三项逆变器驱动电路简单研究
三电平逆变器SVPWM控制策略的研究

三电平逆变器SVPWM控制策略的研究一、本文概述随着电力电子技术的快速发展,逆变器作为高效、可靠的电力转换装置,在新能源发电、电机驱动、无功补偿等领域得到了广泛应用。
其中,三电平逆变器因其输出电压波形质量好、开关损耗小、动态响应快等优点,受到了研究者的广泛关注。
空间矢量脉宽调制(Space Vector Pulse Width Modulation, SVPWM)作为一种先进的调制策略,通过合理分配三相桥臂的开关状态,可以实现对输出电压波形的精确控制,进一步提高逆变器的性能。
本文旨在深入研究三电平逆变器的SVPWM控制策略,通过理论分析和实验验证,探索其在实际应用中的优化方法和潜在问题。
文章首先介绍了三电平逆变器的基本结构和工作原理,为后续的控制策略分析奠定基础。
随后,详细阐述了SVPWM的基本原理和实现方法,包括空间矢量的定义、合成和分配等关键步骤。
在此基础上,本文重点分析了三电平逆变器SVPWM控制策略的优化方法,包括减小开关损耗、提高直流电压利用率、改善输出电压波形质量等方面。
本文还通过实验验证了三电平逆变器SVPWM控制策略的有效性。
通过搭建实验平台,测试了不同控制策略下的逆变器性能,包括输出电压波形、开关损耗、动态响应等指标。
实验结果表明,采用SVPWM控制策略的三电平逆变器在各方面性能上均表现出明显的优势,验证了本文研究的有效性和实用性。
本文总结了三电平逆变器SVPWM控制策略的研究现状和未来发展趋势,为相关领域的进一步研究提供了有益的参考。
二、三电平逆变器的基本原理三电平逆变器是一种在电力电子领域中广泛应用的电能转换装置,其基本原理在于利用开关管的导通与关断,实现直流电源到交流电源的高效转换。
与传统的两电平逆变器相比,三电平逆变器在输出电压波形上拥有更高的精度和更低的谐波含量,因此在大规模电力系统和电机驱动等领域具有显著优势。
三电平逆变器的基本结构通常包括三个直流电源、六个开关管以及相应的控制电路。
三相电压型逆变电路120°导电方式_概述及解释说明

三相电压型逆变电路120°导电方式概述及解释说明1. 引言1.1 概述三相电压型逆变电路是一种常见且重要的逆变器拓扑结构,通常被广泛应用于工业控制、电力传输以及可再生能源领域等。
其中,其中采用120°导电方式的三相电压型逆变电路是一种常见的工作模式。
1.2 文章结构本文将按照以下结构进行介绍和说明:首先,在"2. 三相电压型逆变电路120°导电方式"部分中,我们将详细解释该逆变器的定义、原理以及构成元件,并深入探讨其工作原理。
接着,在"3. 概述及解释说明"部分中,我们将针对120°导电方式的三相电压型逆变电路进行特点介绍,同时与其他导通方式进行比较。
最后,在"4. 结论"部分中,我们将对整篇文章进行总结概要,并提供对三相电压型逆变电路未来发展的展望和建议。
1.3 目的本文旨在全面介绍和解释三相电压型逆变电路中采用的120°导通方式,并通过比较不同的导通方式来说明其在实际应用中的优势。
此外,本文还将从技术角度出发,展望该逆变电路的未来发展趋势,并提供相关的建议和改进方向。
通过对三相电压型逆变电路120°导通方式的深入理解,读者将能够更好地应用该技术并在实践中取得更好的效果。
2. 三相电压型逆变电路120°导电方式:2.1 定义及原理:三相电压型逆变电路是一种将直流电转换为交流电的装置,它通过采用特定的脉宽调制技术来实现。
而120°导通方式是其中常用的一种导通控制方式。
在三相电压型逆变电路中,通过控制开关器件(如晶闸管或功率场效应管等)的导通和断开,使得输入直流侧的正、负源极之间交替连接到输出交流侧的不同相,从而产生所需频率和幅值的交流信号。
而120°导通方式则是指通过改变三个开关器件之间的导通角度来实现对交流输出波形进行控制。
此方法将每个周期分为6个相同时间间隔(即360°/6 = 60°),其中A、B、C三相各自占据两个相邻时间间隔。
《电机驱动与调速》第53讲( IR2233驱动的三相IGBT逆变电路)

学 到 技 能
第 53 讲
项目7 典型调速系统
任务19 典型交流调速系统
情景4 IR2233驱动的三相IGBT逆变电路 教学目标
教学重点 教学难点 教学方法 教学手段 作业布置
1、熟悉IR2233的主要性能和内部结构 2、掌握IR2233驱动的三相IGBT逆变电路 IR2233的主要性能和内部结构
(1)封装形式
IR2233的封装有28脚DIP、44脚PLCC和28脚SOIC三种形式,后 两种用于表面贴装。 28脚DIP形式封装如图7-40所示,各管脚的功能如表7-2所示。
3
图7-40 表7-2
IR2233的
4
(2)主要参数 IR2233的主要特性参数如表7-3所示。表中的参数测试条件为: VBIAS(VCC、VB1、2、3=15V,VS1、2、3=VSS),TA=25℃,静态VIN、VTH 和 IIN参数的参考点均为VSS,VO和IO参数点为VSS和VS1、2、3,而动态时 的负载电容值为100pF。 2、内部结构 IR2233内部电路功能框图如图7-41所示。 IR2233芯片由输入控制逻辑、欠压保护、电流保护、故障逻 辑、 电流检测及放大和输出驱动等构成。 IR2233的输入信号与5V CMOS或LSTTL电路输出信号相兼容, 其 5 高电平VH为2.2V,低电平VL为0.8V。为防止噪声干扰,输入电路还
6
3、IR2233驱动的三相IGBT逆变电路 IR2233驱动的三相IGBT逆变电路如图7-42所示。
图7-42
IR2233驱动的三相IGBT逆变电路
7
(1)电路原理 该电路能将直流电压+DC逆变为三相交流输出电压(U、V、 W)。 直流电压+DC来自三相桥式整流电路,交流最大输入电压460V。 逆变电路功率元件使用耐压为1200V的IGBT元件IRGPH50KD2。 驱动电路使用1200V的IR2233,单电源+15V供电电压经二极管 隔离后又分别作为其三路高端驱动输出的供电电源,电容C1、C2 和 C3分别为高端三路输出的供电电源的自举电容。 PWM控制电路为逆变器提供六路控制信号、SD信号以及FLTCLR 控制信号。 图中R7为逆变器直流侧的电流检测电阻,它可将电流I转换为 电压信号Vs,并送入驱动芯片IR2233的过电流信号输入ITRIP端, 如电流I过大,芯片将关闭其六路驱动输出。 同时将电压信号Vs送到芯片IR2233内部电流运算放大器的同 相 8
三电平逆变器变频调速系统的研究

三电平逆变器变频调速系统的研究随着电力电子技术和微处理器技术的不断发展,三电平逆变器变频调速系统在工业领域中的应用越来越广泛。
这种调速系统具有高效率、高可靠性、节能等优点,因此受到许多行业的青睐。
本文将对三电平逆变器变频调速系统进行深入研究,旨在为其在工业控制领域中的更好应用提供理论支持和实践指导。
三电平逆变器变频调速技术是一种基于电力电子器件逆变器的高效调速方法。
其基本原理是通过改变逆变器的开关状态,控制交流电机的转速,从而实现电机的调速。
三电平逆变器相较于传统的两电平逆变器,具有更高的电压利用率、更低的谐波畸变和更好的电磁兼容性等优点。
因此,三电平逆变器变频调速系统在工业领域具有广泛的应用前景。
建立三电平逆变器变频调速系统的数学模型,包括三电平逆变器模型和交流电机模型。
通过MATLAB/Simulink进行系统仿真,探究不同参数对系统性能的影响。
结果表明,随着电机转速的增加,三电平逆变器的开关频率也相应增加,系统效率得到提高;同时,适当的调制策略能够有效降低谐波畸变和电磁干扰。
基于异步电动机和矢量控制的三电平逆变器变频调速控制策略,通过将异步电动机的定子电流分解为转矩分量和磁通分量,并分别对其进行控制,从而实现电机的精确调速。
对该控制策略进行仿真分析,结果表明该策略具有较高的控制精度和响应速度,并且在不同负载和电机参数下均表现出良好的鲁棒性。
为验证所提出控制策略的有效性和优越性,搭建了三电平逆变器变频调速实验平台,并对不同参数设置下的调速效果进行了比较。
实验结果表明,采用基于异步电动机和矢量控制的三电平逆变器变频调速控制策略的实验系统,具有更高的调速精度、更快的响应速度和更好的鲁棒性。
对比传统的两电平逆变器变频调速系统,三电平逆变器变频调速系统在效率和性能上均表现出显著优势。
通过对三电平逆变器变频调速系统的深入研究,本文成功建立了一套完整的数学模型,提出了一种基于异步电动机和矢量控制的三电平逆变器变频调速控制策略,并通过实验验证了其有效性和优越性。
三相SPWM逆变器

第四章三相SPWM逆变器4.1三相SPWM逆变器的结构SPWM逆变器与PWM逆变器在主电路方面没有本质的区别,将电压型PAM主电路结构中的晶闸管替换为IGBT就成了SPWM型逆变器的主电路结构。
SPWM脉宽调制时,瞬时电压以极高的速度切换方向而输出半波内不改变方向,因此,输出电压与输出电流常常方向不一致,这时就需要续流二极管来提供与电压极性相反的电流通道。
加上了续流二极管的三相逆变桥,我们就设计好了SPWM逆变器的基本主电路。
图4.1是SPWM逆变器的主电路结构,它由六只IGBT组成三相桥式结构,每个桥上反并联了续流二极管。
4.1 SPWM逆变器的主电路图IGBT器件有自己特有的驱动电路及保护电路,实际中IGBT通常不以单独的形式供货,而是以包括了驱动及保护电路的智能模块(IPM)方式提供的。
IPM不仅为IGBT器件提供了驱动电路及保护电路,也为整个模块提供了过热保护等。
在容量比较小的情况下,IPM常常做成多器件结构,例如六单元或七单元结构。
六单元结构集成了一个完整的SPWM逆变器,图4.2就是一个六单元IPM的结构示意图。
七单元IPM除一个逆变器外,还把能耗制动用的斩波元器件及附属电路集成在里边了。
4.2 IPM结构从图4.2看到,六单元模块为五个主电路端子,即直流正负极输入和交流三相输出端子。
另外有驱动和保护的控制端子若干,它们是能够和常规控制芯片直接连接或者通过光耦合连接的电压型接口。
驱动端子是输入端子,接受外部触发器件,保护端子是输出端子,在保护电路封锁驱动电路的同时发出保护动作信号给外部控制器。
主电路端子通常是接线桩形式,控制端子通常是集中插口形式。
七单元IPM增加了一个连接制动电阻的主电路端子及相应的控制端子。
当容量比较大时,如果IPM仍然集成整个逆变器,会产生两个方面的缺点:一是模块的体积和重量加大,给安装和布置带来困难,也不利于散热;二是当模块中局部元器件损坏时需要更换整个模块,而大容量的模块的成本必然更高,因此使维护成本增加了。
三相PWM逆变电路

S1 D1 S3 D3 S5 D5
Ud/2 io uo
负载 W
U
V S6 D6 S2
W D2
Ud/2
S4
D4
负载 U
负载 V
O
分析假定如前,另外假定负载为星形连接,三相 输出点分别为U 、V、W,负载连接中点为O,三 相对称,以直流电位中点为电压参考点 选取星型负载接法的理由
id
S1 D1 S3 D3 S5 D5
t t t t t t t t t
负载 U
负载 V
iU i D1
S1 D1 S2 D2 S3 D3 S4 D4 S5 D5 S6 D6
iV
O
id
uU uV
Ud
ug4 ug5 ug6
ug1 t ug2 t ug3t
uU1
t t t t t t t
id
S1 D1 S3 D3 S5 D5
uUV
Ud
Ud/2 io uo
工作模式分析:
任一时刻都有且只有三个主开关导通,分别是两 个上管一个下管,或者一个上管两个下管 各工作状态的出现与电路控制方式和负载特性有 关,第四状态见于其它逆变模式
Ud/2 Ud/2 Ud/2 Ud/2
Ud/2
O
Ud/2
O
Ud/2
O
Ud/2
O
三个主 开关 载流 ,电流 从直 流母线 流向 逆变 器
Ud
ug4 ug5 ug6
ug1 t ug2 t ug3t
uU1
t t t t t t t
uUV
Ud
uUO uUO1 iW
uUV1
1/3Ud 1/3Ud
2/3Ud
uO i S1
IR2130驱动电路

IR2130驱动电路摘要:介绍了IR2130集成芯片的特点和工作原理,设计了采用该芯片驱动的三相逆变器,并进行了实验研究,结果表明用IR2130驱动的逆变器具有结构简单、工作稳定、保护可靠等优点。
1 引言逆变器己广泛用于交流电气传动、UPS等许多技术领域中,其主电路开关器件常采用IGBT 或MOSFET等全控型器件,该器件的开关动作需要靠独立的驱动电路来实现,并且要求驱动电路的供电电源彼此隔离(如单相桥式逆变主电路需3组独立电源,三相桥式逆变主电路需4组独立电源),这无疑增加辅助电源的设计困难和成本,同时也使驱动电路变得复杂,降低了逆变器的可靠性。
采用如EXB840等专用厚膜集成驱动电路芯片虽然可以简化驱动电路的设计,但每个驱动芯片仍需要一个隔离的供电电源,且每个芯片仅可驱动一个功率开关器件,应用仍有不便。
而美国国际整流器公司生产的专用驱动芯片IR2130[1]只需一个供电电源即可驱动三相桥式逆变电路的6个功率开关器件,可以使整个驱动电路简单可靠。
2 IR2130驱动芯片的特点IR2130可用来驱动工作在母电压不高于600V的电路中的功率MOS门器件,其可输出的最大正向峰值驱动电流为250mA,而反向峰值驱动电流为500mA。
它内部设计有过流、过压及欠压保护、封锁和指示网络,使用户可方便的用来保护被驱动的MOS门功率管,加之内部自举技术的巧妙运用使其可用于高压系统,它还可对同一桥臂上下2个功率器件的门极驱动信导产生2μs互锁延时时间。
它自身工作和电源电压的范围较宽(3~20V),在它的内部还设计有与被驱动的功率器件所通过的电流成线性关系的电流放大器,电路设计还保证了内部的3个通道的高压侧驱动器和低压侧驱动器可单独使用,亦可只用其内部的3个低压侧驱动器,并且输入信号与TTL及COMS电平兼容。
IR2130管脚如图1所示。
VB1~VB3:是悬浮电源连接端,通过自举电容为3个上桥臂功率管的驱动器提供内部悬浮电源,VS1~VC3是其对应的悬浮电源地端。
三相逆变电路的工作原理

电力电子学—三相逆变电路工作原理第4章直流/交流变换器01逆变器的类型和性能指标目录02电压型单相方波逆变电路工作原理03单相逆变器的单脉波脉冲宽度调制(PWM)04正弦脉冲宽度调制技术(SPWM)05三相逆变电路工作原理三相逆变电路工作原理01电压型三相逆变工作原理目录02电流型三相逆变工作原理03三相逆变器的SPWM控制01电压型三相逆变工作原理有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)三个单相逆变器构成的三相逆变器逆变器1逆变器2逆变器3+−ABC NV dc变压器作用:⏹隔离;⏹升降压。
逆变器拓扑:⏹半桥;⏹全桥。
输出形式:⏹三相三线制;⏹三相四线制。
☐三个逆变器基波依次相差120R A RBNC星形负载R ABCRR三角形负载Q 1V dcQ 4D 1D 4AD 3D 6B Q 3Q 6D 5D 2Q 5Q 2CQ1 Q4D1D4AD3D6BQ3Q6D5D2Q5Q2CNV dc/2V dc/2oωtωtωtv Q1v Q2v Q3ωtωtv Q4v Q5v Q6ωtV dcωtv ABωtv BCωtv CAωtv ANωtv BNωtv CN2V dc/3V dc/3☐每个桥臂工作于180︒导通方式;☐各相基波依次相差120︒;☐线电压为120︒方波。
导电顺序:561→612→123→234→345→456→561Q 1Q 4D 1D 4AD 3D 6BQ 3Q 6D 5D 2Q 5Q 2CNV dc /2V dc /2o()21111sin sin 5sin 7sin11sin13571113D AN V v t t t t t t ωωωωωωπ⎛⎫=+++++ ⎪⎝⎭()231111sin sin 5sin 7sin11sin13571113D AB V v t t t t t t ωωωωωωπ⎛⎫=--+++⎪⎝⎭无3次倍频谐波,只含5、7、11、13等高阶低次谐波,n 次谐波幅值为基波幅值的1/n 。