【精品】2015-2016学年江苏省宿迁市泗阳县八年级(上)数学期末试卷及解析
苏科版江苏省宿迁市苏科版八年级数学上册期末真题试卷(一)解析版

苏科版江苏省宿迁市苏科版八年级数学上册期末真题试卷(一)解析版 一、选择题 1.计算3329a b a b a b a-(a >0,b >0)的结果是( ) A .53ab B .23ab C .179ab D .89ab 2.某种鲸的体重约为,关于这个近似数,下列说法正确的是( ) A .精确到百分位 B .精确到0.01 C .精确到千分位 D .精确到千位3.下列图形中的五边形ABCDE 都是正五边形,则这些图形中的轴对称图形有( )A .1个B .2个C .3个D .4个4.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .5.已知点P (1+m ,3)在第二象限,则m 的取值范围是( )A .1m <-B .1m >-C .1m ≤-D .1m ≥-6.如图,给出下列四组条件:①AB =DE ,BC =EF ,AC =DF ;②AB =DE ,∠B =∠E ,BC =EF ;③∠B =∠E ,BC =EF ,∠C =∠F ;④AB =DE ,AC =DF ,∠B =∠E .其中能使△ABC ≌△DEF 的条件有( )A .1组B .2组C .3组D .4组7.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .362B .332C .6D .38.在同一平面直角坐标系中,函数y x =-与34y x =-的图像交于点P ,则点P 的坐标为( )A .(1,1)-B .(1,1)-C .(2,2)-D .(2,2)- 9.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b的图象大致是( ) A . B . C . D .10.已知△ABC 的三边长分别为3,4,5,△DEF 的三边长分别为3,3x ﹣2,2x +1,若这两个三角形全等,则x 的值为( )A .2B .2或C .或D .2或或11.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是( )A .SSSB .SASC .AASD .ASA12.下列说法中正确的是( )A .带根号的数都是无理数B .不带根号的数一定是有理数C .无限小数都是无理数D .无理数一定是无限不循环小数 13.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b的图象大致是( ) A . B . C . D .14.如图,平面直角坐标系中,长方形OABC ,点A ,C 分别在x 轴,y 轴的正半轴上,点B (6,3),现将△OAB 沿OB 翻折至△OA ′B 位置,OA ′交BC 于点P .则点P 的坐标为( )A .(94,3)B .(32,3)C .(125,3)D .(5,32) 15.若253x +在实数范围内有意义,则x 的取值范围是( ) A .x >﹣52B .x >﹣52且x ≠0C .x ≥﹣52D .x ≥﹣52且x ≠0 二、填空题16.对于分式23x a b a b x++-+,当1x =时,分式的值为零,则a b +=__________. 17.如图,在ABC ∆中,90C =∠,AD 平分CAB ∠,交BC 于点D ,若ADC 60∠=,2CD =,则ABC ∆周长等于__________.18.如图,已知直线y =ax ﹣b ,则关于x 的方程ax ﹣1=b 的解x =_____.19.在实数22,4π,227-,3.1416______个. 20.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E .若3,5BD DE ==,则线段EC 的长为______.21.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.22.已知一次函数1y kx b =+与2y mx n =+的函数图像如图所示,则关于,x y 的二元一次方程组0,0kx y b mx y n -+=⎧⎨-+=⎩的解是______.23.一个正方形的边长增加2cm ,它的面积就增加24cm ,这个正方形的边长是______cm .24.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,AD=3,BC=10,则△BDC 的面积是_____.25.若等腰三角形的顶角为30°,那么这个等腰三角形的底角为_____°三、解答题26.(13168-;(2)求x 的值:2(2)90x .27.如图1,在直角坐标系xoy 中,点A 、B 分别在x 、y 轴的正半轴上,将线段AB 绕点B 顺时针旋转90°,点A 的对应点为点C .(1)若A (6,0),B (0,4),求点C 的坐标;(2)以B 为直角顶点,以AB 和OB 为直角边分别在第一、二象限作等腰Rt △ABD 和等腰Rt △OBE ,连DE 交y 轴于点M ,当点A 和点B 分别在x 、y 轴的正半轴上运动时,判断并证明AO 与MB 的数量关系.28.如图,在ABC ∆中,4AB =,8BC =,AC 的垂直平分线交AC 于点D ,交BC 于点E ,3CE =,连接AE .(1)求证:ABE ∆是直角三角形;(2)求ACE ∆的面积.29.一次函数()0y kx b k =+≠的图像为直线l .(1)若直线l 与正比例函数2y x =的图像平行,且过点(0,−2),求直线l 的函数表达式;(2)若直线l 过点(3,0),且与两坐标轴围成的三角形面积等于3,求b 的值.30.在日历上,我们可以发现其中某些数满足一定的规律,如图是2012年8月份的日历.我们任意选择其中所示的方框部分,将每个方框部分中4个位置上的数交又相乘,再相减,例如:7×13-6×14=7,17×23-16×24=7,不难发现,结果都是7.①请你再选择一个类似的部分试一试,看看是否符合这个规律;②请你利用整式的运算对以上的规律加以证明.31.已知:如图,,12AB DC =∠=∠,求证 :EBC ECB ∠=∠.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】 3329a b a b a b a23a b a ab ab a b a ⨯⨯即可求解. 【详解】解:∵a >0,b >0, 3329a b a b a b a23a b a ab ab a b a ⨯⨯15233ab ab ab =故选:A .【点睛】本题考查二次根式的性质与化简;能够根据二次根式的性质,将所求式子进行正确的化简是解题的关键.2.D解析:D【解析】【分析】先写出其原数,看看近似数的最末一位在原数什么数位上,那么它就是精确到了哪个数位.【详解】解:1.36×105kg =136000kg 的最后一位的6表示6千,即精确到千位.故选D .【点睛】本题考查了近似数,掌握用科学记数法表示的数的精确度是解题关键.近似数精确到哪一位,应当看末位数字实际在哪一位,即可得出答案.3.D解析:D【解析】分析:直接利用轴对称图形的性质画出对称轴得出答案.详解:如图所示:直线l 即为各图形的对称轴.,故选:D .点睛:此题主要考查了轴对称图形,正确把握轴对称图形的定义是解题关键.4.C 解析:C【解析】分析:根据一次函数的k 、b 的符号确定其经过的象限即可确定答案.详解:∵一次函数y x b =+中100k b =-,,∴一次函数的图象经过一、二、四象限,故选C .点睛:主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:①当k >0,b >0,函数y =kx +b 的图象经过第一、二、三象限;②当k >0,b <0,函数y =kx +b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二、三、四象限.5.A解析:A【解析】【分析】令点P 的横坐标小于0,列不等式求解即可.【详解】解:∵点P P (1+m ,3)在第二象限,∴1+m <0,解得: m <-1.故选:A .【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6.C解析:C【解析】【分析】根据全等三角形的判定方法:SSS 、SAS 、ASA 及AAS ,即可判定.【详解】①满足SSS ,能判定三角形全等;②满足SAS ,能判定三角形全等;③满足ASA ,能判定三角形全等;④的条件是两边及其一边的对角分别对应相等,不能判定三角形全等.∴能使ABC DEF △≌△全等的条件有3组.故选:C .【点睛】本题考查全等三角形的判定,解题关键是熟练掌握各种判定方法并注意“两边及其一边的对角分别对应相等”不能判定三角形全等.7.D解析:D【解析】分析:作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图,利用轴对称的性质得MP=MC ,NP=ND ,∠BOP=∠BOD ,∠AOP=∠AOC ,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN 周长最小,作OH ⊥CD 于H ,则CH=DH ,然后利用含30度的直角三角形三边的关系计算出CD 即可.详解:作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图,则MP=MC ,NP=ND ,∠BOP=∠BOD ,∠AOP=∠AOC ,∴PN+PM+MN=ND+MN+MC=DC ,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°, ∴此时△PMN 周长最小,作OH ⊥CD 于H ,则CH=DH ,∵∠OCH=30°,∴OH=12OC=2OH=32, ∴CD=2CH=3.故选D .点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.8.B解析:B【解析】【分析】联立两直线解析式,解方程组即可.【详解】联立34y x y x -⎧⎨-⎩==, 解得11x y ⎧⎨-⎩==, 所以,点P 的坐标为(1,-1).故选B .【点睛】本题考查了两条直线的交点问题,通常利用联立两直线解析式解方程组求交点坐标,需要熟练掌握.9.A解析:A【解析】试题分析:根据一次函数的性质得到k <0,而kb <0,则b >0,所以一次函数y=kx+b 的图象经过第二、四象限,与y 轴的交点在x 轴是方.解:∵一次函数y=kx+b ,y 随着x 的增大而减小,∴k <0,∴一次函数y=kx+b 的图象经过第二、四象限;∵kb <0,∴b >0,∴图象与y 轴的交点在x 轴上方,∴一次函数y=kx+b 的图象经过第一、二、四象限.故选A.考点:一次函数的图象.10.A解析:A【解析】【分析】首先根据全等三角形的性质:全等三角形的对应边相等可得:3x-2与4是对应边,或3x-2与5是对应边,计算发现,3x-2=5时,2x-1≠4,故3x-2与5不是对应边.【详解】解:∵△ABC三边长分别为3,4,5,△DEF三边长分别为3,3x-2,2x-1,这两个三角形全等,①3x-2=4,解得:x=2,当x=2时,2x+1=5,两个三角形全等.②当3x-2=5,解得:x=,把x=代入2x+1≠4,∴3x-2与5不是对应边,两个三角形不全等.故选A.【点睛】此题主要考查了全等三角形的性质,分类讨论正确得出对应边是解题关键.11.D解析:D【解析】【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【详解】解:由图可知,三角形两角及夹边还存在,∴根据可以根据三角形两角及夹边作出图形,所以,依据是ASA.故选:D.【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.12.D解析:D【解析】【分析】根据无理数的定义判断各选项即可.【详解】A2,是有理数,错误;B中,例如π,是无理数,错误;C中,无限循环小数是有理数,错误;D正确,无限不循环的小数是无理数故选:D【点睛】本题考查无理数的定义,注意含有π和根号开不尽的数通常为无理数.13.A解析:A【解析】试题分析:根据一次函数的性质得到k<0,而kb<0,则b>0,所以一次函数y=kx+b的图象经过第二、四象限,与y轴的交点在x轴是方.解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限.故选A.考点:一次函数的图象.14.A解析:A【解析】【分析】由折叠的性质和矩形的性质证出OP=BP,设OP=BP=x,则PC=6﹣x,再用勾股定理建立方程9+(6﹣x)2=x2,求出x即可.【详解】∵将△OAB沿OB翻折至△OA′B位置,OA′交BC于点P,∴∠A'OB=∠AOB,∵四边形OABC是矩形,∴BC∥OA,∴∠OBC=∠AOB,∴∠OBC=∠A'OB,∴OP=BP,∵点B的坐标为(6,3),∴AB=OC=3,OA=BC=6,设OP=BP=x,则PC=6﹣x,在Rt△OCP中,根据勾股定理得,OC2+PC2=OP2,∴32+(6﹣x )2=x 2,解得:x =154, ∴PC =6﹣154=94, ∴P (94,3), 故选:A .【点睛】此题主要考查折叠和矩形的性质以及利用勾股定理构建方程,熟练掌握,即可解题. 15.C解析:C【解析】【分析】根据二次根式有意义的条件即可确定x 的取值范围.【详解】解:由题意得,2x +5≥0,解得x ≥﹣52, 故选:C .【点睛】0a 时有意义,正确理解二次根式有意义的条件是解题的关键. 二、填空题16.-1且.【解析】【分析】根据分式的值为零的条件为0的条件可得且,则可求出的值.【详解】解:∵分式,当时,分式的值为零,∴且,∴,且故答案为:-1且.【点睛】此题主要考查了分式值为解析:-1且5233ab ,. 【解析】【分析】根据分式的值为零的条件为0的条件可得10a b且230a b ,则可求出+a b 的值.【详解】 解:∵分式23x a b a b x++-+,当1x =时,分式的值为零, ∴10a b 且230a b , ∴1a b +=-,且5233ab , 故答案为:-1且5233ab ,. 【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少. 17.6+6【解析】【分析】根据含有30°直角三角形性质求出AD,根据勾股定理求出AC ,再求出AB 和BD 即可.【详解】因为在中,,所以所以AD=2CD=4所以AC=因为平分,所以=2解析:+6【解析】【分析】根据含有30°直角三角形性质求出AD,根据勾股定理求出AC ,再求出AB 和BD 即可.【详解】 因为在ABC ∆中,90C =∠,ADC 60∠=所以30DAC ∠=o所以AD=2CD=4所以==因为AD 平分CAB ∠,所以CAB ∠=2o DAC 60∠=所以o∠=∠=B BAD30所以∆周长=AC+BC+AB=所以ABC故答案为:【点睛】考核知识点:含有30°直角三角形性质,勾股定理;理解直角三角形相关性质是关键. 18.4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.故答案为4.【点睛】此题考查一次函解析:4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax﹣1=b的解是x=4.故答案为4.【点睛】此题考查一次函数与一元一次方程的联系,渗透数形结合的解题思想.19.2【解析】【分析】初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.【详解】解:根据无理数的定义,属于无理数,所以无理数有2个.解析:2【分析】初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.【详解】,4π属于无理数,所以无理数有2个. 故答案为:2.【点睛】本题考查无理数的定义.熟记无理数的定义并理解初中阶段无理数的几种表现形式是解决此题的关键. 20.2【解析】【分析】根据角平分线的定义可得∠DBF=∠FBC ,∠ECF=∠FCB ,由平行线的性质可得∠DFB=∠FBC ,∠EFC=∠FCB ,等量代换可得∠DFB=∠DBF ,∠EFC=∠ECF ,根 解析:2【解析】【分析】根据角平分线的定义可得∠DBF=∠FBC ,∠ECF=∠FCB ,由平行线的性质可得∠DFB=∠FBC ,∠EFC=∠FCB ,等量代换可得∠DFB=∠DBF ,∠EFC=∠ECF ,根据等角对等边可得到DF=DB ,EF=EC ,再由ED=DF+EF 结合已知即可求得答案.【详解】∵BF 、CF 分别是∠ABC 和∠ACB 的角平分线,∴∠DBF=∠FBC ,∠ECF=∠FCB ,∵DE ∥ BC ,∴∠DFB=∠FBC ,∠EFC=∠FCB ,∴∠DFB=∠DBF ,∠EFC=∠ECF ,∴DF=DB ,EF=EC ,∵ED=DF+EF ,3,5BD DE ==,∴EF=2,∴EC=2故答案为:2【点睛】本题考查了等腰角形的判定与性质,平行线的性质,角平分线的定义等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.21..【解析】根据一次函数,,时图象经过第二、三、四象限,可得,,即可求解;【详解】经过第二、三、四象限,∴,,∴,,∴,故答案为.【点睛】本题考查一次函数图象与系数的关系解析:13k <<.【解析】【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.22.【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解,从而可得答案.【详解】解:∵一次函数和一次函数的图象交点的坐标为∴方程组的解是: .故答案为: .【点睛】本题解析:12x y =-⎧⎨=⎩【解析】根据函数图象交点坐标为两函数解析式组成的方程组的解,从而可得答案.【详解】解:∵一次函数1y kx b =+和一次函数2y mx n =+的图象交点的坐标为()1,2,-∴方程组00kx y b mx y n -+=⎧⎨-+=⎩的解是:12x y =-⎧⎨=⎩. 故答案为: 12x y =-⎧⎨=⎩. 【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.掌握以上知识是解题的关键.23.a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a ,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a ,依题意有解析:a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a ,根据正方形面积公式有(a+2)2-a 2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a ,依题意有(a+2)2-a 2=24,(a+2)2-a 2=(a+2+a )(a+2-a )=4a+4=24,解得a=5.【点睛】本题考查了平方差公式,掌握正方形面积公式并熟记公式结构是解题的关键.24.15【解析】【分析】试题分析:过D 作DE⊥BC 于E ,根据角平分线性质求出DE=3,根据三角形的面积求出即可.解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分解析:15【解析】【分析】试题分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是:12×DE×BC=12×10×3=15,故答案为15.考点:角平分线的性质.25.75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案解析:75【解析】【分析】根据等腰三角形两个底角相等可得解.依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案为75.考点:三角形内角和与等腰三角形性质.点评:本题难度较低.已知角为顶角,根据等腰三角形性质与三角形内角和性质计算即可.三、解答题.26.(1)6;(2)x=1或x=5【解析】【分析】(1)本题涉及算术平方根、立方根2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)移项后,两边直接开平方即可得到x+2=3,x+2=﹣3,求解即可.【详解】(1)原式=4-(-2)=4+2=6;(2)x+2=±3.x+2=3,x+2=-3.x=1或x=-5.【点睛】本题考查了实数运算和直接开平方法解一元二次方程,关键是掌握算术平方根、立方根各知识点.27.(1)C(-4,-2);(2)AO= 2MB.证明见解析.【解析】【分析】(1)过C点作y轴的垂线段,垂足为H点,证明△ABO≌△BCH,利用全等三角形的性质结合C在第三象限即可求得C点坐标;(2)过D点作DN⊥y轴于点N,证明△DBN≌△BAO,根据全等三角形对应边相等BN=AO,DN=BO,再证明△DMN≌△EMB,可得MN=MB,于是可得AO=2MB.【详解】(1)解:过C点作y轴的垂线段,垂足为H点.∴∠BHC=∠AOB=90°,∵A(6,0),B(0,4)∴OA=6,OB=4∵∠ABC=90°,∴∠ABO+∠OBC=90°,又∠ABO+∠OAB=90°,∴∠OBC=∠OAB,∵在△ABO和△BCH中BHC AOBOBC OABAB BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABO≌△BCH,∴AO=BH=6,CH=BO=4,∴OH=2,∴C(-4,-2).(2)AO= 2MB.过D点作DN⊥y轴于点N,∴∠BND=∠AOB=90°,∵△ABD、△OBE为等腰直角三角形,∴∠ABD=∠OBE=90°,AB=BD,BO=BE,∴∠DBN+∠ABO=∠BAO+∠ABO=90°,∴∠DBN =∠BAO ,∴△DBN ≌△BAO ,∴BN =AO ,DN =BO ,在△DMN 和△EMB 中,∵DN =BO=BE ,∠DNM =∠EBM ,∠DMN =∠EMB ,∴△DMN ≌△EMB ,∴MN =MB =12BN =12AO ∴AO =2MB .【点睛】 本题考查坐标与图形,旋转的性质,全等三角形的性质与判定,等腰直角三角形的性质.能正确作出辅助线,并根据全等三角形的判定定理证明三角形全等是解决此题的关键.28.(1)详见解析;(2)185. 【解析】【分析】(1)根据线段垂直平分线性质得AE=CE=3,利用勾股定理逆定理可得;(2)作AH ⊥BC,由1122AB AE BE AH •=•可得高AH ,再求面积. 【详解】 (1)因为AC 的垂直平分线交AC 于点D ,所以AE=CE=3因为BC=BE+CE所以BE=BC-CE=8-3=5因为32+42=52所以AB 2+AE 2=BE 2所以ABE ∆是直角三角形;(2)作AH ⊥BC由(1)可知1122AB AE BE AH •=• 所以435AH ⨯=所以AH=125所以ACE ∆的面积=11121832255EC AH •=⨯⨯= 【点睛】 考核知识点:线段垂直平分线、勾股定理逆定理.理解线段垂直平分线性质和勾股定理逆定理是关键.29.(1)y=2x-2;(2)b=2或-2.【分析】(1)因为直线l 与直线2y x =平行,所以k 值相等,即k=2,又因该直线过点(0,−2),所以就有-2=2×0+b ,从而可求出b 的值,于是可解;(2)直线l 与y 轴的交点坐标是(0,b ),与x 轴交于(3,0),然后根据三角形面积公式列方程求解即可.【详解】解:(1)∵直线l 与直线2y x =平行,∴k=2,∴直线l 即为y=2x+b .∵直线l 过点(0,−2),∴-2=2×0+b ,∴b=-2.∴直线l 的解析式为y=2x-2.(2)∵直线l 与y 轴的交点坐标是(0,b ),与x 轴交于(3,0),∴直线l 与两坐标轴围成的三角形面积=132b ⨯⋅. ∴132b ⨯⋅=3, 解得b=2或-2.【点睛】 本题考查了一次函数的有关计算,两条直线平行问题,直线与两坐标轴围成的三角形面积等,难度不大,关键是掌握两条直线平行时k 值相等及求直线与两坐标轴的交点坐标.30.(1)见解析;(2)证明见解析.【解析】【分析】(1)直接利用已知数据求出即可;(2)利用数字之间的变化规律得出一般式,进而验证即可.【详解】(1)例如11×17-10×18=7;3×9-2×10=7;(2)设最小的一个数为x ,其他三个分别为x+1,x+7,x+8,则:(x+1)(x+7)-x (x+8),=x 2+8x+7-x 2-8x ,=7.【点睛】此题考查了数字的变化规律,整式的混合运算,由特殊到一般,利用日历表中数字的特点得出一般性结论解决问题.31.见解析【解析】利用“角角边”证明△ABE 和△DCE 全等,根据全等三角形对应边相等可得BE=CE ,然后利用等边对等角证明即可.【详解】证明:在△ABE 和△DCE 中,12AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE=CE ,∴∠EBC=∠ECB .【点睛】本题考查了全等三角形的判定与性质,等边对等角的性质,熟练掌握三角形全等的判定方法是解题的关键.。
江苏省宿迁市沭阳县怀文中学度八年级数学上学期期末模拟试题2(含解析) 苏科版

江苏省宿迁市沭阳县怀文中学2015-2016学年度八年级数学上学期期末模拟试题一、选择题(每题3分,共24分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.若等腰三角形的顶角为80°,则它的一个底角度数为()A.20° B.50° C.80° D.100°3.四个数﹣5,﹣0.1,,中为无理数的是()A.﹣5 B.﹣0.1 C.D.4.直线y=x﹣1的图象经过的象限是()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限5.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集为()A.x<2 B.x>2 C.x<5 D.x>56.如图,在△ABC中,AB=a,AC=b,BC边上的垂直平分线DE交BC、BA分别于点D、E,则△AEC的周长等于()A.a+b B.a﹣b C.2a+b D.a+2b7.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组8.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是()A.8.6分钟B.9分钟C.12分钟D.16分钟二、填空题(每空3分,共30分)9.使有意义的x的取值范围是.10.某省今年将参加2016届中考的学生大约为585000人,用四舍五入法取近似值,精确到10000人,并用科学记数法表示为人.11.在平面直角坐标系中,线段AB的端点A的坐标为(﹣3,2),将其先向右平移4个单位,再向下平移3个单位,得到线段A′B′,则点A对应点A′的坐标为.12.一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则k的值是.13.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是.14.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是.15.在平面直角坐标系xOy中,已知点A(1,1),B(4,3),点P在y轴上运动,当点P到A、B 两点距离之差的绝对值最大时,点P的坐标是.16.已知x=﹣3,若k<x<k+1,则整数k的值是.17.经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是.18.数学活动课上,老师在黑板上画直线平行于射线AN(如图),让同学们在直线l和射线AN上各找一点B和C,使得以A、B、C为顶点的三角形是等腰直角三角形.这样的三角形最多能画个.三、解答题19.计算:(1)(2)解方程:(2x﹣1)2=16(x+1)2.20.如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”,如图1中四边形ABCD就是一个“格点四边形”.(1)求图1中四边形ABCD的面积;(2)在图2方格纸中画一个格点三角形EFG,使△EFG的面积等于四边形ABCD的面积且为轴对称图形.21.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.22.已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式.23.某加油站五月份营销一种油品的销售利润y(万元)与销售量x(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价﹣成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x为多少时,销售利润为4万元;(2)分别求出线段AB与BC所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在OA、AB、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)24.某公司有甲种原料260kg,乙种原料270kg,计划用这两种原料生产A、B两种产品共40件.生产每件A种产品需甲种原料8kg,乙种原料5kg,可获利润900元;生产每件B种产品需甲种原料4kg,乙种原料9kg,可获利润1100元.设安排生产A种产品x件.(1)完成下表甲(kg)乙(kg)件数(件)A 5x xB 4(40﹣x)40﹣x(2)安排生产A、B两种产品的件数有几种方案?试说明理由;(3)设生产这批40件产品共可获利润y元,将y表示为x的函数,并求出最大利润.25.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.江苏省宿迁市沭阳县怀文中学2015~2016学年度八年级上学期期末数学模拟试卷(2)参考答案与试题解析一、选择题(每题3分,共24分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A是中心对称图形,不是轴对称图形,B、C、D都是轴对称图形,故选:A.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴.2.若等腰三角形的顶角为80°,则它的一个底角度数为()A.20° B.50° C.80° D.100°【考点】等腰三角形的性质.【分析】由已知顶角为80°,根据等腰三角形的两底角相等的性质及三角形内角和定理,即可求出它的一个底角的值.【解答】解:∵等腰三角形的顶角为80°,∴它的一个底角为(180°﹣80°)÷2=50°.故选:B.【点评】本题主要考查了等腰三角形的性质及三角形内角和定理.通过三角形内角和,列出方程求解是正确解答本题的关键.3.四个数﹣5,﹣0.1,,中为无理数的是()A.﹣5 B.﹣0.1 C.D.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣5是有理数,故A错误;B、﹣0.1是有理数,故B错误;C、是有理数,故C错误;D、是无理数,故D正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.直线y=x﹣1的图象经过的象限是()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限【考点】一次函数的性质.【专题】计算题.【分析】由y=x﹣1可知直线与y轴交于(0,﹣1)点,且y随x的增大而增大,可判断直线所经过的象限.【解答】解:直线y=x﹣1与y轴交于(0,﹣1)点,且k=1>0,y随x的增大而增大,∴直线y=x﹣1的图象经过第一、三、四象限.故选D.【点评】本题考查了一次函数的性质.关键是根据图象与y轴的交点位置,函数的增减性判断图象经过的象限.5.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集为()A.x<2 B.x>2 C.x<5 D.x>5【考点】一次函数与一元一次不等式.【专题】压轴题.【分析】根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x﹣3)﹣b>0中进行求解即可.【解答】解:∵一次函数y=kx﹣b经过点(2,0),∴2k﹣b=0,b=2k.函数值y随x的增大而减小,则k<0;解关于k(x﹣3)﹣b>0,移项得:kx>3k+b,即kx>5k;两边同时除以k,因为k<0,因而解集是x<5.故选:C.【点评】本题考查了一次函数与一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.6.如图,在△ABC中,AB=a,AC=b,BC边上的垂直平分线DE交BC、BA分别于点D、E,则△AEC的周长等于()A.a+b B.a﹣b C.2a+b D.a+2b【考点】线段垂直平分线的性质.【分析】要求三角形的周长,知道AC=b,只要求得AE+EC即可,由DE是BC的垂直平分线,结合线段的垂直平分线的性质,知EC=BE,这样三角形周长的一部分AE+EC=AE+BE=AB,代入数值,答案可得.【解答】解:∵ED垂直且平分BC,∴BE=CE.AB=a,AC=b.∴AB=AE+BE=AE+CE=a∴△AEC的周长为:AE+EC+AC=a+b.故选A.【点评】本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等),难度一般.进行线段的有效转移是解决本题的关键.7.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组【考点】全等三角形的判定.【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【解答】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.8.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是()A.8.6分钟B.9分钟C.12分钟D.16分钟【考点】函数的图象.【专题】压轴题.【分析】根据图象可知:小明从家骑车上学,上坡的路程是1千米,用5分钟,则上坡速度是0.2千米/分钟;下坡路长是2千米,用4分钟,因而速度是0.5千米/分钟,由此即可求出答案.【解答】解:他从学校回到家需要的时间是=12分钟.故选C.【点评】读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.二、填空题(每空3分,共30分)9.使有意义的x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.【解答】解:∵有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.10.某省今年将参加2016届中考的学生大约为585000人,用四舍五入法取近似值,精确到10000人,并用科学记数法表示为 5.9×105人.【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于585000有6位,所以可以确定n=6﹣1=5.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:585000=5.85×105≈5.9×105,故答案为5.9×105.【点评】本题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.11.在平面直角坐标系中,线段AB的端点A的坐标为(﹣3,2),将其先向右平移4个单位,再向下平移3个单位,得到线段A′B′,则点A对应点A′的坐标为(1,﹣1).【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:将点A(﹣3,2)向右平移4个单位,再向下平移3个单位,即把A点的横坐标加4,纵坐标减3即可,即A′的坐标为(1,﹣1).故答案填:(1,﹣1).【点评】本题考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.12.一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则k的值是1或﹣1 .【考点】一次函数的性质.【分析】分k>0和k<0两种情况,结合一次函数的增减性,可得到关于k、b的方程组,求解即可.【解答】解:当k>0时,此函数是增函数,∵当1≤x≤4时,3≤y≤6,∴当x=1时,y=3;当x=4时,y=6,∴,解得;当k<0时,此函数是减函数,∵当1≤x≤4时,3≤y≤6,∴当x=1时,y=6;当x=4时,y=3,∴,解得,∴k的值是1或﹣1.故答案为:1或﹣1.【点评】本题考查的是一次函数的性质,在解答此题时要注意进行分类讨论.13.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是.【考点】轴对称-最短路线问题;正方形的性质.【专题】计算题.【分析】要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解.【解答】解:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为2,E是BC边的中点,∴BE=1,∴AE==,故答案为:.【点评】此题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用.根据已知得出两点之间线段最短可得AE就是AP+PE的最小值是解题关键.14.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是16 .【考点】正方形的性质;全等三角形的判定与性质.【分析】由四边形ABCD为正方形可以得到∠D=∠B=90°,AD=AB,又∠ABE=∠D=90°,而∠EAF=90°由此可以推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,进一步得到∠DAF=∠BAE,所以可以证明△AEB≌△AFD,所以S△AEB=S△AFD,那么它们都加上四边形ABCF的面积,即可四边形AECF的面积=正方形的面积,从而求出其面积.【解答】解:∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,在△AEB和△AFD中,∵,∴△AEB≌△AFD(ASA),∴S△AEB=S△AFD,∴它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=16.故答案为:16.【点评】本题主要考查全等三角形的判定和性质、正方形的面积公式,正方形的性质,关键在于求证△AEB≌△AFD.15.在平面直角坐标系xOy中,已知点A(1,1),B(4,3),点P在y轴上运动,当点P到A、B两点距离之差的绝对值最大时,点P的坐标是(0,).【考点】轴对称-最短路线问题;坐标与图形性质.【分析】首先求得直线AB的解析式,直线AB与y轴的交点就是P.【解答】解:设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线BC的解析式是y=x+.当x=0时,y=.则P的坐标是(0,).故答案是:( 0,).【点评】本题考查了最短路径问题,理解直线AB与y轴的交点就是P是关键.16.已知x=﹣3,若k<x<k+1,则整数k的值是 1 .【考点】估算无理数的大小.【分析】由已知得到k+3<<k+4,先估算出的范围,即可得出整数k的值.【解答】解:∵x=﹣3,且k<x<k+1,∴k+3<<k+4,∵4<<5,∴k+3=4,k+4=5,∴k=1.故答案为1.【点评】题考查了估算无理数的大小的应用,能估算出的范围是解此题的关键.17.经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是y=x﹣2或y=﹣x+2 .【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】设直线解析式为y=kx+b,先把(2,0)代入得b=﹣2k,则有y=kx﹣2k,再确定直线与y轴的交点坐标为(0,﹣2k),然后根据三角形的面积公式得到×2×|﹣2k|=2,解方程得k=1或﹣1,于是可得所求的直线解析式为y=x﹣2或y=﹣x+2.【解答】解:设直线解析式为y=kx+b,把(2,0)代入得2k+b=0,解得b=﹣2k,所以y=kx﹣2k,把x=0代入得y=kx﹣2k得y=﹣2k,所以直线与y轴的交点坐标为(0,﹣2k),所以×2×|﹣2k|=2,解得k=1或﹣1,所以所求的直线解析式为y=x﹣2或y=﹣x+2.故答案为y=x﹣2或y=﹣x+2.【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣bk,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.18.数学活动课上,老师在黑板上画直线平行于射线AN(如图),让同学们在直线l和射线AN上各找一点B和C,使得以A、B、C为顶点的三角形是等腰直角三角形.这样的三角形最多能画 3 个.【考点】等腰直角三角形.【专题】压轴题;分类讨论.【分析】根据题意,结合图形,可分两种情况讨论:①AC为直角边;②AC为斜边.【解答】解:如图:①AC为直角边时,符合等腰直角三角形有2个;②AC1为斜边时,符合等腰直角三角形有1个.故这样的三角形最多能画3个.故答案为:3.【点评】利用等腰三角形的判定来解决实际问题,其关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.三、解答题19.计算:(1)(2)解方程:(2x﹣1)2=16(x+1)2.【考点】实数的运算;零指数幂;解一元二次方程-因式分解法.【专题】计算题;实数.【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,最后一项利用算术平方根定义计算即可得到结果;(2)方程利用两数的平方相等,两数相等或互为相反数转化为两个一元一次方程来求解.【解答】解:(1)原式=2﹣1+2=4﹣1=3;(2)开方得:2x﹣1=4(x+1)或2x﹣1=﹣4(x+1),解得:x1=﹣2.5,x2=﹣0.5.【点评】此题考查了实数的运算,以及解一元二次方程﹣因式分解法,熟练掌握运算法则是解本题的关键.20.如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”,如图1中四边形ABCD就是一个“格点四边形”.(1)求图1中四边形ABCD的面积;(2)在图2方格纸中画一个格点三角形EFG,使△EFG的面积等于四边形ABCD的面积且为轴对称图形.【考点】作图-轴对称变换.【专题】网格型.【分析】(1)用矩形面积减去周围三角形面积即可;(2)画一个面积为12的等腰三角形,即底和高相乘为24即可.【解答】解:(1)根据面积公式得:方法一:S=×6×4=12;方法二:S=4×6﹣×2×1﹣×4×1﹣×3×4﹣×2×3=12;(2)(只要画出一种即可)【点评】解答此题要明确:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形;对称轴:折痕所在的这条直线叫做对称轴.21.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.【考点】等腰三角形的性质;平行线的性质.【专题】证明题.【分析】首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.【解答】证明:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD,∴∠ABC=∠CBD+∠D,∵AD∥BC,∴∠CBD=∠D,∴∠ABC=∠D+∠D=2∠D,又∵∠C=∠ABC,∴∠C=2∠D.【点评】(1)此题主要考查了等腰三角形的性质和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(2)此题还考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:①定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.②定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.③定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.22.已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式.【考点】两条直线相交或平行问题.【专题】代数综合题.【分析】(1)根据L1⊥L2,则k1•k2=﹣1,可得出k的值即可;(2)根据直线互相垂直,则k1•k2=﹣1,可得出过点A直线的k等于3,得出所求的解析式即可.【解答】解:(1)∵L1⊥L2,则k1•k2=﹣1,∴2k=﹣1,∴k=﹣;(2)∵过点A直线与y=x+3垂直,∴设过点A直线的直线解析式为y=3x+b,把A(2,3)代入得,b=﹣3,∴解析式为y=3x﹣3.【点评】本题考查了两直线相交或平行问题,是基础题,当两直线垂直时,两个k值的乘积为﹣1.23.某加油站五月份营销一种油品的销售利润y(万元)与销售量x(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价﹣成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x为多少时,销售利润为4万元;(2)分别求出线段AB与BC所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在OA、AB、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)【考点】一次函数的应用;分段函数.【专题】压轴题;图表型.【分析】(1)根据销售记录每升利润为1元,所以销售利润为4万元时销售量为4万升;(2)设BC所对应的函数关系式为y=kx+b(k≠0),求出图象中B点和C点的坐标代入关系式中即可.(3)判断利润率最大,应该看倾斜度.【解答】解:解法一:(1)根据题意,当销售利润为4万元,销售量为4÷(5﹣4)=4(万升).答:销售量x为4万升时销售利润为4万元;(2)点A的坐标为(4,4),从13日到15日销售利润为5.5﹣4=1.5(万元),所以销售量为1.5÷(5.5﹣4)=1(万升),所以点B的坐标为(5,5.5).设线段AB所对应的函数关系式为y=kx+b,则解得∴线段AB所对应的函数关系式为y=1.5x﹣2(4≤x≤5).从15日到31日销售5万升,利润为1×1.5+4×(5.5﹣4.5)=5.5(万元).∴本月销售该油品的利润为5.5+5.5=11(万元),所以点C的坐标为(10,11).设线段BC所对应的函数关系式为y=mx+n,则解得所以线段BC所对应的函数关系式为y=1.1x(5≤x≤10);(3)线段AB倾斜度最大,所以利润率最高.解法二:(1)根据题意,线段OA所对应的函数关系式为y=(5﹣4)x,即y=x(0≤x≤4).当y=4时,x=4.答:销售量为4万升时,销售利润为4万元.(2)设线段AB所对应的函数关系式为y=kx+b(k≠0),则解得∴线段AB所对应的函数关系式为y=1.5x﹣2(4≤x≤5).设BC所对应的函数关系式为y=kx+b(k≠0),∵截止至15日进油时的销售利润为5.5万元,且13日油价调整为5.5元/升,∴5.5=4+(5.5﹣4)x,x=1(万升).∴B点坐标为(5,5.5).∵15日进油4万升,进价4.5元/升,又∵本月共销售10万升,∴本月总利润为:y=5.5+(5.5﹣4)×(6﹣4﹣1)+4×(5.5﹣4.5)=5.5+1.5+4=11(万元).∴C点坐标为(10,11).将B点和C点坐标代入y=kx+b得方程组为:,解得:.故线段BC所对应的函数关系式为:y=1.1x.(5≤x≤10).(3)线段AB倾斜度最大,所以利润率最高.【点评】这是一道分段函数难度中上的考题,主要考查从图表获取信息和利用一次函数解决实际问题的能力.本题的关键是要仔细审题,找出数量变化与对应函数图象的关系,思考:险段AB,OA,BC对应的函数有哪些不同其根本原因是每升的成本,利润的变化,导致销售量的变化,正确计算出三种情形中的每升利润,是解决这一分段函数的重中之重.24.某公司有甲种原料260kg,乙种原料270kg,计划用这两种原料生产A、B两种产品共40件.生产每件A种产品需甲种原料8kg,乙种原料5kg,可获利润900元;生产每件B种产品需甲种原料4kg,乙种原料9kg,可获利润1100元.设安排生产A种产品x件.(1)完成下表甲(kg)乙(kg)件数(件)A 8x 5x xB 4(40﹣x)9(40﹣x)40﹣x(2)安排生产A、B两种产品的件数有几种方案?试说明理由;(3)设生产这批40件产品共可获利润y元,将y表示为x的函数,并求出最大利润.【考点】一次函数的应用.【分析】(1)根据总件数=单件需要的原料×件数列式即可;(2)根据两种产品所需要的甲、乙两种原料列出不等式组,然后求解即可;(3)根据总利润等于两种产品的利润之和列式整理,然后根据一次函数的增减性求出最大利润即可.【解答】解:(1)表格分别填入:A甲种原料8x,B乙种原料9(40﹣x);(2)根据题意得,,由①得,x≤25,由②得,x≥22.5,∴不等式组的解集是22.5≤x≤25,∵x是正整数,∴x=23、24、25,共有三种方案:方案一:A产品23件,B产品17件,方案二:A产品24件,B产品16件,方案三:A产品25件,B产品15件;(3)y=900x+1100(40﹣x)=﹣200x+44000,∵﹣200<0,∴y随x的增大而减小,∴x=23时,y有最大值,y最大=﹣200×23+44000=39400元.【点评】本题考查了一次函数的应用,一元一次不等式组的应用,读懂题目信息,准确找出题中的等量关系和不等量关系是解题的关键.25.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.【考点】几何变换综合题;平行线的性质;全等三角形的判定与性质;等腰直角三角形;多边形内角与外角.【专题】几何综合题;压轴题.【分析】(1)由EN∥AD和点M为DE的中点可以证到△ADM≌△NEM,从而证到M为AN的中点.(2)易证AB=DA=NE,∠ABC=∠NEC=135°,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.(3)延长AB交NE于点F,易得△ADM≌△NEM,根据四边形BCEF内角和,可得∠ABC=∠FEC,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.【解答】(1)证明:如图1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴D M=EM.在△ADM和△NEM中,∴.∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图3,延长AB交NE于点F,∵AD∥NE,M为中点,∴易得△ADM≌△NEM,∴AD=NE.∵AD=AB,∴AB=NE.∵AD∥NE,∴AF⊥NE,在四边形BCEF中,∵∠BCE=∠BFE=90°∴∠FBC+∠FEC=360°﹣180°=180°∵∠FBC+∠ABC=180°∴∠ABC=∠FEC在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.。
2015-2016学年江苏省泗阳县实验初中八年级上学期期中考试数学试卷(带解析)

绝密★启用前2015-2016学年江苏省泗阳县实验初中八年级上学期期中考试数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:130分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、如图,Rt △ABC 中,AB=9,BC=6,∠B=90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为 ( )A .2.5B .3C .4D .52、如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线。
此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE 。
则说明这两个三角形全等的依据是( )A .SASB .ASAC .SSSD .AAS3、等腰三角形的一个角等于70o ,则它的底角是 ( ) A .70o B .55o C .60o D .70o 或55o4、给出下列说法:①0的平方根是0;②如果一个直角三角形的两直角边长分别为6cm .8cm ,那么它的斜边长为10cm ;③在数轴上,表示的点到原点的距离为,其中一定正确的为( )A .①②B .①③C .②③D .①②③5、如图所示,两条笔直的公路、相交于点O ,C 村的村民在公路的旁边建三个加工厂 A 、B 、D ,已知AB="BC=CD=DA=5" km ,村庄C 到公路的距离为4 km ,则C 村到公路的距离是( )A .3 kmB .4 kmC .5 kmD .6 km6、 某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学计数法表示(精确到千位)应为( )A .3.94×10 4B .3.9×10 4C .39.4×10 3D .4.0×10 47、36的算术平方根是 ( ) A .6 B .-6 C .±6 D .8、下列图形中,不是轴对称图形的是( )第II卷(非选择题)二、填空题(题型注释)9、若等腰三角形的两条边长分别为7cm和14cm,则它的周长为 cm.10、如图,在Rt△ABC中,∠BAC=90°,AB=2,M为边BC上的点,连接AM.如果将△ABM沿直线AM翻折后,点B恰好落在边AC的中点处,那么点M到AC的距离是.11、如图,在△ADB和△ADC中,下列条件:①BD=DC,AB=AC;②∠B=∠C,∠BAD=∠CAD;③∠B=∠C,BD=DC;④∠ADB=∠ADC,BD=DC.能得出△ADB≌△ADC的序号是.12、如图所示,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE是度.13、如图,在等腰三角形ABC 中,AB=AC ,DE 垂直平分AB ,已知∠ADE=40°,则∠DBC= 度.14、已知直角三角形的两边长分别为3和5,则第三边的长为 .15、已知正数的两个不同的平方根是和,则= .16、小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是-------------------- 。
推荐学习初中八年级资料数学上学期第二次联考试题(含解析) 苏科版

江苏省宿迁市泗阳县桃州中学、新阳中学2015-2016学年八年级数学上学期第二次联考试题一、选择题(每小题3分,共33分)1.下列实数中,无理数是( )A.B.C.D.2.函数y=﹣3x+4,y=,y=1+,y=x2+2中,一次函数的个数为( )A.1个B.2个C.3个D.4个3.下列各组数中不能作为直角三角形的三边长的是( )A.6,8,10 B.5,12,13 C.1,2,3 D.9,12,154.平面直角坐标系内一点P(﹣3,4)关于原点对称点的坐标是( )A.(3,4)B.(﹣3,﹣4)C.(3,﹣4)D.(4,﹣3)5.对于用四舍五入法得到的近似数4.609万,下列说法中正确的是( )A.它精确到千分位B.它精确到0.01C.它精确到万位 D.它精确到十位6.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A.25 B.7 C.5和7 D.25或77.已知正比例函数y=(2m﹣1)x的图象上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是( )A.m<2 B.m>0 C.D.8.到△ABC三个顶点距离相等的点是△ABC的( )A.三条角平分线的交点B.三条中线的交点C.三条高的交点 D.三条垂直平分线的交点9.如图,下列各点在阴影区域内的是( )A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)10.已知y=(m﹣1)x+m+3的图象经过一二四象限,则m的范围( )A.﹣3<m<1 B.m>1 C.m<﹣3 D.m>﹣311.若a2=25,|b|=3,则a+b的值是( )A.﹣8 B.±8C.±2D.±8或±2二、填空题(每小题3分,共21分).12.16的算术平方根是__________.13.若函数y=﹣2x m+2是正比例函数,则m的值是__________.14.在平面直角坐标系中,点C(3,5),先向右平移了5个单位,再向下平移了3个单位到达D点,则D点的坐标是__________.15.图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt△ABC中,若直角边AC=6,BC=6,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是__________.16.已知,a、b互为倒数,c、d互为相反数,求=__________.17.已知点P(2a﹣8,2﹣a)是第三象限的整点(横、纵坐标均为整数),则P点的坐标是__________.18.直角三角形一条直角边与斜边分别为4cm和5cm,则斜边上的高等于__________cm.三、解答题(19-25每题8分,26题10分,共66分)19.(1)求式子16x2=49中的x的值;(2)计算:+﹣|﹣7|20.如图,已知线段AB、CD相交于点O,AD、CB的延长线交于点E,OA=OC,EA=EC,请说明∠A=∠C.21.如图,在△ABC中,D是BC边上一点,AD=BD,AB=AC=CD,求∠BAC的度数.22.校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞多少米?23.如图,在平面直角坐标系中,点A的坐标是(1,1),如果将线段OA绕点O旋转135°,得线段OB,求点B的坐标?24.已知y+3与x+2成正比例,且当x=3时,y=7.(1)写出y与x之间的函数关系式;(2)当x=﹣1时,求y的值.25.一盘蚊香长105cm,点燃时每小时缩短10cm.(1)请写出点燃后蚊香的长y(cm)与蚊香燃烧时间t(h)之间的函数关系式;(2)该蚊香可点燃多长时间?26.如图,AC⊥BC,DC⊥EC,AC=BC,DC=EC,图中AE、BD有怎样的大小和位置关系?试证明你的结论.2015-2016学年江苏省宿迁市泗阳县桃州中学、新阳中学八年级(上)第二次联考数学试卷一、选择题(每小题3分,共33分)1.下列实数中,无理数是( )A.B.C.D.【考点】无理数.【分析】A、B、C、D分别根据无理数、有理数的定义即可判定选择项.【解答】解:A、=2,是有理数,故选项错误;B、,是无理数,故选项正确;C、是有理数,故选项错误;D、是有理数.故本选项错误故选B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.函数y=﹣3x+4,y=,y=1+,y=x2+2中,一次函数的个数为( )A.1个B.2个C.3个D.4个【考点】一次函数的定义.【分析】根据一次函数定义:形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数进行分析即可.【解答】解:函数y=﹣3x+4,y=是一次函数,共2个,故选:B.【点评】此题主要考查了一次函数定义,关键是掌握一次函数解析式y=kx+b的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.3.下列各组数中不能作为直角三角形的三边长的是( )A.6,8,10 B.5,12,13 C.1,2,3 D.9,12,15【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【解答】解:A、62+82=102,符合勾股定理的逆定理,故错误;B、52+122=132,符合勾股定理的逆定理,故错误;C、12+22≠32,不符合勾股定理的逆定理,故正确;D、92+122=152,符合勾股定理的逆定理,故错误.故选C.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.平面直角坐标系内一点P(﹣3,4)关于原点对称点的坐标是( )A.(3,4)B.(﹣3,﹣4)C.(3,﹣4)D.(4,﹣3)【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,可以直接得到答案.【解答】解:∵P(﹣3,4),∴关于原点对称点的坐标是(3,﹣4),故选:C.【点评】此题主要考查了原点对称的点的坐标特点,关键是掌握坐标的变化规律:两个点关于原点对称时,它们的坐标符号相反.5.对于用四舍五入法得到的近似数4.609万,下列说法中正确的是( )A.它精确到千分位B.它精确到0.01C.它精确到万位 D.它精确到十位【考点】近似数和有效数字.【分析】由于4.609万=46090,而9在十位上,所以4.609万精确到十位.【解答】解:4.609万精确到0.001万,即十位.故选D.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.6.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A.25 B.7 C.5和7 D.25或7【考点】勾股定理.【专题】分类讨论.【分析】分两种情况:①当3和4为直角边长时;②4为斜边长时;由勾股定理求出第三边长的平方即可.【解答】解:分两种情况:①当3和4为直角边长时,由勾股定理得:第三边长的平方,即斜边长的平方=32+42=25;②4为斜边长时,由勾股定理得:第三边长的平方=42﹣32=7;综上所述:第三边长的平方是25或7;故选:D.【点评】本题考查了勾股定理;熟练掌握勾股定理,并能进行推理计算是解决问题的关键,注意分类讨论,避免漏解.7.已知正比例函数y=(2m﹣1)x的图象上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是( )A.m<2 B.m>0 C.D.【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】根据一次函数的性质即可求出当x1<x2时,y1>y2时m的取值范围.【解答】解:∵正比例函数图象上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1>y2,∴此函数为减函数,故2m﹣1<0,m<.故选C.【点评】本题考查的是一次函数的性质.解答此题要熟知一次函数y=kx+b:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.8.到△ABC三个顶点距离相等的点是△ABC的( )A.三条角平分线的交点B.三条中线的交点C.三条高的交点 D.三条垂直平分线的交点【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等)可得到△ABC的三个顶点距离相等的点是三边垂直平分线的交点.【解答】解:△ABC的三个顶点距离相等的点是三边垂直平分线的交点.故选:D.【点评】本题考查的是线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等).9.如图,下列各点在阴影区域内的是( )A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【考点】点的坐标.【分析】应先判断出阴影区域在第一象限,进而判断在阴影区域内的点.【解答】解:观察图形可知:阴影区域在第一象限,A、(3,2)在第一象限,故正确;B、(﹣3,2)在第二象限,故错误;C、(3,﹣2)在第四象限,故错误;D、(﹣3,﹣2)在第三象限,故错误.故选A.【点评】解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.10.已知y=(m﹣1)x+m+3的图象经过一二四象限,则m的范围( )A.﹣3<m<1 B.m>1 C.m<﹣3 D.m>﹣3【考点】一次函数图象与系数的关系.【分析】由一次函数图象所在象限可得m﹣1<0,m+3>0,再组成不等式组,解不等式组可得m的范围.【解答】解:∵y=(m﹣1)x+m+3的图象经过一二四象限∴,解得:﹣3<m<1.故选:A.【点评】此题主要考查了一次函数图象与系数的关系,关键是掌握y=kx+b中,①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b<0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.11.若a2=25,|b|=3,则a+b的值是( )A.﹣8 B.±8C.±2D.±8或±2【考点】平方根;绝对值.【分析】根据平方根的定义可以求出a,再利用绝对值的意义可以求出b,最后即可求出a+b 的值.【解答】解:∵a2=25,|b|=3∴a=±5,b=±3,则a+b的值是±8或±2.故选D.【点评】本题主要考查了平方根的定义和绝对值的意义.如果x2=a(a≥0),则x是a的平方根.若a>0,则它有两个平方根并且互为相反数,我们把正的平方根叫a的算术平方根;任何数的绝对值都是非负数,正数的绝对值是它本身,负数的绝对值是它相反数.二、填空题(每小题3分,共21分).12.16的算术平方根是4.【考点】算术平方根.【专题】计算题.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,∴=4.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.13.若函数y=﹣2x m+2是正比例函数,则m的值是﹣1.【考点】正比例函数的定义.【专题】函数思想.【分析】根据正比例函数的定义,令m+2=1,解关于m的方程即可.【解答】解:根据题意,得m+2=1,解得,m=﹣1;故答案是:﹣1.【点评】本题考查了正比例函数的定义.正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.14.在平面直角坐标系中,点C(3,5),先向右平移了5个单位,再向下平移了3个单位到达D点,则D点的坐标是(8,2).【考点】坐标与图形变化-平移.【分析】根据向右平移横坐标加,向下平移纵坐标减列式计算即可得解.【解答】解:∵点C(3,5)先向右平移5个单位长度,再向下平移3个单位长度,∴3+5=8,5﹣3=2,∴点D的坐标为(8,2).故答案为:(8,2).【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.15.图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt△ABC中,若直角边AC=6,BC=6,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是24(+1).【考点】勾股定理.【专题】计算题.【分析】由题意可知∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.【解答】解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+62=180,解得:x=6,∴“数学风车”的周长是:(6+6)×4=24(+1).故答案为:24(+1).【点评】本题考查了勾股定理在实际情况中的应用,并注意利用题中隐含的已知条件来解答此类题.16.已知,a、b互为倒数,c、d互为相反数,求=0.【考点】实数的运算.【分析】根据a、b互为倒数,c、d互为相反数求出ab=1,c+d=0,然后代入求值即可.【解答】解:∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴=﹣++1=0.故答案为0.【点评】本题考查了实数的运算,熟悉倒数、相反数的定义是解题的关键.17.已知点P(2a﹣8,2﹣a)是第三象限的整点(横、纵坐标均为整数),则P点的坐标是(﹣2,﹣1).【考点】点的坐标;一元一次不等式组的整数解.【专题】新定义.【分析】根据点P位于第三象限,可列不等式组求出P的取值范围,再根据点P为整点,求出P点坐标.【解答】解:点P(2a﹣8,2﹣a)是第三象限的整点,那么它的横坐标小于0,即2a﹣8<0,纵坐标也小于0即2﹣a<0,解得2<a<4,所以a=3,把a=3代入2a﹣8=﹣2,2﹣a=﹣1,则P点的坐标是(﹣2,﹣1).【点评】本题主要考查点在第三象限时点的坐标的符号以及解不等式组的问题.18.直角三角形一条直角边与斜边分别为4cm和5cm,则斜边上的高等于cm.【考点】勾股定理.【分析】首先利用勾股定理得出AC的长,再利用三角形面积公式求出即可.【解答】解:设CD是直角三角形斜边上的高,∵直角三角形一条直角边与斜边分别为4cm和5cm,设BC=4cm,AB=5cm,∴AC=3cm,∴CD×AB=AC×BC,∴DC==(cm).故答案为:.【点评】此题主要考查了勾股定理以及三角形面积公式应用,熟练应用三角形面积公式是解题关键.三、解答题(19-25每题8分,26题10分,共66分)19.(1)求式子16x2=49中的x的值;(2)计算:+﹣|﹣7|【考点】实数的运算;平方根.【专题】计算题;实数.【分析】(1)方程整理后,利用平方根定义开方即可求出x的值;(2)原式利用算术平方根、立方根的定义,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)方程整理得:x2=,开方得:x=±;(2)原式=5+4﹣7=9﹣7=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,已知线段AB、CD相交于点O,AD、CB的延长线交于点E,OA=OC,EA=EC,请说明∠A=∠C.【考点】全等三角形的判定与性质.【专题】证明题.【分析】连接OE,由OA=OC,EA=EC,OE为公共边,可证得△AOE≌△COE,即可得∠A=∠C.【解答】证明:连接OE,∵OA=OC,EA=EC,OE为公共边,∴△AOE≌△COE(SSS),∴∠A=∠C.【点评】本题考查了全等三角形的判定及性质,正确作出辅助线是解题的关键,本题比较简单.21.如图,在△ABC中,D是BC边上一点,AD=BD,AB=AC=CD,求∠BAC的度数.【考点】等腰三角形的性质;三角形内角和定理.【专题】计算题.【分析】由AD=BD得∠BAD=∠DBA,由AB=AC=CD得∠CAD=∠CDA=2∠DBA,∠DBA=∠C,从而可推出∠BAC=3∠DBA,根据三角形的内角和定理即可求得∠DBA的度数,从而不难求得∠BAC 的度数.【解答】解:∵AD=BD∴设∠BAD=∠DBA=x°,∵AB=AC=CD∴∠CAD=∠CDA=∠BAD+∠DBA=2x°,∠DBA=∠C=x°,∴∠BAC=3∠DBA=3x°,∵∠ABC+∠BAC+∠C=180°∴5x=180°,∴∠DBA=36°∴∠BAC=3∠DBA=108°.【点评】此题主要考查学生对等腰三角形的性质及三角形内角和定理的综合运用能力;求得角之间的关系利用内角和求解是正确解答本题的关键.22.校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞多少米?【考点】解直角三角形的应用.【分析】如图所示,AB,CD为树,且AB=13,CD=8,BD为两树距离12米,过C作CE⊥AB于E,则CE=BD=12,AE=AB﹣CD=5,在直角三角形AEC中利用勾股定理即可求出AC.【解答】解:如图所示,AB,CD为树,且AB=13,CD=8,BD为两树距离12米,过C作CE⊥AB于E,则CE=BD=12,AE=AB﹣CD=5,在直角三角形AEC中,AC===13.答:小鸟至少要飞13米.【点评】本题关键是从实际问题中构建出数学模型,转化为数学知识,然后利用直角三角形的性质解题.23.如图,在平面直角坐标系中,点A的坐标是(1,1),如果将线段OA绕点O旋转135°,得线段OB,求点B的坐标?【考点】坐标与图形变化-旋转.【分析】由A的坐标和勾股定理求出OA,利用旋转性质求出点A旋转后的对应点的坐标即可;注意分两种情况讨论.【解答】解:∵A(1,1),由勾股定理得:OA==,分两种情况:①线段OA绕点O按逆时针方向旋转135°,则点B在x轴负半轴上,∴B(﹣,0);②线段OA绕点O按顺时针方向旋转135°,则点B在y轴负半轴上,∴B(0,﹣);综上所述:点B的坐标为(﹣,0)或(0,﹣).【点评】此题考查了坐标与图形变化﹣旋转、勾股定理,熟练掌握旋转的性质是解本题的关键.24.已知y+3与x+2成正比例,且当x=3时,y=7.(1)写出y与x之间的函数关系式;(2)当x=﹣1时,求y的值.【考点】待定系数法求一次函数解析式.【分析】(1)设y+3=k(x+2)(k≠0).把x、y的值代入该解析式,列出关于k的方程,通过解方程可以求得k的值;(2)把x=﹣1代入(1)中的函数关系式,可以求得相应的y值.【解答】解:(1)设y+3=k(x+2)(k≠0).∵当x=3时,y=7,∴7+3=k(3+2),解得,k=2.∴y+3=2x+4∴y与x之间的函数关系式是y=2x+1;(2)由(1)知,y=2x+1.所以,当x=﹣1时,y=2×(﹣1)+1=﹣1,即y=﹣1.【点评】本题考查了待定系数法求一次函数解析式.求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.25.一盘蚊香长105cm,点燃时每小时缩短10cm.(1)请写出点燃后蚊香的长y(cm)与蚊香燃烧时间t(h)之间的函数关系式;(2)该蚊香可点燃多长时间?【考点】根据实际问题列一次函数关系式;一次函数与一元一次方程.【专题】应用题.【分析】(1)根据蚊香的长等于蚊香的原长减去燃烧的长度用t表示出y即可;(2)当蚊香的长度y为0时,即蚊香燃尽的时候求出相应的时间即可.【解答】解:(1)∵蚊香的长等于蚊香的原长减去燃烧的长度,∴y=105﹣10t(0≤t≤10.5);(2)∵蚊香燃尽的时候蚊香的长度y=0,∴105﹣10t=0,解得:t=10.5,∴该蚊香可点燃10.5小时.【点评】本题考查了一次函数的应用及一次函数与一元一次方程的知识,解题时从实际问题中整理出函数模型并利用函数的知识解决实际问题.26.如图,AC⊥BC,DC⊥EC,AC=BC,DC=EC,图中AE、BD有怎样的大小和位置关系?试证明你的结论.【考点】全等三角形的判定与性质.【分析】根据SAS即可求得△DCB≌△ECA,求得∠B=∠A.因为∠AND=∠BNC,根据三角形的内角和定理就可求得∠A+∠AND=90°,从而证得BD⊥AE.【解答】解:AE=BD,AE⊥BD,如图,∵∠ACB=∠DCE=90°,∠ACD=∠ACD,∴∠DCB=∠ECA,在△DCB和△ECA中,,∴△DCB≌△ECA(SAS),∴∠A=∠B,BD=AE∵∠AND=∠BNC,∠B+∠BNC=90°∴∠A+∠AND=90°,∴BD⊥AE.【点评】本题考查了等腰直角三角形的性质,全等三角形的判定等知识点,利用全等三角形得出线段相等和角相等是解题的关键.。
2015-2016学年度上学期期末考试八年级数学试卷(含答案)

2015—2016学年度上学期期末考试八年级数学试题注意事项:1.本卷满分120分,考试时间120分钟。
2.本卷是试题卷,不能答题。
答题必须写在答题卡上。
解题中的辅助线和需标注的角、字母、符号等务必添在答题卡的图形上。
3.在答题卡上答题,选择题必须用2B铅笔填涂,非选择题必须用0.5毫米黑色签字笔或黑色墨水钢笔作答。
★祝考试顺利★一、选择题(每小题3分,共30分)1.下列图形中轴对称图形是()ABCD2,.已知三角形的三边长分别是3,8,x,若x的值为偶数,则x的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和10cm,则此三角形的周长是()A.15cmB. 20cmC. 25cmD.20cm或25cm6.如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD的是( )A.AC=ADB.BC=BDC.∠C=∠DD.∠ABC=∠ABD7.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE =2,则△BCE的面积等于( )A.10B.7C.5D.4第9题图 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠第10题 10.如上图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N 分别在OA 、OB 上,则△PMN 周长的最小值为__________2第18题图18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。
2015-2016年江苏省宿迁市泗阳县新阳中学、桃州中学八年级上学期期中数学试卷及参考答案

第1页(共21页) 2015-2016学年江苏省宿迁市泗阳县新阳中学、桃州中学八年级(上)期中数学试卷
一、选择题(3分×8) 1.(3分)下列命题中正确的是( ) A.全等三角形的高相等 B.全等三角形的中线相等 C.全等三角形的角平分线相等 D.全等三角形的对应角平分线相等 2.(3分)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是( )
A. B. C. D. 3.(3分)如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是( )
A.△ABD≌△CBD B.△ABC≌△ADC C.△AOB≌△COB D.△AOD≌△COD 4.(3分)如图中字母A所代表的正方形的面积为( ) 第2页(共21页)
A.12 B.5 C.10 D.25 5.(3分)Rt△ABC中,∠C=90°,AC=3,BC=4,则中线CD的长是( ) A.2 B.2.5 C.5 D.1.5 6.(3分)∠AOB的平分线上一点P到OA的距离为5,Q是OB上任一点,则( ) A.PQ>5 B.PQ≥5 C.PQ<5 D.PQ≤5 7.(3分)到△ABC的三个顶点距离相等的点是( ) A.三边中线的交点 B.三条角平分线的交点 C.三边中垂线的交点 D.三边上高的交点 8.(3分)如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是( )
A.①②③ B.②③④ C.①③⑤ D.①③④ 二.填空题(3分×10) 9.(3分)线段是轴对称图形,它有 条对称轴. 10.(3分)等腰△ABC中,若∠A=90°,则∠B= . 11.(3分)如果梯子的底端离楼基5米,那么13米长的梯子可到达楼的高度是 米. 12.(3分)如图,∠1=∠2,要使△ABE≌△ACE,若以“SAS”为依据,还缺条 第3页(共21页)
2015-2016学年新人教版八年级上册数学期末试卷及答案
2015-2016学年(上)期末试题 八年级数学科考试题 一、选择题:(每小题4分,共48分) 1、在下列四个标志中,是轴对称图形的是( )
2、下列计算正确的是( ). A.6428)2(aa B.43aaa C.aaa2 D.222)(baba 3、下列命题中,正确的是( ) A.三角形的一个外角大于任何一个内角 B.三角形的一条中线将三角形分成两个面积相等的三角形 C.两边和其中一边的对角分别相等的两个三角形全等 D.三角形的三条高都在三角形内部
4、化简xxxx2222的结果是( )
A.482xx B.482xx C.482xx D.48222xx 5、代数式 -32x,4xy,xyx2,21x,78,53ba 中是分式的有( ). A.2个 B.3个 C.4个 D.5个 6、如图,AB=CD,∠ABD=∠CDB,则图中全等三角形共有( )、 A.5对 B.4对 C.3对 D.2对 7、下列各式中,能用平方差公式计算的有( )
①)2)(2(baba;②)2)(2(baba;
③)2)(2(baba;④)2)(2(baba. A.1个 B.2个 C.3个 D.4个
8、将一副三角板按如图所示摆放,图中∠α的度数是( ) A.75° B.90° C.120° D. 105° 9、如图,在△ABC中,∠CAB=65º,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB, 则∠BAD的度数为 ( ) A.50° B.40° C.35° D.30° 10、若2294bkaba是完全平方式,则常数k的值为( ) A.6 B.12 C.6 D.12 11、三角形中,三个内角的比为1∶3∶6,它的三个外角的比为( ). A. 1∶3∶6 B. 6∶3∶1 C. 9∶7∶4 D. 4∶7∶9
12、若1x,0y,且满足3yyxxyxxy,,则xy的值为( ).
苏科版宿迁市八年级上学期期末数学试卷 (解析版)
苏科版宿迁市八年级上学期期末数学试卷 (解析版)一、选择题1.如图,在四边形ABCD 中,AB ∥DC ,AD=BC=5,DC=7,AB=13,点P 从点A 出发以3个单位/s 的速度沿AD→DC 向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.当四边形PQBC 为平行四边形时,运动时间为( )A .4sB .3sC .2sD .1s2.如图,数轴上的点P 表示的数可能是( )A .3B .21+C .71-D .51+3.下列四组线段a 、b 、c ,不能组成直角三角形的是( )A .4,5,3a b c ===B . 1.5,2, 2.5a b c ===C .5,12,13a b c ===D .1,2,3a b c ===4.在一次800米的长跑比赛中,甲、乙两人所跑的路程s (米)与各自所用时间t (秒)之间的函数图像分别为线段OA 和折线OBCD ,则下列说法不正确的是( )A .甲的速度保持不变B .乙的平均速度比甲的平均速度大C .在起跑后第180秒时,两人不相遇D .在起跑后第50秒时,乙在甲的前面5.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,下列条件不能判断△ABE ≌△ACD 的是( )A .∠B =∠C B .BE =CD C .AD =AE D .BD =CE6.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( ) A .(﹣4,1) B .(1,﹣4)C .(4,﹣1)D .(﹣1,4)7.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .8.已知直角三角形纸片的两条直角边长分别为m 和()n m n <,过锐角顶点把该纸片剪成两个三角形.若这两个三角形都是等腰三角形,则( ) A .22320m mn n -++= B .2220m mn n +-= C .22220m mn n -+=D .2230m mn n --=9.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( ) A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x--=2 10.若分式12xx -+的值为0,则x 的值为( ) A .1B .2-C .1-D .211.下列说法正确的是( ) A .(﹣3)2的平方根是3 B 16±4 C .1的平方根是1 D .4的算术平方根是212.如果等腰三角形两边长是5cm 和2cm ,那么它的周长是( )A .7cmB .9cmC .9cm 或12cmD .12cm 13.已知A (a ,b ),B (c ,d )是一次函数y =kx ﹣3x +2图象上的不同两个点,m =(a ﹣c )(b ﹣d ),则当m <0时,k 的取值范围是( ) A .k <3B .k >3C .k <2D .k >214.下列各式中,属于分式的是( )A .x ﹣1B .2mC .3b D .34(x+y ) 15.变量x 与y 之间的关系是y =2x+1,当y =5时,自变量x 的值是( ) A .13 B .5 C .2 D .3.5二、填空题16.已知直线l 1:y =x +a 与直线l 2:y =2x +b 交于点P (m ,4),则代数式a ﹣12b 的值为___.17.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4).将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C′的坐标是_____.18.如果点P (m+1,m+3)在y 轴上,则m=_____.19.如果等腰三角形的一个外角是80°,那么它的底角的度数为__________. 20.如图,△ABC 中,5BC =,AB 边的垂直平分线分别交AB 、BC 于点D 、E ,AC 边的垂直平分线分别交AC 、BC 于点F 、G ,则△AEG 周长为____.21.若代数式321xx -+有意义,则x 的取值范围是______________. 22.等腰三角形的顶角为76°,则底角等于__________.23.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB 绕点B 顺时针旋转90°至CB ,那么点C 的坐标是 .24.如图,直线1l x ⊥轴于点(1,0),直线2l x ⊥轴于点(2,0),直线3l x ⊥轴于点(3,0),…直线n l x ⊥轴于点(,0)n .函数y x =的图像与直线123,,n l l l l 分别变于点123,,,n A A A A ;函数3y x =的图像与直线123,,,n l l l l 分别交于点123,,,n B B B B ,如果11OA B ∆的面积记的作1S ,四边形1221A A B B 的面积记作2S ,四边形2332A A B B 的面积记作3S ,…四边形n 1n n n 1A A B B --的面积记作n S ,那么2020S =________.25.已知A (x 1,y 1)、B (x 2,y 2)是一次函数y =(2﹣m )x +3图象上两点,且(x 1﹣x 2)(y 1﹣y 2)<0,则m 的取值范围为_____.三、解答题26.小明用30元买水笔,小红用45元买圆珠笔,已知每支圆珠笔比水笔贵2元,那么小明和小红能买到相同数量的笔吗? 27.(1)计算:()238116-+--; (2)求()3121x -+=中x 的值.28.某学校是乒乓球体育传统项目校,为进一步推动该项目的发展.学校准备到体育用品店购买甲、乙两种型号乒乓球若干个,已知3个甲种乒乓球和5个乙种乒乓球共需50元,2个甲种乒乓球和3个乙种乒乓球共需31元.(1)求1个甲种乒乓球和1个乙种乒乓球的售价各是多少元?(2)学校准备购买这两种型号的乒乓球共200个,要求甲种乒乓球的数量不超过乙种乒乓球的数量的3倍,请设计出最省钱的购买方案,并说明理由.29.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400 m ,先到终点的人在终点休息等候对方.已知甲先出发4 min ,在整个步行过程中,甲、乙两人的距离y m 与甲出发的时间t min 之间的函数关系如图所示.(1)甲步行的速度为 m/min ; (2)解释点P (16,0)的实际意义; (3)乙走完全程用了多少分钟?(4)乙到达终点时,甲离终点还有多少米?30.如图,ABC ∆为等边三角形,D 为ABC ∆内一点,且ABD DAC ∠=∠,过点C 作AD 的平行线,交BD 的延长线于点E ,BD EC =,连接AE . (1)求证:ABD ACE ∆∆≌; (2)求证:ADE ∆为等边三角形.31.阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:()1一个直角三角形的两条直角边分别为512、,那么这个直角三角形斜边长为____; ()2如图①,AD BC ⊥于,,,10,6D AD BD AC BE AC DC ====,求BD 的长度; ()3如图②,点A 在数轴上表示的数是____请用类似的方法在图2数轴上画出表示数10B 点(保留痕迹).【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】解:设运动时间为t 秒,则CP=12-3t ,BQ=t , 根据题意得到12-3t=t ,解得:t=3, 故选B . 【点睛】本题考查一元一次方程及平行四边形的判定,难度不大.2.B解析:B 【解析】 【分析】先换算出每项的值,全部保留三位小数,然后观察数轴上P 点的位置,逐项判断即可开. 【详解】≈1.732≈1.414 2.236≈2.646,所以A 项≈1.732,B 项≈2.414,C 项≈1.646,D 项≈3.236 观察数轴上P 点的位置,B 项正确. 故选B. 【点睛】本题主要考查实数与数轴上的点的对应关系,掌握实数与数轴之间一一对应的关系,估算出每个二次根式的值是解题的关键.3.D解析:D 【解析】 【分析】根据勾股定理逆定理,即若三角形中两边到的平方和等于第三边的平方,那么这个三角形是直角三角形,对每项进行计算判断即可. 【详解】解:A.2222223491625,525,a b c +=+==+=,B.222221.52 2.254 6.25,2.5 6.25,a b c +=+==+=,C.22222251225144169,13169,a b c +=+==+=,222222123,39,.1D a b c +=+==+≠.【点睛】本题考查了勾股定理的逆定理,解决本题的关键是熟练掌握勾股定理逆定理,正确计算出每项的结果.4.B解析:B 【解析】 【分析】A 、由于线段OA 表示甲所跑的路程S (米)与所用时间t (秒)之间的函数图象,由此可以确定甲的速度是没有变化的;B 、甲比乙先到,由此可以确定甲的平均速度比乙的平均速度快;C 、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D 、根据图象知道起跑后50秒时OB在OA的上面,由此可以确定乙是否在甲的前面.【详解】解:A、∵线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴甲的速度是没有变化的,故不选A;B、∵甲比乙先到,∴乙的平均速度比甲的平均速度慢,故选B;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故不选C;D、∵起跑后50秒时OB在OA的上面,∴乙是在甲的前面,故不选D.故选:B.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.5.B解析:B【解析】【分析】根据全等三角形的性质和判定即可求解.【详解】解:选项A,∠B=∠C 利用 ASA 即可说明△ABE≌△ACD ,说法正确,故此选项错误;选项B,BE=CD 不能说明△ABE≌△ACD ,说法错误,故此选项正确;选项C,AD=AE 利用 SAS 即可说明△ABE≌△ACD ,说法正确,故此选项错误;选项D,BD=CE 利用 SAS 即可说明△ABE≌△ACD ,说法正确,故此选项错误;故选B.【点睛】本题考查全等三角形的性质和判定,熟悉掌握判定方法是解题关键.6.A解析:A【解析】【分析】根据一次函数与二元一次方程组的关系进行解答即可.【详解】解:∵二元一次方程组522x yx y-=-⎧⎨+=-⎩的解为41xy=-⎧⎨=⎩∴在同一平面直角坐标系中,两函数y=x+5与y=﹣12x﹣1的图像的交点坐标为:(-4,1)故选:A.【点睛】本题考查的是一次函数与二元一次方程组的关系,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.7.D解析:D【解析】试题分析:A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.考点:轴对称图形.8.B解析:B【解析】【分析】作图,根据等腰三角形的性质和勾股定理可得2220m mn n+-=,整理即可求解【详解】解:如图,222m m n m,22222m n mn m,2220m mn n+-=.故选:B.【点睛】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.9.A解析:A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.10.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A.【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.11.D解析:D【解析】【分析】根据平方根和算术平方根的定义解答即可.【详解】A、(﹣3)2的平方根是±3,故该项错误;B4,故该项错误;C、1的平方根是±1,故该项错误;D、4的算术平方根是2,故该项正确.故选D.【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定义.12.D解析:D【解析】【分析】因为题中没有说明已知两边哪个是底,哪个是腰,所以要分情况进行讨论.【详解】解:当三边是2cm,2cm,5cm时,不符合三角形的三边关系;当三角形的三边是5cm,5cm,2cm时,符合三角形的三边关系,此时周长是5+5+2=12cm.故选:D.【点睛】考查了等腰三角形的性质,此类题注意分情况讨论,还要看是否符合三角形的三边关系.13.A解析:A【解析】【分析】将点A,点B坐标代入解析式可求k−3=b da c--,即可求解.【详解】∵A(a,b),B(c,d)是一次函数y=kx﹣3x+2图象上的不同两个点,∴b=ka﹣3a+2,d=kc﹣3c+2,且a≠c,∴k﹣3=b da c --.∵m=(a﹣c)(b﹣d)<0,∴k<3.故选:A.【点睛】本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,求出k−3=b d a c --是关键,是一道基础题.14.B解析:B【解析】【分析】利用分式的定义判断即可.分式的分母中必须含有字母,分子分母均为整式.【详解】解:2m是分式,故选:B.【点睛】此题考查了分式的定义,熟练掌握分式的定义是解本题的关键.15.C解析:C【解析】【分析】直接把y=5代入y=2x+1,解方程即可.【详解】解:当y=5时,5=2x+1,解得:x=2,故选:C.【点睛】此题主要考查了函数值,关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.二、填空题16.【解析】【分析】将点P代入y=x+a和y=2x+b中,再进行适当变形可得代数式a﹣b的值. 【详解】解:把点P(m,4)分别代入y=x+a和y=2x+b得:4=m+a①,4=2m+b,∴2解析:【解析】【分析】将点P代入y=x+a和y=2x+b中,再进行适当变形可得代数式a﹣12b的值.【详解】解:把点P(m,4)分别代入y=x+a和y=2x+b得:4=m+a①,4=2m+b,∴2=m+12b②,∴①﹣②得,a﹣12b=2,故答案为:2.【点睛】本题考查了一次函数,一次函数图像上的点适合该函数的解析式,熟练掌握函数图像上的点与函数解析式的关系是解题的关键.17.(3,1)【解析】【分析】关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛解析:(3,1)【解析】【分析】关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛】本题属于基础题,只需学生熟练掌握关于y轴对称的点的坐标的特征,即可完成.18.﹣1.【解析】∵点P(m+1,m+3)在y轴上,∴m+1=0,∴m=-1.故答案为:-1.解析:﹣1.【解析】∵点P(m+1,m+3)在y轴上,∴m+1=0,∴m=-1.故答案为:-1.19.40°【解析】【分析】根据三角形的外角性质和等腰三角形的性质求解.【详解】解:∵等腰三角形的一个外角为80°,∴相邻角为180°-80°=100°,∵三角形的底角不能为钝角,∴100解析:40°【解析】【分析】根据三角形的外角性质和等腰三角形的性质求解.【详解】解:∵等腰三角形的一个外角为80°,∴相邻角为180°-80°=100°,∵三角形的底角不能为钝角,∴100°角为顶角,∴底角为:(180°-100°)÷2=40°.故答案为40°.【点睛】本题考查等腰三角形的性质,解题的关键是掌握三角形的内角和定理以及等腰三角形的性质.20.【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG的周长为AE解析:【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG的周长为AE+AG+EG=BE+CG+EG=BC=5.故答案是:5.【点睛】此题主要考查线段的垂直平分线的性质,掌握性质是解题关键.线段的垂直平分线上的点到线段的两个端点的距离相等.21.【解析】【分析】代数式有意义,则它的分母2x+1≠0,由此求得x的取值范围.【详解】∵代数式有意义,∴2x+1≠0,解得x≠.故答案为:x≠.【点睛】本题考查了分式有意义的条件.解析:12 x≠-【解析】【分析】代数式321xx-+有意义,则它的分母2x+1≠0,由此求得x的取值范围.【详解】∵代数式321xx-+有意义,∴2x+1≠0,解得x≠12 -.故答案为:x≠12 -.本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.22.52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可. 【详解】解:∵等腰三角形的顶角为76°,∴底角为:,故答案为:52°.【点睛】本题考查了等腰三角形性解析:52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:11=104=52 22⨯︒︒⨯︒︒(180-76),故答案为:52°.【点睛】本题考查了等腰三角形性质,以及三角形内角和定理,解题的关键是掌握等腰三角形等边对等角计算角度.23..【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,解析:(21)-,.【解析】【分析】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,∠BDC=∠AOB, BC=AB,∴△ABO≌△BCD(AAS),∴CD=OB,BD=AO,∵点A(1,0),B(0,2),∴CD=2,BD=1,∴OD=OB-BD=1,又∵点C在第二象限,∴点C的坐标是(-2,1).24.4039【解析】【分析】根据直线解析式求出An−1Bn−1,AnBn的值,再根据直线ln−1与直线ln互相平行并判断出四边形An−1AnBn Bn−1是梯形,然后根据梯形的面积公式求出Sn的表解析:4039【解析】【分析】根据直线解析式求出A n−1B n−1,A n B n的值,再根据直线l n−1与直线l n互相平行并判断出四边形A n−1A n B n B n−1是梯形,然后根据梯形的面积公式求出S n的表达式,然后把n=2020代入表达式进行计算即可得解.【详解】根据题意,A n−1B n−1=3(n−1)−(n−1)=3n−3−n+1=2n−2,A nB n=3n−n=2n,∵直线l n−1⊥x轴于点(n−1,0),直线l n⊥x轴于点(n,0),∴A n−1B n−1∥A n B n,且l n−1与l n间的距离为1,∴四边形A n−1A n B n B n−1是梯形,S n=12(2n−2+2n)×1=12(4n−2)=2n-1,当n=2020时,S2020=2×2020-1=4039故答案为:4039.【点睛】本题是对一次函数的综合考查,读懂题意,根据直线解析式求出A n−1B n−1,A n B n 的值是解题的关键,要注意脚码的对应关系,这也是本题最容易出错的地方.25.m >2.【解析】【分析】根据(x1﹣x2)(y1﹣y2)<0,得出y 随x 的增大而减小,再根据2﹣m <0,求出其取值范围即可.【详解】(x1﹣x2)(y1﹣y2)<0,即:或,也就是,y解析:m >2.【解析】【分析】根据(x 1﹣x 2)(y 1﹣y 2)<0,得出y 随x 的增大而减小,再根据2﹣m <0,求出其取值范围即可.【详解】(x 1﹣x 2)(y 1﹣y 2)<0,即:121200x x y y >⎧⎨<⎩﹣﹣或121200x x y y <⎧⎨>⎩﹣﹣,也就是,y 随x 的增大而减小,因此,2﹣m <0,解得:m >2,故答案为:m >2.【点睛】本题主要考查了一次函数的图象和性质,掌握一次函数的增减性以及适当的转化是解决问题的关键.三、解答题26.小明和小红不能买到相同数量的笔【解析】【分析】首先设每支水笔x 元,则每支圆珠笔(x+2)元,根据题意可得等量关系:30元买水笔的数量=用45元买圆珠笔的数量,求出每支水笔的价钱,再算出购买的水笔的数量,数量是整数就可以,不是整数就不合题意.【详解】设每支水笔x 元,则每支圆珠笔(2)x +元. 假设能买到相同数量的笔,则30452x x =+. 解这个方程,得4x =.经检验,4x =是原方程的解.但是,3047.5÷=,7.5不是整数,不符合题意,答:小明和小红不能买到相同数量的笔.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出分式方程,注意要检验.27.(1)-5;(2)x=0【解析】【分析】(1)先化简立方根,乘方,二次根式,然后进行有理数的加减运算;(2)利用立方根的概念解方程.【详解】解:(1)原式214=-+- 5=-.(2)()3112x -=- ()311x -=- 11x -=-0x = 【点睛】本题考查立方根及算术平方根的求法,掌握概念正确计算是本题的解题关键.28.(1)1个甲种乒乓球的售价是5元,乙种售价是7元;(2)当购买甲种乒乓球150只,乙种乒乓球50只时最省钱.【解析】【分析】(1)设1个甲种乒乓球的售价是x 元,1个乙种乒乓球的售价是y 元,根据题意列出二元一次方程组,解方程组即可;(2)设购买甲种乒乓球a 只,则购买乙种乒乓球()200a -只,费用为w 元,根据题意列出费用关于a 的一次函数,根据一次函数的性质解答即可.【详解】(1)设1个甲种乒乓球的售价是x 元,1个乙种乒乓球的售价是y 元,35502331x y x y +=⎧⎨+=⎩,解得,57x y =⎧⎨=⎩, 答:1个甲种乒乓球的售价是5元,乙种售价是7元;(2)设购买甲种乒乓球a 只,则购买乙种乒乓球()200a -只,费用为w 元,()5720021400w a a a =+-=-+,∵()3200a a -,∴150a ≤,∴当150a =时,w 取得最小值,此时1100w =,20050a -=,答:当购买甲种乒乓球150只,乙种乒乓球50只时最省钱.【点睛】本题考查的是列二元一次方程组、一元一次不等式解实际问题/一次函数的性质等知识,解题的关键是学会利用一次函数的性质解决最值问题.29.(1)甲步行的速度为60 m/min ;(2)当甲出发16 min 时,甲乙两人距离0 m (或乙出发12 min 时,乙追上了甲);(3)乙步行的速度为80 m/min ;乙走完全程用的时间为30min ;(4)乙到达终点时,甲离终点距离是360米.【解析】【分析】(1)根据甲先出发4 min ,结合图象可知4 min 他们的距离为240,即可求甲的速度; (2)结合函数图象可知,当t=16分钟时,y 为0,据此可答;(3)根据t=16分钟时,甲乙所走的路程相等求得乙步行的速度,再用总路程÷乙步行的速度即可得解;(4)甲的速度×(乙走完全程的时间+4)=乙到达终点时甲的路程.再用总路程-甲的路程即可.【详解】(1)甲步行的速度为:240÷4=60 m/min ;(2)当甲出发16 min 时,甲乙两人距离0 m (或乙出发12 min 时,乙追上了甲); (3)乙步行的速度为:16×60÷12=80 m/min ;乙走完全程用的时间为:2400÷80=30min ;(4)乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.30.(1)见解析(2)见解析【解析】【分析】(1)先证明∠ACE=∠CAD=∠ABD ,再根据SAS 证明ABD ACE ∆∆≌即可;(2)由ADB AEC ∆∆≌可得AD AE =,BAD CAE ∠=∠再证明60DAE ︒∠=即可.【详解】(1)ABC ∆为等边三角形,,60AB AC BAC ︒∴=∠=//AD ECDAC ACE ∴∠=∠又ABD DAC ∠=∠ABD ACE ∴∠=∠ 在BAD ∆与CAE ∆中,AB AC ABD ACE BD EC =⎧⎪∠=∠⎨⎪=⎩()ADB AEC SAS ∴∆∆≌(2)()ADB AEC SAS ∆∆≌,AD AE BAD CAE ∴=∠=∠CAE DAC BAD DAC ∴∠+∠=∠+∠60DAE BAC ︒∴∠=∠=ADE ∴∆为等边三角形.【点睛】此题主要考查了全等三角形的判定与性质以及等边三角形的判定,熟练掌握定理与性质是解此题的关键.31.()113;()28BD =;()3.数轴上画出表示数的B 点.见解析.【解析】【分析】(1) 根据勾股定理计算;(2) 根据勾股定理求出AD ,根据题意求出BD;(3) 根据勾股定理计算即可.【详解】 ()1∵这一个直角三角形的两条直角边分别为512、故答案为:13()2∵AD BC ⊥∴90ADC BDE ∠=∠=︒在ADC 中,90,10,6ADC AC DC ∠=︒==,则由勾股定理得8BD =,在t R ADC 和t R BDE △中AD BD AC BE =⎧⎨=⎩∴t t R ADC R BDE ≌∴8BD AD ==(3)点A 在数轴上表示的数是:22-215+=- ,由勾股定理得,221+3=10OC =以O 为圆心、OC 为半径作弧交x 轴于B ,则点B 即为所求,故答案为:5点为所求.【点睛】本题考查的是勾股定理与数轴上的点的应用,掌握任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方是解题的关键.。
江苏省宿迁市八年级上学期数学期末考试试卷
江苏省宿迁市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七下·台安期中) 下列实数中,属于无理数的是()A . ﹣2B . 0C .D . 52. (2分) (2020八上·德城期末) 在,,,,,中分式的个数有()A . 2个B . 3个C . 4个D . 5个3. (2分)如图,数轴上的点表示的数可能是下列各数中的()A . 的算术平方根B . 的负的平方根C . 的算术平方根D . 的立方根4. (2分)使式子有意义的x取值范围是()A . x>﹣1B . x≥﹣1C . x<﹣1D . x≤﹣15. (2分) (2018八上·开平月考) 如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,若∠BFC=118°,则∠A=()A . 51°B . 52°C . 56°D . 58°6. (2分)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克.将0.000000 076用科学记数法表示为()A . 7.6×10-8B . 0.76×10-9C . 7.6×108D . 0.76×1097. (2分)在长度分别为3cm,4cm,5cm 7cm的四条线段中,随机取出三条,能构成三角形的概率是()A .B .C .D . 18. (2分)不等式1﹣2x<5的负整数解集是()A . -1B . -2C . ﹣1,﹣2D . ﹣1,﹣2,09. (2分)(2017·贵港模拟) 如图,在菱形ABCD中,AB=6,∠DAB=60°,点E在BC边上,且CE=2,AE与BD交于点F,连接CF,则下列结论不正确的是()A . △ABF≌△CBFB . △ADF∽△EBFC . tan∠EAB=D . S△EAB=610. (2分)下列命题:①方程x2=x的解是x=0;②连接矩形各边中点的四边形是菱形;③如果将抛物线y=2x2向右平移1个单位,那么所得新抛物线的表达式y=(x﹣1)2;④若反比例函数与y=﹣图象上有两点(, y1),(1,y2),则y1<y2 ,其中真命题有()A . 1个B . 2个C . 3个D . 4个11. (2分) (2019八上·大庆期末) 小明上月在某文具店正好用 20 元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A . - =1B . - =1C . - =1D . - =112. (2分)代数式x2+2x+7的值是6,则代数式4x2+8x-5的值是()A . 9B . -9C . 18D . -18二、填空题 (共6题;共6分)13. (1分) (2017七下·简阳期中) 已知,,则________”14. (1分)(2017·哈尔滨模拟) 计算的结果是________.15. (1分) (2015八上·丰都期末) 若分式 =0,则x=________.16. (1分) (2017七下·萍乡期末) 如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC=________°.17. (1分) (2017九上·双城开学考) 如图,正方形ABCD的边长为2,点E在AB边上.四边形EFGB也为正方形,则△AFC的面积S为________.18. (1分)(2017·桂林) 如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有________个点.三、解答题 (共8题;共61分)19. (10分)(2015·江东模拟) 计算:=________.20. (5分)(2017·临高模拟) 解不等式组把解集在数轴上表示,并求不等式组的整数解.21. (5分)(2017·达州模拟) 解分式方程:.22. (5分)(2016·娄底) 先化简,再求值:(1﹣)• ,其中x是从1,2,3中选取的一个合适的数.23. (5分) (2016·兰州) 如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)24. (10分) (2017九上·武汉期中) 如图,已知锐角△ABC内接于⊙O,连接AO并延长交BC于点D.(1)求证:∠ACB+∠BAD=90°;(2)过点D作DE⊥AB于E,若∠ADC=2∠ACB.求证:AC=2DE.25. (10分) (2016七下·随县期末) 同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?26. (11分) (2016八上·孝义期末) 情境观察:(1)如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F.①写出图1中所有的全等三角形________;②线段AF与线段CE的数量关系是________.(2)问题探究:如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E.求证:AE=2CD.(3)拓展延伸:如图3,△ABC中,∠BAC=45°,AB=BC,点D在AC上,∠EDC= ∠BAC,DE⊥CE,垂足为E,DE与BC交于点F.求证:DF=2CE.要求:请你写出辅助线的作法,并在图3中画出辅助线,不需要证明.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共61分)19-1、20-1、21-1、22-1、23-1、24-1、24-2、25-1、25-2、26-1、26-2、26-3、第11 页共11 页。
江苏省泗阳县实验初中2015-2016学年八年级上学期全能竞赛数学试题
y x 0 y x 0 y x 0 y x 0 八年级第一学期数学竞赛试卷 一、选择题(每题3分,共计24分) 1、在实数:..12.4,,2,-722中,无理数的个数有( ) A.1个 B.2个 C.3个 D.4个 2、下列说法中正确的是 ( ) A.9的立方根是3 B.算术平方根等于它本身的数一定是1 C.-2是4的平方根 D.16的算术平方根是4 3、在直角坐标系中,点A(2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为( ). A (4,3) B (-2,-1) C (4,-1) D (-2,3) 4、在⊿ABC和⊿A′B′C′中,AB=A′B′,∠A=∠A′,若证⊿ABC≌⊿A′B′C′还要从下列条件中补选一个,错误的选法是( ) A. ∠B=∠B′ B. ∠C=∠C′ C. BC=B′C′ D. AC=A′C′ 5、若A(-3,2)关于原点对称的点是B,B关于轴对称的点是C,则点C的坐标是( ) A.(3,2) B.(-3,2) C.(3,-2) D.(-2,3) 6、一次函数3xy上有两点A11,yx,B22,yx,若21yy,则21xx与的关系是( ) A . 1x>2x B 1x<2x C. 1x=2x D.不能确定 7、在同一坐标系中,函数ykx与2xyk的图象大致是( ) A B C D 8、在平面直角坐标系x O y中,已知点A(0,1),B(1,2),点P在x轴上运动,当点P到A、B两点距离之差..的绝对值最大时,点P的坐标是( )
A (-1 , 0 ) B (-2 , 0 ) C ( 0 ,0 ) D ( 1 ,0 ) 二、填空题(每题3分,共计24分) 9、y=x-3中自变量x的取值范围是___________. 10、由四舍五入法得到的近似数2.10万,它是精确到 位. 11、直线y=3x−3沿y轴向上平移5个单位后的直线函数表达式为 . 12、若一个正数的两个不同的平方根为2m − 6与m + 3,则这个正数为 .