中考数学-图形的相似

合集下载

【名师面对面】2015中考数学总复习 第7章 第31讲 图形的相似课件

【名师面对面】2015中考数学总复习 第7章 第31讲 图形的相似课件

1.相似多边形定义:对应角相等、对应边成比例 的两个多边形叫做相似多边形.相似多边形对应边 的比叫做________,相似比为1的两个多边形全等. 2.相似多边形性质
(1)相似多边形的对应角________,对应边成
________;
(2)相似多边形周长的比等于________;
(3)相似多边形面积的比等于________.
(1)求该抛物线的解析式及顶点M的坐标.
由题意得-(-1)2+2×(-1)+c=0,解得c=3,
∴y=-x2+2x+3,即y=-(x-1)2+4,∴顶点M(1,4) (2)求△EMF与△BNE的面积之比.
∵A(-1,0),抛物线的对称轴为直线 x=1, ∴点 B(3,0),∴EM=1,BN=2,∵EM∥BN, S△EMF EM 2 1 2 1 ∴△EMF∽△BNF,∴ =( ) =( ) = BN 2 4 S△BNF
2.(2014·东营)下列关于位似图形的表述: ①相似图形一定是位似图形,位似图形一定是相似图形; ②位似图形一定有位似中心;③如果两个图形是相似图形,
且每组对应点的连线所在的直线都经过同一个点,那么这两
个图形是位似图形;④位似图形上任意两点与位似中心的距 离之比等于位似比.其中正确命题的序号是( A ) A.②③ B.①② C.③④ D.②③④
3.(2014·武汉)如图,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速 度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连结PQ.
(1)若△BPQ与△ABC相似,求t的值
第31讲
图形的相似
1.了解比例的基本性质、线段的比、成比例的线段;了解 黄金分割. 2.了解相似多边形、相似三角形的概念,以及相似比的概 念. 3.掌握基本事实:两条直线被一组平行线所截,所得的对 应线段成比例. 4.了解相似图形的性质定理,相似多边形的对应角相等, 对应边成比例,面积的比等于对应边之比的平方. 5.了解图形的位似,知道利用位似可以将一个图形放大或 缩小. 6.通过典型实例观察和认识现实生活中物体的相似,会利 用图形的相似解决一些实际问题.

2021年中考数学真题 图形的相似(共55题)-(解析版)

2021年中考数学真题 图形的相似(共55题)-(解析版)

2021年中考数学真题分项汇编【全国通用】(第01期)22图形的相似(共55题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·浙江温州市·中考真题)如图,图形甲与图形乙是位似图形,O 是位似中心,位似比为2:3,点A ,B 的对应点分别为点A ',B '.若6AB =,则A B ''的长为( )A .8B .9C .10D .15【答案】B 【分析】直接利用位似图形的性质得出线段比进而得出答案. 【详解】解:∵图形甲与图形乙是位似图形,O 是位似中心,位似比为2:3,∵23AB A B ='', ∵6AB =,∵623A B ='', ∵9A B ''= 故答案为:B .【点睛】此题主要考查了位似变换,正确掌握位似图形的性质是解题关键.2.(2021·山东东营市·中考真题)如图,ABC 中,A 、B 两个顶点在x 轴的上方,点C 的坐标是(1,0),以点C 为位似中心,在x 轴的下方作ABC 的位似图形A B C '',并把ABC 的边长放大到原来的2倍,设点B 的横坐标是a ,则点B 的对应点B '的横坐标是( )A .23a -+B .21a -+C .22a -+D .22a --【答案】A 【分析】设点'B 的横坐标为x ,然后表示出BC 、'B C 的横坐标的距离,再根据位似比列式计算即可得解. 【详解】设点'B 的横坐标为x ,则B 、C 间的横坐标的差为1a -,'B 、C 间的横坐标的差为1x -+,ABC 放大到原来的2倍得到'''A B C ,∴()211a x -=-+,解得:23x a =-+. 故选:A. 【点睛】本题考查了位似变换,坐标与图形的性质,根据位似比的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.3.(2021·浙江绍兴市·中考真题)如图,树AB 在路灯O 的照射下形成投影AC ,已知路灯高5m PO =,树影3m AC =,树AB 与路灯O 的水平距离 4.5m AP =,则树的高度AB 长是( )A .2mB .3mC .3m 2D .10m 3【答案】A 【分析】利用相似三角形的性质得到对应边成比例,列出等式后求解即可. 【详解】解:由题可知,CAB CPO ∽,∵AB ACOP CP =, ∵353 4.5AB =+, ∵()2AB m =, 故选A .【点睛】本题考查了相似三角形的判定与应用,解决本题的关键是能读懂题意,建立相似关系,得到对应边成比例,完成求解即可,本题较基础,考查了学生对相似的理解与应用等.4.(2021·四川遂宁市·中考真题)如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积是3cm 2,则四边形BDEC 的面积为( )A .12cm 2B .9cm 2C .6cm 2D .3cm 2【答案】B 【分析】由三角形的中位线定理可得DE =12BC ,DE ∵BC ,可证∵ADE ∵∵ABC ,利用相似三角形的性质,即可求解. 【详解】解:∵点D ,E 分别是边AB ,AC 的中点,∵DE =12BC ,DE ∵BC ,∵∵ADE ∵∵ABC , ∵21()4ADEABCS DE SBC ∆∆==, ∵S ∵ADE =3, ∵S ∵ABC =12,∵四边形BDEC的面积=12-3=9(cm2),故选:B.【点睛】本题考查了相似三角形的判定和性质,三角形中位线定理,掌握相似三角形的性质是解题的关键.5.(2021·重庆中考真题)如图,△ABC与△BEF位似,点O是它们的位似中心,其中OE=2OB,则△ABC与△DEF的周长之比是()A.1:2B.1:4C.1:3D.1:9【答案】A【分析】利用位似的性质得∵ABC∵∵DEF,OB:OE= 1:2,然后根据相似三角形的性质解决问题.【详解】解:∵∵ABC与∵DEF位似,点O为位似中心.∵∵ABC∵∵DEF,OB:OE= 1:2,∵∵ABC与∵DEF的周长比是:1:2.故选:A.【点睛】本题主要考查了位似变换,正确掌握位似图形的性质是解题关键.6.(2021·江苏扬州市·中考真题)如图,点P 是函数()110,0k y k x x=>>的图像上一点,过点P 分别作x 轴和y 轴的垂线,垂足分别为点A 、B ,交函数()220,0k y k x x=>>的图像于点C 、D ,连接OC 、OD 、CD 、AB ,其中12k k >,下列结论:△//CD AB ;△122OCDk kS -=;△()21212DCPk k Sk -=,其中正确的是( )A .△△B .△△C .△△D .△【答案】B 【分析】设P (m ,1k m),分别求出A ,B ,C ,D 的坐标,得到PD ,PC ,PB ,P A 的长,判断PD PB和PC PA 的关系,可判断∵;利用三角形面积公式计算,可得∵PDC 的面积,可判断∵;再利用OCD OAPB OBD OCA DPC S S S S S =---△△△△计算∵OCD 的面积,可判断∵.【详解】解:∵PB ∵y 轴,P A ∵x 轴,点P 在1k y x =上,点C ,D 在2k y x=上,设P (m ,1k m ), 则C (m ,2k m ),A (m ,0),B (0,1k m),令12k k m x =,则21k m x k =,即D (21k m k ,1k m ),∵PC =12k k m m -=12k k m -,PD =21k m m k -=()121m k k k -, ∵()121121m k k k k k PD PB m k --==,121211k k k k PC m kPA k m--==,即PD PCPB PA =,又∵DPC =∵BP A , ∵∵PDC ∵∵PBA , ∵∵PDC =∵PBC , ∵CD ∵AB ,故∵正确; ∵PDC的面积=12PD PC ⨯⨯=()1212112m k k k k km --⨯⨯=()21212k k k -,故∵正确;OCD OAPB OBD OCA DPC S S S S S =---△△△△=()112221222112k k k k k k ----=()2121122k k k k k ---=()()21121112222k k k k k k k --- =()22112211222k k k k k k --- =221212k k k -,故∵错误;故选B . 【点睛】此题主要考查了反比例函数的图象和性质,k 的几何意义,相似三角形的判定和性质,解题关键是表示出各点坐标,得到相应线段的长度.7.(2021·江苏连云港市·中考真题)如图,ABC 中,BD AB ⊥,BD 、AC 相交于点D ,47AD AC =,2AB =,150ABC ∠=︒,则DBC △的面积是( )A B C D 【答案】A 【分析】过点C 作CE AB ⊥的延长线于点E ,由等高三角形的面积性质得到:3:7DBCABCS S=,再证明ADB ACE ,解得47AB AE =,分别求得AE 、CE 长,最后根据ACE 的面积公式解题. 【详解】解:过点C 作CE AB ⊥的延长线于点E ,DBC 与ADB △是等高三角形,43:::4:377ADB DBCSSAD DC AC AC === :3:7DBCABCSS∴=BD AB ⊥∴ADB ACE22416749ADB ACEAC S AD SAC AC ⎛⎫ ⎪⎛⎫∴===⎪ ⎪⎝⎭ ⎪⎝⎭47AB AE ∴= 2AB =72AE ∴=73222BE ∴=-=150,ABC ∠=︒18015030CBE ∴∠=︒-︒=︒tan 30CE BE ∴=︒⋅=设4,3ADBDBCSx Sx ==494ACESx ∴=∴4917422x ∴=⨯14x ∴=3x ∴=, 故选:A . 【点睛】本题考查相似三角形的判定与性质、正切等知识,是重要考点,掌握相关知识是解题关键.8.(2021·浙江绍兴市·中考真题)如图,Rt ABC 中,90BAC ∠=︒,1cos 4B =,点D 是边BC 的中点,以AD 为底边在其右侧作等腰三角形ADE ,使ADE B ∠=∠,连结CE ,则CEAD的值为( )A .32BCD .2【答案】D 【分析】由直角三角形斜边中线等于斜边一半可得出12AD BD CD BC ===,在结合题意可得BAD B ADE ∠=∠=∠,即证明//AB DE ,从而得出BAD B ADE CDE ∠=∠=∠=∠,即易证()ADE CDE SAS ≅,得出AE CE =.再由等腰三角形的性质可知AE CE DE ==,BAD B ADE DAE ∠=∠=∠=∠,即证明ABD ADE ∼,从而可间接推出CE BDAD AB=.最后由1cos 4AB B BC ==,即可求出BD AB 的值,即CEAD的值. 【详解】∵在Rt ABC 中,点D 是边BC 的中点, ∵12AD BD CD BC ===, ∵BAD B ADE ∠=∠=∠, ∵//AB DE .∵BAD B ADE CDE ∠=∠=∠=∠,∵在ADE 和CDE △中,AD CD ADE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩,∵()ADE CDE SAS ≅,∵AE CE =,∵ADE 为等腰三角形,∵AE CE DE ==,BAD B ADE DAE ∠=∠=∠=∠,∵ABD ADE ∼, ∵DE AD BD AB =,即CE BD AD AB=. ∵1cos 4AB B BC ==, ∵12AB BD =, ∵2CE BD AD AB ==. 故选D .【点睛】本题考查直角三角形的性质,等腰三角形的性质,平行线的判定和性质,全等三角形与相似三角形的判定和性质以及解直角三角形.熟练掌握各知识点并利用数形结合的思想是解答本题的关键.9.(2021·重庆中考真题)如图,在平面直角坐标系中,将OAB 以原点O 为位似中心放大后得到OCD ,若()0,1B ,()0,3D ,则OAB 与OCD 的相似比是( )A .2:1B .1:2C .3:1D .1:3 【答案】D【分析】直接利用对应边的比等于相似比求解即可.【详解】解:由B 、D 两点坐标可知:OB =1,OD =3;∵OAB 与∵OCD 的相似比等于13OB OD =; 故选D .【点睛】本题考查了在平面直角坐标系中求两个位似图形的相似比的概念,同时涉及到了位似图形的概念、平面直角坐标系中点的坐标、线段长度的确定等知识;解题关键是牢记相似比等于对应边的比,准确求出对应边的比即可完成求解,考查了学生对概念的理解与应用等能力.10.(2021·浙江丽水市·中考真题)如图,在Rt ABC △纸片中,90,4,3ACB AC BC ∠=︒==,点,D E 分别在,AB AC 上,连结DE ,将ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分EFB ∠,则AD 的长为( )A .259B .258C .157D .207【答案】D【分析】先根据勾股定理求出AB ,再根据折叠性质得出∵DAE=∵DFE ,AD=DF ,然后根据角平分线的定义证得∵BFD=∵DFE =∵DAE ,进而证得∵BDF=90°,证明Rt∵ABC ∵Rt∵FBD ,可求得AD 的长.【详解】解:∵90,4,3ACB AC BC ∠=︒==,∵AB =,由折叠性质得:∵DAE=∵DFE ,AD=DF ,则BD =5﹣AD ,∵FD 平分EFB ∠,∵∵BFD =∵DFE=∵DAE ,∵∵DAE +∵B =90°,∵∵BDF +∵B =90°,即∵BDF =90°,∵Rt∵ABC ∵Rt∵FBD , ∵BD BC DF AC =即534AD AD -=, 解得:AD =205, 故选:D .【点睛】本题考查折叠性质、角平分线的定义、勾股定理、相似三角形的判定与性质、三角形的内角和定理,熟练掌握折叠性质和相似三角形的判定与性质是解答的关键.11.(2021·山东东营市·中考真题)如图,ABC 是边长为1的等边三角形,D 、E 为线段AC 上两动点,且30DBE ∠=︒,过点D 、E 分别作AB 、BC 的平行线相交于点F ,分别交BC 、AB 于点H 、G .现有以下结论:△ABC S =;△当点D 与点C 重合时,12FH =;△AE CD +=;△当AE CD =时,四边形BHFG 为菱形,其中正确结论为( )A.△△△B.△△△C.△△△△D.△△△【答案】B【分析】过A作AI∵BC垂足为I,然后计算∵ABC的面积即可判定∵;先画出图形,然后根据等边三角形的性质和相似三角形的性质即可判定∵;如图将∵BCD绕B点逆时针旋转60°得到∵ABN,求证NE=DE;再延长EA到P使AP=CD=AN,证得∵P=60°,NP=AP=CD,然后讨论即可判定∵;如图1,当AE=CD时,根据题意求得CH=CD、AG=CH,再证明四边形BHFG为平行四边形,最后再说明是否为菱形.【详解】解:如图1, 过A作AI∵BC垂足为I∵ABC是边长为1的等边三角形∵∵BAC=∵ABC=∵C=60°,CI=1212 BC=∵AI=∵S∵ABC=1112224AI BC=⨯⨯=,故∵正确;如图2,当D 与C 重合时∵∵DBE =30°,ABC 是等边三角形∵∵DBE =∵ABE =30°∵DE =AE =1122AD =∵GE //BD ∵1BGDEAG AE ==∵BG =1122AB =∵GF //BD ,BG //DF∵HF =BG =12,故∵正确;如图3,将∵BCD 绕B 点逆时针旋转60°得到∵ABN∵∵1=∵2,∵5=∵6=60°,AN =CD ,BD =BN∵∵2+∵4=∵1+∵4=30°∵∵NBE=∵3=30°又∵BD=BN,BE=BE∵∵NBE∵∵DBE(SAS)∵NE=DE延长EA到P使AP=CD=AN∵∵NAP=180°-60°-60°=60°∵∵ANP为等边三角形∵∵P=60°,NP=AP=CD成立,则PE,需∵NEP=90°,但∵NEP不一定为90°,如果AE+CD=故∵不成立;如图1,当AE=CD时,∵GE//BC∵∵AGE=∵ABC=60°,∵GEA=∵C=60°∵∵AGE=∵AEG=60°,同理:CH=CD∵AG=CH∵BG//FH,GF//BH∵四边形BHFG是平行四边形∵BG=BH∵四边形BHFG为菱形,故∵正确.故选B.【点睛】本题主要考查了等边三角形的性质、旋转变换、全等三角形的判定和性质以及菱形的判定等知识点,灵活运用相关知识成为解答本题的关键.12.(2021·四川眉山市·中考真题)如图,在以AB为直径的O中,点C为圆上的一点,3⊥于点E,弦AF交CE于点H,交BC于点G.若点H是=,弦CD ABBC AC∠的度数为()AG的中点,则CBFA.18°B.21°C.22.5°D.30°【答案】C【分析】根据直径所对的圆周角是90︒,可知90ACB AFB ∠=∠=︒,根据3BC AC =,可知ABC ∠、BAC ∠的度数,根据直角三角形斜边上的中线等于斜边的一半可知,AHC 为等腰三角形,再根据CAE BFG BCA ∽∽可求得CBF ∠的度数.【详解】解:∵AB 为O 的直径,∵90ACB AFB ∠=∠=︒,∵3BC AC =,∵=22.5ABC ∠︒,=67.5BAC ∠︒,∵点H 是AG 的中点,∵CE AH =,∵CAH ACH ∠=∠,∵CD AB ⊥,∵AEC GCA ∽,又∵,CAF CBF CGA FGB ∠=∠∠=∠,∵AEC GCA GFB ∽∽,∵90ACE ECB ABC ECB ∠+∠=∠+∠=︒,∵ABE ABC ∠=∠,∵AEC GCA GFB ACB ∽∽∽,∵22.5ABC ACE GAC GBF ∠=∠=∠=∠=︒,∵=22.5CBF ∠︒,故选:C .【点睛】本题主要考查圆周角定理,垂径定理,相似三角形,直角三角形斜边上中线等知识点,找出图形中几个相似三角形是解题关键.13.(2021·山东聊城市·中考真题)如图,四边形ABCD中,已知AB△CD,AB与CD之间的距离为4,AD=5,CD=3,△ABC=45°,点P,Q同时由A点出发,分别沿边AB,折线ADCB向终点B方向移动,在移动过程中始终保持PQ△AB,已知点P的移动速度为每秒1个单位长度,设点P的移动时间为x秒,△APQ的面积为y,则能反映y与x之间函数关系的图象是()A.B.C.D.【答案】B【分析】依次分析当03t≤≤、36t<≤、610t<≤三种情况下的三角形面积表达式,再根据其对应图像进行判断即可确定正确选项.【详解】解:如图所示,分别过点D、点C向AB作垂线,垂足分别为点E、点F,∵已知AB∥CD,AB与CD之间的距离为4,∵DE =CF =4,∵点P ,Q 同时由A 点出发,分别沿边AB ,折线ADCB 向终点B 方向移动,在移动过程中始终保持PQ ∵AB ,∵PQ∥DE∥CF ,∵AD =5, ∵3==AE ,∵当03t ≤≤时,P 点在AE 之间,此时,AP =t , ∵AP PQ AE DE=, ∵4=3PQ t , ∵2142=2233APQ t S AP PQ t t ⋅=⨯=, 因此,当03t ≤≤时,其对应的图像为()22033y t t =≤≤,故排除C 和D ; ∵CD =3,∵EF =CD =3,∵当36t <≤时,P 点位于EF 上,此时,Q 点位于DC 上,其位置如图中的P 1Q 1,则111422APQ S t t =⨯⨯=, 因此当36t <≤时,对应图像为()236y t t =<≤,即为一条线段;∵∵ABC =45°,∵BF =CF =4,∵AB =3+3+4=10,∵当610t <≤时,P 点位于FB 上,其位置如图中的P 2Q 2,此时,P 2B =10-t , 同理可得,Q 2P 2=P 2B =10-t ,()2221110522AP Q S t t t t =⨯-=-+,因此当610t <≤时,对应图像为()2156102y t t t =-+<≤,其为开口向下的抛物线的610t <≤的一段图像; 故选:B .【点睛】本题考查了平行线分线段成比例的推论、勾股定理、平行线的性质、三角形的面积公式、二次函数的图像等内容,解决本题的关键是牢记相关概念与公式,能分情况讨论等,本题蕴含了数形结合与分类讨论的思想方法等.14.(2021·四川广元市·中考真题)如图,在边长为2的正方形ABCD 中,AE 是以BC 为直径的半圆的切线,则图中阴影部分的面积为( )A .32π+B .2π-C .1D .52π- 【答案】D【分析】取BC的中点O,设AE与∵O的相切的切点为F,连接OF、OE、OA,由题意可得OB=OC=OA=1,∵OF A=∵OFE=90°,由切线长定理可得AB=AF=2,CE=CF,然后根据割补法进行求解阴影部分的面积即可.【详解】解:取BC的中点O,设AE与∵O的相切的切点为F,连接OF、OE、OA,如图所示:∵四边形ABCD是正方形,且边长为2,∵BC=AB=2,∥ABC=∥BCD=90°,∵AE是以BC为直径的半圆的切线,∵OB=OC=OF=1,∵OF A=∵OFE=90°,∵AB=AF=2,CE=CF,∵OA=OA,∵Rt∵ABO∵Rt∵AFO(HL),同理可证∵OCE∵∵OFE,∵,∠=∠∠=∠,AOB AOF COE FOE∵90∠+∠=︒=∠+∠,AOB COE AOB BAO∵COE BAO ∠=∠,∵ABO OCE ∽, ∵OC CE AB OB=, ∵12CE =, ∵15222222ABO OCE ABCE S S S SS S ππ-=-=+-=+-=阴影半圆半圆四边形; 故选D .【点睛】 本题主要考查切线的性质定理、切线长定理、正方形的性质及相似三角形的性质与判定,熟练掌握切线的性质定理、切线长定理、正方形的性质及相似三角形的性质与判定是解题的关键.15.(2021·四川自贡市·中考真题)如图,在正方形ABCD 中,6AB =,M 是AD 边上的一点,:1:2AM MD =.将BMA △沿BM 对折至BMN △,连接DN ,则DN 的长是( )A .52BC .3D 【答案】D【分析】延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,根据折叠的正方形的性质得到NE CE =,在Rt MDE 中应用勾股定理求出DE 的长度,通过证明MDE NFE ∽,利用相似三角形的性质求出NF 和DF 的长度,利用勾股定理即可求解.【详解】解:如图,延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,∵6AB =,M 是AD 边上的一点,:1:2AM MD =,∵2AM =,4DM =,∵将BMA △沿BM 对折至BMN △,四边形ABCD 是正方形,∵90BNE C ∠=∠=︒,AB AN BC ==,∵Rt BNE Rt BCE ≌(HL),∵NE CE =,∵2EM MN NE NE =+=+,在Rt MDE 中,设DE x =,则628ME x x =-+=-,根据勾股定理可得()22248x x +=-,解得3x =,∵3NE DE ==,5ME =,∵NF CD ⊥,90MDE ∠=︒,∵MDE NFE ∽, ∵25EF NFNE DE MD ME ===,∵125NF =,95EF =, ∵65DF =,∵DN =,故选:D .【点睛】本题考查折叠的性质、相似三角形的判定与性质、勾股定理的应用等内容,做出合适的辅助线是解题的关键.16.(2021·四川泸州市·中考真题)如图,△O 的直径AB =8,AM ,BN 是它的两条切线,DE 与△O 相切于点E ,并与AM ,BN 分别相交于D ,C 两点,BD ,OC 相交于点F ,若CD =10,则BF 的长是A B C D 【答案】A【分析】过点D 作DG ∵BC 于点G ,延长CO 交DA 的延长线于点H ,根据勾股定理求得6GC =,即可得AD=BG =2,BC = 8,再证明∵HAO ∵∵BCO ,根据全等三角形的性质可得AH=BC =8,即可求得HD= 10;在Rt∵ABD 中,根据勾股定理可得BD =∵DHF ∵∵BCF ,根据相似三角形的性质可得DH DF BC BF=,由此即可求得BF=9【详解】过点D作DG∵BC于点G,延长CO交DA的延长线于点H,∵AM,BN是它的两条切线,DE与∵O相切于点E,∵AD=DE,BC=CE,∵DAB=∵ABC=90°,∵DG∵BC,∵四边形ABGD为矩形,∵AD=BG,AB=DG=8,在Rt∵DGC中,CD=10,∵6GC===,∵AD=DE,BC=CE,CD=10,∵CD= DE+CE = AD+BC =10,∵AD+BG +GC=10,∵AD=BG=2,BC=CG+BG=8,∵∵DAB=∵ABC=90°,∵AD∵BC,∵∵AHO=∵BCO,∵HAO=∵CBO,∵OA=OB,∵∵HAO∵∵BCO,∵AH=BC=8,∵AD=2,∵HD=AH+AD=10;在Rt∵ABD中,AD=2,AB=8,∵BD==∵AD∵BC,∵∵DHF∵∵BCF,∵DH DF=,BC BF∵10=,8解得,BF=故选A.【点睛】本题是圆的综合题,考查了切线长定理、勾股定理、全等三角形的判定及性质、相似三角形的判定于性质,熟练运用相关知识是解决问题的关键.17.(2021·内蒙古通辽市·中考真题)如图,已知//⊥,3AD BC,AB BCAB=,点E 为射线BC上一个动点,连接AE,将ABE△沿AE折叠,点B落在点B'处,过点B'作AD的垂线,分别交AD,BC于M,N两点,当B'为线段MN的三等分点时,BE 的长为()A .32BC .32D 【答案】D【分析】因为点'B 为线段MN 的三等分点,没有指明线段'B M 的占比情况,所以需要分两种情况讨论:∵1'3B M MN =;∵ 2'3B M MN =.然后由一线三垂直模型可证 'AMB ∵'B NE ,再根据相似三角形的性质求得 EN 的值,最后由 BE BN EN =-即可求得 BE 的长.【详解】当点'B 为线段MN 的三等分点时,需要分两种情况讨论:∵如图1,当1'3B M MN =时,∵AD ∵BC ,AB BC ⊥, MN BC ⊥,∵四边形ABNM 为矩形, ∵11'133B M MN AB ===, 22'233B N MN AB ===, BN AM =.由折叠的性质可得'3A B AB ==,'90AB E ABC ∠=∠=︒.在'Rt AB M 中,AM ==.∵''90AB M MAB ∠+∠=︒, ''90AB M EB N ∠+∠=︒,∵''EB N MAB ∠=∠,∵'B NE ∵'AMB ,∵''ENB N B M AM =,即 1EN =,解得 EN =,∵BE BN EN =-==.∵如图2,当2'3B M MN =时,∵AD ∵BC ,AB BC ⊥, MN BC ⊥,∵四边形ABNM 为矩形, ∵22'233B M MN AB ===, 11'133B N MN AB ===, BN AM =.由折叠的性质可得'3AB AB ==,'90AB E ABC ∠=∠=︒.在'Rt AB M 中,AM ===∵''90AB M MAB ∠+∠=︒, ''90AB M EB N ∠+∠=︒,∵''EB N MAB ∠=∠,∵'B NE ∵'AMB ,∵''EN B N B M AM =,即 2EN =EN =,∵BE BN EN =-==.综上所述,BE 的长为2或 5. 故选:D .【点睛】 本题考查了矩形的判定,勾股定理,相似三角形的判定和性质,由'B 为线段MN 的三等分点,分两种情况讨论线段'B M 的占比情况,以及利用K 型相似进行相关计算是解决此题的关键.18.(2021·四川资阳市·中考真题)如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH 组成,恰好拼成一个大正方形ABCD .连结EG 并延长交BC 于点M .若1AB EF ==,则GM 有长为( )A .5B .3CD .5【答案】D【分析】添加辅助线,过F 点作FI ∵HM ,通过证明两组三角形相似,得到FI 和GM 的两个关系式,从而求解GM .【详解】如图所示,过F 点作FI ∵HM ,交BC 于点I ,证明勾股定理的弦图的示意图是由四个全等的直角三角形和一个小正方形EFGH 组成∴=90AEB ∠︒,BF AE CG ==,CF BE =,1FG EF ==,EG =又1AB EF ==∴222AE BE AB +=,即 ()2221BF BF ++=解得2BF =或3BF =-(舍去)∴=2BF AE CG ==,=3CF BE =FI∵HM∴CGM CFI ∆,~BFI BEM ∆ ∴32FICFGM CG ==, 32EMBEFI BF == ∴32FI GM =,32EG GMGMFI FI +==∴322GM=解得:GM =经检验:GM =故选:D .【点睛】本题考查了相似三角形和勾股定理.本题的关键在于添加辅助线,建立所求线段与已知条件之间的联系.19.(2021·河北中考真题)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB ()A.1cm B.2cmC.3cm D.4cm【答案】C【分析】先求出两个高脚杯液体的高度,再通过三角形相似,建立其对应边的比与对应高的比相等的关系,即可求出AB.【详解】解:由题可知,第一个高脚杯盛液体的高度为:15-7=8(cm),第二个高脚杯盛液体的高度为:11-7=4(cm),因为液面都是水平的,图1和图2中的高脚杯是同一个高脚杯,所以图1和图2中的两个三角形相似,∵468AB , ∵=3AB (cm ),故选:C .【点睛】本题考查了相似三角形的判定与性质,解决本题的关键是读懂题意,与图形建立关联,能灵活运用相似三角形的判定得到相似三角形,并能运用其性质得到相应线段之间的关系等,本题对学生的观察分析的能力有一定的要求.20.(2021·四川宜宾市·中考真题)如图,在矩形纸片ABCD 中,点E 、F 分别在矩形的边AB 、AD 上,将矩形纸片沿CE 、CF 折叠,点B 落在H 处,点D 落在G 处,点C 、H 、G 恰好在同一直线上,若AB =6,AD =4,BE =2,则DF 的长是( )A .2B .74C .2D .3【答案】A【分析】 构造如图所示的正方形CMPD ,然后根据相似三角形的判定和性质解直角三角形FNP 即可.【详解】如图,延长CE ,FG 交于点N ,过点N 作//l AB ,延长,CB DA 交l 于,M P , ∵∵CMN =∵DPN =90°,∵四边形CMPD 是矩形,根据折叠,∵MCN =∵GCN ,CD =CG ,DF FG =,∵∵CMN =∵CGN =90°,CN =CN ,∵Rt MNC Rt GNC ∆≅∆,∵6CM CG CD ===,MN NG =∴四边形CMPD 为正方形,//BE MN∵CBE CMN , ∵4263BE CB MN CM ===, 2BE =,3MN ∴=,3NP ∴=,设DF x =,则4AF x =-, 在Rt PNF 中,由222FP NP NF +=可得222(42)3(3)x x -++=+解得2x =;故选A .【点睛】 本题考查了折叠问题,正方形的性质与判定,矩形的性质,平行线的性质,全等三角形的性质和判定,相似三角形,勾股定理等知识点的综合运用,难度较大.作出合适的辅助线是解题的关键.21.(2021·湖北恩施土家族苗族自治州·中考真题)如图,在44⨯的正方形网格中,每个小正方形的边长都为1,E 为BD 与正方形网格线的交点,下列结论正确的是( )A .12CE BD ≠B .ABC CBD ≌ C .AC CD = D .ABC CBD ∠=∠【答案】D【分析】 由题意易得CE ∵AB ,然后根据相似三角形的性质与判定、直角三角形斜边中线定理及全等三角形的判定可排除选项.【详解】解:∵每个小正方形的边长都为1,∵4,2,5AB AC BC CD BD ====,∵22225BC CD BD +==,AC CD ≠,故C 错误;∵∵BCD 是直角三角形,∵90BCD BAC ∠=∠=︒,∵5AB AC BC CD ==, ∵C ABC BD ∽△△,故B 错误;∵ABC CBD ∠=∠,故D 正确;∵E 为BD 与正方形网格线的交点,∵CE ∵AB ,∵ABC BCE CBD ∠=∠=∠,∵90DBC BDC BCE ECD ∠+∠=∠+∠=︒,∵BDC ECD ∠=∠, ∵12BE CE ED BD ===,故A 错误;故选D .【点睛】本题主要考查勾股定理的逆定理、相似三角形的性质与判定及直角三角形斜边中线定理,熟练掌握勾股定理的逆定理、相似三角形的性质与判定及直角三角形斜边中线定理是解题的关键.22.(2021·山东威海市·中考真题)如图,在ABC 和ADE 中,36CAB DAE ∠=∠=︒,AB AC =,AD AE =.连接CD ,连接BE 并延长交AC ,AD 于点F ,G .若BE 恰好平分ABC ∠,则下列结论错误的是( )A .ADC AEB ∠=∠B .//CD ABC .DE GE =D .2BF CF AC =⋅【答案】C【分析】 根据SAS 即可证明DAC EAB △≌△,再利用全等三角形的性质以及等腰三角形的性质,结合相似三角形的判定和性质,即可一一判断【详解】,,36AB AC AD AE CAB DAE ==∠=∠=︒DAC EAB ∴∠=∠∴DAC EAB △≌△ADC AEB ∴∠=∠,故选项A 正确;,36AB AC CAB =∠=︒72ABC ACB ∴∠=∠=︒ BE 平分ABC ∠1362ABE CBF ABC ∴∠=∠=∠=︒DAC EAB △≌△36ACD ABE ∴∠=∠=︒ACD CAB ∴∠=∠//CD AB ∴,故选项B 正确;,36AD AE DAE =∠=︒72ADE ∴∠=︒72DGE DAE EAB ABE EAB ∠=∠+∠+∠=︒+∠即ADE DGE ∠≠∠DE GE ∴≠,故选项C 错误;72,36ABC ACB CAB CBF ∠=∠=︒∠=∠=︒∴∠=︒CFB72∴=BC BF∴△∽△ABC BFCBF CF∴=AB BCAB AC=BF CF∴=AC BF2=⋅,故选项D正确;BF CF AC故答案选:C.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,相似三角形的判定和性质,平行线的判定,能利用全等三角形的判定和性质以及等腰三角形的性质是解题关键.二、填空题23.(2021·江苏无锡市·中考真题)下列命题中,正确命题的个数为________.△所有的正方形都相似△所有的菱形都相似△边长相等的两个菱形都相似△对角线相等的两个矩形都相似【答案】∵【分析】根据多边形的判定方法对∵进行判断;利用菱形的定义对∵进行判断;根据菱形的性质对∵进行判断;根据矩形的性质和相似的定义可对∵进行判断.【详解】解:所有的正方形都相似,所以∵正确;所有的菱形不一定相似,所以∵错误;边长相等的两个菱形,形状不一定相同,即:边长相等的两个菱形不一定相似所以∵错误;对角线相等的两个矩形,对应边不一定成比例,即不一定相似,所以∵错误; 故答案是:∵.【点睛】本题考查了判断命题真假,熟练掌握图形相似的判定方法,菱形,正方形,矩形的性质,是解题的关键.24.(2021·内蒙古中考真题)如图,在Rt ABC 中,90ACB ∠=︒,过点B 作BD CB ⊥,垂足为B ,且3BD =,连接CD ,与AB 相交于点M ,过点M 作MN CB ⊥,垂足为N .若2AC =,则MN 的长为__________.【答案】65【分析】根据MN ∵BC ,AC ∵BC ,DB ∵BC ,得,BNM BCA CNM ABD ,可得,MN BN MN CN AC BC BD BC ,因为1BN CN BC BC ,列出关于MN 的方程,即可求出MN 的长.【详解】∵MN ∵BC ,DB ∵BC , 90ACB ∠=︒∵AC ∵MN ∵DB ,∵,BNM BCA CNM ABD , ∵,MN BN MN CN AC BC BD BC 即,23MN BN MN CN BC BC , 又∵1BN CN BCBC , ∵123MN MN , 解得65MN =, 故填:65. 【点睛】本题考查相似三角形的判定和性质,解题关键是根据题意得出两组相似三角形以及它们对应边之比的等量关系.25.(2021·山东东营市·中考真题)如图,正方形纸片ABCD 的边长为12,点F 是AD 上一点,将CDF 沿CF 折叠,点D 落在点G 处,连接DG 并延长交AB 于点E .若5AE =,则GE 的长为________.【答案】4913【分析】因为折叠,则有DG CF ⊥,从而可知AED HDC △∽△,利用线段比求出DG 的长,即可求出EG .【详解】如图, 四边形ABCD 是正方形12=90∴∠+∠︒因为折叠,DG CF ∴⊥,设垂足为HDH HG ∴=2390∴∠+∠=︒13∠∠∴=AED HDC ∴△∽△AE DHED DC =5AE =,12AD DC ==51312DH∴=6013DH ∴=EG ED GD ∴=-2ED GH =-6013213=-⨯4913=故答案为4913. 【点睛】本题考查了正方形的性质,轴对称的性质,三角形相似的判定与性质,勾股定理,找到AED HDC △∽△是解题的关键.26.(2021·四川南充市·中考真题)如图,在ABC 中,D 为BC 上一点,3BC BD ==,则:AD AC 的值为________.【分析】证明∵ABD ∵∵CBA ,根据相似三角形的性质即可解答.【详解】 ∵3BC BD ==,∵ABBC ==BDAB =,∵3ABBDBC AB ==,∵∵B =∵B ,∵∵ABD ∵∵CBA ,∵3ADBDAC AB ==.故答案为:3. 【点睛】 本题考查了相似三角形的判定及性质,证明∵ABD ∵∵CBA 是解决问题的关键. 27.(2021·湖北随州市·中考真题)如图,在Rt ABC 中,90ACB ∠=︒,O 为AB 的中点,OD 平分AOC ∠交AC 于点G ,OD OA =,BD 分别与AC ,OC 交于点E ,F ,连接AD ,CD ,则OG BC 的值为______;若CE CF =,则CF OF的值为______.【答案】12【分析】(1)根据条件,证明AOD COD ≅△△,从而推断90OGA ∠=,进一步通过角度等量,证明AOG ABC △△,代入推断即可.(2)通过OA OD OC OB ===,可知,,,A B C D 四点共圆,通过角度转化,证明ODF CBF △△,代入推断即可. 【详解】解:(1)∵90ACB ∠=︒,O 为AB 的中点∵OA OC =又∵OD 平分AOC ∠∵AOD COD ∠=∠又∵OD OD =∵AOD COD ≅△△∵AD CD =∵OD AC ⊥∵90OGA ∠=在AOG 与ABC 中GAO BAC ∠=∠,90OGA BCA ∠=∠=∵AOG ABC △△12OGAOBC AB ==(2∵OA OD OC OB ===∵,,,A B C D 四点共圆,如下图:∵CE CF =∵CEF CFE ∠=∠又∵CFE BFO ∠=∠∵CEF BFO ∠=∠∵AOD COD ≅△△∵AD CD =∵AD CD =∵OBF CBE ∠=∠∵90BFO OBF CEF CBE ∠+∠=∠+∠=即90BOC ∠=∵OB OC = ∵BC ===∵90OGA BCA ∠=∠= ∵ODB FBC ∠=∠∵OFD CFB ∠=∠∵ODF CBF △△∵CF BC OF OD==故答案为:12【点睛】本题考查三角形的相似,三角形的全等以及圆的相关知识点,根据图形找见相关的等量关系是解题的关键.28.(2021·四川广元市·中考真题)如图,在正方形ABCD 中,点O 是对角线BD 的中点,点P 在线段OD 上,连接AP 并延长交CD 于点E ,过点P 作PF AP ⊥交BC 于点F ,连接AF 、EF ,AF 交BD 于G ,现有以下结论:△AP PF =;△DE BF EF +=;△PB PD -=;△AEF S 为定值;△APG PEFG S S =四边形.以上结论正确的有________(填入正确的序号即可).【答案】∵∵∵∵【分析】由题意易得∵APF =∵ABC =∵ADE =∵C =90°,AD =AB ,∵ABD =45°,对于∵:易知点A 、B 、F 、P 四点共圆,然后可得∵AFP =∵ABD =45°,则问题可判定;对于∵:把∵AED 绕点A 顺时针旋转90°得到∵ABH ,则有DE =BH ,∵DAE =∵BAH ,然后易得∵AEF ∵∵AHF ,则有HF =EF ,则可判定;对于∵:连接AC ,在BP 上截取BM =DP ,连接AM ,易得OB =OD ,OP =OM ,然后易证∵AOP ∵∵ABF ,进而问题可求解;对于∵:过点A 作AN ∵EF 于点N ,则由题意可得AN =AB ,若∵AEF 的面积为定值,则EF 为定值,进而问题可求解;对于∵由∵可得2AP AF =得∵APG ∵∵AFE ,然后可得相似比为AP AF =相似比的关系可求解.【详解】解:∵四边形ABCD 是正方形,PF AP ⊥,∵∵APF =∵ABC =∵ADE =∵C =90°,AD =AB ,∵ABD =45°,∵∵180ABC APF ∠+∠=︒,∵由四边形内角和可得180BAP BFP ∠+∠=︒,∵点A、B、F、P四点共圆,∵∵AFP=∵ABD=45°,∵∵APF是等腰直角三角形,∵AP PF=,故∵正确;∵把∵AED绕点A顺时针旋转90°得到∵ABH,如图所示:∵DE=BH,∵DAE=∵BAH,∵HAE=90°,AH=AE,∵45∠=∠=︒,HAF EAF∵AF=AF,∵∵AEF∵∵AHF(SAS),∵HF=EF,∵HF BH BF=+,∵DE BF EF+=,故∵正确;∵连接AC,在BP上截取BM=DP,连接AM,如图所示:∵点O 是对角线BD 的中点,∵OB =OD ,BD AC ⊥,∵OP =OM ,∵AOB 是等腰直角三角形, ∵AB =,由∵可得点A 、B 、F 、P 四点共圆,∵APO AFB ∠=∠,∵90ABF AOP ∠=∠=︒,∵∵AOP ∵∵ABF ,∵2OPOAAPBF AB AF ===,∵OP =,∵2BP DP BP BM PM OP -=-==, ∵PB PD -=,故∵正确;∵过点A 作AN ∵EF 于点N ,如图所示:由∵可得∵AFB =∵AFN ,∵∵ABF =∵ANF =90°,AF =AF ,∵∵ABF ∵∵ANF (AAS ),∵AN =AB ,若∵AEF 的面积为定值,则EF 为定值,∵点P 在线段OD 上,∵EF 的长不可能为定值,故∵错误;∵由∵可得2APAF =∵∵AFB =∵AFN =∵APG ,∵F AE =∵P AG ,∵∵APG ∵∵AFE ,∵2GP AP EF AF ==,∵2122AGP AEF S S ⎛== ⎝⎭,∵12AGP AEF S S =,∵APGPEFG S S =四边形,故∵正确;综上所述:以上结论正确的有∵∵∵∵;故答案为∵∵∵∵.【点睛】本题主要考查正方形的性质、旋转的性质、圆的基本性质及相似三角形的性质与判定,熟练掌握正方形的性质、旋转的性质、圆的基本性质及相似三角形的性质与判定是解题的关键.29.(2021·江苏南京市·中考真题)如图,将ABCD 绕点A 逆时针旋转到AB C D '''的位置,使点B '落在BC 上,B C ''与CD 交于点E ,若3,4,1AB BC BB '===,则CE 的长为________.【答案】98【分析】 过点C 作CM //C D ''交B C ''于点M ,证明ABB ADD ''∆∆∽求得53C D '=,根据AAS 证明ABB B CM ''∆≅∆可求出CM =1,再由CM //C D ''证明∵CME DC E '∆∽,由相似三角形的性质查得结论.【详解】解:过点C 作CM //C D ''交B C ''于点M ,。

备战中考数学分点透练真题图形的相似(解析版)

备战中考数学分点透练真题图形的相似(解析版)

第十六讲图形的相似命题点1 比例线段类型一比例的性质1.(2020 滦州)已知,则=.【答案】【解答】解:设===k≠0,则x=2k,y=3k,z=4k,==;故答案为:.类型二黄金分割2.(2021•百色)如图,△ABC中,AB=AC,∠B=72°,∠ACB的平分线CD交AB于点D,则点D是线段AB的黄金分割点.若AC=2,则BD=.【答案】3﹣【解答】解:∵AB=AC=2,∴∠B=∠ACB=72°,∠A=36°,∵CD平分∠ACB,∴∠ACD=∠BCD=36°,∴∠A=∠ACD,∴AD=CD,∵∠CDB=180°﹣∠B﹣∠BCD=72°,∴∠CDB=∠B,∴BC=CD,∴BC=AD,∵∠B=∠B,∠BCD=∠A=36°,∴△BCD∽△BAC,∴BC:AB=BD:BC,∴AD:AB=BD:AD,∴点D是AB边上的黄金分割点,AD>BD,∴AD=AB=﹣1,∴BD=AB﹣AD=2﹣(﹣1)=3﹣,故答案为:3﹣.类型三平行线分线段成比例3.(2021•郴州)如图是一架梯子的示意图,其中AA1∥BB1∥CC1∥DD1,且AB=BC=CD.为使其更稳固,在A,D1间加绑一条安全绳(线段AD1)量得AE=0.4m,则AD1=m.【答案】1.2【解答】解:∵BB1∥CC1,∴=,∵AB=BC,∴AE=EF,同理可得:AE=EF=FD1,∵AE=0.4m,∴AD1=0.4×3=1.2(m),故答案为:1.2.命题点2 相似的基本性质4.(2019•重庆)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2B.3C.4D.5【答案】C【解答】解:∵△ABO∽△CDO,∴=,∵BO=6,DO=3,CD=2,∴=,解得:AB=4.故选:C.5.(2020•铜仁市)已知△FHB∽△EAD,它们的周长分别为30和15,且FH=6,则EA的长为()A.3B.2C.4D.5【答案】A【解答】解:∵△FHB和△EAD的周长分别为30和15,∴△FHB和△EAD的周长比为2:1,∵△FHB∽△EAD,∴=2,即=2,解得,EA=3,故选:A.命题点3 相似三角形的判定与性质类型一A字型6.(2021•巴中)如图,△ABC中,点D、E分别在AB、AC上,且==,下列结论正确的是()A.DE:BC=1:2B.△ADE与△ABC的面积比为1:3C.△ADE与△ABC的周长比为1:2D.DE∥BC【答案】D【解答】解:∵==,∴AD:AB=AE:AC=1:3,∵∠A=∠A,∴△ADE∽△ABC,∴DE:BC=1:3,故A错误;∵△ADE∽△ABC,∴△ADE与△ABC的面积比为1:9,周长的比为1:3,故B和C错误;∵△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC.故D正确.故选:D.7.(2021•遂宁)如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积是3cm2,则四边形BDEC的面积为()A.12cm2B.9cm2C.6cm2D.3cm2【答案】B【解答】解:如图,在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,且=,∴△ADE∽△ABC,∴△ADE的面积:△ABC的面积=1:4,∴△ADE的面积:四边形BDEC的面积=1:3,∵△ADE的面积是3cm2,∴四边形BDEC的面积是9cm2,故选:B.8.(2020•安徽)如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A=,则BD的长度为()A.B.C.D.4【答案】C【解答】解:∵∠C=90°,AC=4,cos A=,∴AB=,∴,∵∠DBC=∠A.∴cos∠DBC=cos∠A=,∴,故选:C.9.(2021•湘潭)如图,在△ABC中,点D,E分别为边AB,AC上的点,试添加一个条件:,使得△ADE与△ABC相似.(任意写出一个满足条件的即可)【答案】∠ADE=∠C(答案不唯一).【解答】解:添加∠ADE=∠C,又∵∠A=∠A,∴△ADE∽△ACB,故答案为:∠ADE=∠C(答案不唯一).10.(2021•南充)如图,在△ABC中,D为BC上一点,BC=AB=3BD,则AD:AC的值为.【答案】【解答】解:∵BC=AB=3BD,∴,∵∠B=∠B,∴△ABC∽△DBA,∴,∴AD:AC=,故答案为:.11.(2021•菏泽)如图,在△ABC中,AD⊥BC,垂足为D,AD=5,BC=10,四边形EFGH 和四边形HGNM均为正方形,且点E、F、G、N、M都在△ABC的边上,那么△AEM 与四边形BCME的面积比为.【答案】1:3【解答】解:∵四边形EFGH和四边形HGNM均为正方形,∴EF=EH=HM,EM∥BC,∴△AEM∽△ABC,∴,∴,∴EF=,∴EM=5,∵△AEM∽△ABC,∴=()2=,∴S四边形BCME=S△ABC﹣S△AEM=3S△AEM,∴△AEM与四边形BCME的面积比为1:3,故答案为:1:3.12.(2021•玉林)如图,在△ABC中,D在AC上,DE∥BC,DF∥AB.(1)求证:△DFC∽△AED;(2)若CD=AC,求的值.【答案】(1)略(2).【解答】(1)证明:∵DF∥AB,DE∥BC,∴∠DFC=∠ABF,∠AED=∠ABF,∴∠DFC=∠AED,又∵DE∥BC,∴∠DCF=∠ADE,∴△DFC∽△AED;(2)∵CD=AC,∴=由(1)知△DFC和△AED的相似比为:=,故:=()2=()2=.13.(2020•上海)已知:如图,在菱形ABCD中,点E、F分别在边AB、AD上,BE=DF,CE的延长线交DA的延长线于点G,CF的延长线交BA的延长线于点H.(1)求证:△BEC∽△BCH;(2)如果BE2=AB•AE,求证:AG=DF.【答案】(1)略(2)略【解答】(1)证明:∵四边形ABCD是菱形,∴CD=CB,∠D=∠B,∵DF=BE,∴△CDF≌△CBE(SAS),∴∠DCF=∠BCE,∵CD∥BH,∴∠H=∠DCF,∴∠H=∠BCE,∵∠B=∠B,∴△BEC∽△BCH.(2)证明:∵BE2=AB•AE,∴,∵CB∥DG,∴=,∴=,∵BC=AB,∴AG=BE,∵△CDF≌△CBE,∴DF=BE,∴AG=DF.类型二8字型14.(2020•盐城)如图,BC∥DE,且BC<DE,AD=BC=4,AB+DE=10.则的值为.【答案】2【解答】解:∵BC∥DE,∴△ADE∽△ABC,∴=,即=,∴AB•DE=16,∵AB+DE=10,∴AB=2,DE=8,∴,故答案为:2.15.(2021•云南)如图,在△ABC中,点D,E分别是BC,AC的中点,AD与BE相交于点F.若BF=6,则BE的长是.【答案】9【解答】解:如图,在△ABC中,点D,E分别是BC,AC的中点,∴DE∥AB,且DE=AB,∴==,∵BF=6,∴EF=3.∴BE=BF+EF=9.故答案为:9.16.(2021•包头)如图,在Rt△ABC中,∠ACB=90°,过点B作BD⊥CB,垂足为B,且BD=3,连接CD,与AB相交于点M,过点M作MN⊥CB,垂足为N.若AC=2,则MN的长为.【答案】.【解答】解:∵∠ACB=90°,BD⊥CB,MN⊥CB,∴AC∥MN∥BD,∠CNM=∠CBD,∴∠MAC=∠MBD,∠MCA=∠MDB=∠CMN,∴△MAC∽△MBD,△CMN∽△CDB,∴,,∴,∴,∴MN=.故答案为:.17.(2021•连云港)如图,BE是△ABC的中线,点F在BE上,延长AF交BC于点D.若BF=3FE,则=.【答案】【解答】解:如图,∵BE是△ABC的中线,∴点E是AC的中点,∴=,过点E作EG∥DC交AD于G,∴∠AGE=∠ADC,∠AEG=∠C,∴△AGE∽△ADC,∴,∴DC=2GE,∵BF=3FE,∴,∵GE∥BD,∴∠GEF=∠FBD,∠EGF=∠BDF,∴△GFE∽△DFB,∴==,∴,∴=,故答案为:.18.(2020•攀枝花)三角形三条边上的中线交于一点,这个点叫三角形的重心.如图G是△ABC的重心.求证:AD=3GD.【答案】略【解答】证明:连接DE,∵点G是△ABC的重心,∴点E和点D分别是AB和BC的中点,∴DE是△ABC的中位线,∴DE∥AC且DE=AC,∴△DEG∽△ACG,∴,∴,∴,∴AD=3DG,即AD=3GD.19.(2021•长春)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=4,BD=8,点E在边AD上,AE=AD,连结BE交AC于点M.(1)求AM的长.(2)tan∠MBO的值为.【答案】(1)1 (2)【解答】解:(1)在菱形ABCD中,AD∥BC,AD=BC,∴△AEM∽△CBM,∴=,∵AE=AD,∴AE=BC,∴==,∴AM=CM=AC=1.(2)∵AO=AC=2,BO=BD=4,AC⊥BD,∴∠BOM=90°,AM=OM=AO=1,∴tan∠MBO==.故答案为:.20.(2020•眉山)如图,△ABC和△CDE都是等边三角形,点B、C、E三点在同一直线上,连接BD,AD,BD交AC于点F.(1)若AD2=DF•DB,求证:AD=BF;(2)若∠BAD=90°,BE=6.①求tan∠DBE的值;②求DF的长.【答案】(1)略(2)tan∠DBE==,DF=【解答】(1)证明:∵AD2=DF•DB,∴=,∵∠ADF=∠BDA,∴△ADF∽△BDA,∴∠ABD=∠F AD,∵△ABC,△DCE都是等边三角形,∴AB=AC,∠BAC=∠ACB=∠DCE=60°,∴∠ACD=60°,∴∠ACD=∠BAF,∴△ADC≌△BF A(ASA),∴AD=BF.(2)①解:过点D作DG⊥BE于G.∵∠BAD=90°,∠BAC=60°,∴∠DAC=30°,∵∠ACD=60°,∴∠ADC=90°,∴DC=AC,∴CE=BC,∵BE=6,∴CE=2,BC=4,∴CG=EG=1,BG=5,DG=,∴tan∠DBE==.②在Rt△BDG中,∵∠BGD=90°,DG=,BG=5,∴BD===2,∵∠ABC=∠DCE=60°,∴CD∥AB,∴△CDF∽△ABF,∴==,∴=,∴DF=类型三旋转型21.(2021•黄冈)如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.(1)求证:△ABC∽△DEC;(2)若S△ABC:S△DEC=4:9,BC=6,求EC的长.【答案】(1)略(2)CE=9.【解答】证明:(1)∵∠BCE=∠ACD.∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠DCE=∠ACB,又∵∠A=∠D,∴△ABC∽△DEC;(2)∵△ABC∽△DEC;∴=()2=,又∵BC=6,∴CE=9.22.(2019•凉山州)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.【答案】(1)略(2)MN=【解答】证明:(1)∵DB平分∠ADC,∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,∴△ABD∽△BCD∴∴BD2=AD•CD(2)∵BM∥CD∴∠MBD=∠BDC∴∠ADB=∠MBD,且∠ABD=90°∴BM=MD,∠MAB=∠MBA∴BM=MD=AM=4∵BD2=AD•CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2﹣CD2=12∴MC2=MB2+BC2=28∴MC=2∵BM∥CD∴△MNB∽△CND∴,且MC=2∴MN=类型四三垂直型23.(2021•台州)如图,点E,F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB=5,AE=DG=1,则BF=.【答案】【解答】解:∵四边形ABCD是正方形,∴AB=AD=5,∠ABC=∠BAD=90°,∵AE=DG=1,∴AG=4,∵AF⊥EG,∴∠BAF+∠AEG=90°=∠BAF+∠AFB,∴∠AFB=∠AEG,∴△ABF∽△GAE,∴,∴,∴BF=,故答案为.类型五网络中相似三角形的判定与性质24.(2020•昆明)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()A.4个B.5个C.6个D.7个【答案】C【解答】解:如图,所以使得△ADE∽△ABC的格点三角形一共有6个.故选:C.25.(2021•临沂)如图,点A,B都在格点上,若BC=,则AC的长为()A.B.C.2D.3【答案】B【解答】解:方法一:作CD⊥BD于点D,作AE⊥BD于点E,如右图所示,则CD∥AE,∴△BDC∽△BEA,∴,∴=,解得BA=2,∴AC=BA﹣BC=2﹣=,故选:B.方法二:AB===2,∵BC=,∴AC=AB﹣BC=2﹣=,故选:B.26.(2021•恩施州)如图,在4×4的正方形网格中,每个小正方形的边长都为1,E为BD 与正方形网格线的交点,下列结论正确的是()A.CE≠BD B.△ABC≌△CBD C.AC=CD D.∠ABC=∠CBD 【答案】D【解答】解:由图可得,BC==2,CD==,BD==5,∴BC2+CD2=(2)2+()2=25=BD2,∴△BCD是直角三角形,∵EF∥GD,∴△BFE∽△BGD,∴,即,解得EF=1.5,∴CE=CF﹣EF=4﹣1.5=2.5,∴=,故选项A错误;由图可知,显然△ABC和△CBD不全等,故选项B错误;∵AC=2,CD=,∴AC≠CD,故选项C错误;∵tan∠ABC==,tan∠==,∴∠ABC=∠CBD,故选项D正确;故选:D.命题点4 相似三角形的实际应用27.(2020•绍兴)如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm.则投影三角板的对应边长为()A.20cm B.10cm C.8cm D.3.2cm【答案】A【解答】解:设投影三角尺的对应边长为xcm,∵三角尺与投影三角尺相似,∴8:x=2:5,解得x=20.故选:A.28.(2021•内江)在同一时刻,物体的高度与它在阳光下的影长成正比.在某一时刻,有人测得一高为1.8m的竹竿的影长为3m,某一高楼的影长为60m,那么这幢高楼的高度是()A.18m B.20m C.30m D.36m【答案】D【解答】解:设这幢高楼的高度为x米,依题意得:=,解得:x=36.故这幢高楼的高度为36米.故选:D.29.(2021•兰州)如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5m时,标准视力表中最大的“E”字高度为72.7mm,当测试距离为3m时,最大的“E”字高度为()A.4.36mm B.29.08mm C.43.62mm D.121.17mm【答案】C【解答】解:由题意得:CB∥DF,∴=,∵AD=3m,AB=5m,BC=72.7mm,∴=,∴DF=43.62(mm),故选:C.30.(2021•河北)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB=()A.1cm B.2cm C.3cm D.4cm【答案】C【解答】解:如图:过O作OM⊥CD,垂足为M,过O作ON⊥AB,垂足为N,∵CD∥AB,∴△CDO∽△ABO,即相似比为,∴=,∵OM=15﹣7=8(cm),ON=11﹣7=4(cm),∴=,∴AB=3cm,故选:C.31.(2021•烟台)《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为米.【答案】3【解答】解:由题意知:AB∥CD,则∠BAE=∠C,∠B=∠CDE,∴△ABE∽△CDE,∴,∴,∴CD=3米,故答案为:3.32.(2021•朝阳)一数学兴趣小组去测量一棵周围有围栏保护的古树的高,在G处放置一个小平面镜,当一位同学站在F点时,恰好在小平面镜内看到这棵古树的顶端A的像,此时测得FG=3m,这位同学向古树方向前进了9m后到达点D,在D处安置一高度为1m的测角仪CD,此时测得树顶A的仰角为30°,已知这位同学的眼睛与地面的距离EF=1.5m,点B,D,G,F在同一水平直线上,且AB,CD,EF均垂直于BF,求这棵古树AB的高.(小平面镜的大小和厚度忽略不计,结果保留根号)【答案】(9+4)m.【解答】解:如图,过点C作CH⊥AB于点H,则CH=BD,BH=CD=1m,由题意得:DF=9m,∴DG=DF﹣FG=6(m),在Rt△ACH中,∠ACH=30°,∵tan∠ACH==tan30°=,∴BD=CH=AH,∵EF⊥FB,AB⊥FB,∴∠EFG=∠ABG=90°.由反射角等于入射角得∠EGF=∠AGB,∴△EFG∽△ABG,∴=,即=,解得:AH=(8+4)m,∴AB=AH+BH=(9+4)m,即这棵古树的高AB为(9+4)m.。

人教版中考数学考点聚焦《第31讲:图形的相似》课件

人教版中考数学考点聚焦《第31讲:图形的相似》课件

6.相似三角形的性质 相似三角形的对应角相等,对应边成比例,对应高、对应中线、对应角平 分线的比都等于相似比,周长比等于相似比,面积比等于相似比的平方.
7.射影定理:如图,在△ABC中,∠ACB=90°,CD是斜边AB上的高, 则有下列结论.
(1)AC 2=AD·AB; (2)BC 2=BD·AB; (3)CD 2=AD·BD; (4)AC 2∶BC 2=AD∶BD; (5)AB·CD=AC·BC.
命题点5:相似三角形的应用 5.(2017·天水)如图,路灯距离地面8米,身高1.6米的小明站在距离灯 的底部(点O)20米的A处,则小明的影子AM长为__5__米.
相似三角形的性质及判定
【例 1】 (1)(2017·连云港)如图,已知△ABC∽△DEF,AB∶DE=1∶2,
则下列等式一定成立的是( D )
【探索研究】 (2)若点 O 是 AC 上任意一点(不与 A,C 重合),求证:AMMB·BNNC·OCOA=1; 【拓展应用】 (3)如图②,点 P 是△ABC 内任意一点,射线 AP,BP,CP 分别交 BC, AC,AB 于点 D,E,F,若ABFF=13,BCDD=12,求ACEE的值.
解:(1)过点 A 作 AG∥MN 交 BN 延长线于点 G,∴∠G=∠BNM,又∠B =∠B,∴△ABG∽△MBN,∴BBGN=MABB,∴BBGN-1=MABB-1,∴BGB-NBN =ABM-BMB,即NBNG=AMMB,同理,在△ACG 和△OCN 中,NCNG=ACOO,∴ACOO =NCNG,∵O 为 AC 中点,∴AO=CO,∴NG=CN,∴CBNN=NBNG=ABMM=31
命题点 1:比例的性质 1.(2017·兰州)已知 2x=3y(y≠0),则下面结论成立的是( A ) A.xy=32 B.3x=y2 C.xy=23 D.x2=y3

2013年中考数学复习 第六章图形与变换 第34课 图形的相似课件

2013年中考数学复习 第六章图形与变换 第34课 图形的相似课件
交的直线,所截得的三角形的三边与原三角形三边对应成比例. 4.相似三角形的定义:对应角相等、对应边成比例的三角形叫做 相似三角形 . 相似比:相似三角形的对应边的比,叫做两个相似三角形的 相似比 .
5.相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交, 所截得的三角形与原三角形相似; (2)两角对应相等; (3)两边对应成比例且夹角相等; (4)三边对应成比例; (5)直角三角形中,斜边和一条直角边对应成比例; (6)直角三角形中被斜边上的高分成的两个三角形都与原三角 形相似. 6.相似三角形性质:对应角相等,对应边成比例,对应高、对应 中线、对应角平分线的比都等于相似比,周长比等于相似比, 面积比等于相似比的平方.
探究提高
本题主要考查相似三角形的判定、性质,相似三角形性质
的应用等.
知能迁移2
如图,在直角梯形ABCD中,AD∥BC,∠B=90°,
E是AB的中点,且CE⊥DE. (1)请你判断△ADE与△BEC是否相似,并说明理由;
(2)若AD=1,BC=2,求AB的长.
解:(1)相似,理由如下: ∵AD∥BC,∠B=90°,
求证:△ADE∽△EFC. 证明: ∵DE∥BC,EF∥AB, ∴∠AED=∠C,∠A=∠CEF, ∴△ADE∽△EFC.
题型二
相似三角形的性质
【例 2】 如图,在梯形ABCD中,AD∥BC,∠B=∠ACD. (1)请再写出图中另外一对相等的角;
(2)若AC=6,BC=9,试求梯形ABCD的
中位线的长度.
∴∠A+∠B=180°,∴∠A=∠B=90°.
∴∠ADE+∠AED=90°. ∵CE⊥DE,
∴∠CED=90°,∠AED+∠BEC=90°.

中考数学图形的相似专题复习题及答案

中考数学图形的相似专题复习题及答案

热点13 图形的相似(时间:100分钟总分:100分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.已知:线段a=5cm,b=2cm,则ab=()A.14B.4 C.52D.252.把mn=pq(mn≠0)写成比例式,写错的是()A.m qp n=B.p nm q=C.q nm p=D.m pn q=3.某班某同学要测量学校升旗的旗杆高度,在同一时刻,量得某一同学的身高是1.5m,影长是1m,旗杆的影长是8m,则旗村的高度是()A.12m B.11m C.10m D.9m4.下列说法正确的是()A.矩形都是相似图形;B.菱形都是相似图形C.各边对应成比例的多边形是相似多边形;D.等边三角形都是相似三角形5.两个等腰直角三角形斜边的比是1:2,那么它们对应的面积比是()A.1:2B.1:2 B.1:4 D.1:16.如图1,由下列条件不能判定△ABC与△ADE相似的是()A.AE ACAD AB=B.∠B=∠ADE C.AE DEAC BC=D.∠C=∠AED(1)(2) (3)7.要做甲、乙两个形状相同(相似)的三角形框架,•已知三角形框架甲的三边分别为50cm,60cm,80cm,三角形框架乙的一边长为20cm,那么符合条件的三角形框架乙共有()种A.1 B.2 C.3 D.48.如图2,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=3,则CD的长是()A.83B.23C.43D.539.若3a ba b b c a c==+++=k,则k的值为()A.12B.1 C.-1 D.12或-110.如图3,若∠1=∠2=∠3,则图中相似的三角形有()A.1对B.2对C.3对D.4对二、填空题(本大题共8小题,每小题3分,共24分)11.若235a b c ==(abc ≠0),则a b c a b c++-+=_________. 12.把长度为20cm 的线段进行黄金分割,则较短线段的长是________cm .13.△ABC 的三条边之比为2:5:6,与其相似的另一个△A •′B •′C •′最大边长为15cm ,则另两边长的和为_______.14.两个相似三角形的一对对应边长分别为20cm ,25cm ,它们的周长差为63cm ,则这两个三角形的周长分别是________.15.如图4,点D 是Rt △ABC 的斜边AB 上一点,DE ⊥BC 于E ,DF ⊥AC 于F ,若AF=•15,BE=10,则四边形DECF 的面积是__________.(4) (5) (6)16.如图5,BD 平分∠ABC ,且AB=4,BC=6,则当BD=_______时,△ABD ∽△DBC .17.已知a 、b 、c 为△ABC 的三条边,且a :b :c=2:3:4,则△ABC •各边上的高之比为______.18.在梯形ABCD 中,AB ∥CD ,AB=60,CD=15,E 、F 分别为AD 、BC 上一点,且EF ∥AB ,•若梯形DEFC ∽梯形EABF ,那么EF=_________.三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)19.如图6,△ABC 中,AG DE AH BC=,且DE=12,BC=15,GH=4,求AH .20.为了估算河的宽度,我们可以在河对岸的岸边选定一个目标作为点A ,再在河的这一边选点B 和点C ,使AB ⊥BC ,然后再选点E ,使EC ⊥BC ,确定BC 与AE 的交点为D ,•如图,测得BD=120米,DC=60米,EC=50米,你能求出两岸之间AB 的大致距离吗?21.如图,在ABCD中,AE:EB=2:3.(1)求△AEF和△CDF的周长比;(2)若S△AEF=8cm2,求S△CDF.22.如图,△ABC是一个锐角三角形的余料,边BC=120mm,高AD=80mm,•要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,•这个正方形零件的边长是多少?23.以长为2的线段为边作正方形ABCD,取AB的中点P,连结PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图所示.(1)求AM、DM的长;(2)求证:AM2=AD·DM.24.如图,点C、D在线段AB上,且△PCD是等边三角形.(1)当AC、CD、DB满足怎样的关系式时,△ACP∽△PDB.(2)当△PDB∽△ACP时,试求∠APB的度数.25.如图15-12,△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,•CE•⊥BD,E为垂足,连结AE.(1)写出图中所有相等的线段,并加以证明.(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由.(3)求△BEC与△BEA的面积比.答案:一、选择题1.C 2.D 3.A 4.D 5.C 6.C 7.C 8.D 9.D 10.D二、填空题11.5212.7.64 13.352cm 14.252cm,315cm15.150 16.2617.6:4:3 18.30 三、解答题19.解:∵AG DEAH BC==124155=,∴454AGAG=+,∴AG=16,∴AH=AG+GH=16+4=20.20.解:∵AB⊥BC,EC⊥BC,∴∠ABD=∠ECD=90°,而∠ADB=∠EDC,∴Rt△ABD≌Rt△ECD.∴AB CEBD CD=⇒5012060AB=⇒AB=100m.21.解:(1)在 ABCD中,易得△AEF∽△CDF,∴C△AEF:C△CDF=AE:CD=AE:AB=2:5.(2)∵△AEF∽△CDF,∴S △CDF :S △AEF =25:4=S △CDF :8,∴S △CDF =50cm 2.22.解:设正方形零件的边长是xmm ,∵PN ∥BC ,∴△APN ∽△ABC .∴PN AE BC AD =⇒8012080x x -=⇒x=48. 23.(1)解:在正方形ABCD 中,P 为中点,∴AP=1,而AD=2.∴由勾股定理可得DP=5.∴PF=5,∴AF=5-1.∴AM=5-1,DM=3-5.(2)证明:∵AM 2=(5-1)2=6-25,AD ·DM=2×(3-5)=6-25,∴AM 2=AD ·DM .24.解:(1)在△ACP 与△PDB 中,∠ACP=∠PDB ,PC=PD .要想△ACP ∽△PDB ,则①BD PD PC AC=⇒ DB ·AC=PC ·PD=CD 2②BD PD AC PC ==1,即BD=AC , 即满足CD 2=AC ·DB 或BD=AC 时,△ACP ∽△PDB .(2)∵△PDB ∽△ACP ⇒∠APC=∠PBD .∴∠APB=∠APC+∠CPD+∠DPB=∠PBD+60°+∠DPB=60°+60°=120°.25.解:(1)Rt △CED 中,∠CDE=60°⇒∠ECD=30°,∴DE=12CD=DA ,EC=EA . 又∵∠BAC=45°,∠BDC=60°,∴∠DBA=15°.又∵∠BDA=120°,DE=DA ,∴∠DAE=∠DEA=30°.∴∠EAB=15°,∴BE=EA=EC ,DE=DA .(2)在△ADE 与△AEC 中,∠DAE=∠DAE ,∠AED=∠ACE . ∴△ADE ∽△AEC .(3)在Rt △CED 中,设DE=a ,CD=2a ,由勾股定理得CE=3a , ∴S △CEB =12·BE ·3a=32aBE .过点A 作AF ⊥BD 于F , 则在△ADF 中,∠ADF=60°,∴AF=AD ·sin60°=32a . ∴S △BEA =12BE ·AF=34BE ·a .∴S △BEC :S △BEA =2.。

北师大版九年级上册数学第四章图形的相似素养拓展+中考真题课件

第四章 图形的类似
数学·九年级上册·北师
专项素养拓训
专题1
类似三角形的判定与性质
类型1 类似三角形的判定
1.如图,在△ABC中,点D,E分别在边AB,AC上,DE,BC的延长线相交于点F,且AD·AB=AE·AC.
求证:△EFC∽△BFD.
答案


1.【解析】 (1)∵AD·AB=AE·AC,∴ = ,
类型2 类似三角形的性质
答案
5.【解析】
(1)记AD与PQ,EH的交点分别为点K,R.
设EF=2x cm,EH=5x cm,
由矩形的性质,得EH∥BC,易证△AEH∽△ABC,


5
∴ = ,即120 =
80−2
,
80
解得x=15,则EH=5x=15×5=75(cm),
∴矩形纸片较长边EH的长为75 cm.
类型2 类似三角形的性质
答案
4.【解析】 (1)∵四边形ABCD是平行四边形,
∴∠ABC=∠ADC,AB∥CD,
∴∠BAE=∠DGA,∴△ABE∽△GDA.
(2)∵四边形ABCD是平行四边形,∴AB=CD.


∵△ABE∽△GDA,∴ = .
∵△ABE与△GDA的面积比是k∶1(k>1),




∴△ABD∽△CAD,∴ = ,∴ = .

.

类型1 类似三角形的判定
3.[202X江苏苏州期末]如图,在△ABC中,∠ACB=90°,CD是△ABC的高,BE平分∠ABC,BE分别与AC,CD相交于点E,F.
(1)求证:△AEB∽△CFB.


(2)求证: = .

2023中考数学复习:图形的相似与位似


∠ABC=90°,BC=2AB,则点D的坐标是( D )
A.(7,2)
1
B.(7,5)
2
3
4
C.(5,6)
5
6
7
8
9
D.(6,5)
10
11
12
13
14
15
挑战高分
基础全练
中考创新练
9.(2022·贵州贵阳)如图,在△ABC中,D是AB边上的点,∠B=∠ACD,
AC ∶ AB=1 ∶ 2,则△ADC与△ACB的周长比是( B )
16
17
18
基础全练
挑战高分
中考创新练

∴△DBH≌△DEC.∴BH=EC.∴ = .∵DH∥AB,∴△EDH∽△EFB.




∴ = = .∴ = .∴ = ;



[问题拓展]解:如图2,取BC的中点H,连接DH.

∵D是AC的中点,∴DH∥AB,DH= AB.

(2)求 的值.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
挑战高分
基础全练
中考创新练
(1)证明:①∵CD∥AB,∴∠D=∠A,∵∠CFD=∠BFA,∴△ABF∽△DCF;
②∵OB=CO,∴∠OCB=∠ABC=45°,∴∠COB=180°-∠OCB-∠ABC=90°,
∵CD∥AB,∴∠OCD=180°-∠COB=90°,∴CD是☉O的切线;
∵AE=3,EF=2AF=4,∴ME=4,BM=2,BE=3,

九年级数学中考《图形的相似》专项训练题(A)

九年级数学中考《图形的相似》专项训练题(A)1.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O,那么点B′位似,且矩形OA′B′C′的面积等于矩形OABC面积的14的坐标是().A.(3,2) B.(-2,-3)C.(2,3)或(-2,-3) D.(3,2)或(-3,-2)2. 如图,△ABC中,BC=2,DE是它的中位线,下面三个结论:⑴DE=1;⑵△ADE∽△ABC;⑶△ADE的面积与△ABC的面积之比为1:4。

其中正确的有().A. 0个B.1个C. 2个D. 3个3.如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.OA∶OC=OB∶OD,则下列结论中一定正确的是( ).A .①和②相似B .①和③相似C .①和④相似D .②和④相似4.现给出下列四个命题:①无公共点的两圆必外离;②位似三角形是相似三角形;③菱形的面积等于两条对角线的积;④对角线相等的四边形是矩形.其中真命题的个数是( ).A .1B .2C .3D .45.如图,线段AB 两个端点的坐标分别为A (4,4),B (6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的后得到线段CD ,则端点C 和D 的坐标分别为( )A .(2,2),(3,2)B .(2,4),(3,1)C .(2,2),(3,1)D .(3,1),(2,2)6.如图,在平行四边形ABCD 中(AB ≠BC ),直线EF 经过其对角线的交点O ,且分别交AD 、BC 于点M 、N ,交BA 、DC 的延长线于点E 、F ,下列结论:①AO=BO ;②OE=OF ;③△EAM ∽△EBN ;④△EAO ≌△CNO ,其中正确的是( ). A .①② B .②③ C .②④ D .③④AB CD O ① ②⊙o ③⊙o④⊙o7.下列图形中不是位似图形的是( ).8.在比例尺1:10 000 000的地图上,量得甲、乙两个城市之间的距离是8 cm,那么甲、乙两个城市之间的实际距离应为 __________km.9. 如果一个三角形的三边长为5、12、13,与其相似的三角形的最长的边为39,那么较大的三角形的周长________,面积________.10.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距6m、与树相距15m,则树的高度为______________m11. 如图,以点O为位似中心,将五边形ABCDE放大后得到五边形A′B′C′D′E′,已知OA=10cm,OA′=20cm,则五边形ABCDE的周长与五边形A′B′C′D′E′的周长的比值是________.12. 将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边10 98 7 6 5 4 3 2 1 11 A 1 B 1 C 1 A B Cy AC 上,记为点B ′,折痕为EF .已知AB =AC =6,BC =8,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是________.13.如图,在△ABC 中,∠BAC=60°,∠ABC=90°,直线l 1∥l 2∥l 3,l 1与l 2之间距离是1,l 2与l 3之间距离是2,且l 1,l 2,l 3分别经过点A ,B ,C ,则边AC 的长为.14. 如图,不等长的两条对角线AC 、BD 相交于点O ,且将四边形ABCD 分成甲、乙、丙、丁四个三角形.若12AO BO OC OD ==,则甲、乙、丙、丁这4个三角形中,一定相似的有________.15 . 如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若△ABC 与△A 1B 1C 1是位似图形,且顶点都在格点上,则位似中心的坐标是___________.16.如图,一个矩形ABCD 的长AD=a cm,宽AB=b cm,E、F分别是AD、BC的中点,连接E、F,所得新矩形ABFE与原矩形ABCD相似,求a:b的值.17.如图,△ABC是一块直角三角形的木块,∠C=90°,AC=3cm,BC=4cm,AB=5cm,要利用它加工成一块面积最大的正方形木块,问按正方形CDEF加工还是按正方形PQRS加工?说出你的理由.18.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?19. 如图,已知在△ABC中AB=AC,点D为BC边的中点,点F在边AB上,点E在线段DF的延长线上,且∠BAE=∠BDF,点M在线段DF 上,且∠EBM=∠C.(1)求证:EB•BD=BM•AB;(2)求证:AE ⊥BE .20. 已知线段OA ⊥OB ,C 为OB 上中点,D 为AO 上一点,连AC 、BD 交于P 点.(1)如图1,当OA=OB 且D 为AO 中点时,求PC AP 的值; (2)如图2,当OA=OB ,AO AD =41时,求tan ∠BPC ;21.已知:如图,在△ABC 中,点D 、E 分别在边BC 、AB 上,BD=AD=AC ,AD 与CE 相交于点F ,AE 2=EF •EC .(1)求证:∠ADC=∠DCE+∠EAF ;(2)求证:AF •AD=AB •EF .DC P O A B 图 1D C POAB 图 222.如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延长交AB于点M,MN⊥CM交射线AD于点N.(1)当F为BE中点时,求证:AM=CE;(2)若==2,求的值;(3)若==n,当n为何值时,MN∥BE?23.如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB 于点D.(1)尺规作图:过A,D,C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法);(2)求证:BC是过A,D,C三点的圆的切线;(3)若过A,D,C三点的圆的半径为3,则线段BC上是否存在一点P,使得以P,D,B为顶点的三角形与△BCO相似.若存在,求出DP的长;若不存在,请说明理由.CBA24.如图,在矩形ABCD中,AB=4,AD=10,直角尺的直角顶点P在AD 上滑动时(•点P与A,D不重合),一直角边经过点C,另一直角边交AB于点E.我们知道,结论“Rt•△AEP∽Rt△DPC”成立.(1)当∠CPD=30°时,求AE的长;(2)是否存在这样的点P,使△DPC的周长等于△AEP周长的2倍?若存在,求出DP的长;若不存在,请说明理由.。

(中考全景透视)中考数学一轮复习第22讲图形的相似与位似课件

A. AADB=AAEC B. CCEF=EFAB C. DBCE=ABDD D. EAFB=CCFB

析:
∵DE∥BC
,∴
AD AB
= AAEC ,

A
正确;
∵EF∥AB,∴CCFE=EFBA,故 B 正确;∵DE∥BC,
EF∥AB,∴四边形 BDEF 是平行四边形,∴BD=EF,
DE=BF,∴DBCE=BBFC=AAEC=AADB,EAFB=BADB=CAEC=CCFB.
注意:一条线段有两个黄金分割点.
考点四 相似多边形的定义及性质 1.定义 各角对应相等,各边应边的比称为相似比. 2.性质 (1)相似多边形对应角相等,对应边的比相等. (2)相似多边形周长的比等于相似比. (3)相似多边形面积的比等于相似比的平方.
故 C 错误,D 正确.故选 C.
答案: C
3.已知a+c b=a+b c=b+a c=k,则 k 的值是 2 或 -1.
解析:根据题意,得 a+b=ck,a+c=bk,b+c =ak.∴2(a+b+c)=(a+b+c)k.当 a+b+c≠0 时,k =2aa++bb++cc=2;当 a+b+c=0 时,a+b=-c,∴k =a+c b=-cc=-1.故 k 的值是 2 或-1.
【答案】 137.5
考点三 相似多边形的定义与性质
例 3(2014·凉山州)如果两个相似多边形面积的比
为 1∶5,则它们的相似比为( )
A.1∶25
B.1∶5
C.1∶2.5
D.1∶ 5
【点拨】相似多边形面积的比等于相似比的平方,
∵面积的比为 1∶5,则相似比为 1∶ 5.故选 D.
【答案】 D
方法总结: 两个多边形相似,如果已知相似比、周长比、面 积比中任何一个,就能求出另外两个.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 11 中考数学-图形的相似 第一节 成比例线段 知识点 考点一 形状相同的图形 1. 所谓形状相同的图形,实际上就是形状相同,大小、位置不一定相同的图形. 一般而言,形状相同的图形就是相似图形,但是全等图形也是形状相同的图形,属于相似图形的一种特殊情况. 2. 实际上,形状相同的图形的对应线段的条数相同,对应线段长的比值相等,因此可以看做是把其中一个图形方法或缩小一定的倍数得到另一个图形. 3. 对于形状相同二大小不同的两个平面图形,我们可以用相应线段长度的比来描述它们之间的大小关系.

考点二 两条线段的比 如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么这两条线段的比就是它们的长度比,即nmCDAB::,或写成nmCDAB. 其中,线段AB,CD叫做这个线段比的前项和后项. 如果把n

m

表示成比值k,那么kCDAB,或CDkAB. 如:线段AB=2 cm,CD=3 cm,则3:2:CDAB. 提示: (1)求两条线段的比时,两条线段的长度单位要统一,长度单位不统一时,要先化成同一长度单位. (2)两条线段的比是指两条线段长度的比,是关于线段比值的运算结果,是一个没有单位的正实数. (3)两条线段的比与所选线段的长度单位无关,只要选用相同的长度单位即可. (4)两条线段的比有顺序,除了CDAB之外,ABCDCDAB::. CDAB与ABCD互为倒数.

考点三 成比例线段 四条线段a,b,c,d中,如果a与b的比等于c与d的比,即𝑎𝑏=𝑐𝑑,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.

考点四 比例的性质 比例的基本性质: 如果𝑎𝑏=𝑐𝑑,那么𝑎𝑑=𝑏𝑐;如果𝑎𝑑=𝑏𝑐(𝑎,𝑏,𝑐,𝑑都不等于0),那么𝑎𝑏=𝑐𝑑(或𝑎𝑐=𝑏𝑑,𝑑𝑏=𝑐𝑎,𝑑𝑐=𝑏𝑎).li 2 / 11

例1.如图是百度地图的一部分(比例尺1:4000000).按图可估测杭州在嘉兴的南偏西 度方向上,到嘉兴的实际距离约为 .

练习1.在比例尺为1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( ) A.1250km B.125km C.12.5km D.1.25km 练习2.某机器零件在图纸上的长度是21 mm,它的实际长度是630 mm,则图纸的比例尺是( ) A.1:20 B.1:30 C.1:40 D.1:50 练习3.正方形的对角线的长与它的边长之比是( ) A.2:1 B.1:2 C.1:√2 D.√2:1 练习4.已知线段AB,在BA的延长线上取一点C,使CA=3AB,则线段CA与线段CB之比为( ) A.3:4 B.2:3 C.3:5 D.1:2

例2.下列各组线段(单位:㎝)中,成比例线段的是( ) A.1,2,3,4 B.1,2,2,4 C.3,5,9,13 D.1,2,2,3 练习1.四条线段a,b,c,d成比例,其中𝑎=3𝑐𝑚,𝑑=4𝑐𝑚,𝑐=6𝑐𝑚,则b等于( ) A.8cm B.92𝑐𝑚 C.29𝑐𝑚 D. 2cm

练习2.已知线段a=4,b=16 ,线段c是a、b的比例中项,那么c等于( ) A.10 B.8 C.−8 D.±8 练习3.已知三个数1,2,√3,请你再写一个数,使这四个数能成比例,那么这个数是 . 练习4.如图,直线y=3x+3与x轴交于点A,与y轴交于点B.过B点作直线BP与x轴正半轴交于点P,取线段OA、OB、OP,当其中一条线段的长是其他两条线段长度的比例中项时,则P点的坐标为 . 3 / 11

例3.若𝑦𝑥=34,则𝑥+𝑦𝑥的值为( ) A.1 B.47 C.54 D.74

练习1.如果𝑥+𝑦𝑥=74,那么𝑥𝑦值为( )

A. 34 B.23 C.43 D.32

练习2.已知𝑏𝑎=513,则𝑎−𝑏𝑎+𝑏的值是 .

练习3.已知𝑐4=𝑏5=𝑎6≠0,则𝑏+𝑐𝑎= .

练习4.如果𝑎𝑏=𝑐𝑑=𝑒𝑓=𝑘(𝑏+𝑑+𝑓≠0),且𝑎+𝑐+𝑒=3(𝑏+𝑑+𝑓),那么𝑘= .

练习5.已知𝑎2=𝑏3≠0,求代数式5𝑎−2𝑏𝑎2−4𝑏2∙(𝑎−2𝑏)的值.

练习6.已知线段a、b、c满足𝑎3=𝑏2=𝑐6,且𝑎+2𝑏+𝑐=26.

(1)求a、b、c的值; (2)若线段x是线段a、b的比例中项,求x.

练习7.已知a、b、c是△ABC的三边长,且a5=b4=c6≠0,求:

(1)2a+b3c的值.

(2)若△ABC 的周长为90,求各边的长. 4 / 11

例4.如图,在△ABC中,AB=24,AE=6,EC=10,𝐴𝐷𝐵𝐷=𝐴𝐸𝐸𝐶.

(1)求AD的长; (2)试说明𝐴𝐵𝐵𝐷=𝐴𝐶𝐸𝐶.

练习1.设a,b,c为△ABC的三边,且a−bb=b−cc=c−aa,试判断△ABC的形状,并给出证明.

练习2.如图,在Rt△ABC中,CD是斜边AB上的高线,试猜想线段AC,AB,CD,BC是否对应成比例?如果对应成比例,请写出这个比例式,并进行验证;如果不能,请说明理由. 5 / 11

第二节 平行线分线段成比例 知识点 考点一 平行线分线段成比例的基本事实 平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例. 对应线段实质两条平行线所截相同位置的线段.

考点二 平行线分线段成比例的基本事实的推论 平行于三角形一边的直线与其他两边相交,截得的对应线段成比例.

例1.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB = 1,BC = 3,DE = 2,则EF的长为( )

A.4 B.5 C.6 D.8 练习1.如图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知23BCAB,则DF

DE

的值为( )

A.23 B.32 C.52 D.53 6 / 11

练习2. 如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1, l2,l3于点D,E,F. AC与DF相交于点H,且AH = 2,HB = 1,BC = 5,则EF

DE的值为( )

A.21 B.2 C.52 D.5

3

练习3.如图所示,△ABC中,DE∥BC,以下结论正确的是( )

A.AE : AC = AD : BD B.AE : AC = BD : AB C.AE : CE = AD : BD D.AC : CE = AD : BD 练习4.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB = 6 cm,则线段AC = __________ cm.

例2.如图所示,直线l1∥l2∥l3,直线AC分别交这三条直线于点A,B,C直线DF分别交这三条直线于点D,E,F,若AB=3,27DE,EF = 4,求BC. 7 / 11

练习1.在△ABC中,D是△ABC的BC边上的中点,F是AD的中点,BF的延长线交AC于点E. 求证:CEAE21

练习2.如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形. 其中线段BD交AC于点G,线段AE交CD于点F.

(1)求证:BCDACE≌△△; (2)求证:FEAFGCAG. 8 / 11

练习3.如图,在△ABC中(BC),∠ACB = 90°,点D在AB边上,DE⊥AC于点E (1)若31DBAD,AE = 2,求EC的长; (2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P,问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.

例3. △ABC中FG∥DE∥BC,已知DF = 3,AG = EC = 2,则下列四个等式中一定正确的是( ) A.6DEFG B.6GEDB C.3:2:DEFG D.2:3:DBCE 练习1. 如图,已知AB△CD,AC与BD交于点O,则下列比例中成立的是( )

A.OBOAODOC:: B.OAOBODOC:: C.DBODACOC:: D.OCODACBD::

练习2.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则EF : AE =( )

A.1 : 4 B.1 : 3 C.2 : 3 D.1 : 2 9 / 11

练习3.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:①分别以点A、D为圆心,以大于21AD的长为半径在AD两侧作弧,交于两点M、N;②连接MN分别交AB、AC于点E、F;③连接DE、DF.若BD = 6,AF = 4,CD = 3,则BE的长是( ) A.2 B.4 C.6 D.8

练习4.如图,在△ABC中,点D、E分别在边AB、BC上,DE∥AC,若BD = 8,DA = 4,BE = 6,则EC = .

相关文档
最新文档