雷达信号分析(第6章)相位编码脉冲信号分析
雷达信号分析

2 0
2B T
§3.3 雷达测速精度
一、分析条件和方法 二、分析结果
1 2E
N0
2 2 t 2 t 2 dt
2
t 2 dt
三、单载频矩形脉冲信号: 2 2 T 2
3
§3.4 信号的非线性相位特性
对测量精度的影响
(t) 0 ,具有非线性相位。
时间相位常数: 2 t ' (t)a2 (t)dt 2 t ' (t) u(t) 2 dt
§4.1 模糊函数的推导 §4.2 模糊函数与分辨力的关系 §4.3 模糊函数与匹配滤波器输出响应的关系 §4.4 模糊函数的主要性质 §4.5 模糊图的切割 §4.6 模糊函数与精度的关系 §4.7 利用模糊函数对单载频矩形脉冲雷达
③径向速度为正。 一、静止点目标
s(t) (t)e j 2f0t sr (t) (t )e j2f0 (t )
二、运动点目标
sr (t) [t (t)]e j2f0[t (t)]
R(t) R0 VT
经过推导有:
Sr (t)
[t
2v t
]e
j
2f0 [t
2vt C
]
C
[t ]e j 2f0 e j 2 ( f0 fd )t
2
T /2
t(2kt)dt
T / 2
2kT2
2
[a(t)] dt
T /2
dt T / 2
3
例2: u(t) rect ( t )e jkt
T
t T
(t ) k t ' (t ) k
2
t ' (t)a 2 (t)dt
2
t/2
t (k )dt
《雷达信号分析》课件

系统测试与性能评估
总结词
测试、性能
详细描述
该部分主要介绍了系统的测试方法和性能评估,包括测试环境、测试内容、测试结果等,并对系统的 性能进行了全面的评估,为后续的系统优化和改进提供了依据。
THANKS
[ 感谢观看 ]
总结词
军事侦查与目标识别是雷达信号处理的重要 应用领域之一,通过处理雷达回波信号,提 取目标特征,实现目标的快速、准确识别。
详细描述
雷达系统通过发射电磁波,遇到目标后反射 回来被接收,经过信号处理提取出目标的距 离、速度、方位等参数,以及目标的形状、 尺寸等特征。这些信息对于军事侦查和目标 识别具有重要意义,可以帮助指挥官做出快
CHAPTER 06
案例分析:某型雷达信号处理系统 设计
系统概述与需求分析
总结词
概述、需求
详细描述
该部分主要介绍了某型雷达信号处理系统的基本情况,包括系统功能、应用场 景等,并对系统的需求进行了详细的分析,为后续的系统设计提供了依据。
系统架构与模块设计
总结词
架构、模块
详细描述
该部分主要介绍了系统的整体架构和 各个模块的设计,包括信号输入、处 理、输出等模块,以及各模块之间的 连接和交互方式,为后续的系统实现 提供了基础。
小波变换
总结词
多尺度分析
详细描述
小波变换是一种多尺度、多分辨率的信号处理方法,适合分析非平稳信号。它能够同时 在时域和频域对信号进行分析,揭示信号在不同尺度上的特征,广泛应用于雷达信号的
降噪、目标识别和运动目标跟踪等领域。
神经网络算法
总结词
自适应算法
详细描述
神经网络算法是一种模拟人脑神经元工作方 式的自适应算法,能够通过学习自动提取输 入数据的内在规律和模式。在雷达信号处理 中,神经网络可以用于自动目标识别、干扰 抑制、高分辨成像等方面。
《雷达信号分析》课件

contents
目录
• 雷达信号概述 • 雷达信号处理基础 • 雷达信号处理算法 • 雷达信号处理系统设计 • 雷达信号处理技术前沿
01
雷达信号概述
雷达信号的定义
01
02
03
雷达信号
由雷达设备发射的电磁波 信号,用于探测、跟踪和 识别目标。
雷达信号的特性
具有特定的频率、波形和 发射方式,能够穿透不同 的介质和环境条件。
监视等操作。
雷达信号处理系统的性能评估
性能评估指标
包括系统稳定性、实时性、精度和可靠性等。
测试与验证
通过实际测试和模拟实验,对雷达信号处理系统的各项性能指标进行评估和验 证。
05
雷达信号处理技术前沿
雷达信号处理的智能化技术
总结词
雷达信号处理的智能化技术是当前研究的热点,通过人工智能和机器学习等方法,实现对雷达信号的自动分析和 处理,提高雷达的探测性能和目标识别能力。
详细描述
雷达信号处理的抗干扰技术包括频域滤波、时域滤波、极化滤波等多种方法。这些技术能够有效地滤 除干扰信号,提取出有用的目标信息,提高雷达的探测精度和可靠性。同时,抗干扰技术还能够降低 雷达系统的复杂性和成本,具有广泛的应用前景。
雷达信号处理的实时处理技术
总结词
实时处理技术是雷达信号处理的另一个 重要方向,通过高效的算法和硬件实现 ,实现对雷达信号的快速处理和分析。
中值滤波算法
将信号按大小排序,用中值代替异常值,适用于去除脉冲噪声。
卡尔曼滤波算法
利用状态方程和观测方程对信号进行最优估计,适用于跟踪和预 测。
雷达信号的压缩算法
离散余弦变换(DCT)
将信号从时域转换到频域,去除冗余信息,减小数据量。
【2019年整理】雷达信号分析与处理第六章

二、二相编码信号的频谱 P 1
1 cK 1 (t KT ) 0t Δ (t ) P K 0 0 其它 P 1 1 (t ) 1 (t ) cK (t KT ) 1 (t ) 2 (t ) P K 0
1 / T 1 (t ) 0 0t T 其它
3
6.2 二相编码信号 一、二相编码信号基本概念 将宽矩形脉冲信号分成许多个彼此相接的短脉冲〔称子脉冲或 码元〕,每个脉冲的宽度相同、载频相同。但是每个脉冲之 间载频的相位不同,彼此间有特定的关系。 j 2f0t j (t) j 2f0t t 0 1 j t s(t) a(t)e e ( t ) e cK e s (t )
i 0 2
2 (2,0) ci ci 2 c0c2 c1c3 c2c4 1
i 0 1
2 (3,0) ci ci 3 c0c3 c1c4 0
i 0 0
2 (4,0) ci ci 4 c0c4 1
i 0
5T
3T
T
6.1 概述 6.2 二相编码信号 6.3 二元伪随机序列(M序列,Barker序列) 6.4 二相编码信号的处理 6.5 二相编码信号多普勒敏感性 6.6 多相编码信号简介
2
6.1 概述
理想模糊图(图钉型)特点: (1) 能给出良好的邻近目标的距离和速度分辨能力及测距、测 速精度。 (2)不存在距离和多普勒耦合,不存在测量的多值问题。 (3)对多普勒是敏感的。 (4)如果观察目标附近存在强干扰信号,强干扰信号的基底同 样要掩盖弱信号的回波。
N 1 m i 0 * j 2iT c c e i im
N 1 m i 0
相位编码脉冲信号 -回复

相位编码脉冲信号-回复相位编码脉冲信号是一种常见的数字通信技术,它在数据传输过程中通过改变信号的相位来表示数字信息。
相位编码脉冲信号在通信系统中被广泛采用,因为它具有高带宽利用率、低误码率和较强的抗干扰能力等优点。
本文将从相位编码脉冲信号的基本原理、编码方式、解码原理和应用等方面详细介绍该技术。
一、相位编码脉冲信号的基本原理在了解相位编码脉冲信号之前,我们先来了解一下脉冲调制技术。
脉冲调制是指通过操作脉冲信号的某些特性来携带数字信息。
常见的脉冲调制技术有脉冲幅度调制(PAM)、脉冲宽度调制(PWM)和脉冲位置调制(PPM)等。
而相位编码脉冲信号属于脉冲位置调制技术的一种。
相位编码脉冲信号的基本原理是通过改变脉冲信号的相位来表示数字信息。
相位是指信号相对于参考信号的时间关系,可以用角度来表示。
相位编码脉冲信号将一个或多个二进制比特映射到一组预定义的相位值上,根据不同的相位值来表示不同的数字信息。
这种编码方式能够有效提高信号的传输效率,提高带宽利用率。
二、相位编码脉冲信号的编码方式在相位编码脉冲信号的编码方式中,最常见的是二进制相位编码(Binary Phase Shift Keying,BPSK)和四相位编码(Quadrature Phase ShiftKeying,QPSK)。
1. 二进制相位编码(BPSK)二进制相位编码将一个比特映射到两个相位值上,其中一个相位值表示0,另一个相位值表示1。
这种编码方式相对简单,但传输速率较低。
2. 四相位编码(QPSK)四相位编码将两个比特映射到四个相位值上,每个相位值表示一种可能的组合。
这种编码方式在相同的传输速率下能够传输更多的信息,但也更容易受到噪声的影响。
除了BPSK和QPSK,还有八相位编码(8PSK)和多相位编码(MPSK)等。
不同的编码方式适用于不同的应用场景,可以根据具体需求选择。
三、相位编码脉冲信号的解码原理相位编码脉冲信号的解码原理与编码相反,即通过检测信号的相位差来识别不同的相位值,从而恢复数字信息。
雷达相位编码

雷达相位编码是一种用于无线雷达通信或雷达测量的编码技术。
它通过改变波形信号的相位来传输信息,从而实现数据的传输或目标的测量。
在雷达通信中,相位编码可以用于调制和解调数据信号。
发送方将数字数据转换为对应的相位变化,然后将这些相位变化的波形发送出去。
接收方通过检测接收到的波形的相位变化来恢复原始的数字数据。
在雷达测量中,相位编码可以提高测距和测速的精度。
通过对发射的连续波或脉冲信号进行相位编码,可以实现对回波信号相位的精确测量。
通过测量相位变化,可以计算出目标与雷达的距离和速度等信息。
此外,最简单的相位编码雷达使用了两种雷达波形,它们是具有相同频率和幅度,但是相位相差180°的两个正弦信号。
将其中一个信号用1表示,另一个用0表示。
这种信号被称为二进制相移键控(BPSK)信号。
一个BPSK信号从0到1的变化速率,或者从1到0,被称作码片速率。
相位编码雷达不是发射很长的正弦信号,而是发射相位可能变化的、级联的、短的正弦信号。
如需了解更多有关雷达相位编码的信息,建议查阅相关文献或咨询
雷达专家。
相位编码脉冲信号

相位编码脉冲信号一、引言相位编码脉冲信号是一种常见的信息传输方式,广泛应用于通信、雷达、声呐等领域。
它通过改变脉冲信号的相位来表示不同的信息,从而实现信息的传输和识别。
本文将对相位编码脉冲信号的基本原理、应用场景、优势以及发展趋势进行详细介绍。
二、相位编码脉冲信号的基本原理相位编码脉冲信号的基本原理是利用信号波形的相位变化来表示信息。
在相位编码脉冲信号中,每个脉冲信号都有一个确定的相位,这些相位的不同组合表示不同的信息。
例如,常见的二进制相位编码脉冲信号中,相位0°和180°表示0,而相位90°和270°表示1。
通过这种方式,信息被编码到了脉冲信号的相位中。
三、相位编码脉冲信号的应用场景相位编码脉冲信号因其高可靠性、低噪声和低失真等特点而被广泛应用于通信、雷达和声呐等系统中。
在通信系统中,相位编码脉冲信号可以用于数字信号的传输,实现高速、高容量的数据传输。
在雷达系统中,相位编码脉冲信号可以用于目标探测和跟踪,实现对目标的精准定位。
在声呐系统中,相位编码脉冲信号可以用于水下目标的探测和识别,提高声呐系统的探测精度和距离。
四、相位编码脉冲信号的优势相位编码脉冲信号具有以下优势:1.高可靠性:相位编码脉冲信号的抗干扰能力强,能够有效地抵抗噪声和干扰,保证信息的准确传输。
2.低噪声和低失真:相位编码脉冲信号的波形稳定,失真小,能够保证信息的完整性。
3.高速传输:通过改变脉冲信号的相位,可以实现高速的数据传输,满足现代通信和雷达系统的需求。
4.易于同步:相位编码脉冲信号的接收端可以通过提取脉冲信号的相位信息实现信号的同步,降低了系统的复杂度。
五、发展趋势随着科技的不断发展,相位编码脉冲信号的应用前景越来越广阔。
未来,相位编码脉冲信号将在以下几个方面得到进一步发展:1.高速化:随着通信和雷达技术的发展,对相位编码脉冲信号的传输速率要求越来越高。
未来将通过优化信号处理算法和技术手段,进一步提高相位编码脉冲信号的传输速率。
雷达信号波形的基本类型

雷达信号波形的基本类型现代雷达根据其使命和技术体制的不同,分为预警雷达、火控雷达、制导雷达、导航雷达、成像雷达等多种类型。
但无论是哪种类型的雷达,其辐射信号波形都可以归为以下几种基本类型:调幅脉冲信号、线性调频和非线性调频脉冲信号、相位编码脉冲信号、连续波信号和调频连续波信号。
调幅脉冲信号是最常用、最简单、也是最重要的雷达信号之一,通常被称为常规脉冲雷达信号。
其数学表达式为s(t)=Arect(t/T)ej2πft,其中A为信号幅度,T为脉冲宽度,f为载波频率。
调幅脉冲雷达信号的波形如图2.3-3所示。
线性调频信号是一种具有大时宽带宽积的信号,可以通过非线性相位调制或线性频率调制获得。
由于线性调频信号可以获得较大的压缩比,因此在高分辨率雷达和脉冲压缩雷达等领域得到了广泛应用。
线性调频信号的数学表达式为s(t)=Arect(t/T)ej2π[ft+μt^2/2],其中A为信号幅度,f为载波频率,T为脉冲宽度,μ=B/T为信号的调频频率,B为调制带宽。
线性调频信号有正斜率和负斜率两种基本形式,其波形和频率变化关系如图2.3-4所示。
相位编码信号因其固有特性被广泛应用于脉冲压缩技术。
连续波信号和调频连续波信号则在雷达测距和测速等方面发挥着重要作用。
一般情况下,当带宽宽度积(BT)大于等于1时,线性调频信号的特性可以用以下表达式表示:幅频特性为S_LFM(f) = A/μ^2 rect[(f-f_0)/B],相频特性为Φ_LFM(f) = -πμ(f-f_0)^2/4,信号的瞬时频率为f_i = f_0 + μt (-T/2 ≤ t ≤ T/2)。
下图展示了带宽为1MHz,脉冲宽度为100μs的线性调频信号的时域波形、幅度谱和相频谱。
相位编码脉冲信号属于“离散调制型”信号,其编码通常使用伪随机序列。
由于其主副比较大,压缩性能好,因此备受关注。
然而,相位编码信号对XXX频移比较敏感,只适用于多普勒频率范围较窄的场合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CK
0
t
{c } = {- + - - + + + }
K
{ck}之积按乘法运算; {dk}之积按模2加法运算。
ì ï 0 f(t) = 0 ï dK = í ï 1 f(t) = p ï î {dK } = {1, 0,1,1, 0, 0, 0}
三、二相编码信号的频谱
ì ï 1 ï ï m(t ) = ï í P ï ï ï ï î
例如:R0=[3,0,-1],Ri=[2,-1] [3,0,-1] ×[2,-1] [6,-3 ︳0,0 ︳ -2,1] 修正后:[6,-3 ︳0,1 ︳ -2,1] 例如:R0=[4,-1,0,1],Ri=[3,0,-1] [4,-1,0,1] ×[3,0,-1] =[12,0,-4︳-3,0,1︳0,0,0︳3,0,-1] 修正后:[12,1,-4,-3,0,1,0,-1,0,3,0,-1] ③按
6.5 增加巴克码长度的方法
一、概念
组合巴克码就是用某一个巴克码作为基本码元〔称为内码〕,组成另 一个新的巴克码〔称为外码〕。
B0 (13) = {Bi (4),Bi (4),Bi (4),Bi (4),Bi (4), -Bi (4),-Bi (4),Bi (4),Bi (4)-Bi (4),Bi (4), -Bi (4),Bi (4)}
c2 (m, 0) =
P -1-m
å
i =0
cici +m
三、结论
6.6 二相编码信号的处理 一、匹配滤波器特性
m*(f ) =
P -1 T sinc( fT )e j p fT å c K e j 2 p fKT = m1* ( f ) ⋅ m2 ( f ) P K =0
0
-30
-20
-10
T
0
10
20
30
T
1
1
0.9
0.9
0.8
0.8
0.7
0.7
( , 0.02 B)
( ,0.05B)
0.02 B
0.6
0.6
0.5
0.5
0.05B
0.4
0.4
0.3
0.3
0.2
0-20 -10 0 10 20 30
0
-30
多普勒滤波器 6 输出
恒虚警检测器 ··· 目标参数测量 1
6、 M序列的信号处理 采用多路相关器(可以复用)和多普勒滤波器组。 相关器: 距离门1输出
视频回 波信号 参考信号1 …
参考信号n
延时T 延时T 延时T 延时T
距离门n输出
…
cP-4 c1 c0
匹配滤波器:
cP-1
cP-2
cP-3
③P→∞,c(t, 0) » d(t )
0 2T
1/ 7
7T
;④周期性自相关函数。
周期的选择:① pT / t max > 2 ;② pTfd max <
1 2
4、M序列的功率谱
p + 1 sin p fT f( f ) = p fT p2
2
n 1 å d( f - pT ) + p 2 d( f ) n =-¥ ,n ¹ 0
2
K =0
åc
P -1
K
m1(t - KT ) 0
p -1
0 <t <D
其它
P -1-m i=0 2
1
1 -1
1
1 c(t , x ) = P 1 + P
p -1
j 2 pxmT e c1 (t + mT , x ) å m =1 P -1-m
å
cici +me j 2 pxiT
m =0
å c1(t - mT , x )
K = 0,1,,2, (L0 - 1), t = 0,1,2, (L0Li - 1), KLi £ t £ (K + 1)Li
②简便法 原则:a. 把外码和内码的自相关函数相乘; 即用外码的自相 关函数的每个值,逐项对内码自相关函数值进行加权; b. 把乘积按内码长度进行分段; c. 找出对称轴,用“对称迭加”对相关值进行修正。
T P ⋅T D
P K=0 = m1(t) * m2(t)
åc d(t -KT)
K
P-1
m2(t) =
1 P
= åcKd(t -KT)
K=0
P-1
1.5
1
( f )
T
0.5 0 0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
fT
四、二相编码信号的模糊函数
ì ï 1 ï ï m(t ) = ï í P ï ï ï ï î
多普勒滤波器组:FFT(MTD)
6.3 PN截断码
一、定义
PN截断码就是 从M序列 中截取 一个周期形成的码。 截取位置任意,但 性能不一样。
二、模糊函数
二、自相关函数特性
c2 (m, 0) =
P -1-m
å
i =0
cici +m
+ - + + - - - 原序列 - - - + + - + 镜像序列 ———————————————— -+--+++ -+--+++ -+--+++ +-++--+-++---+--+++ +-++--代数和 ————————————————— -1,0,-1,0,-1,0,7,0,-1,0,-1,0,-1 截断序列{+ - + + - - -}:[7,0,-1,0,-1,0,-1]; {- - + - + + -}:[7,-2,-1,1,-3,0,1] {- + - + + - -}:[7,-2,-1,0,-1,0,1]
å
i=0
cici +me j 2 pxiT
特点:(子脉冲AF求和) ①主峰(码长相同都一样) ②旁瓣 ③敏感性 对称性
,
T
T
五、二相编码信号的自相关函数 (非周期)
c 2 (m , 0 ) =
4
P - 1- m
å
i= 0
c ic i + m
ü cc =cc +cc +cc +cc +cc =5 c2(0,0) = å i i 0 0 11 2 2 3 3 4 4 ,0) = å cc =cc +cc +cc +cc =0 c2(1 i i+ 1 0 1 12 2 3 3 4 cc =cc +cc +cc =1 c2(2,0) = å i i+2 0 2 1 3 2 4
¥
特点:
①线性谱,相邻谱线的间隔为
1 ②零频率分量的强度为 2 ; p
1 pT
;
③包络由码元宽度 T 决定; ④各谱线的强度与序列的长度和 编码码型有关。
5、 M序列的应用
发射天线 固态源 定向耦合器 隔离器 调相器 功放
相关器1 … 视放 相关器6
码产生器
激励器 接收天线
平衡混频器
低噪声高放
多普勒放大器
1
1 -1
1
K =0
åcK m1(t - KT )
0
P -1
0 < t < PT
ì ï ï1 / T m1(t ) = í ï 0 ï ï î 其它
0 < t <T
其它
m(t) = m1(t) *
1
T 结论: m( f ) = sinc( fT )e - j p fT P ①频谱形状 P -1 P -1 é 1 ù ⋅ êP + 2 å å cncn -K cos(2 p fKT ) 2 ú ②频谱宽度 ê ú K = n = K 1 ë û ③时宽带宽积 1 P P ④大时宽带宽积信号 B= = =
6 相位编码脉冲信号
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 二相编码信号 二元伪随机序列 PN截断码 巴克(Barker)序列 增加巴克码长度的方法 二相编码信号的处理 相位编码信号多普勒敏感问题 多相编码信号简介
6.1 二相编码信号
一、理想模糊图(图钉型) 二、二相编码信号基本概念
1 2
三、模糊函数
四、自相关函数 主旁瓣比(MSR):22.3dB
五、性能
13位巴克码和同样时宽线性调频信号比较。
1、距离分辨力高
6 pK D2 = 6p或 K = 2 D
6
5
4 æ3ö 6 ÷ ÷ B = K ⋅ D = = 4ç ç ÷ 3 ç D è2D÷ ø
LFM相位 (t ) kt 2
1 5T 6 7T 8 9T 10T 11T 12T 13T
1
( , 0)
自相关函数 c(t, 0)
1 D 13T = = » 2T 6 6 B
2、速度分辨力相同
两种信号的时宽相同时,其速度分辨力相同,因为它们的有效时宽都 是由时宽 Te线 = Te巴 = D 决定。 (模糊图在多普勒轴交点相同)
-20
-10
T
0
10
20
30
T
结论:①主峰②时移③旁瓣④多普勒敏感