC,∵顶点C的坐标为(1,3).∴OC==∵四边形OBCD是矩形.∴BD=OC=.17.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当AD平分∠BAC时,AP的长为.【分析】根据勾股定理求出AC,根据角平分线的定义、平行线的性质得到∠ADP=∠PAD,得到PA=PD,根据相似三角形的性质列出比例式,计算即可.解:∵∠C=90°,AB=5,BC=4,∴AC==3,∵PQ∥AB,∴∠BAD=∠ADP,又∵AD平分∠BAC,∴∠BAD=∠PAD,∴∠ADP=∠PAD,∴PA=PD,∴QP=2PA,∵PQ∥AB,∴△CPQ∽△CAB,∴=,即=,解得PA=.故答案为:.18.如图,在△ABC中,AB=AC=10,BC=12,点D是BC的中点,以点D为顶点作∠MDN=∠B,当△DEF的面积等于△ABC面积的时,线段EF=5.【分析】利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出,进而得出△BDF∽△CED∽△DEF.利用△DEF的面积等于△ABC的面积的,求出DH的长,进而利用S△DEF的值求出EF即可.解:连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.∵AB=AC,D是BC的中点,∴AD⊥BC,BD=BC=6.在Rt△ABD中,AD2=AB2﹣BD2,∴AD=8,∴S△ABC=BC•AD=×12×8=48.S△DEF=S△ABC=×48=12.又∵AD•BD=AB•DH,∴DH=,∵∠B+∠BDF+∠BFD=180°,∠EDF+∠BDF+∠CDE=180°,又∵∠EDF=∠B,∴∠BFD=∠CDE,由AB=AC,得∠B=∠C,∴△BDF∽△CED,∴.∵BD=CD,∴.又∵∠C=∠EDF,∴△BDF∽△CED∽△DEF,∴∠DFB=∠EFD∵DG⊥EF,DH⊥BF,∴DH=DG=.∵S△DEF=×EF×DG=12,∴EF=5.故答案为:5.三、解答题(本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.计算:|﹣|﹣()2.【分析】直接利用二次根式的性质化简得出答案.解:原式=+2﹣=2.20.解方程:=1﹣.【分析】把分式方程化为整式方程,再求解.解:原方程即去分母得x=2x﹣1+2x=﹣1经检验:x=﹣1是原方程的解.所以原方程的解是x=﹣121.(1)先化简,再求值:(1﹣)÷,其中x=﹣1.(2)已知m是的小数部分,求的值.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)先根据题意得出m=﹣1,继而知=﹣1,再利用完全平方公式和二次根式的性质化简,最后将m、的值代入计算可得.解:(1)原式=(﹣)÷=•=x+1,当x=﹣1时,原式=﹣1+1=.(2)由题意知,m=﹣1,则==+1,∴m<,则原式==|m﹣|=﹣m=+1﹣(﹣1)=+1﹣+1=2.22.某校组织八年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:成绩x/分频数频率第1段x<6020.04第2段60≤x<7060.12第3段70≤x<809b第4段80≤x<90a0.36第5段90≤x≤100150.30请根据所给信息,解答下列问题:(1)a=18,b=0.18;(2)请补全频数分布直方图;(3)样本中,第5段成绩对应的圆心角度数是108°;(4)已知该年级有400名学生参加这次比赛,若成绩在80分以上(含80分)的为优,估计该年级成绩为优的有多少人?【分析】(1)第1段的频数是2,对应的频率为0.04,可求出调查人数,进而求出a、b 的值;(2)求出a、b的值,即可补全频数分布直方图;(3)样本中“第5段”的人数占调查人数的,因此相应的圆心角的度数占360°的,(4)样本估计总体,样本中,成绩优秀的占调查人数的,因此估计总体400名的是成绩优秀的人数.解:(1)2÷0.04=50(人),a=50×0.36=18(人),b=9÷50=0.18,故答案为:18,0.18;(2)补全频数分布直方图如图所示:(3)360°×=108°,故答案为:108;(4)400×=264(人),答:该年级400名学生中成绩在80分以上(含80分)的有264人.23.正比例函数y1=2x的图象与反比例函数y2=的图象有一个交点的横坐标是2.(1)求k的值和两个函数图象的另一个交点坐标;(2)直接写出y1<y2的解集x<﹣2或0<x<2.【分析】(1)把x=2代入数y1=2x可求出交点坐标为(2,4),代入y=求得k的值,再根据反比例函数和正比例函数的对称性可得另一个交点坐标;(2)画出两个函数的图象,根据图象和交点坐标可得y1<y2的解集.解:(1)把x=2代入y=2x得,y=4,∴交点坐标为(2,4),代入数y=得,k=2×4=8,由反比例函数和正比例函数的对称性可得另一个交点坐标为(﹣2,﹣4),答:k的值为8,另一个交点坐标为(﹣2,﹣4);(2)正比例函数y1=2x的图象与反比例函数y2=的图象如图所示:从图象可知,y1<y2的解集为x<﹣2或0<x<2;故答案为:x<﹣2或0<x<2.24.如图,在△ABC中,AB=AC,若AB2=BD•BC.求证:△ABD是等腰三角形.【分析】由两边对应成比例夹角相等的两个三角形相似,证明△BAD∽△BCA,得∠BAD=∠C,进而由等腰三角形的性质得∠B=∠BAD,再由等腰三角形的判定得结论.解:∵AB2=BD•BC,∴,∵∠B=∠B,∴△BAD∽△BCA,∴∠BAD=∠C,∵AB=AC,∴∠B=∠C,∴∠B=∠BAD,∴AD=BD,∴△ABD是等腰三角形.25.码头工人往一艘轮船上装载货物,装完货物所需时间y(min)与装载速度x(t/min)之间的函数关系如图.(1)这批货物的质量是多少?(2)写出y与x之间的函数表达式;(3)轮船到达目的地后开始卸货,如果以5t/min的速度卸货,那么需要多少时间才能卸完货物?【分析】(1)根据函数图象中的数据可以求得这批货的质量;(2)设y与x的函数关系式是y=,代入函数图象中的数据即可得出结果;(3)利用函数关系式,当卸货速度x=5时,得到y=120即可.解:(1)由题意可得,这批货物的质量是:1.5×400=600(t),答:这批货物的质量是600t;(2)设y与x的函数关系式是y=,把(1.5,400)代入得:400=,解得:k=600,即y与x的函数关系式是y=;(3)当x=5时,y==120(min).答:需要120min才能卸完货物.26.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是线段BC、AD、OB、OD的中点,连接EH、HF、FG、GE.(1)求证:四边形GEHF是平行四边形;(2)当EF和BD满足条件EF=BD时,四边形GEHF是矩形;(3)当EF和BD满足条件EF⊥BD时,四边形GEHF是菱形.【分析】(1)证明FH=EG,FH∥EG即可.(2)根据对角线相等的平行四边形是矩形即可判断.(3)根据对角线垂直的平行四边形是菱形即可判断.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AF=DF,DH=OH,∴FH∥AC,FH=OA,∵BG=GO,BE=EC,∴EG∥AC,EG=OC,∴FH∥EG.FH=EG,∴四边形GEHF是平行四边形.(2)解:当EF=BD时,四边形GEHF是矩形.理由:∵EF=BD.BG=OG,OH=DH,∴GH=EF,∵四边形GEHF是平行四边形,∴四边形GEHF是矩形.故答案为:EF=BD.(3)解:当EF⊥BD时,四边形EGHF是菱形.理由:∵四边形GEHF是平行四边形,EF⊥GH,∴四边形GEHF是菱形.故答案为EF⊥BD.27.如图,在平面直角坐标xOy中,直线y=2x+b经过点A(﹣2,0),与y轴交于点B,与反比例函数y=(x>0)的图形交于点C(m,6),过B作BD⊥y轴,交反比例函数y=(x>0)的图形于点D,连接AD、CD.(1)求b,k的值;(2)求△ACD的面积;(3)在坐标轴上是否存在点E(除点O),使得△ABE与△AOB相似,若存在,请求出点E的坐标;若不存在,请说明理由.【分析】(1)把A点坐标代入一次函数解析式中求得b,把C点坐标代入求得的一次函数解析式求得m,得出C点坐标,再把求得的C点坐标代入反比例函数解析式中求得k;(2)由一次函数解析式求得其函数图象与y轴的交点B的坐标,再根据BD⊥y轴,得D点的纵坐标与B点纵坐标相等,将其纵坐标代入反比例函数解析式求得D点坐标,再根据三角形的面积公式求得△ABD和△BCD的面积,再求其和便可为△ACD的面积;(3)分两种情况:∠BAE=90°;∠ABE=90°.利用相似三角形的知识进行解答.解:(1)∵直线y=2x+b经过点A(﹣2,0),∴﹣4+b=0,∴b=4,∴直线y=2x+b为y=2x+4,把C(m,6)代入y=2x+4中,得6=2m+4,解得,m=1,∴C(1,6),把C(1,6)代入反比例函数y=中,得k=6;(2)令x=0,得y=2x+4=4,∴B(0,4),∵BD⊥y轴于B,∴D点的纵坐标为4,把y=4代入反比例函数y==中,得x=,∴D(,4),∴,∴4+×(6﹣4)=4.5;(3)当∠BAE=90°时,如图1,∵∠BAE=∠BOA=90°,∠ABE=∠OBA,∴此时△AOB∽△EAB,∴,即,∴BE=5,∴OE=1,∴E(0,﹣1),当∠ABE=90°时,如图2,∵∠ABE=∠AOB=90°,∠OAB=∠BAE,∴△AOB∽△ABE,∴,∴,∴OE=AE﹣AO=10﹣2=8,∴E(8,0),故存在点E(除点O),使得△ABE与△AOB相似,其坐标为E(8,0)或(0,﹣1).28.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.①求证:△ABC∽△DCA;②求证:△ABC是比例三角形;(3)如图2,在(2)的条件下,当∠ADC=90°时,求出的值.【分析】(1)根据比例三角形的定义分AB2=BC•AC、BC2=AB•AC、AC2=AB•BC 三种情况分别代入计算可得;(2)①先判断出∠ACB=∠CAD,得出△ABC∽△DCA;②由△ABC∽△DCA得出CA2=BC•AD,再由∠ADB=∠CBD=∠ABD知AB=AD 即可得;(3)作AH⊥BD,由AB=AD知,BH=BD,再证△ABH∽△DBC得AB•BC=BH •DB,即AB•BC=BD2,结合AB•BC=AC2推出BD2=AC2,据此可得答案.解:(1)∵△ABC是比例三角形,且AB=2、BC=3,①当AB2=BC•AC时,得:4=3AC,解得:AC=;②当BC2=AB•AC时,得:9=2AC,解得:AC=;③当AC2=AB•BC时,得:AC2=6,解得:AC=(负值舍去);所以当AC=或或时,△ABC是比例三角形;(2)①∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,②由①知,△ABC∽△DCA,∴,即CA2=BC•AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC•AB,∴△ABC是比例三角形;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴,即AB•BC=BH•DB,∴AB•BC=BD2,又∵AB•BC=AC2,∴BD2=AC2,∴=.。

2019-2020学年重庆市南岸区八年级下学期期末数学试卷 (解析版)

2019-2020学年重庆市南岸区八年级第二学期期末数学试卷一、选择题(共12小题).1.把2ax2+4ax进行因式分解,提取的公因式是()A.2a B.2x C.ax D.2ax2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.若代数式有意义,则实数x的取值范围是()A.x≠﹣1B.x≠﹣2C.x=﹣1D.x=24.正多边形的一个内角是150°,则这个正多边形的边数为()A.10B.11C.12D.135.在平面直角坐标系内,把点A(5,﹣2)向右平移3个单位,再向下平移2个单位,得到的点B的坐标为()A.(2,﹣4)B.(8,﹣4)C.(8,0)D.(2,0)6.如图,在△ABC中,BD平分∠ABC,DE⊥BC,垂足为E.若∠C=60°,CE=1,则点D到AB的距离为()A.1B.C.2D.7.如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是()A.OA=OC B.AB=CD C.AD=BC D.∠ABD=∠CBD 8.如图,要测定被池塘隔开的A,B两点的距离,可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=42m,BC=64m,DE=26m,则AB等于()A..42m B..52m C..56m D..64m9.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PB=BC,则下列四种不同方法的作图中,作法正确的是()A.B.C.D.10.如图,已知直线y=ax+3与y=bx﹣3交点为P,根据图象有以下3个结论:①a>0;②b>0;③x>2是不等式ax+3>bx﹣3的解集.其中正确的个数是()A.0B.1C.2D.311.等腰三角形一腰长为5,这一腰上的高为3,则这个等腰三角形底边长为()A.B.C.或D.4或12.如图,在平面直角坐标系内,Rt△ABC的点A在第一象限,点B与点A关于原点对称,∠C=90°.AC与x轴交于点D,点E在x轴上,CD=2AD.若AD平分∠OAE,△ADE的面积为1,则△ABC的面积为()A.6B.9C.12D.15二、填空题(共6小题).13.因式分解:x2﹣10x+25=.14.计算:=.15.如图,是正在铺设的人行道上地板砖的部分,是由正六边形和四边形镶嵌而成的图形,则图中的四边形ABCD中的锐角∠BAD的度数是度.16.在抗疫情期间,准备用甲、乙两种货车将68吨的抗疫物资运往武汉某地,甲种货车的载重量为5吨,乙种货车的载重量为4吨,若安排甲、乙两种车共15辆,则甲种货车至少安排的辆数为.17.如图,规定程序运行到“判断结果是否大于100”为第一次运算,若运算进行了三次才停止,则满足条件的整数x的个数为.18.如图,在平行四边形ABCD中,对角线AC,BD交于点O,且∠ACB=45°,AE⊥BD,垂足为F,交BC于点E.若AB=AE,AO=2,则BE的长为.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.19.计算:(1);(2).20.解下列不等式或不等式组,并把解集在数轴上表示出来.(1);(2)21.(1)在如图所示的直角坐标系内,描出点A(1,2),B(2,2),C(2,1).并连接OA,AB,BC,CO;(2)将(1)中所画的图形向下平移四个单位,画出平移后的图形;(3)将(1)中所画的图形绕原点O逆时针旋转90°,画出旋转后的图形.22.如图,在△ABC中,点D是BC上一点,且BD=DA=AC.把边AB绕着点A顺时针旋转一定角度得到∠BAE,连接DE,交AB于点F.(1)若∠B=α,请用含α的式子表示∠C;(2)若∠CAD=∠BAE,求证:DA平分∠CDE.23.某社区的游泳馆按照顾客游泳的次数收取费用,每次的全票价为40元.在盛夏即将来临时,为吸引更多的顾客再次光顾,推出了以下两种收费方式.方式一:先交250元会员费,每次游泳按照全票价的7.5折收取费用;方式二:第一次收全票价,以后每次按照全票价的9.5折收取费用.(1)按照方式一的总费用为y1,按照方式二的总费用为y2,请分别求出y1,y2与游泳次数x的函数关系式;(2)小李把自己的学习和工作时间规划了一下,他在今年可能去该游泳馆的次数不超过40次,请为小李推荐采用哪种方式缴费合算?24.在脱贫攻坚的关键一年里,重庆市某地根据当地的高山气候,该村的村支书决定带领村民把村中余下的荒地种上甲、乙两种水果树.已知每棵甲种树苗比每棵乙种树苗贵6元,用400元购买甲种树苗的棵数与340元购买乙种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格;(2)该村计划用3610元购买100棵甲、乙两种树苗,最多能买多少棵甲种树苗?25.如图所示,在四边形ABCD中,E是BC的中点,F是线段DE上一点(不与点D重合),AB∥DE,AF∥DC.(1)如图1,当点F与E重合时,求证:四边形AFCD是平行四边形;(2)如图2,当点F不与E重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,当∠BCD=90°,且CD=CE,F恰好运动到DE的中点时,直接写出AB 与DC的数量关系.四、解答题(本大题1个小题,共8分)解答时,必须给出必要的验算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡对应的位置上.26.把△ABC绕着点A逆时针旋转α,得到△ADE.(1)如图1,当点B恰好在ED的延长线上时,若α=60°,求∠ABC的度数;(2)如图2,当点C恰好在ED的延长线上时,求证:CA平分∠BCE;(3)如图3,连接CD,如果DE=DC,连接EC与AB的延长线交于点F,直接写出∠F的度数(用含α的式子表示).参考答案一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.把2ax2+4ax进行因式分解,提取的公因式是()A.2a B.2x C.ax D.2ax【分析】直接利用公因式的定义分析得出答案.解:2ax2+4ax=2ax(x+2).故选:D.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、既是轴对称图形,又是中心对称图形,故此选项符合题意.故选:D.3.若代数式有意义,则实数x的取值范围是()A.x≠﹣1B.x≠﹣2C.x=﹣1D.x=2【分析】直接利用分式有意义的定义进而分析得出答案.解:代数式有意义,则x+1≠0,解得:x≠﹣1.故选:A.4.正多边形的一个内角是150°,则这个正多边形的边数为()A.10B.11C.12D.13【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解:外角是:180°﹣150°=30°,360°÷30°=12.则这个正多边形是正十二边形.故选:C.5.在平面直角坐标系内,把点A(5,﹣2)向右平移3个单位,再向下平移2个单位,得到的点B的坐标为()A.(2,﹣4)B.(8,﹣4)C.(8,0)D.(2,0)【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.解:原来点的横坐标是5,纵坐标是﹣2,向右平移3个单位,再向下平移2个单位得到新点的横坐标是5+3=8,纵坐标为﹣2﹣2=﹣4.则点B的坐标为(8,﹣4).故选:B.6.如图,在△ABC中,BD平分∠ABC,DE⊥BC,垂足为E.若∠C=60°,CE=1,则点D到AB的距离为()A.1B.C.2D.【分析】解直角三角形求得DE,然后根据角平分线的性质即可求得结论.解:∵DE⊥BC,∠C=60°,CE=1,∴DE=CE=,∵BD平分∠ABC,∴点D到AB和BC的距离相等,∵DE⊥BC,∴点D到AB的距离为,故选:B.7.如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是()A.OA=OC B.AB=CD C.AD=BC D.∠ABD=∠CBD 【分析】根据平行四边形的性质分别判断得出答案即可.解:A、∵平行四边形ABCD的对角线AC、BD相交于点O,∴OA=OC,故此选项不符合题意;B、∵四边形ABCD是平行四边形,∴AB=CD,故此选项不符合题意;C、∵四边形ABCD是平行四边形,∴AD=BC,故此选项不符合题意;D、当四边形ABCD是菱形时,∠ABD=∠CBD,故此选项符合题意;故选:D.8.如图,要测定被池塘隔开的A,B两点的距离,可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=42m,BC=64m,DE=26m,则AB等于()A..42m B..52m C..56m D..64m【分析】利用三角形的中位线定理即可解决问题.解:∵CD=DA,CE=EB,∴DE是△ABC的中位线,∴DE=AB,∵DE=26m,∴AB=52m,故选:B.9.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PB=BC,则下列四种不同方法的作图中,作法正确的是()A.B.C.D.【分析】直接利用线段垂直平分线的性质作出AC的垂直平分线进而得出答案.解:用尺规在BC上确定一点P,使PA+PB=BC,如图所示:,先做出AC的垂直平分线,即可得出AP=PC,即可得出PC+BP=PA+PB=BC.故选:B.10.如图,已知直线y=ax+3与y=bx﹣3交点为P,根据图象有以下3个结论:①a>0;③x>2是不等式ax+3>bx﹣3的解集.其中正确的个数是()A.0B.1C.2D.3【分析】根据一次函数的图象和性质可得a<0;b>0;当x<2时,直线y=ax+3在直线y=bx﹣3的上方,即x<2是不等式ax+3>bx﹣3的解集.解:由图象可知,a<0,故①错误;b>0,故②正确;当x<2是直线y=ax+3在直线y=bx﹣3的上方,即x<2是不等式ax+3>bx﹣3的解集,故③错误.故选:B.11.等腰三角形一腰长为5,这一腰上的高为3,则这个等腰三角形底边长为()A.B.C.或D.4或【分析】此题要分两种情况进行讨论:(1)当等腰三角形的顶角是钝角时,腰上的高在三角形的外部,先在Rt△ACO中由勾股定理求出AO=4,于是OB=AB+AO=9,然后在Rt△BCO中利用勾股定理即可求出BC即可;(2)当等腰三角形的顶角是锐角时,腰上的高在三角形的内部,在Rt△ACO中由勾股定理求出AD=4,于是DB=AB﹣AD=1,然后在Rt△BCD中利用勾股定理求出BC即可.解:分两种情况:(1)顶角是钝角时,如图1所示:在Rt△ACO中,由勾股定理,得AO2=AC2﹣OC2=52﹣32=16,OB=AB+AO=5+4=9,在Rt△BCO中,由勾股定理,得BC2=OB2+OC2=92+32=90,∴BC==3;(2)顶角是锐角时,如图2所示:在Rt△ACD中,由勾股定理,得AD2=AC2﹣DC2=52﹣32=16,∴AD=4,DB=AB﹣AD=5﹣4=1.在Rt△BCD中,由勾股定理,得BC2=DB2+DC2=12+32=10,∴BC=;综上可知,这个等腰三角形的底的长度为3或.故选:C.12.如图,在平面直角坐标系内,Rt△ABC的点A在第一象限,点B与点A关于原点对称,∠C=90°.AC与x轴交于点D,点E在x轴上,CD=2AD.若AD平分∠OAE,△ADE的面积为1,则△ABC的面积为()A.6B.9C.12D.15【分析】连接OC,根据直角三角形的性质可得OC=OA,进而得出∠OCD=∠OAD,根据角平分线的定义可得∠OAD=∠EAD,从而得出△ADE∽△CDO,易得ON=2EM,BC=2ON=4EM,再根据CD=2AD可得AC=3AD,所以△ABC的面积为△ADE的面积的面积的12倍.解:如图,连接OC,作EM⊥AD于M,作ON⊥AC于N,由点B与点A关于原点对称.可得OA=OB,又∵△ABC是直角三角形,∴OC=OA,所以∠OCD=∠OAD,∵AD平分∠OAE,∴得∠OAD=∠EAD,∴∠OAD=∠EAD,又∵∠ADE=∠CDO,∴△ADE∽△CDO,∵CD=2AD,∴ON=2EM,AC=3AD,∴BC=2ON=4EM,∴=.故选:C.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.因式分解:x2﹣10x+25=(x﹣5)2.【分析】此题可直接用完全平方公式分解因式.完全平方公式:a2±2ab+b2=(a±b)2.解:x2﹣10x+25=(x﹣5)2.14.计算:=.【分析】直接利用分式的除法运算法则计算得出答案.解:=2x2y•=.故答案为:.15.如图,是正在铺设的人行道上地板砖的部分,是由正六边形和四边形镶嵌而成的图形,则图中的四边形ABCD中的锐角∠BAD的度数是60度.【分析】根据正六边形内角和定理,求出每个内角度数,然后根据邻补角求出答案.解:正六边形内角和(6﹣2)×180°=720°,所以每个内角度数720°÷6=120°,∴∠BAD=180°﹣120°=60°,故答案为60.16.在抗疫情期间,准备用甲、乙两种货车将68吨的抗疫物资运往武汉某地,甲种货车的载重量为5吨,乙种货车的载重量为4吨,若安排甲、乙两种车共15辆,则甲种货车至少安排的辆数为8.【分析】设甲种货车x辆,乙种货车(15﹣x)辆,由甲货车总的载重量+乙货车总的载重量≥68吨,列出不等式可求解.解:设甲种货车x辆,乙种货车(15﹣x)辆,由题意可得:5x+4(15﹣x)≥68,∴x≥8,答:甲种货车至少安排8辆.故答案为8.17.如图,规定程序运行到“判断结果是否大于100”为第一次运算,若运算进行了三次才停止,则满足条件的整数x的个数为7.【分析】由该运算进行了三次才停止,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为正整数即可得出结论.解:依题意,得:,解得:4<x≤11.又∵x为整数,∴x可以为5,6,7,8,9,10,11,∴满足条件的整数x的个数为7.故答案为:7.18.如图,在平行四边形ABCD中,对角线AC,BD交于点O,且∠ACB=45°,AE⊥BD,垂足为F,交BC于点E.若AB=AE,AO=2,则BE的长为.【分析】过点A作AH⊥BC于H,过点B作BG⊥AO于点G,由平行四边形的性质求得AC,再由等腰直角三角形的性质和勾股定理求得CH,再证明BA=BO,求得OG,再由等腰直角三角形求得BC,进而得BH,再由等腰三角形的性质求得BE.解:如图,过点A作AH⊥BC于H,过点B作BG⊥AO于点G,∵四边形ABCD是平行四边形,∴AC=2AO=4,∵∠ACB=45°,AH⊥BC,∴∠ACB=∠HAC=45°,∴AH=HC,∵AH2+HC2=AC2,∴AH=HC=2,∵AB=AE,∴BH=EH,∠BAH=∠EAH,∵AE⊥BD,∵∠EAH+∠AEH=∠AEH+∠EBF=90°,∴∠EBF=∠EAH=∠BAH,∵∠BAO=∠BAH+∠CAH=∠BAH+45°,∠BOA=∠EBF+∠OCB=∠EBF+45°,∴∠BAO=∠BOA,∴BA=BO,∴OG=∴,∵OC=OA=2,∴CG=OC+OG=3,∵∠BCG=45°,∴∠CBG=∠BCG=45°,∴BG=CG=3,∴,∴,∴,故答案为:2.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.19.计算:(1);(2).【分析】(1)直接通分运算,进而利用分式的性质化简即可;(2)将括号里面通分运算,再利用分式的混合运算法则计算得出答案.解:(1)原式===;(2)原式====.20.解下列不等式或不等式组,并把解集在数轴上表示出来.(1);(2)【分析】(1)去分母,去括号,移项,合并同类项,系数化成1即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.解:(1)解:去分母,得3x﹣2(x﹣1)≥6,去括号,得3x﹣2x+4≥6,合并同类项,移项,得x≥2,这个不等式的解集在数轴上的表示如图所示:;(2),∵解不等式①,得x<2.解不等式②,得x≥﹣1.在同一条数轴上表示不等式①②的解集,如图所示:,∴原不等式组的解集为:﹣1≤x<2.21.(1)在如图所示的直角坐标系内,描出点A(1,2),B(2,2),C(2,1).并连接OA,AB,BC,CO;(2)将(1)中所画的图形向下平移四个单位,画出平移后的图形;(3)将(1)中所画的图形绕原点O逆时针旋转90°,画出旋转后的图形.【分析】(1)根据A,B,C三点的坐标画出四边形即可.(2)分别作出O,A,B,C的对应点O′,A′,B′,C′即可.(3)分别作出A,B,C的对应点A″,B″,C″即可.解:(1)如图,四边形OABC即为所求.(2)如图,四边形O′A′B′C′即为所求.(3)如图,四边形AA″B″C″即为所求.22.如图,在△ABC中,点D是BC上一点,且BD=DA=AC.把边AB绕着点A顺时针旋转一定角度得到∠BAE,连接DE,交AB于点F.(1)若∠B=α,请用含α的式子表示∠C;(2)若∠CAD=∠BAE,求证:DA平分∠CDE.【分析】(1)由等腰三角形的性质∠BAD=∠B=α,由外角的性质可求解;(2)由“SAS”可证△ABC≌△AED,可得∠C=∠ADE,可证∠ADE=∠ADC,可得结论.【解答】证明:(1)∵AD=BD,∠B=α,∴∠BAD=∠B=α,∴∠ADC=∠B+∠BAD=2α,∵AD=AC,∴∠C=∠ADC=2α;(2)∵∠CAD=∠BAE,∴∠CAB=∠DAE,在△ABC和△AED中,∵∴△ABC≌△AED(SAS),∴∠C=∠ADE,∵∠C=∠ADC,∴∠ADE=∠ADC,∴DA平分∠CDE.23.某社区的游泳馆按照顾客游泳的次数收取费用,每次的全票价为40元.在盛夏即将来临时,为吸引更多的顾客再次光顾,推出了以下两种收费方式.方式一:先交250元会员费,每次游泳按照全票价的7.5折收取费用;方式二:第一次收全票价,以后每次按照全票价的9.5折收取费用.(1)按照方式一的总费用为y1,按照方式二的总费用为y2,请分别求出y1,y2与游泳次数x的函数关系式;(2)小李把自己的学习和工作时间规划了一下,他在今年可能去该游泳馆的次数不超过40次,请为小李推荐采用哪种方式缴费合算?【分析】(1)根据题意列出函数关系式即可;(2)根据(1)中的函数关系式列不等式即可得到结论.解:(1)根据题意,可得y1=250+40×0.75x=30x+250;y2=40+40×0.95(x﹣1)=38x+2.(2)令y1=y2,可得30x+250=38x+2,解方程,得x=31,当0<x<31时,此时y1>y2,方式一的费用高于方式二;当x=31时,y1=y2,两种方式的费用一样;当x>31时,y1<y2,方式一的费用低于方式二.所以,从游泳的费用考虑,当游泳的次数小于31次时,选择方式二;当游泳的次数等于31次时,两种方式的费用一样,两种方式都可以选择;当去游泳的次数高于31次时,选择方式一.24.在脱贫攻坚的关键一年里,重庆市某地根据当地的高山气候,该村的村支书决定带领村民把村中余下的荒地种上甲、乙两种水果树.已知每棵甲种树苗比每棵乙种树苗贵6元,用400元购买甲种树苗的棵数与340元购买乙种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格;(2)该村计划用3610元购买100棵甲、乙两种树苗,最多能买多少棵甲种树苗?【分析】(1)根据用400元购买甲种树苗的棵数与340元购买乙种树苗的棵数相同,列出分式方程求解即可;(2)根据题意列出不等式求解即可.解:(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x﹣6)元,根据题意,可得,解这个方程,得:x=40,经检验,x=40是原方程的根,所以x﹣6=34,答:甲种树苗每棵的价格是40元,则乙种树苗每棵的价格是34元.(2)设该村买n棵甲种树苗,买(100﹣n)棵乙种树苗,总的费用为y元,根据题意,可得y=40n+34(100﹣n),∴y=6n+3400≤3610,∴n≤35,∵n是正整数,∴n的最大值是35,答:该村用3610元最多能买35棵甲种树苗.25.如图所示,在四边形ABCD中,E是BC的中点,F是线段DE上一点(不与点D重合),AB∥DE,AF∥DC.(1)如图1,当点F与E重合时,求证:四边形AFCD是平行四边形;(2)如图2,当点F不与E重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,当∠BCD=90°,且CD=CE,F恰好运动到DE的中点时,直接写出AB 与DC的数量关系.【分析】(1)由ASA证得△ABF≌△DFC,得出AF=DC,即可得出结论;(2)过点E作EG∥FA交AB于点G,易证四边形AGEF是平行四边形,得GE=AF,由ASA证得△GBE≌△DEC,得出GE=DC,推出AF=DC,又由AF∥DC,即可得出四边形AFCD是平行四边形;(3)连接AC交DE于H,由(2)得四边形AFCD是平行四边形,得出DH=FH=DF,易证△CDE是等腰直角三角形,得DE=DC,由等腰直角三角形的性质得出EF=DF,CF⊥DE,CF=DF=EF=DC,求出FH=DC,EH=DC,证明EH是△ABC的中位线,即可得出结果.【解答】(1)证明:∵AB∥DE,AF∥DC,点F与E重合,∴∠B=∠DFC,∠AFB=∠C,∵点E是BC的中点,点F与E重合,∴BF=CF,在△ABF和△DFC中,,∴△ABF≌△DFC(ASA),∴AF=DC,∵AF∥DC,∴四边形AFCD是平行四边形;(2)解:当点F不与E重合时,(1)中的结论成立;理由如下:过点E作EG∥FA交AB于点G,如图2所示:∵AB∥DE,GE∥AF,∴∠B=∠DEC,四边形AGEF是平行四边形,∴GE=AF,∵DC∥AF,∴DC∥GE,∴∠GEB=∠DCE,在△GBE和△DEC中,,∴△GBE≌△DEC(ASA),∴GE=DC,∴AF=DC,∵AF∥DC,∴四边形AFCD是平行四边形;(3)解:连接AC交DE于H,如图3所示:由(2)得:四边形AFCD是平行四边形,∴DH=FH=DF,∵∠BCD=90°,CD=CE,∴△CDE是等腰直角三角形,∴DE=DC,∵点F是DE的中点,∴EF=DF,CF⊥DE,CF=DF=EF=DC,∴FH=×DC=DC,∴EH=EF+FH=DC+DC=DC,∵AB∥DE,点E是BC的中点,∴EH是△ABC的中位线,∴AB=2EH=2×DC=DC.四、解答题(本大题1个小题,共8分)解答时,必须给出必要的验算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡对应的位置上.26.把△ABC绕着点A逆时针旋转α,得到△ADE.(1)如图1,当点B恰好在ED的延长线上时,若α=60°,求∠ABC的度数;(2)如图2,当点C恰好在ED的延长线上时,求证:CA平分∠BCE;(3)如图3,连接CD,如果DE=DC,连接EC与AB的延长线交于点F,直接写出∠F的度数(用含α的式子表示).【分析】(1)根据旋转的性质得到AD=AB,∠ABC=∠ADE.求得∠ABD=∠DAB =60°,于是得到结论;(2)根据旋转的性质得到∠E=∠ACE.等量代换得到∠ACB=∠ACE.根据角平分线的定义即可得到结论;(3)根据旋转的性质得到AE=AC,∠CAE=α,求得∠ACE=∠AEC=(180°﹣α)=90°﹣,根据全等三角形的性质得到∠EAD=∠CAD=,根据三角形的外角的性质即可得到结论.解:(1)∵α=60°,△ABC≌△ADE,∴AD=AB,∠ABC=∠ADE.∴∠ABD=∠DAB=60°.∴∠ADE=∠DAB+∠ABD=120°;(2)∵AC=AE,∠EAC=α,∴∠E=∠ACE.∵△ABC≌△ADE,∴∠ACB=∠E.∴∠ACB=∠ACE.∴CA平分∠BCE;(3)∵把△ABC绕着点A逆时针旋转α,得到△ADE,∴AE=AC,∠CAE=α,∴∠ACE=∠AEC=(180°﹣α)=90°﹣,∵DE=CD,AD=AD,∴△ADE≌△ADC(SSS),∴∠EAD=∠CAD=,∵∠BAD=∠CAE=α,∴∠BAC=,∴∠F=∠ACE﹣∠CAF=90°﹣﹣=90°﹣α.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档