模糊神经网络讲义
模糊神经网络简介

(2)知识库(knowledge base)
知识库中存贮着有关模糊控制器的一切知识,包
含了具体应用领域中的知识和要求的控制目标,
它们决定着模糊控制器的性能,是模糊控制器的 核心。
如专家经验等。
比如:If浑浊度 清,变化率 零,then洗涤时间 短
If浑浊度 较浊,变化率入输出样本中学习,
无需人来设置。
将两者结合起来,在处理大规模的模糊应用问题 方面将表现出优良的效果。
3、模糊神经网络(FNN)
模糊神经网络(Fuzzy Neural Network,简称 FNN)将模糊系统和神经网络相结合,充分考虑了 二者的互补性,集逻辑推理、语言计算、非线性动
语言信息和在模糊逻辑原则下系统地利用这类语
言信息的一般化模式;
缺点:输入输出均为模糊集合,不易为绝大数工
程系统所应用。
2.2.2 高木-关野模糊系统
该系统是由日本学者Takagi和Sugeno提出的,
系统输出为精确值,也称为T-S模糊系统或
Sugeno系统。
举例:
典型的一阶Sugeno型模糊规则形式如下:
结构上像神经网络,功能上是模糊系统,这是目
前研究和应用最多的一类模糊神经网络。
该网络共分5层,是根据模糊系统的工
作过程来设计的,是神经网络实现的模糊
推理系统。第二层的隶属函数参数和三、
四层间及四、五层间的连接权是可以调整
的。
典型的模糊神经网络结构
第一层为输入层,为精确值。 节点个数为输入变量的个数。
模糊神经网络的三种形式:
逻辑模糊神经网络
算术模糊神经网络(常规模糊神经网络) 混合模糊神经网络
模糊神经网络的基本原理与应用概述

模糊神经网络的基本原理与应用概述摘要:模糊神经网络(FNN)是将人工神经网络与模糊逻辑系统相结合的一种具有强大的自学习和自整定功能的网络,是智能控制理论研究领域中一个十分活跃的分支,因此模糊神经网络控制的研究具有重要的意义。
本文旨在分析模糊神经网络的基本原理及相关应用。
关键字:模糊神经网络,模糊控制,神经网络控制,BP算法。
Abstract:A fuzzy neural network is a neural network and fuzzy logic system with the combination of a powerful. The self-learning and self-tuning function of the network, is a very intelligent control theory research in the field of active branches. So the fuzzy neural network control research has the vital significance. The purpose of this paper is to analysis the basic principle of fuzzy neural networks and related applications.Key Words: Fuzzy Neural Network, Fuzzy Control, Neural Network Control, BP Algorithm.1人工神经网络的基本原理与应用概述1.1人工神经网络的概念人工神经网络(Artificial Neural Network,简称ANN)是由大量神经元通过极其丰富和完善的联接而构成的自适应非线性动态系统,它使用大量简单的相连的人工神经元来模仿生物神经网络的能力,从外界环境或其它神经元获得信息,同时加以简单的运算,将结果输出到外界或其它人工神经元。
模糊神经网络综述

1.模糊神经网络的提出模糊逻辑(FL)、神经网络理论(NN)、遗传算法(GA)、随机推理(PR),以及置信网络、混沌理论和部分学习理论相融合,形成了一种协作体,这种融合并非杂乱无章地将模糊逻辑、神经网络和遗传算法等进行拼凑,而是通过各种方法解决本领域的问题并相互取长补短,从而形成了各种方法的协作。
从这个意义上讲,各种方法是互补的,而不是竞争的。
在协作体中,各种方法起着不同的作用。
通过这种协作,产生了混合智能系统。
模糊逻辑和神经网络都是重要的智能控制方法,将模糊逻辑和神经网络这两种软计算方法相结合,取长补短,形成一种协作体—模糊神经网络。
2.模糊神经网络的研究进展模糊神经网络的发展经历了一个漫长的过程。
MacCulloch-Pitta模型便是早期将模糊集应用到神经网络中的一例。
此后,人们对模糊神经网络研究得很少。
直到1990年Takagi才综述性地讨论了神经网络与模糊逻辑的结合。
Kosko(1992)出版了该领域的第一本专著《Neural Network and Fuzzy Systems》,并在这本专著中提出了模糊联想记忆、模糊认知图等重要概念,促进了模糊神经网络的研究向着多元化深入发展。
(1)引入模糊运算的神经网络———狭义模糊神经网络狭义模糊神经网络通过调整参数进行学习。
其学习算法可以采用通用学习算法,也可以通过对原有神经网络的学习算法进行拓展得到。
反向传播学习算法、随机搜索法、遗传算法等是几种与具体神经网络结构无关的通用学习算法。
(2)用模糊逻辑增强网络功能的神经网络这类模糊神经网络不是对神经网络与模糊逻辑直接进行融合,而是通过模糊逻辑改进神经网络的学习算法。
首先通过分析网络性能得到启发式知识,然后再将启发式知识用于调整学习参数,从而加快了学习收敛速度。
(3)基于神经网络的模糊系统—神经模糊系统于神经网络的模糊系统,也被称为神经模糊系统(NFS,Neural-Fuzzy Systems),是利用神经网络学习算法的模糊系统。
模糊神经网络—智能控制

综述
对于给定的输入,只有在输入点附近的那些语言变量 才有较大的隶属度值,远离输入点的语言变量值的隶 属度很小(可近似为0)或为0,因此只有少量结点输 出非0,这点类似于局部逼近网络
第三层的每个结点代表一 条模糊规则,用于匹配模 糊规则的前件,计算出每
条规则的适用度
结点数与第三层 相同,实现适用 度的归一化计算
将两者结合起来,在处理大规模的模糊应用问题 方面将表现出优良的效果。
2、模糊神经网络(FNN)
模糊神经网络(Fuzzy Neural Network,简称 FNN)将模糊系统和神经网络相结合,充分考虑了 二者的互补性,集逻辑推理、语言计算、非线性动 力学于一体,具有学习、联想、识别、自适应和模 糊信息处理能力等功能。
3.1 模糊系统的标准模型
模糊系统的规则集和隶属度函数等设计参数只能 靠设计经验来选择,利用神经网络的学习方法, 根据输入输出的学习样本自动设计和调整模糊系 统的设计参数,实现模糊系统的自学习和自适应 功能。
结构上像神经网络,功能上是模糊系统,这是目 前研究和应用最多的一类模糊神经网络。
基于标准模型的模糊系统原理结构
输出量的表达式为 其中
对于给定输入x对 于规则适用度的归
一化
3.2 模糊神经网络的结构
由模糊模型可设计出如下模糊神经网络的结构
第一层为输入层,为 精确值。节点个数为 输入变量的个数。
第二层每个节点代表一 个语言变量值。用于计 算各输入分量属于各语 言变量值模糊集合的隶 属度函数
n是输入变量的维数,mi是 xi的模糊分割数(规则数)
的前件
输入层,第0个结点 的输入值是1,用于 提供模糊规则后件
中的常数项
每个结点代表一条 规则,用于计算每
第8章 模糊神经网络方法

242 第八章 模糊神经网络算法 火灾火情决策是一个复杂的过程,它包括接收输入信号,与已知信息和经验进行比较,对输入信号作出判决,并给出正常、火警或故障信号。通常火灾自动报警系统的决策系统是很简单,它根据单个传感器送来信息作出是否发生火灾的判决。例如,当感烟探测器探测到的粒子数达到预定阈值,就发出火警信号。这些粒子可能是烟雾粒子,也可能是水雾或灰尘等非火灾产生的粒子,普通感烟探测器无法区分烟雾粒子,还是水雾和灰尘粒子,这就导致误报的发生。 经过长期的研究发现,火灾的发生具有双重性,既有它的随机性一面,又有它的确定性一面。人们并不能确切的知道何时发生火灾,但是当具备了发生火灾的条件,就会发生火灾,出现表征火灾的火灾参量。如果同时测量这些火灾参量,对信号进行综合分析处理,那么,火灾的误报率便大大降低。然而火灾的复杂性还在于相同的材料在不同的环境下,具有不同的着火温度,相同的环境不同的材料,着火条件也不一样,人类的活动以及环境的变化事先也无法确定,所以实际的火灾参量是随着空间和时间的变化而变化,很难用建立一种或几种数学模型进行精确描述。因此,火灾探测信号检测是一种十分困难的信号检测,它要求信号处理算法能够适应各种环境条件的变化,自动调整参数以达到既能快速探测火灾,又有很低的误报率。
而神经网络与模糊系统都属于一种数值化的和非数学模型的函数估计和动力学系统。它们都能以一种不精确的方式处理不精确的信息。因而它在火灾探测领域具有美好的应用前景。
第一节 模糊逻辑与模糊计算
一、模糊集合及其运算规则 (一) 模糊集合与隶属度 人们往往把讨论的议题限制在某个相关的范围内,例如讨论火灾问题,不会去谈论如何打乒乓球,讨论的范围称为“论域”。用大写字母U、V、X、Y表示。论域中的每个对象称为“元素”,用小写字母u、v、x、y表示。具有某些特定属性的元素的全体称为U上的一个“集合”,常用大写字母A、B„„表示。
普通集合概念是论域中的任一元素,要么属于某个集合,要么不属于该集合,不允许有含混不清的说法,例如乒乓开关不是接通,就是断开。但是在现实生活中,却充满了模糊事物和模糊概念,例如“瘦子”集合,“少年”集合,“温度低”集合等等,其边界都是不明确
模糊神经网络控制与自适应神经网络

利用深度学习技术进一步提升神经网络的 性能,特别是在处理复杂和非线性问题方 面。
自适应控制与强化学习的结合
跨学科研究
将自适应控制和强化学习相结合,以实现 更高级别的智能控制,如自主学习和决策 。
结合计算机科学、数学、工程等多个学科 ,开展跨学科研究,以解决实际应用中的 复杂问题。
THANKS
感谢观看
自然语言处理
自适应神经网络在自然语言处 理领域中可以用于文本分类、 情感分析、机器翻译等任务。
05
模糊神经网络控制与自适应神经网络
的结合
结合方式与实现方法
模糊逻辑与神经网络的融合
将模糊逻辑的推理过程与神经网络的自学习能力相结合,实现更 高效的控制策略。
模糊神经元设计
在神经网络中引入模糊逻辑,设计具有模糊隶属函数的神经元,实 现模糊逻辑的推理过程。
模糊推理
基于模糊逻辑和模糊规则,通过模糊推理方法对 输入的模糊集合进行处理,得到输出模糊集合。
3
反模糊化
将输出模糊集合转换为精确值,通常采用最大值、 最小值或中心平均值等方法进行反模糊化处理。
模糊神经网络在控制中的应用
控制系统建模
利用模糊神经网络对非线性、不 确定性和时变性的系统进行建模, 提高控制系统的鲁棒性和适应性。
控制策略设计
基于模糊逻辑和神经网络的结合, 设计自适应控制策略,实现对复 杂系统的有效控制。
智能控制
将模糊神经网络应用于智能家居、 机器人等领域,实现智能化控制 和自主决策。
模糊神经网络控制的优势与挑战
优势
能够处理不确定性和非线性问题,具有较好的鲁棒性和适应性;能够处理不完全 和不精确的信息,适用于复杂系统的控制。
挑战
如何选择合适的隶属度函数和模糊规则,以更好地逼近实际系统;如何提高模糊 神经网络的泛化能力和训练效率;如何处理大规模和高维度的数据。
浅析模糊神经网络

定量分析
一.模糊理论 1、模糊理论 1965年,Zadeh教授发表论文“模糊集合”(Fuzzy set), 标志模糊数学的诞生。
模糊集合的基本思想是把经典集合中的绝对隶属关系灵活 化,即元素对“集合”的隶属度不再是局限于取0或1,而 是可以取从0到1间的任一数值。
用隶属函数(Membership Function)来刻画处于中间过渡
xa a xb bxc cxd dx
梯形隶属函数
高斯形隶属函数
g ( x; c, )
1 x c 2 ( ) 2 e
钟型隶属函数
c代表MF的中心; 决定MF的宽度。 1 bell ( x; a, b, c) x c 2b 1 a
隶属函数是模糊理论中的重要概念,实际应用中经常 用到以下三类隶属函数: (1)S函数(偏大型隶属函数)
举例:
典型的一阶Sugeno型模糊规则形式如下:
If x is A and y is B then z px qy r.
其中:
x和y为输入;A和B为推理前件的模糊集合;z
为输出;p、q、k为常数。
二、神经网络简介
生物神经网络
• 人类的大脑大约有1.41011个神经细胞,亦称为神经元。 每个神经元有数以千计的通道同其它神经元广泛相互连接, 形成复杂的生物神经网络。
纯模糊逻辑系统的优点:提供了一种量化专辑语言信
息和在模糊逻辑原则下系统地利用这类语言信息
的一般化模式;
缺点:输入输出均为模糊集合,不易为绝大数工
程系统所应用。
2.2.2 高木-关野模糊系统
该系统是由日本学者Takagi和Sugeno提出的,
系统输出为精确值,也称为T-S模糊系统或
第八章模糊神经网络

因为在这些网络中节点的激励函数实际上是一种模糊集合操作或者是一个推理公式比普通神经网络中的激励函数要复杂而且各节点的激励函数差别较大以至神经网络的优势难以发挥为了克服这些问题一方面要选择合适的模糊系统类型另一方面要创造一些新的推理机制比如ronsun1991提出了模糊证据推理就能够提高网络并行工作效率和硬件实现的可能性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模糊神经网络(备课笔记)预备知识复杂的东西是难以精确化的,这使得人们所需要的精确性和问题的复杂性间形成了尖锐的矛盾。
正如模糊数学的创始人L.A.Zadeh(查德)教授(美国加利福尼亚大学)所说:“当系统的复杂性增加时,我们使它精确化的能力将减小。
直到达到一个阈值,一旦超越它,复杂性和精确性将相互排斥。
”这就是著名的“互克性原理”。
该原理告诉我们,复杂性越高,有意义的精确化能力就越低;而复杂性意味着因素众多,以致人们往往不可能同时考察所有因素,只能把研究对象适当简化或抽象成模型,即抓住其中的主要部分而忽略掉次要部分。
当在一个被压缩了的低维因素空间考虑问题时,即使本来是明确的概念,也会变得模糊起来。
或者某些抽象简化模型本身就带有概念的不清晰,如“光滑铰链”这个力学模型,什么叫“光滑”、什么叫“粗糙”就没有一个明确的定义,客观上两者之间没有绝对分明的界限;主观上,决策者对此类非程序化决策做出判断时,主要是根据他的经验、能力和直观感觉等模糊概念进行决策的。
或者判断一个人的好坏,本来有很多因素,比如人品、性格、相貌等,现在简化改成一个综合评价:好、坏、一般等,都是根据个人爱好或者个人经验等模糊概念进行判断的。
在科学发展的今天,尤其在工程研究和设计领域中,这些模糊性问题就无法回避了,要求对数据进行定量分析,那如何对其进行定量分析呢?1965年,Zadeh教授发表一篇论文“模糊集合”(Fuzzy sets),所谓模糊集合就是指边界不清的集合。
提出用“隶属函数”(menbership function)这一概念来描述现象差异中的中间过渡,突破了德国人Cantor创立的古典集合论中属于或不属于的绝对关系,标志着模糊数学的诞生。
Zadeh认为应该重新把模糊性和精确性统一在一起,因为在现实生活中复杂事物要绝对精确是不可能的,实际上只是把所谓的不准确程度降低到了无关重要的程度。
他这篇论文第一次引人注目地提出了模糊性问题,给出了模糊概念的定量表示法,标志着模糊数学的诞生。
模糊数学是使模糊现象定量化的应用数学分支学科。
由于它突破了传统数学绝不允许模棱两可的约束,使那些与数学毫不相关的学科都可能用定量化和数学化加以描述和处理,从而显示其强大的生命力。
在模糊评价中,最基本和使用最多的是隶属度和隶属函数。
隶属度表示元素u属于模糊集合U的程度;也就是对模糊集合的判断是用元素对此集合的从属程度大小来表达的。
模糊系统模糊逻辑控制系统,简称模糊控制系统或模糊系统,是一种基于模糊数学理论的新型控制方法。
模糊控制由于模仿人对复杂事物的抽象思维方式,利用模糊信息处理对被控对象执行控制。
所以,它不需要知道系统的精确数学模型。
对不确定的非线性的系统来说是一种有效的控制途径。
但是,模糊控制对信息的简单模糊化导致系统的控制精度下降。
为了提高精度,往往要在模糊化时增加模糊量的个数,或者,增大控制规则集。
这样会使控制规则搜索范围的扩大、搜索时间增加、降低了决策的速度,则影响了动态过程的品质。
因此,隶属函数和控制规则的优化是提高品质的关键,在本质上,是对模糊控制中的知识进行正确性校正。
一般地说,模糊系统是指那些与模糊概念和模糊逻辑有直接关系的系统,主要由模糊化接口、知识库、模糊推理机、反模糊化接口四部分组成。
1、模糊化(Fuzzification),输入变量模糊化,即把确定的输入转化成为由隶属度描述的模糊集。
模糊化接口主要将检测输入变量的精确值根据其模糊度划分和隶属度函数转换成合适的语言值(即模糊值)。
模糊划分尚未有一种确定的唯一的方法。
它是根据经验而进行划分的。
对于一个论域而言,模糊度的划分过少,很明显语言变量就会粗糙,这样对于一个控制系统来说,其控制质量就产生不良影响。
如果划分的模糊集过多,则变量的检测和控制精度就越高,但是形成的控制规则就会过多,进行模糊推理就会占用大量的处理时间和过程;在采用模糊关系运算时,也会产生庞大的关系矩阵,从而关系运算就变得麻烦,产生的控制表也会庞大而占据较多内存。
一般情况下为了尽量减少模糊规则数,可对于检测和控制精度要求高的变量划分多(例如5一7个)的模糊度,反之则划分少(例如3个)的模糊度。
当完成变量的模糊度划分后,需定义变量各模糊集的隶属函数。
每个划分的梯形隶属度函数如图:2、知识库(knowledge base)知识库中存贮着有关模糊控制器的一切知识,包含了具体应用领域中的知识和要求的控制目标,它们决定着模糊控制器的性能,是模糊控制器的核心。
例如数据库、规则库等等。
(1)此数据库不是计算机软件中数据库的概念,它存贮着有关模糊化、模糊推理、解模糊的一切知识,如模糊化中的输入变量各模糊集合的隶属函数定义,以及模糊推理算法,反模糊化算法,输出变量各模糊集合的隶属函数定义等。
(2)模糊规则库是由若干模糊推理规则组成的,模糊控制规则是根据人的思维方式对一个被控系统执行控制而总结出来的带有模糊性的控制规则。
如专家经验等。
3、模糊推理机(Fuzzy Inference Engine)模糊推理机的功用在于:根据模糊逻辑法则把模糊规则库中的模糊“if-then”规则转换成某种映射。
模糊推理,这是模糊控制器的核心,模拟人基于模糊概念的推理能力。
4. 反模糊化(defuzzification),清晰化,即把输出的模糊量转化为实际用于控制的清晰量。
神经网络(Neural Network,简称NN)是由众多简单的神经元连接而成的网络。
尽管每个神经元结构、功能都不复杂,但网络的整体动态行为极为复杂,可组成高度非线性动力学系统,从而可表达许多复杂的物理系统。
神经网络的研究从上世纪40年代初开始,目前,在世界范围已形成了研究神经网络前所未有的热潮。
它已在控制、模式识别、图像和视频信号处理、金融证券、人工智能、军事、计算机视觉、优化计算、自适应滤波和A/D变换等方面获得了应用。
模糊系统(Fuzzy System,简称FS)是仿效人的模糊逻辑思维方法设计的系统,方法本身明确地说明了系统在工作过程中允许数值量的不精确性存在。
模糊数学自1965年诞生至今已有40多年的历史,它在理论上还处于不断发展和完善中。
它是用精确的数学理论研究人类思维的模糊性,其最基本的概念是隶属度。
用隶属度来描述某一对象或称为元素属于某一论域者称为集合的程度,这样既能准确描述人类思维中的模糊性,又能被计算机理解。
目前,它已广泛应用于计算机科学、自动控制、系统工程、环保、机械、管理科学、思维科学、社会科学等领域。
模糊系统与神经网络的区别与联系(1)从知识的表达方式来看☐模糊系统可以表达人的经验性知识,便于理解,而神经网络只能描述大量数据之间的复杂函数关系,难于理解。
(2)从知识的存储方式来看☐模糊系统将知识存在规则集中,神经网络将知识存在权系数中,都具有分布存储的特点。
(3)从知识的运用方式来看☐模糊系统和神经网络都具有并行处理的特点,模糊系统同时激活的规则不多,计算量小,而神经网络涉及的神经元很多,计算量大(4)从知识的获取方式来看☐模糊系统的规则靠专家提供或设计,难于自动获取.而神经网络的权系数可由输入输出样本中学习,无需人来设置。
因此将两者结合起来,在处理大规模的模糊应用问题方面将表现出优良的效果。
模糊集理论和神经网络虽都属于仿效生物体信息处理机制以获得柔性信息处理功能的理论,但两者所用的研究方法不同。
神经网络着眼于大脑的微观网络结构,通过学习、自组织化和非线性动力学理论形成并行分析方法,可处理语言化的模式信息,而模糊集理论则着眼于可用语言和概念作为代表大脑的宏观功能,按人为引入的隶属度函数,逻辑处理包含有模糊性的语言信息。
模糊逻辑具有模拟人脑抽象思维的特点,而神经网络具有模拟人脑形象思维的特点,对二者结合将有助于从抽象和形象思维两方面模拟人脑的思维特点,是目前实现智能控制的重要形式。
目前,FS和NN的结合主要有模糊神经网络和神经模糊系统。
神经模糊系统是以NN为主,结合模糊集理论。
它将NN作为实现FS模型的工具,即在NN的框架下实现FS或其一部分功能。
神经模糊系统虽具有一些自己所具有而NN不具备的特性,但它没有跳出NN的框架。
神经模糊系统从结构上来看,一般是四层或五层的前向神经网络。
模糊神经网络是神经网络的模糊化。
即以模糊集、模糊逻辑为主,结合NN方法,利用NN 的自组织性,达到柔性信息处理的目的。
目前,FS理论和NN结合主要应用于商业及经济估算、自动检测和监视、机器人及自动控制、计算机视觉、专家系统、语音处理、优化问题、医疗应用等方面,并可推广到工程、科技、信息技术和经济等领域。
模糊神经网络进入20世纪80年代以后,模糊理论体系得到逐步完善,模糊技术在工业控制应用中取得巨大成功,特别是神经网络研究热潮的再一次兴起,许多人很自然地把目光投向模糊逻辑系统与神经网络的结合这一重要方向。
在20世纪80年代末至90年代初,模糊逻辑系统与神经网络融合问题开始真正引起学术界的关注。
近年来,这两类方法日趋融合,已成为智能控制方法。
人工神经网络按其运行过程中信息流向可以分为前向网络和反馈型网络两大类。
前向网络通过许多具有简单处理能力的神经元的相互组合使整个网络具有复杂的非线性逼近能力,反馈型网络通过网络神经元状态的变迁最终稳定于平衡状态,得到联想存储或优化计算的结果。
感知器、自适应线性元件和BP网络等属于前向网络,而Hopfield网络则属于反馈型网络。
按学习方式神经网络又可分为有监督学习、无监督学习和强化学习三类。
有监督学习需要包含已知输入和输出的样本训练集,学习系统根据已知输出与实际输出之间的差值来调节系统参数。
在无监督学习中,学习系统完全按照数据的某些统计规律来调节自身结构和参数,是一种自组织的过程。
强化学习介于前两种学习方式之间,外界环境对系统输出结果只给出评价信息(奖或惩)而不给出正确答案,学习系统通过强化那些受奖的动作来改善自身性能。
神经网络具有非线性映射能力、学习能力、并行处理能力和容错能力,模糊逻辑具有处理不确定性的能力,二者在复杂工业对象的建模和控制领域已经得到了广泛的应用。
目前,单纯使用神经网络控制技术的研究有停滞不前的趋势。
究其原因,除了神经网络本身的问题(如泛化能力不能够达到控制系统鲁棒性的要求)之外,最主要的原因就是神经网络的黑箱式的知识表达方式使其不能够利用先验知识进行学习。
同时,模糊逻辑的应用也遇到了模糊规则难于确定的问题。
模糊神经网络(Fuzzy Neural Network,FNN)即结合了模糊逻辑与神经网络的优点,避免了二者的缺点,既可以具有模糊逻辑的不确定信息处理能力,又可以有神经网络的自学习能力,因此在控制领域有很广泛的应用前景。
可进行模糊信息处理的神经网络,称其为模糊神经网络。
它们通常是一类由大量模糊的或非模糊的神经元相互联结构成的网络系统。