课题:1.5.1有理数的乘方(1)

合集下载

有理数的乘方说课稿一等奖

有理数的乘方说课稿一等奖

共1课时1.5 有理数的乘方初中数学人教2011课标版1教学目标1.知识目标:理解科学记数法的意义,并学会用科学记数法表示比较大的数.2.能力目标:积累数学活动经验,培养学生自主学习的能力.3.情感目标:感受科学记数法的作用,鼓励学生运用数学知识解决现实生活中的一些困难.2学情分析在学习科学计数法之前,学生对较大数已有了初步的认识,能进行有理数乘方的运算。

科学计数法这部分内容是之前乘方学习的提高,科学计数法的概念学生应该比较容易接受,通过与日常生活密切相关的练习题,让学生对有理数的相关知识掌握得更加熟练,并使他们感受到数学的应用价值。

3重点难点重点:进一步感受大数,用科学记数法表示大数.难点:正确地用科学记数法表示大数.4教学过程 4.1科学计数法评论(0) 教学目标1.知识目标:理解科学记数法的意义,并学会用科学记数法表示比较大的数.2.能力目标:积累数学活动经验,培养学生自主学习的能力.3.情感目标:感受科学记数法的作用,鼓励学生运用数学知识解决现实生活中的一些困难.评论(0) 学时重点进一步感受大数,用科学记数法表示大数.评论(0) 学时难点正确地用科学计数法表示大数教学活动活动1【导入】一、情景引入1.展示生活中大数的实例,通过读写这些大数,使学生感受到困难.2.问题:有没有一种好的、比较科学的的方法来表示这些大数,使它们易读易写呢?3.板书课题.活动2【活动】回顾复习10的幂指数与原数1后面0的个数之间的关系.100=1021 000=1031 000 000=10610 000 000 000=1010……10……00=________n个0思考:如果1个1后面有n个0,那么这个数可以简单地记作什么?小结:等号的右边用10的n次幂的表示简洁明了,不易出错.等号的左边有许多0,很容易写错,读起来也很困难,这就使我们想到:可不可以用10的n次幂来表示较大的数呢?活动3【讲授】探究新知1.照样子,把下列各数表示成整数数位只有一位的数乘以10n的形式.例:143 000 000=1.43×100 000 000=1.43×1081000=1×______=__________91 000 000=9.1×_______=__________427=__________=__________学生观察以上结果的特征,得出科学记数法的意义。

人教版七年级数学上册教案 1.5 有理数的乘方(3课时)

人教版七年级数学上册教案 1.5 有理数的乘方(3课时)

1.5有理数的乘方1.5.1乘方(第1课时)一、基本目标【知识与技能】1.理解有理数乘方的意义,能正确区分幂的底数与指数.2.能进行有理数的乘方运算,并能进行有理数的混合运算.【情感态度与价值观】培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.二、重难点目标【教学重点】乘方的意义,利用乘方运算法则进行有理数乘方运算.【教学难点】理解一个负数的奇次幂和偶次幂的符号,有理数混合运算的顺序.环节1自学提纲,生成问题【5 min阅读】阅读教材P41~P44的内容,完成下面练习.【3 min反馈】(一)乘方1.求n个相同因数的积的运算叫乘方,乘方的结果叫做幂.2.在式子a n(n为正整数)中,a叫底数,n叫指数,a n叫幂.读作a的n次方或a的n 次幂.3.在94中,底数是9,指数是4,读作9的4次方,或9的4次幂.一个数可以看作这个数本身的一次方,例如5就是5的一次方.指数1通常省略不写.4.负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.5.计算:(1)(-3)4;(2)-34;(3)⎝⎛⎭⎫-233; (5)(-1)2018. 解:(1)原式=81. (2)原式=-81. (3)原式=-827. (4)原式=1. (二)有理数的混合运算做有理数的混合运算时,先乘方,再乘除,最后加减;同级运算,从左到右进行;如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】计算:(1)(-2)100+(-2)101;(2)(-0.25)2017×42018.【互动探索】(引发学生思考)观察算式的特点,利用乘方的意义进行简算.【解答】(1)原式=(-2)100+(-2)×(-2)100=(1-2)×(-2)100=(-1)×2100=-2100.(2)原式=(-0.25)2017×4×42018=(-0.25×4)2017×4=(-1)2017×4=(-1)×4=-4.【互动总结】(学生总结,老师点评)灵活运用乘方的定义的逆应用,把底数相同的幂转化成指数也相同后,再逆应用运算律解答问题.【例2】计算:(1)-14+|3-5|-16÷(-2)×12; (2)6×⎝⎛⎭⎫13-12-32÷(-12). 【互动探索】(引发学生思考)利用有理数的混合运算顺序进行计算.【解答】(1)原式=-1+2-16×⎝⎛⎭⎫-12×12=-1+2+4=5.(2)原式=6×13-6×12-9×⎝⎛⎭⎫-112 =2-3+34=-14. 【互动总结】(学生总结,老师点评)计算有理数的混合运算,正确掌握运算法则是解题关键.活动2 巩固练习(学生独学)1.一根长1 m 的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为( C )A.⎝⎛⎭⎫123 mB .⎝⎛⎭⎫125 m C.⎝⎛⎭⎫126 mD .⎝⎛⎭⎫1212 m2.计算:(1)⎝⎛⎭⎫-172; (2)-1.52;(3)8+(-3)2×(-2);(4)-14-16×[2-(-3)2]; (5)-33+(-1)2018÷16+(-5)2; (6)(-0.125)2016×82018.解:(1)原式=149. (2)原式=-2.25. (3)原式=-10. (4)原式=16. (5)原式=4. (6)原式=64.活动3 拓展延伸(学生对学)【例3】阅读下列材料:求1+2+22+23+...+22017的值,可令S =1+2+22+23+...+22017,则2S =2+22+23+24+ (22018)所以2S -S =22018-1,故S =22018-1.仿照以上推理,求1+5+52+53+…+52017的值.【互动探索】根据题目提供的信息,设S =1+5+52+53+…+52017,用5S -S 整理即可得解.【解答】设S =1+5+52+53+ (52017)则5S =5+52+53+54+ (52018)所以5S -S =52018-1,故S =52018-14. 【互动总结】(学生总结,老师点评)本题考查了乘方,读懂题目提供的信息,是解题的关键,注意整体思想的利用.环节3 课堂小结,当堂达标(学生总结,老师点评)有理数的乘方⎩⎪⎨⎪⎧ 乘方的定义负数的奇、偶次幂有理数的混合运算请完成本课时对应练习!1.5.2 科学记数法(第2课时)一、基本目标【知识与技能】理解科学记数法的意义和特征,能够用科学记数法表示大数.【过程与方法】通过收集一些大数,让学生感受大数的普遍存在以及数学与现实的联系,同时增强活动性和趣味性.【情感态度与价值观】正确使用科学记数法表示数,表现出一丝不苟的精神.二、重难点目标【教学重点】会用科学记数法表示大数.【教学难点】掌握10n的特征以及科学记数法中n与数位的关系.环节1自学提纲,生成问题【5 min阅读】阅读教材P44~P45的内容,完成下面练习.【3 min反馈】1.把下面各数写成幂的形式.(1)100=102;(2)1000=103;(3)10000=104;(4)100000=105.2.一个大于10的数都可以表示成a×10n的形式,其中a的取值范围是大于等于1且小于10的数,n是正整数,用这种方法表示数叫做科学记数法.3.用科学记数法表示数时,整数的位数与10的指数的关系是整数位数-1=指数.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】用科学记数法表示下列各数:(1)24 800 000;(2)-5 764.3;(3)361万.【互动探索】(引发学生思考)科学记数法中的n怎样确定?【解答】(1)24 800 000=2.48×107.(2)-5 764.3=-5.7643×103.(3)361万=3 610 000=3.61×106.【互动总结】(学生总结,老师点评)对于一个绝对值大于10的有理数,用科学记数法表示时,a是原数的小数点向左移动后的结果,n是比原数整数位数少1的正整数.【例2】将下列用科学记数法表示的数还原成原数.(1)1.2×105;(2)2.3×107;(3)3.6×108;(4)-4.2×106.【互动探索】(引发学生思考)将用科学记数法表示的数还原成原数怎样确定位数?【解答】(1)1.2×105=120 000.(2)2.3×107=23 000 000.(3)3.6×108=360 000 000.(4)-4.2×106=-4 200 000.【互动总结】(学生总结,老师点评)把用科学记数法表示的绝对值大于10的有理数化成原数时,只需把小数点向右移动n位即可,不足的用零补充.活动2巩固练习(学生独学)1.2017年,山西省接待入境游客95.71万人次,实现海外旅游创汇3.5亿美元,同比增长分别为6.38%、10.32%;累计接待国内游客5.6亿人次,实现国内旅游收入5338.61亿元,同比增长分别为26.49%、26.27%.实现旅游总收入约5360亿元,同比增长26.21%.数据5360亿元用科学记数法可表示为(B)A.0.536×1012元B.5.36×1011元C.53.6×1010元D.536×109元2.用科学记数法表示出下列各数.(1)30 060;(2)15 400 000;(3)123 000.解:(1)3.006×104.(2)1.54×107.(3)1.23×105.3.已知下列用科学记数法表示的数,写出原来的数:(1)2.01×104;(2)6.070×105;(3)-3×103.解:(1)20 100.(2)607 000.(3)-3000.活动3拓展延伸(学生对学)【例3】比较下列两个数的大小.(1)-3.65×105与-1.02×106;(2)1.45×102017与9.8×102018.【互动探索】根据有理数的大小比较方法对比比较用科学记数法表示的数的方法.【解答】(1)|-3.65×105|=3.65×105,|-1.02×106|=1.02×106.因为1.02×106>3.65×105,所以-3.65×105>-1.02×106.(2)因为9.8×102018=98×102017,98>1.45,所以1.45×102017<9.8×102018.【互动总结】(学生总结,老师点评)比较用科学记数法表示的数时,利用乘方的意义,把10的指数转化成相同的,然后比较a 的大小,若a 大,则原数就大;若a 小,则原数就小.环节3 课堂小结,当堂达标(学生总结,老师点评)科学记数法⎩⎪⎨⎪⎧ 用科学记数法表示数还原用科学记数法表示的数比较用科学记数法表示的数请完成本课时对应练习!1.5.3 近似数(第3课时)一、基本目标【知识与技能】了解近似数的概念,能按要求取近似数.【过程与方法】在认识、理解近似数的过程中感受大数目近似数的使用价值,增强学生的应用意识,提高应用能力.二、重难点目标【教学重点】近似数、精确度和有效数字的意义.【教学难点】由给出的近似数求其精确度及有效数字,按给定的精确度或有效数求一个数的近似数.环节1自学提纲,生成问题【5 min阅读】阅读教材P45~P46的内容,完成下面练习.【3 min反馈】1.在现实生活与生产实践中,能准确地表示一些量的数,称为准确数;近似数是与实际的准确数非常接近的数.2.下列各个数据中,哪些数是准确数?哪些数是近似数?(1)小琳称得体重为38千克;(2)现在的气温是-2 ℃;(3)1 m等于100 cm;(4)教窒里有50张课桌;(5)由于我国人口众多,人均森林面积只有0.128公顷.解:(1)小琳称得体重为38千克,是近似数.(2)现在的气温是-2 ℃,是近似数.(3)1 m等于100 cm,是准确数.(4)教室里有50张课桌,是准确数.(5)由于我国人口众多,人均森林面积只有0.128公顷,是近似数.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】按照括号内的要求,用四舍五入法对下列各数取近似数:(1)0.0238(精确到0.001);(2)2.605(精确到0.1);(3)20 543(精确到百位).【互动探索】(引发学生思考)什么是精确度?怎样求一个数的近似数?【解答】(1)0.0238(精确到0.001)≈0.024.(2)2.605(精确到0.1)≈2.6.(3)20 543(精确到百位)≈2.05×104.【互动总结】(学生总结,老师点评)近似数一般是由四舍五入得到的,当用四舍五入法取近似值时,近似数的末位数字0不能省略.活动2 巩固练习(学生独学)1.下列说法正确的是( C )A .近似数32与32.0的精确度相同B .近似数5万与近似数5000的精确度相同C .近似数0.0108有3个有效数字2.近似数1.02×105精确到了千位.3.把489 960按四舍五入法保留三个有效数字是4.90×105.4.用四舍五入法,对下列各数按括号中的要求取近似数:(1)0.6328(精确到0.01);(2)7.9122(精确到个位);(3)130.96(精确到十分位);(4)46 021(精确到百位).解:(1)0.63. (2)8.(3)131.0. (4)4.60×104.活动3 拓展延伸(学生对学)【例2】已知有理数x 的近似值是5.40,则x 的取值范围是________.【互动探索】如果近似值5.40是“四舍”得到的,那么原数x 最大是5.4+0.004=5.404;如果近似值5.40是“五入”得到的,那么原数x 最小是5.40-0.005=5.395.原数x 的取值范围是5.395<x <5.404.【答案】5.395<x <5.404【互动总结】(学生总结,老师点评)本题考查了准确值的取值范围,如果近似值是“四舍”得到的,那么原数最大;如果近似值是“五入”得到的,那么原数最小.环节3 课堂小结,当堂达标(学生总结,老师点评)近似数⎩⎪⎨⎪⎧ 求一个数的近似数精确度、有效数已知近似数求原数请完成本课时对应练习!。

1.5.1 第1课时 乘方的意义及运算

1.5.1  第1课时 乘方的意义及运算

1.5.1乘方第1课时乘方的意义及运算1.乘方的意义定 义:一般地,n 个____的因数a 相乘,即 ,,记作a n ,读作“a 的n 次方”. 乘 方:求n 个相同因数的积的运算,叫做____,乘方的结果叫做____.在a n 中,a 叫做____,n 叫做____,当a n 看作a 的n 次方的结果时,也可以读作“a 的n 次____”.注 意:当底数是负数或分数时,必须用小括号将底数括起来,否则会改变原意.2.乘方的性质性 质:(1)负数的奇次幂是____,负数的偶次幂是____;(2)正数的任何次幂都是____,0的任何正整数次幂都是____.类型之一 有理数的乘方运算计算:(1)(-2)3;(2)⎝⎛⎭⎫-134;(3)-26.【点悟】 解答本题时要注意:负数的乘方在书写时,一定要把整个负数(连同负号)用小括号括起来,否则会改变原意,如-26≠(-2)6.类型之二 用计算器进行乘方运算用计算器计算:(1)(-4)3; (2)(-2)4.【点悟】 熟悉利用计算器进行乘方运算的计算过程.类型之三 乘方在实际生活中的应用当你把纸对折一次时,就得到2层,当对折两次时,就得到4层,照这样对折下去:(1)你能发现层数和折纸的次数有什么关系吗?(2)当你对折6次时,层数是多少?(3)如果一张纸的厚度是0.1 mm ,对折10次时,总的厚度是多少?【点悟】 此类翻倍增长的问题一般都用乘方的知识解决,如细胞分裂、孙悟空“分身术”等,都是这种类型.1.x 3表示( )A .3xB .x +x +xC .x ·x ·xD .x +32.[2017·杭州]-22=( )A .-2B .-4C .2D .43.[2017·自贡]计算(-1)2 017的结果是( )A .-1B .1C .-2 017D .2 0174.把下列乘法式子写成乘方的形式:(1)1×1×1×1×1×1×1=____;(2)3×3×3×3×3=____;(3)(-3)×(-3)×(-3)×(-3)=____;(4)56×56×56×56=__⎝⎛⎭⎫564__. 5.把下列乘方写成乘法的形式:(1)(-0.9)3=____;(2)⎝⎛⎭⎫974=____;(3)(a -b )2=____.1.[2015·长沙模拟]比较(-4)3和-43,下列说法正确的是( )A .它们底数相同,指数也相同B .它们底数相同,但指数不相同C .它们所表示的意义相同,但运算结果不相同D .虽然它们底数不同,但运算结果相同2.[2016·寿光模拟]下列各式:①-(-2);②-|-2|;③-22;④-(-2)2.计算结果为负数的个数有( )A .4个B .3个C .2个D .1个3.填空:(1)在73中底数是____,指数是____,读作____;(2)在⎝⎛⎭⎫342中底数是________,指数是____,读作____________;(3)在(-5)4中底数是____,指数是____,读作____;(4)在8中底数是____,指数是____.4.计算:(1)(-2)6=____;(2)4×(-2)3=____;(3)-(-2)4=____.5.用带符号键(-)的计算器计算(-6)4的按键顺序是________________________.6.在计算器上,依次按键2x 2=,得到的结果是____. 7.按照如图1-5-1所示的操作步骤,若输入x 的值为2,则输出的值为____.输入x →加上3→平方→减去5→输出图1-5-18.计算:(1)(-5)4;(2)-54;(3)⎝⎛⎭⎫-433;(4)-235;(5)(-1)2 017.9.用计算器计算:(1)(-12)3;(2)-186;(3)9.85;(4)(-7.2)4.10.计算:(1)(-2)2×(-3)2; (2)-32×⎝⎛⎭⎫-13;(3)⎝⎛⎭⎫-452÷⎝⎛⎭⎫253; (4)(-3)2×⎝⎛⎭⎫-322×⎝⎛⎭⎫232.11.[2016·舟山]13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76D.7712.某种细菌在培养过程中,每半个小时分裂一次(由1个分裂成2个).若经过4小时,100个这样的细菌可分裂成____个.13.拉面师傅制作拉面时,按对折、拉伸的步骤,重复多次.(1)先用乘法计算拉面12次得到的面条数,再改用计算器计算,这两种方法哪种算得快?(2)如果拉面师傅每次拉伸面条的长度为0.8 m,那么他拉12次后,得到的面条的总长度是多少米?14.给出依次排列的一列数:2,-4,8,-16,32,….(1)依次写出32后面的三个数:________________________________________________________________________;(2)按照规律,第n个数为____.。

1.5.1 有理数的乘方(解析版)

1.5.1 有理数的乘方(解析版)

1.5.1有理数的乘方一.选择题(共5小题)1.(2023•河口区一模)2023(1)-的相反数是( )A .1-B .1C .2023-D .2023【分析】先求出2023(1)-的值,再确定相反数即可.【解析】2023(1)1-=-Q ,1-的相反数是1,2023(1)\-的相反数是1.故选:B .2.(2023•肇东市三模)现定义一种新运算“*”,规定2*a b b a =-,如23*1132=-=-,则(2)*(3)--等于( )A .11B .11-C .7D .7-【分析】根据2*a b b a =-,可以求得所求子的值.【解析】2*a b b a =-Q ,(2)*(3)\--2(3)(2)=---92=+11=,故选:A .3.(2023•定陶区二模)下列运算正确的是( )A .2169(43)+=+B .2169(43)´=´C .4242=D .22.50.5=【分析】根据运算法则对每个选项进行计算,即可判断哪个选项符合题意.【解析】22216943(43)+=+¹+,此选项错误,故选项A 不符合题意;22216943(43)´=´=´,此选项正确,故选项B 符合题意;4242¹,此选项错误,故选项C 不符合题意;20.50.25 2.5=¹,此选项错误,故选项D 不符合题意;故选:B .4.(2022秋•澄海区期末)若2(2)m -与|3|n +互为相反数,则m n 的值是( )A .8-B .8C .9-D .9【分析】首先根据互为相反数的定义,可得2(2)|3|0m n -++=,再根据乘方运算及绝对值的非负性,即可求得m 、n 的值,据此即可解答.【解析】2(2)m -Q 与|3|n +互为相反数,2(2)|3|0m n \-++=,20m \-=,30n +=,解得2m =,3n =-,2(3)9m n \=-=,故选:D .5.(2023•阳谷县三模)计算20222023(1)(1)-+-等于( )A .2B .0C .1-D .2-【分析】先算乘方,再算加减即可.【解析】原式11=-0=.故选:B .二.填空题(共2小题)6.(2023春•仁寿县期末)如果2|24|(5)0x y x ++--=,则y x = 8- .【分析】根据绝对值,偶次方的非负性求出x 、y 的值,再代入计算即可.【解析】2|24|(5)0x y x ++--=Q ,|24|0x +…,2(5)0y x --…,240x \+=,50y x --=,解得2x =-,3y =,3(2)8y x \=-=-,故答案为:8-.7.(2023•随州)计算:2(2)(2)2-+-´= 0 .【分析】根据有理数的混合运算顺序,先计算乘方,再计算乘法,后计算加法即可.【解析】2(2)(2)2-+-´4(4)=+-0=.故答案为:0.三.解答题(共4小题)8.(2022秋•零陵区期末)计算:(1)35(10)-´--;(2)32022152(24(1)36-+-+´--.【分析】(1)先乘法,再减法;(2)先乘方,再乘法,最后算加减.【解析】(1)原式15105=-+=-;(2)原式158(2424)136=-+-´+´-8(820)1=-+-+-8121=-+-3=.9.(2022秋•仪征市期末)计算:(1)212525(32¸-´-;(2)215(3)()|4|26-´-+-.【分析】(1)先把除法转化为乘法,再逆用乘法的分配律进行求解即可;(2)先算乘方,括号里的减法,绝对值,再算乘法,最后算加法即可.【解析】(1)212525(32¸-´-31252522=´+´3125()22=´+252=´50=;(2)215(3)()|4|26-´-+-19(43=´-+34=-+1=.10.(2022秋•西宁期末)计算:4211[2(3)]6--´--.【分析】根据有理数的混合运算的顺序计算.【解析】4211[2(3)]6--´--11(29)6=--´-11(7)6=--´-716=-+16=.11.(2022秋•运城期末)计算:(1)20231(1)12|3|4--´+-;(2)22313(2)|1|6(2)3-¸-´-´+-.【分析】(1)先进行乘方,乘法,去绝对值运算,再进行加减运算;(2)先进行乘方,去绝对值运算,再进行乘除运算,最后算加减.【解析】(1)原式1331=--+=-;(2)原式494683=-¸´´-1496843=-´´´-188=--26=-.一.选择题(共1小题)1.(2023春•潮安区期末)已知||4a =,29b =,0a b >,求a b -的值( )A .1或1-B .5或5-C .5D .1【分析】先运用绝对值和平方知识求得a ,b 的值,再分情况进行代入求解.【解析】||4a =Q ,29b =,4a \=±,3b =±,Q 0a b>,2a \=,3b =或2a =-,3b =-,当2a =,3b =时,a b-23=-1=-;当2a =-,3b =-时,a b-(2)(3)=---1=,a b \-的值是1±,故选:A .二.填空题(共1小题)2.(2023•香河县校级三模)63是33的 27 倍.【分析】根据题意列式并利用有理数的乘方法则计算即可.【解析】由题意可得63333327¸==,故答案为:27.三.解答题(共3小题)3.(2023•新华区校级二模)计算:32(6)()(2)3-´---■.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是2,请求出32(6)()(2)3-´---■的值;(2)如果计算结果是如图所示集中的最大整数解,请问这个最大整数解是几?并求出被污染的数字.【分析】(1)根据有理数的混合运算法则计算即可.(2)根据题意设被污染的数字为x ,列关于x 的方程,解方程即可求出答案.【解析】(1)由题意得,32(6)(2)(2)3-´---2(6)(6)283=-´--´+4128=-++16=;(2)由图可知,最大整数解是5.设被污染的数字为x ,由题意,得32(6)()(2)53x -´---=,2(6)()853x -´-+=,2(6)()33x -´-=-,2132x -=,16x =.所以被污染的数字是16.4.(2022秋•翠屏区期末)计算:(1)111312()634´--;(2)22125|1(4)|3--¸´--.【分析】(1)根据乘法分配律计算即可;(2)先算乘方和去绝对值,然后算乘除法,最后算减法即可.【解析】(1)111312()634´--1113121212634=´-´-´2249=--9=;(2)22125|1(4)|3--¸´--114|116|35=--´´-1141535=--´´41=--5=-.5.(2022秋•华容区期末)计算:(1)133(7)(5)1244+---+;(2)229111(2)2(1)()8326--+--´-+-.【分析】(1)先将减法转化为加法,再利用加法运算律计算即可;(2)先算乘方与括号,再算乘法,最后算加减即可.【解析】(1)原式133751244=-++13(35)(127)44=++-95=+14=;(2)原式1144(1)()866=-+--´-+-11866=-+-8=-.一.选择题(共2小题)1.(2022秋•永春县期中)设22211148()34441004A =´++¼+---,利用等式21111(3)4422n n n n =---+…,则与A 最接近的正整数是( )A .18B .20C .24D .25【分析】利用等式21111(3)4422n n n n =---+…,代入原式得出数据的规律性,从而求出.【解析】利用等式21111(3)4422n n n n =---+…,代入原式得:22211148(34441004A =´++¼+---111111148()43232424210021002=´-+-+¼+--+-+-+111111112(1)5263798102=´-+-+-+¼+-111111112[(1()]2349856102=´++++¼+-++¼+111111112(1)23499100101102=´+++----而111111112(1)2523499100101102´+++----»故选:D .2.(2022•西城区校级模拟)如图,A ,B ,C ,D 是数轴上四个点,A 点表示数为10,E 点表示的数为10010,AB BC CD DE ===,则数9910所对应的点在线段( )上.A .AB B .BC C .CD D .DE【分析】先根据AB BC CD DE ===,计算出每一个线段的长度,再把AB 的长度与991010-进行比较即可.【解析】A Q 点表示数为10,E 点表示的数为10010,1001010AE \=-,AB BC CD DE ===Q ,10011(1010)44AB AE \==-,B \点表示的数为1001(1010)104=-+,Q100991(1010)10104-+-9932510022=´->,\1001(1010)1004-->,\数9910所对应的点在B 点左侧,\数9910所对应的点在AB 点之间,故选:A .二.填空题(共1小题)3.(2022秋•安岳县期末)定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方.比如222¸¸,(3)(3)(3)(3)-¸-¸-¸-等,类比有理数的乘方,我们把222¸¸写作2③,读作“2的圈3次方”, (3)(3)(3)(3)-¸-¸-¸-写作(3)-④,读作“(3)-的圈4次方”.一般地,把()0n aa a a a a ¸¸¸¼¸¹{个记作:a ,读作“a 的圈n 次方”.特别地,规定:a a =①.通过以上信息,请计算:12022((1)2´-+-=②④⑰ 3 .【分析】认真读懂题意,利用新定义计算即可.【解析】12022((1)2´-+-②④⑰()()171111202220221...12222æöæöæöæö=¸´-¸-¸-¸-+-¸¸-ç÷ç÷ç÷ç÷èøèøèøèø{个14(1)=´+-3=.故答案为:3.。

江海区四中七年级数学上册第一章有理数1.5有理数的乘方1.5.1乘方课件新版新人教版

江海区四中七年级数学上册第一章有理数1.5有理数的乘方1.5.1乘方课件新版新人教版

平行线的判定
观察与思考
我们已经知道 : 同位角相等 , 两直线平行.即在图7-4-1中 , 如果∠2=∠3 , 那么AB∥CD.
E
小亮和小红经过认真观察有了新的发现 ,
小亮的发现 : 因为∠1=∠3〔 対顶角相等〕. 如果∠1=∠2 , 那么就能推出
A
3 14
B
C
2
D
∠2=∠3 , 于是就有AB∥CD
=(-10)+0 =-10Biblioteka 〔2〕5 6解:原式
新课讲解
讨论
回顾以上例题的解答 , 想一想 : 将怎样的加数 合在一起 , 可使运算简便 ?
结论
1.一般地,总是先把正数或负数分别结合在一起相 2.有相反数的可先把相反数相加,能凑整的可先凑 3.有分母相同的,可先把分母相同的数结合相加.
新课讲解
知识点2 有理数加法运算律的应用
知识回顾
(1)同号两数相加 , 取_相__同__的__符__号___并,__把__绝__対__值__相 (2)异号两数相加 , 取__绝__対___值__较__大___的__数__的___符__号_, _并___用__较__大___的_ 绝対值__减__去__较___小__的__绝___対__值____. (3)互为相反数的两数相加得_零___. (4)一个数同零相加仍得_这___个__数__.
新课讲解
典例分析
例 1计算26+〔-14〕+〔-16〕+18
解 : 26+〔-14〕+〔-16〕+18 =26+18+[〔-14〕+ 〔-16〕]
把正数与负 加法交换律 律
=44+〔-30〕 =14

SX-7-022、1.5有理数的乘方(1)有理数的乘方(1)导学案

SX-7-022、1.5有理数的乘方(1)有理数的乘方(1)导学案

(3)拓展:底数为 1 ,0,1,10,0.1 的幂的特性:
n 为奇数 n 为偶数
( 1) n
0n
(n 为正整数)
1n
(n 为整数)
10n 100 0 (1 后面有____个 0),
0.1n =0.00…01 (1 前面有______个 0)
(4)乘方的符号法则:
学 习 过 程
22 × 3
2、 (3) 2
; 32 ______ , (1)2 n1 。
教学反思: 在设计这节课时努力体现“学生是学习的主体”这一观点,引生活中的数学内 容进入课堂,把教材里的例子抛给学生,让学生自己去亲身实践,自己发现有理数 乘方的一些基本规律。同时考虑到学生的个体差异,也尊重学生的情感需要,同桌 互助,小组交流,全班碰撞等,让每个学生都有了动手、动口、动脑参与数学学习 的时间和空间。在这样的设计理念下,本想营造的是轻松愉悦的课堂学习氛围,可 能由于我的一些态度转变,影响了学生,使学生没有能像平时那样放松的学习,虽 然全心投入,但课堂氛围不是很活跃,也影响了学生对问题的思考,从一定程度上 影响了教学效果,没有达到预期的设想,这是本节课的第一个遗憾。 这节课成功的地方是遵循学生的认知发展规律,由已知到未知,由特殊到一般,让 学生在自然而然的状态下一步一步深入的学习, 通过折纸活动让学生认识的知识不 是凭空产生的,而是实际生活的需要,知识产生于实践又应用于实践。 学生课堂上总有老师预料不到的情况发生。 本节课中在讲解了乘方的意义后给出了 一组练习, 其中在将几个数相乘改写成幂的形式时, 学生出现了负数和分数的乘方 不加括号的情况,这是在我意料之中的,正好借着学生的错误进行强调,而且设计 了一个专项思考题进行这个难点的突破。但课堂上一个学生的回答出乎我的意料, 非常精彩,非常到位。当时就认为不需要用设计好的专项思考题了,直接就着学生 的回答进行讲解就可以。后来练习中的反馈证明效果非常好,学生的印象深刻。 虽然课前的备课经过了反复的琢磨, 还是没有避免的出现了不合理的地方。 课堂上 在乘方的意义经过了学生的自学和教师的点拨后提出了问题: 乘方与乘法有什么关 系?当时尽管给学生充分的时间思考, 但是能举手回答的很少, 而且答案都不准确。 后来在我的引导下学生才得出答案。 课后我经过思考认为这个问题如果在学生例题 完成后的反思里进行应该效果更好, 这样学生有了实践, 实践中总结出得经验比苍 白的思考更有意义。 每节课的设计上总留有机动处理的内容, 本节课最后设计了一组达标测试, 因为时 间的关系没有处理。由于当时学校里下通知,最后的总结和课外拓展没有进行,这 也是我这节课中的遗憾。 通过各位听课领导和老师的评课,结合自己的反思,我重新制作了课件,作为一个 教学资源加以保存。反思是为了更好地开始,以后的教学中应发挥优势,让亮点更 亮,形成自己 x 9

人教版七年级数学上册:1.5.1 《乘方》教案

人教版七年级数学上册:1.5.1 《乘方》教案一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一课时,主要介绍有理数的乘方。

教材通过简单的实例让学生感受乘方的意义,理解乘方的运算规则,为后续学习指数幂、对数等概念打下基础。

本节课的内容在数学体系中起到承前启后的作用,既巩固了有理数的基本运算,又为高中阶段更深入的数学学习奠定基础。

二. 学情分析七年级的学生已经掌握了有理数的基本运算,对数学符号和概念有一定的理解。

但乘方作为一个新的概念,需要学生从新的角度去理解。

学生在学习乘方时,可能会对乘方的意义和运算规则产生困惑,因此需要通过实例和练习来帮助学生理解和掌握。

三. 教学目标1.让学生理解乘方的意义,掌握有理数的乘方运算规则。

2.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

3.激发学生对数学的兴趣,培养学生的自主学习能力。

四. 教学重难点1.乘方的意义和运算规则。

2.乘方在实际问题中的应用。

五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。

通过问题引导学生的思考,实例让学生理解乘方的意义,小组合作学习法培养学生的团队协作能力。

六. 教学准备1.教学PPT。

2.实例和练习题。

3.小组合作学习的相关材料。

七. 教学过程1.导入(5分钟)通过一个实际问题引出乘方的概念:某商品打八折出售,即按原价的80%出售,问原价为100元的商品现价是多少?让学生思考如何用数学方法表示这个问题。

2.呈现(15分钟)讲解乘方的意义和运算规则,通过PPT展示实例,让学生理解乘方的概念。

例如,2的3次方表示2乘以自己3次,即2×2×2=8。

3.操练(15分钟)让学生进行乘方运算的练习,教师巡回指导,解答学生的疑问。

可以设置一些有趣的题目,让学生在练习中感受乘方的魅力。

4.巩固(10分钟)通过一些实际问题,让学生运用乘方解决实际问题。

例如,一个班级有30人,每次活动参加的人数是上一次的90%,问第三次活动参加的人数是多少?5.拓展(5分钟)讲解乘方在实际生活中的应用,如科学计算、金融理财等。

人教版七年级数学上册:1.5.1《乘方》教案

人教版七年级数学上册:1.5.1《乘方》教案一. 教材分析《乘方》是人教版七年级数学上册的一个重要内容,主要介绍了乘方的概念、性质和运算法则。

通过学习乘方,学生能够理解和掌握乘方的基本概念,了解乘方的意义和作用,以及运用乘方解决实际问题。

二. 学情分析学生在学习乘方之前,已经掌握了有理数的乘法、除法和加减法等基础知识,具备了一定的数学思维能力。

但部分学生可能对乘方的概念和性质理解不够深入,需要通过实例和练习来进一步巩固。

三. 教学目标1.理解乘方的概念,掌握乘方的性质和运算法则。

2.能够运用乘方解决实际问题,提高解决问题的能力。

3.培养学生的数学思维能力和逻辑推理能力。

四. 教学重难点1.乘方的概念和性质。

2.乘方的运算法则。

3.运用乘方解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究乘方的概念和性质。

2.运用实例和练习,让学生通过实际操作来理解和掌握乘方的运算法则。

3.采用小组合作学习,培养学生的团队协作能力和沟通能力。

六. 教学准备1.教学PPT或黑板。

2.教学素材和练习题。

3.学生分组名单。

七. 教学过程1.导入(5分钟)利用PPT或黑板,展示一些生活中的实际问题,如温度、速度等,让学生感受到乘方的意义和作用。

引导学生思考:这些问题能否用乘法来解决?如何用乘法来解决?2.呈现(10分钟)介绍乘方的概念,讲解乘方的意义和作用。

通过实例和练习,让学生理解和掌握乘方的运算法则。

如:2^3 = 2 × 2 × 2 = 83.操练(10分钟)让学生进行乘方运算练习,巩固所学知识。

可以设置一些难度不同的练习题,让学生根据自己的实际情况选择适合自己的题目。

4.巩固(10分钟)通过小组合作学习,让学生运用乘方解决实际问题。

可以设置一些开放性问题,让学生分组讨论和解答。

5.拓展(10分钟)引导学生思考:乘方在实际生活中有哪些应用?如何运用乘方解决更复杂的问题?可以让学生举例说明,并进行讲解。

人教版福建初一数学七年级上册第一章 第17课时1-5-1有理数的乘方(1)

第17课时1.5.1 有理数的乘方(1)1.求n 个相同因数的积的运算,叫做__乘方__,记作__a n __,乘方的结果叫做__幂__.a n 读作__a 的n 次方__或__a 的n 次幂__.在a n 中,a 表示__相同的因数__,叫做__底数__,n 表示__相同因数的个数__,叫做__指数__.2.根据有理数的乘法法则可以得出:(1)负数的__奇次幂__是负数,负数的__偶次幂__是正数.(2)正数的任何次幂都是__正数__.(3)__0__的任何正整数次幂都是0.53中,底数是__5__,指数是__3__,53读作__5的3次方__或__5的3次幂__,53表示__3__个5相乘,即53=5×5×5.(1)(-2)4中,底数是__-2__,指数是__4__,(-2)4读作__-2的4次方__或__-2的4次幂__,(-2)4表示__4个-2__相乘,即(-2)4=__(-2)×(-2)×(-2)×(-2)__.(2)-(-2)4的底数是__-2__,指数是__4__,它是(-2)4的__相反数__.(3)-24的底数是__2__,指数是__4__,-24读作__2的4次方的相反数__,-24=__-2×2×2×2__.计算:(1)(-3)4; (2)-34;(3)(-8)2; (4)⎝ ⎛⎭⎪⎫-23 3 . 【解析】(1)81 (2)-81 (3)64(4)-827 ()-4 3 ;(-2)4 ;03;⎝ ⎛⎭⎪⎫-13 4 . 【解析】()-4 3 =-64;(-2)4=16;03=0;⎝ ⎛⎭⎪⎫-13 4 =181 . 计算:(-1)2 020+(-1)2 021.【解析】原式=1-1=0.,计算:(-3)3×(-2)2.【解析】原式=-27×4=-108.1.关于式子()-4 2 ,正确的说法是( D )A .-4是底数,2是幂B .4是底数,2是幂C .4是底数,2是指数D .-4是底数,2是指数2.下列各对数中,数值相等的是( B )A .+32与+22B .-23与(-2)3C .-32与(-3)2D .3×22与(3×2)23.如果a 2=(-3)2,那么a 等于( D )A .3B .-3C .9 D. ±34.下列说法正确的是( D )A .一个数的平方一定大于这个数B .一个数的平方一定是正数C .一个数的平方一定小于这个数的绝对值D .一个数的平方不可能是负数5.若a =(-2)×(-3),b =(-2)3,c =-(-3)3,则a ,b ,c 的大小关系是( C )A .a >b >cB .a >c >bC .c >a >bD .c >b >a6.规定一种新运算:a*b =a b ,如3*2=32=9,则12 *3=( A ) A .18 B .3 C .16 D .327.《庄子·天下篇》讲到:“一尺之棰,日取其半,万世不竭”,意思是说一尺长的木棍,每天截去它的一半,千秋万代也截不完.一天之后“一尺之棰”剩12 尺,两天之后14尺,那么3天之后,这个“一尺之棰”还剩( C )A .12 尺B .14 尺C .18 尺D .78尺 8.若|a +2|+(b -3)2=0,求(a +b)2 021的值.【解析】因为|a +2|≥0 , (b-3)2≥0,|a +2|+(b -3)2=0, 所以a +2=0,b -3=0,a =-2,b =3,所以a +b =1,所以(a +b)2 021=1.阅读下列材料并完成填空:你能比较两个数2 0192 020和2 0202 019的大小吗?为了解决这个问题,先把问题一般化,即比较n n+1和(n+1)n的大小(n≥1,n是整数),然后从分析n=1,n=2,n=3,…,这些简单情形入手,从中发现规律,经过归纳,猜想出结论.(1)通过计算,比较下列①~⑥中的两个数的大小.(在横线上填“>”“=”或“<”)①12______21;②23______32;③34______43;④45______54;⑤56______65;⑥67______76;….(2)将上面各小题的结果经过归纳,请猜出n n+1和(n+1)n的大小关系.(3)根据上面归纳猜想的一般结论,可以得到2 0192 020______2 0202 019.(在横线上填“>”“=”或“<”)【解析】(1)①< ②< ③>④>⑤>⑥>(2)当n=1或2时,n n+1<(n+1)n;当n>2,且n为整数时,n n+1>(n+1)n.(3)>。

【有理数的乘方教案(精选多篇)】

【有理数的乘方教案(精选多篇)】第一篇:七年级数学上册有理数的乘方教案人教版有理数的乘方教学目的:知识与才能:在现实背景中,理解有理数乘方的意义,掌握有理数乘方的运算;过程与方法:培养学生观察、分析^p 、比拟、归纳、概括的才能,浸透转化的思想;情感态度与价值观:培养学生勤思,认真,勇于探究的精神,并联络实际,加强理解,体会数学给我们的生活带来的便利。

教学重点:正确理解乘方的意义,掌握乘方的运算法那么,进展有理数乘方运算。

教学难点:正确理解乘方、底数、指数的概念并合理运算。

教材分析^p :本节内容从小学所学过的一个数的平方与立方出发,介绍了乘方的概念,容有关联的是后面“科学计数法”、“有理数的混合运算”等局部内容。

教学方法:教法:引导探究法、尝试指导法,充分表达学生主体地位;学法:学生观察考虑,自主探究,合作交流。

教学用具:电脑多媒体。

课时安排:一课时板书设计:有理数的乘方底数a幂规律:正数的任何次幂都是正数负数的奇数次幂是负数负数的偶数次幂是正数n教学反思:本节课的教学设计采用:“先学后教,当堂训练”的教学形式。

整个教学过程从考虑问题到问题解决,学生自主学习贯穿始终,中间围绕“自学-交流、更正-点拨、归纳”三个环节组织教学,注重培养学生观察、考虑、交流归纳的才能。

缺乏之处:在练习的讲评上,应给学生一个较为自由的空间,让学生互相启发,互相交流。

第二篇:第一章有理数乘方(2)教案第周第节§1.5.1有理数乘方〔2〕教案备课人:李冶学习目的:1、掌握有理数混合运算的顺序,能正确的进展有理数的加,减,乘除,乘方的混合运算。

2、培养学生观察,归纳,猜测,推理的才能。

重点:能正确的进展有理数的混合运算。

难点:灵敏的运用运算律,使计算简单。

教学过程:一课前提问:1、我们已经学习了哪几种有理数的运算?2、有理数的乘方的意义是什么?3、以下的算式里有哪些运算?应按照怎样的顺序运算?3+50÷22×〔-15〕-1二、新课探究:有理数混合运算的顺序:1、先乘方,再乘除,最后加减;2、同级运算,从左到右进展;3、如有括号,先做括号内的运算,按小括号、中括号,大括号依次进展;三、例题精析:例1 、计算:〔1〕2?(?3)34(3)15〔2〕(?2)3(3)[(?4)22]?(?3)2(2)例2、观察下面三行数:-2 ,4 ,-8,16,-32,64,…;0,6,-6,18,-30,66,…;-1 ,2,-4, 8,-16,32,…。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册导学案 班 级 姓 名 日期:9.25
课题:1.5.1有理数的乘方(1)
【学习目标】:
1、理解有理数乘方的意义;
2、掌握有理数乘方运算;
3、经历探索有理数乘方的运算,获得解决问题经验;
【重点难点】:有理数乘方的运算。

【导学指导】
一、知识链接
1、看下面的故事:从前,有个“聪明的乞丐”他要到了一块面包。

他想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,……依次每天都吃前一天剩余面包的一半,这样下去,我就永远不要去要饭了!
交流讨论,算一算,如果把整块面包看成整体“1”,那第十天他将吃到面包 。

2、拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多很细的面条.想想看,捏合 次后,就可以拉出32根面条.
二、合作探究
1、分小组合作学习P41页内容,然后再完成好下面的问题
1) 叫乘方, 叫做幂,在式子an中 ,a叫做 ,n叫做
2)式子an表示的意义是
3)从运算上看式子an,可以读作 ,从结果上看式子an,可以读作 ;
2、新知应用
1)将下列各式写成乘方(即幂)的形式:
(1)(-2)×(-2)×(-2)×(-2)= .
(2)、(—14)×(—14)×(—14)×(—14
)= ; (3)x •x •x •……•x (2010个)=
2)例题:
(1)()3
4-= (2)4(2)-= (3)32
()3-= (4)31()2
(5)50 从中得出:负数的奇次幂是 数,负数的偶次幂是 数,
正数的任何次幂都是 数,0的任何正整次幂都是 ;
3)思考:4(2)-和—4
2意义一样吗?为什么?
4、自学例2 :用计算器计算5(8)- 和 6(3)-
【课堂练习】完成P42页1,2,3
【要点归纳】:负数的奇次幂是 数,负数的偶次幂是 数,
正数的任何次幂都是 数,0的任何正整次幂都是 ;
【拓展训练】 1、我们已经学习了五种运算,请把下表补充完整:
运算
加 减 乘 除 乘方 运算结果

2、选择题
(1)下列各式的值是正数的有:( )①-3(1)- ②2011(8)- ③2010(1)- ④-31
A 、 0个
B 、1个
C 、2个
D 、3个 (2)计算2(2)--3(2)-的结果是( )A 、-4 B 、2 C 、4 D 、12
3、用乘方的意义计算下列各式: (1)42- (2)3
23⎛⎫- ⎪⎝⎭ (3)223-
(4)4(2)- (5)2013(1)
- (6)24(1)5-
4.计算
(1) 2221(2)2(10)4----
⨯-; (2)-34 - 23
(3) 3212(0.5)(2)(8)2⎛⎫-⨯-⨯-⨯- ⎪⎝⎭; (4)2(5)-× (-
15
)。

相关文档
最新文档