【精品】2015年山东省威海市开发区八年级上学期期中数学试卷带解析答案

合集下载

山东省潍坊市2015-2016学年八年级上期中数学试卷含答案解析

山东省潍坊市2015-2016学年八年级上期中数学试卷含答案解析

A.3cm B.5cm C.6cm D.无法确定
3.点 P(﹣ 2,1),那么点 P 关于 x 轴对称的点 P′的坐标是( ) A.(﹣ 2,1) B.(﹣ 2,﹣ 1 C.(﹣ 1,2) D.(2,1) ) 4.如图,△ABC 和△DEF 中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明 △ABC≌△DEF( )
于 E,则∠ADE 的大小是(
)
A.45° B.54° C.40° D.50°
11.如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′
中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是(
)
提供的三个条件是:①AB=DE;②AC=DF;③AC∥DF.
22.将一张矩形纸条 ABCD 按如图所示折叠,若折叠角∠FEC=64°. (1)求∠1 的度数; (2)求证:△EFG 是等腰三角形.
23.如图,△ABC 的顶点坐标分别为 A(4,6),B(5,2),C(2,1), (1)作出△ABC 关于 y 轴对称的△A′B′C′,并写出 A′,B′,C′的坐标. (2)求△ABC 的面积.
2015-2016 学年山东省潍坊市八年级(上)期中数学试卷
一、选择题.(本题共 12 个小题,在每小题所列四个选项中,只有一个选项符合题意,把 符合题意的选项写在答题卡中) 1.下列“表情图”中,属于轴对称图形的是( )
A.
B.
C.
D.
2.如图,△ABC≌△DCB,点 A 与点 D,点 B 与点 C 对应,如果 AC=6cm,AB=3cm,那 么 DC 的长为( )
9.如图,直线 l 是一条河,P,Q 两地在直线 l 的同侧,欲在 l 上的某点 M 处修建一个水 泵站,分别向 P,Q 两地供水.现有如下四种铺设方案,则铺设的管道最短的方案是 ()

山东省威海市威海经济技术开发区威海经济技术开发区皇冠中学2023-2024学年八年级上学期期中数学试

山东省威海市威海经济技术开发区威海经济技术开发区皇冠中学2023-2024学年八年级上学期期中数学试

山东省威海市威海经济技术开发区威海经济技术开发区皇冠中学2023-2024学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题二、填空题三、解答题22.我国的铁路旅客列车,按不同的运行速度、运行范围、设备配置、作业特征等,分为不同的级别,列车的级别由车次开头的字母来表示(部分是纯数字)示高速动车组旅客列车;DK字头,表示快速旅客列车,等等.吕梁站至太原南站约站至太原南站已开通了多次列车,并安全性更好.已知“C150”次列车的平均速度是速度是次列车从吕梁站至太原南站所用时间比间均除外).求“C150”次列车和少.23.北京时间8月24日中午时间将长达30年.某学校为了解该校学生对此事件的关注与了解程度,对全校学生进行问卷测试,得分采用百分制,八年级学生中随机抽取20名学生的测试得分进行整理和分析(得分用为整数,共分为5组,A组:0x≤≤),下面给出了部分信息:E组:90100七年级被抽取的学生测试得分的所有数据为:87,88,93,66,90,74,八年级被抽取的学生测试得分中七年级、八年级被抽取的学生测试得分统计表平均数众数中位数七年级77a80.5根据以上信息,解答下列问题:(1)上述图表中:=a______,b=______,c=______;(2)根据以上数据,你认为该校七年级、八年级学生在关注与了解日本核污染水排海事件上,哪个年级的学生对事件的关注与了解程度更高?请说明理由(一条理由即可);(3)若该校七年级有学生900人,八年级有学生800人,估计该校这两个年级的学生测试得分在C组的人数一共有多少人?24.2022年4月16日,神舟十三号载人飞船返回舱成功着陆,任务取得圆满成功.航模店看准商机,同样花费320元,购进“天宫”模型的数量比“神舟”模型多4个且每个“天宫”模型成本比每个“神舟”模型成本少20%.(1)“神舟”和“天宫”模型的成本各多少元?(2)该航模店计划购买两种模型共100个,且每个“神舟”模型的售价为35元,“天宫”模型的售价为25元.设购买“神舟”模型a个,售卖这两种模型可获得的利润为w元,①求w与a的函数关系式(不要求写出a的取值范围);②若购进“神舟”模型的数量不超过“天宫”模型数量的一半,则购进“神舟”模型多少个时,销售这批模型可以获得最大利润?最大利润是多少?。

八年级(上)期中数学试卷+参考答案与试题解析(新人教版)

八年级(上)期中数学试卷+参考答案与试题解析(新人教版)

八年级(上)期中数学试卷一、选择题(共8个小题,每小题4分,共32分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.若等腰三角形的两边长分别是3和6,则这个三角形的周长是()A.12 B.15 C.12或15 D.93.下列命题中,正确的是()A.形状相同的两个三角形是全等形B.面积相等的两个三角形全等C.周长相等的两个三角形全等D.周长相等的两个等边三角形全等4.如图,△ABO关于x轴对称,点A的坐标为(1,﹣2),则点B的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,2)D.(﹣2,1)5.如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB=CE,则∠B的度数是()A.45°B.60°C.50°D.55°6.工人师傅常用角尺平分一个任意角.作法如下:如图所示,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC即是∠AOB的平分线.这种作法的道理是()A.HL B.SSS C.SAS D.ASA7.如图,AB∥DE,AF=DC,若要证明△ABC≌△DEF,还需补充的条件是()A.AC=DF B.AB=DE C.∠A=∠D D.BC=EF8.如图,△ABC中,已知∠B和∠C的平分线相交于点F,经过点F作DE∥BC,交AB于D,交AC于点E,若BD+CE=9,则线段DE的长为()A.9 B.8 C.7 D.6二、精心填一填(本大题有6个小题,每小题3分,共18分)9.若正n边形的每个内角都等于150°,则n= ,其内角和为.10.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.11.将一副三角板按如图摆放,图中∠α的度数是.12.已知P点是等边△ABC两边垂直平分线的交点,等边△ABC的面积为15,则△ABP的面积为.13.如下图,在△ABC中,AB=8,BC=6,AC的垂直平分线MN交AB、AC于点M、N.则△BCM 的周长为.14.如图,在△ABC中,∠C=90°,AD平分∠BAC,且CD=5,则点D到AB的距离为.三、解答题(共9个小题,共70分)15.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.16.如图,在△ABC 中,∠C=∠ABC=2∠A ,BD ⊥AC 于D ,求∠DBC 的度数.17.△ABC 在平面直角坐标系中的位置如图所示.(1)作出△ABC 关于y 轴对称的△AB l C l ;(2)点P 在x 轴上,且点P 到点B 与点C 的距离之和最小,直接写出点P 的坐标为 .18.如图所示,AD ,AE 是三角形ABC 的高和角平分线,∠B=36°,∠C=76°,求∠DAE 的度数.19.如图,在Rt △ABC 中,∠ABC=90°,点F 在CB 的延长线上且AB=BF ,过F 作EF ⊥AC 交AB 于D ,求证:DB=BC .20.如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.21.如图,四边形ABCD中,∠A=∠B=90°,E是AB上一点,且AE=BC,∠1=∠2.(1)证明:AB=AD+BC;(2)判断△CDE的形状?并说明理由.22.如图,已知AE∥BC,AE平分∠DAC.求证:AB=AC.23.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?八年级(上)期中数学试卷参考答案与试题解析一、选择题(共8个小题,每小题4分,共32分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各个选项进行判断即可.【解答】解:A、是轴对称图形,A不合题意;B、不是轴对称图形,B符合题意;C、是轴对称图形,C不合题意;D、是轴对称图形,D不合题意;故选:B.【点评】本题考查的是轴对称图形的概念,掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形是解题的关键.2.若等腰三角形的两边长分别是3和6,则这个三角形的周长是()A.12 B.15 C.12或15 D.9【考点】等腰三角形的性质.【专题】应用题;分类讨论.【分析】根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.【解答】解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B.【点评】本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.3.下列命题中,正确的是()A.形状相同的两个三角形是全等形B.面积相等的两个三角形全等C.周长相等的两个三角形全等D.周长相等的两个等边三角形全等【考点】命题与定理.【分析】分析是否正确,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】A.形状和大小完全相同的两个三角形才是全等三角形,故原命题错误,B.面积相等的两个三角形不一定全等,故原命题错误,C.周长相等的两个三角形不一定全等,故原命题错误,D.周长相等的两个等边三角形全等,正确;故选D.【点评】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.如图,△ABO关于x轴对称,点A的坐标为(1,﹣2),则点B的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,2)D.(﹣2,1)【考点】关于x轴、y轴对称的点的坐标.【专题】数形结合;几何变换.【分析】由于△ABO关于x轴对称,所以点B与点A关于x轴对称.根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于x轴对称的点,横坐标相同,纵坐标互为相反数,得出结果.【解答】解:由题意,可知点B与点A关于x轴对称,又∵点A的坐标为(1,﹣2),∴点B的坐标为(1,2).故选C.【点评】本题考查了平面直角坐标系中关于x轴成轴对称的两点的坐标之间的关系.能够根据题意得出点B与点A关于x轴对称是解题的关键.5.如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB=CE,则∠B的度数是()A.45°B.60°C.50°D.55°【考点】线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到CA=CE,根据等腰三角形的性质得到∠CAE=∠E,根据三角形的外角的性质得到∠ACB=2∠E,根据三角形内角和定理计算即可.【解答】解:∵MN是AE的垂直平分线,∴CA=CE,∴∠CAE=∠E,∴∠ACB=2∠E,∵AB=CE,∴AB=AC,∴∠B=∠ACB=2∠E,∵∠A=105°,∴∠B+∠E=75°,∴∠B=50°,故选:C.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.6.工人师傅常用角尺平分一个任意角.作法如下:如图所示,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC即是∠AOB的平分线.这种作法的道理是()A.HL B.SSS C.SAS D.ASA【考点】全等三角形的判定与性质.【专题】作图题.【分析】由三边相等得△COM≌△CON,即由SSS判定三角全等.做题时要根据已知条件结合判定方法逐个验证.【解答】解:由图可知,CM=CN,又OM=ON,OC为公共边,∴△COM≌△CON,∴∠AOC=∠BOC,即OC即是∠AOB的平分线.故选B.【点评】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.7.如图,AB∥DE,AF=DC,若要证明△ABC≌△DEF,还需补充的条件是()A.AC=DF B.AB=DE C.∠A=∠D D.BC=EF【考点】全等三角形的判定.【分析】根据平行线的性质得出∠A=∠D,求出AC=DF,根据全等三角形的判定定理逐个判断即可.【解答】解:AB=DE,理由是:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AF+FC=DC+FC,∴AC=DF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),即选项B正确,选项A、C、D都不能推出△ABC≌△DEF,即选项A、C、D都错误,故选B.【点评】本题考查了平行线的性质,全等三角形的判定定理的应用,能熟练地运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.8.如图,△ABC中,已知∠B和∠C的平分线相交于点F,经过点F作DE∥BC,交AB于D,交AC于点E,若BD+CE=9,则线段DE的长为()A.9 B.8 C.7 D.6【考点】平行线的性质;角平分线的定义;等腰三角形的性质.【专题】计算题.【分析】本题主要利用两直线平行,内错角相等,角平分线的定义以及三角形中等角对等边的性质进行做题.【解答】解:∵∠B和∠C的平分线相交于点F,∴∠DBF=∠FBC,∠BCF=∠ECF;∵DE∥BC,∴∠DFB=∠FBC=∠FBD,∠EFC=∠FCB=∠ECF,∴DF=DB,EF=EC,即DE=DF+FE=DB+EC=9.故选A.【点评】本题主要考查等腰三角形的性质,解答此类题关键是在复杂图形之中辨认出应用性质的基本图形,从而利用性质和已知条件计算.二、精心填一填(本大题有6个小题,每小题3分,共18分)9.若正n边形的每个内角都等于150°,则n= 12 ,其内角和为1800°.【考点】多边形内角与外角.【分析】先根据多边形的内角和定理求出n,再根据多边形的内角和求出多边形的内角和即可.【解答】解:∵正n边形的每个内角都等于150°,∴=150°,解得,n=12,其内角和为(12﹣2)×180°=1800°.故答案为:12;1800°.【点评】本题考查的是多边形内角与外角的知识,掌握多边形内角和定理:n边形的内角和为:(n﹣2)×180°是解题的关键.10.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是 5 .【考点】角平分线的性质.【分析】要求△ABD的面积,有AB=5,可为三角形的底,只求出底边上的高即可,利用角的平分线上的点到角的两边的距离相等可知△ABD的高就是CD的长度,所以高是2,则可求得面积.【解答】解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离=CD=2,∴△ABD的面积是5×2÷2=5.故答案为:5.【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质.注意分析思路,培养自己的分析能力.11.将一副三角板按如图摆放,图中∠α的度数是 105° .【考点】三角形的外角性质.【专题】计算题.【分析】由于一副三角板按如图摆放,则∠1=60°,∠2=45°,∠2+∠3=90°,根据互余得到∠3=45°,然后根据三角形外角性质得∠α=∠1+∠3=105°. 【解答】解:根据题意得∠1=60°,∠2=45°,∠2+∠3=90°,∴∠3=90°﹣45°=45°,∴∠α=∠1+∠3=60°+45°=105°.故答案为105°.【点评】本题考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于和它不相邻的任何一个内角.12.已知P 点是等边△ABC 两边垂直平分线的交点,等边△ABC 的面积为15,则△ABP 的面积为 5 .【考点】线段垂直平分线的性质;等边三角形的性质.【分析】过P 作PF ⊥BC 于F ,连接PC ,根据等边三角形性质得出AB=BC=AC ,根据线段垂直平分线性质得出PD=PE=PF ,根据三角形面积公式求出S △ABP =S △BCP =S △ACP =S △ABC ,即可得出答案.【解答】解:如图:过P 作PF ⊥BC 于F ,连接PC , ∵P 点是等边△ABC 两边垂直平分线的交点, ∴AB=BC=AC ,PD=PE=PF ,∴AB ×PD=BC ×PF=AC ×PE ,∴S △ABP =S △BCP =S △ACP =S △ABC , ∵等边△ABC 的面积为15,∴△ABP 的面积为5, 故答案为:5.【点评】本题考查了三角形面积公式,等边三角形的性质,线段垂直平分线性质的应用,能求出AB=BC=AC ,PD=PE=PF 是解此题的关键.13.如下图,在△ABC 中,AB=8,BC=6,AC 的垂直平分线MN 交AB 、AC 于点M 、N .则△BCM 的周长为 14 .【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质,得AM=CM ,则△BCM 的周长即为AB+BC 的值.【解答】解:∵AC 的垂直平分线MN 交AB 、AC 于点M 、N ,∴AM=CM .∴△BCM 的周长=BC+BM+CM=BC+AB=14.【点评】此题主要是线段垂直平分线的性质的运用.14.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,且CD=5,则点D 到AB 的距离为 5 .【考点】角平分线的性质.【分析】直接根据角平分线的性质定理即可得出结论.【解答】解:过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=5,∴DE=5.故答案为:5.【点评】本题主要考查了角平分线的性质,熟知角平分线上的点到角两边的距离相等是解答此题的关键.三、解答题(共9个小题,共70分)15.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】易证BC=EF,即可证明△ABC≌△DEF,可得∠A=∠D.即可解题.【解答】证明:∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ABC ≌△DEF 是解题的关键.16.如图,在△ABC 中,∠C=∠ABC=2∠A ,BD ⊥AC 于D ,求∠DBC 的度数.【考点】三角形内角和定理.【分析】根据三角形的内角和定理与∠C=∠ABC=2∠A ,即可求得△ABC 三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC 的度数.【解答】解:∵∠C=∠ABC=2∠A , ∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.∴∠C=∠ABC=2∠A=72°. ∵BD ⊥AC ,∴∠DBC=90°﹣∠C=18°.【点评】本题考查的是等腰三角形的性质,解答此类题目时往往用到三角形的内角和是180°这一隐藏条件.17.△ABC 在平面直角坐标系中的位置如图所示.(1)作出△ABC 关于y 轴对称的△AB l C l ;(2)点P 在x 轴上,且点P 到点B 与点C 的距离之和最小,直接写出点P 的坐标为 (﹣,0) .【考点】作图-轴对称变换;轴对称-最短路线问题.【专题】作图题.【分析】(1)根据网格结构找出点B 、C 关于y 轴的对称点B l 、C l 的位置,然后顺次连接即可;(2)找出点C 关于x 轴的对称点C′,连接BC′与x 轴的交点即为所求的点P ,根据对称性写出点C′的坐标,再根据点B 、C′的坐标求出点P 到CC′的距离,然后求出OP 的长度,即可得解.【解答】解:(1)△ABC 关于y 轴对称的△AB l C l 如图所示;(2)如图,点P 即为所求作的到点B 与点C 的距离之和最小, 点C′的坐标为(﹣1,﹣1),∵点B (﹣2,2),∴点P 到CC′的距离为=,∴OP=1+=,点P (﹣,0).故答案为:(﹣,0).【点评】本题考查了利用轴对称变换作图,利用轴对称确定最短路线问题,熟练掌握网格结构,准确找出对应点的位置是解题的关键.18.如图所示,AD ,AE 是三角形ABC 的高和角平分线,∠B=36°,∠C=76°,求∠DAE 的度数.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC的度数,AE是角平分线,有∠EAC=∠BAC,故∠DAE=∠EAC﹣∠DAC.【解答】解:∵∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=68°,∵AE是角平分线,∴∠EAC=∠BAC=34°.∵AD是高,∠C=76°,∴∠DAC=90°﹣∠C=14°,∴∠DAE=∠EAC﹣∠DAC=34°﹣14°=20°.【点评】本题主要考查了三角形内角和定理、角的平分线的性质、直角三角形的性质,比较综合,难度适中.19.如图,在Rt△ABC中,∠ABC=90°,点F在CB的延长线上且AB=BF,过F作EF⊥AC交AB于D,求证:DB=BC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据余角的定义得出∠A=∠F,再根据ASA证明△FDB和△BAC全等,最后根据全等三角形的性质证明即可.【解答】证明:∵∠ABC=90°,∴∠DBF=90°,∴∠DBF=∠ABC,∵EF⊥AC,∴∠AED=∠DBF=90°,∵∠ADE=∠BDF∴∠A=∠F,在△FDB和△ACB中,,∴△ABC≌△FBD(ASA),∴DB=BC.【点评】此题考查全等三角形的判定和性质,关键是利用互余得出∠D=∠B,再根据ASA证明三角形全等.20.如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据∠1=∠2可得∠BAC=∠EAD,再加上条件AB=AE,∠C=∠D可证明△ABC≌△AED.【解答】证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD,∵在△ABC和△AED中,,∴△ABC≌△AED(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.如图,四边形ABCD中,∠A=∠B=90°,E是AB上一点,且AE=BC,∠1=∠2.(1)证明:AB=AD+BC;(2)判断△CDE的形状?并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)易证DE=CE,即可证明RT△ADE≌RT△BEC,可得AD=BE,即可解题;(2)由RT△ADE≌RT△BEC可得∠AED=∠BCE,即可求得∠DEC=90°,即可解题.【解答】证明:(1)∵∠1=∠2,∴DE=CE,∵在RT△ADE和RT△BEC中,,∴RT△ADE≌RT△BEC,(HL)∴AD=BE,∵AB=AE+BE,∴AB=AD+BC;(2)∵RT△ADE≌RT△BEC,∴∠AED=∠BCE,∵∠BCE+∠CEB=90°,∴∠CEB+∠AED=90°,∴∠DEC=90°,∴△CDE为等腰直角三角形.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角、对应边相等的性质,本题中求证RT△ADE≌RT△BEC是解题的关键.22.如图,已知AE∥BC,AE平分∠DAC.求证:AB=AC.【考点】等腰三角形的判定与性质;平行线的性质;等腰三角形的判定.【专题】证明题;压轴题.【分析】根据角平分线的定义可得∠1=∠2,再根据两直线平行,同位角相等可得∠1=∠B,两直线平行,内错角相等可得∠2=∠C,从而得到∠B=∠C,然后根据等角对等边即可得证.【解答】证明:∵AE平分∠DAC,∴∠1=∠2,∵AE∥BC,∴∠1=∠B,∠2=∠C,∴∠B=∠C,∴AB=AC.【点评】本题考查了等腰三角形的判定,平行线的性质,是基础题,熟记性质是解题的关键.23.(2011秋•海陵区期末)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A 点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?【考点】全等三角形的判定.【专题】证明题;动点型.【分析】(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP.(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.【解答】解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.【点评】本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。

2015年山东省威海市开发区七年级上学期数学期中试卷带解析答案(五四学制)

2015年山东省威海市开发区七年级上学期数学期中试卷带解析答案(五四学制)

2014-2015学年山东省威海市开发区七年级(上)期中数学试卷(五四学制)一.选择题1.(3分)下面所给的交通标志图中是轴对称图形的是()A.B.C.D.2.(3分)如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠AOD=100°,则∠B的度数为()A.50°B.30°C.80°D.100°3.(3分)在△ABC中,若∠A=∠C=∠B,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形4.(3分)下列长度的三条线段中,能组成三角形的是()A.4cm,5cm,9cm B.7cm,7cm,16cmC.0.1cm,0.1cm,0.1cm D.3cm,24cm,8cm5.(3分)如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.以其中三个作为已知条件,不能判断△ABC与△DEF全等的是()A.(1)(5)(2)B.(1)(2)(3)C.(4)(6)(1)D.(2)(3)(4)6.(3分)等腰三角形有两条边长为4cm和9cm,则该三角形的周长是()A.17cm B.22cm C.17cm或22cm D.18cm7.(3分)△ABC中,AB=AC,AB边的中垂线与直线AC所成的角为50°,则∠B 等于()A.70°B.20°或70°C.40°或70°D.40°或20°8.(3分)如图所示,折叠矩形纸条ABCD,使B,C两点落在AD边的P点处,折痕为EF,GH,若∠FPH的度数恰好为90°,PF=8,PH=6,则矩形ABCD的边BC 的长为()A.20 B.22 C.24 D.309.(3分)如图,AC垂直平分BD,垂足为E,连接AB,BC,CD,AD,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AE=CE D.△BEC≌△DEC10.(3分)如图,长方体的底面边长为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么所用细线最短需要()A.12cm B.11cm C.10cm D.9cm11.(3分)三角形内有一点,它到三角形三边的距离都相等,同时与三角形三顶点的距离也都相等,则这个三角形是()A.等腰三角形B.等腰直角三角形C.直角三角形D.等边三角形12.(3分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则BE的长为()A.B.C.D.二.填空题13.(3分)要使六边形木架不变形,至少要钉上根木条.14.(3分)如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为24,BC=10,则AB=.15.(3分)将一张长方形纸片按如图所示的方式进行折叠,其中BC,BD为折痕,则∠BCD的度数为.16.(3分)如图,已知AC=BD,∠A=∠D,请你添一个直接条件,,使△AFC≌△DEB.17.(3分)如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=度.18.(3分)如图,在△ABC中,∠C=30°,DE垂直平分BC,DE=5,则DB=.三.解答题19.(7分)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN,点A,B,M,N均在小正方形的顶点上.在方格纸中,画出四边形ABCD(四边形的各定点均在小正方形的顶点上),使四边形ABCD是一直线MN为对称轴对称的图形,点A的对称点为点D,点B的对称点为点C.20.(8分)在河岸l的同侧有A、B两村,在河边修一水泵站P,使所用的水管最短,另修一码头Q,使Q与A、B两村的距离相等,试画出P、Q所在的位置.21.(9分)如图,已知AB∥DE,BC∥EF,C在AF上,且AD=CF,△ABC与△DEF 全等吗?请说明理由.22.(10分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AB=13cm,BC=12cm,求CD的长.23.(10分)如图,AB=AC,BD⊥AC,CE⊥AB,垂足分别为D,E,BD,CE相交于点F,BE与CD相等吗?请说明理由.24.(10分)如图,某隧道的横截面是一个半径为4.2m的半圆形,一辆宽为2.6m,高4米的卡车能通过隧道吗?请说明理由.25.(12分)如图,AF是△ABC的角平分线,BD⊥AF交AF的延长线于D,DE ∥AC,交AB于E,AE与BE相等吗?请说明理由.2014-2015学年山东省威海市开发区七年级(上)期中数学试卷(五四学制)参考答案与试题解析一.选择题1.(3分)下面所给的交通标志图中是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.2.(3分)如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠AOD=100°,则∠B的度数为()A.50°B.30°C.80°D.100°【解答】解:∵∠A=50°,∠AOD=100°,∴∠D=180°﹣50°﹣100°=30°∵OA=OC,OD=OB,∠AOD=∠COB,∴△AOD≌△COB(SAS),∴∠B=∠D=30°.故选:B.3.(3分)在△ABC中,若∠A=∠C=∠B,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形【解答】解:∵在△ABC中,若∠A=∠C=∠B,∠A+∠B+∠C=180°,∴∠B+∠B+∠B=180°,∴∠B=108°,∴∠A=∠C=36°,所以此三角形是钝角三角形.故选:C.4.(3分)下列长度的三条线段中,能组成三角形的是()A.4cm,5cm,9cm B.7cm,7cm,16cmC.0.1cm,0.1cm,0.1cm D.3cm,24cm,8cm【解答】解:A、∵5+4=9,∴不能组成三角形,故本选项错误;B、∵7+7=14<16,∴不能组成三角形,故本选项错误;C、∵0.1﹣0.1<0.1<0.1+0.1,∴能组成三角形,故本选项正确;D、∵3+8=11<24,∴不能组成三角形,故本选项错误.故选:C.5.(3分)如图,在△ABC与△DEF中,给出以下六个条件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.以其中三个作为已知条件,不能判断△ABC与△DEF全等的是()A.(1)(5)(2)B.(1)(2)(3)C.(4)(6)(1)D.(2)(3)(4)【解答】解:A、正确,符合判定方法SAS;B、正确,符合判定方法SSS;C、正确,符合判定方法AAS;D、不正确,不符合全等三角形的判定方法.故选:D.6.(3分)等腰三角形有两条边长为4cm和9cm,则该三角形的周长是()A.17cm B.22cm C.17cm或22cm D.18cm【解答】解:当腰是9cm时,底边是4cm,此时三角形的周长为9+9+4=22(cm);当底边是9时,此时另两边是4,而4+4<9,三者构不成三角形,此情况不成立;所以周长为22.故选:B.7.(3分)△ABC中,AB=AC,AB边的中垂线与直线AC所成的角为50°,则∠B 等于()A.70°B.20°或70°C.40°或70°D.40°或20°【解答】解:如图①,当AB的中垂线与线段AC相交时,则可得∠ADE=50°,∵∠AED=90°,∴∠A=90°﹣50°=40°,∵AB=AC,∴∠B=∠C==70°;如图②,当AB的中垂线与线段CA的延长线相交时,则可得∠ADE=50°,∵∠AED=90°,∴∠DAE=90°﹣50°=40°,∴∠BAC=140°,∵AB=AC,∴∠B=∠C==20°.∴底角B为70°或20°.故选:B.8.(3分)如图所示,折叠矩形纸条ABCD,使B,C两点落在AD边的P点处,折痕为EF,GH,若∠FPH的度数恰好为90°,PF=8,PH=6,则矩形ABCD的边BC 的长为()A.20 B.22 C.24 D.30【解答】解:如图,由题意得:BF=PF=8,CH=PH=6;∵∠FPH=90°,PF=8,PH=6,∴=10,∴BC=6+8+10=24.故选:C.9.(3分)如图,AC垂直平分BD,垂足为E,连接AB,BC,CD,AD,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AE=CE D.△BEC≌△DEC【解答】解:∵AC垂直平分BD,∴AB=AD,BC=DC,∴A正确;∴E为BD中点,∴AC平分∠BCD,∴B正确;若AE=CE,则E为AC中点,则有BA=BC,由条件可知不一定成立,故C不一定成立;在△BEC和△DEC中,,∴△BEC≌△DEC(SAS),∴D正确;故选:C.10.(3分)如图,长方体的底面边长为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么所用细线最短需要()A.12cm B.11cm C.10cm D.9cm【解答】解:将长方体展开,连接A、B′,则AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.故选:C.11.(3分)三角形内有一点,它到三角形三边的距离都相等,同时与三角形三顶点的距离也都相等,则这个三角形是()A.等腰三角形B.等腰直角三角形C.直角三角形D.等边三角形【解答】解:∵三角形内有一点,它到三角形三边的距离都相等,同时与三角形三顶点的距离也都相等,∴此点是三角形的角平分线的交点,也是三边的垂直平分线的交点,∵这个三角形一定是等边三角形.故选:D.12.(3分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则BE的长为()A.B.C.D.【解答】解:如图,∵∠B=90°,AB=3,AC=5,∴=4;由题意得:AE=CE(设为λ),则BE=4﹣λ;由勾股定理得:λ2=(4﹣λ)2+32,解得:λ=,∴BE=4﹣λ=.故选:D.二.填空题13.(3分)要使六边形木架不变形,至少要钉上3根木条.【解答】解:如图所示,至少要钉上3根木条.故答案为:3.14.(3分)如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为24,BC=10,则AB=14.【解答】解:∵DE是AB的中垂线,∴AE=BE,∵△BCE的周长为24,∴BE+CE+BC=24,∴AC+BC=24,∵BC=10,∴AC﹣24﹣10=14,∵AB=AC,∴AB=14,故答案为:14.15.(3分)将一张长方形纸片按如图所示的方式进行折叠,其中BC,BD为折痕,则∠BCD的度数为90°.【解答】解:∵由折叠的性质得到∠1=∠2,∠3=∠4,由平角的定义得∠1+∠2+∠3+∠4=180°,∴∠BCD=∠2+∠3=90°.故答案为:90°.16.(3分)如图,已知AC=BD,∠A=∠D,请你添一个直接条件,∠ACF=∠DBE,使△AFC≌△DEB.【解答】解:在△AFC和△DEB中,,∴△AFC≌△DEB(ASA).故答案为:∠ACF=∠DBE.17.(3分)如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=270度.【解答】解:如图,根据题意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°﹣(∠3+∠4)=360°﹣90°=270°.18.(3分)如图,在△ABC中,∠C=30°,DE垂直平分BC,DE=5,则DB=10.【解答】解:∵DE垂直平分BC,∴BD=CD,在R和△DEC中,∵∠C=30°,∴CD=2DE=10,∴BD=10,故答案为:10.三.解答题19.(7分)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN,点A,B,M,N均在小正方形的顶点上.在方格纸中,画出四边形ABCD(四边形的各定点均在小正方形的顶点上),使四边形ABCD是一直线MN为对称轴对称的图形,点A的对称点为点D,点B的对称点为点C.【解答】解:如图所示.20.(8分)在河岸l的同侧有A、B两村,在河边修一水泵站P,使所用的水管最短,另修一码头Q,使Q与A、B两村的距离相等,试画出P、Q所在的位置.【解答】解:如图所示:,点P、Q即为所求.21.(9分)如图,已知AB∥DE,BC∥EF,C在AF上,且AD=CF,△ABC与△DEF 全等吗?请说明理由.【解答】解:全等.∵AB∥DE,∴∠A=∠EDF,∵BC∥EF,∴∠ACB=∠F,∵AD=CF,∴AD+CD=CF+CD,即AC=DF,在△ABC与△DEF中,,∴△ABC≌△DEF(ASA).22.(10分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AB=13cm,BC=12cm,求CD的长.【解答】解:如图所示,∵在Rt△ABC中,∠ACB=90°,AB=13cm,BC=12cm,∴AC==5cm.∵AC•BC=AB•CD∴CD===cm.23.(10分)如图,AB=AC,BD⊥AC,CE⊥AB,垂足分别为D,E,BD,CE相交于点F,BE与CD相等吗?请说明理由.【解答】证明:BE=CD,理由为:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS),∴AD=AE,∵AB=AC,∴AB﹣AE=AC﹣AD,即EB=CD.24.(10分)如图,某隧道的横截面是一个半径为4.2m的半圆形,一辆宽为2.6m,高4米的卡车能通过隧道吗?请说明理由.【解答】解:如图所示:当OB=2,∵AB==≈3.69m∴一辆高2.6米,宽4米的卡车能通过隧道.25.(12分)如图,AF是△ABC的角平分线,BD⊥AF交AF的延长线于D,DE ∥AC,交AB于E,AE与BE相等吗?请说明理由.【解答】解:AE=BE,理由为:∵AF平分∠BAC,∴∠EAD=∠CAD,∵DE∥AC,∴∠ADE=∠CAD,∴∠EAD=∠ADE,∴AE=DE,∵BD⊥AF,∴∠EDB+∠ADE=90°,∵∠BDE+∠BAD=90°,∴∠EBD+∠BAD=90°,∴∠BDE=∠EBD,∴BE=ED,∴AE=BE.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

2024年山东省威海市中考数学试题(含答案)

2024年山东省威海市中考数学试题(含答案)

威海市2024年初中学业考试数学注意事项:1.本试卷共6页,共120分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.答题前,请务必用0.5毫米黑色签字笔将自己的姓名、考生号、座号填写在答题卡和试卷规定的位置上.3.所有的试题都必须在专用的“答题卡”上作答.写在试卷上或答题卡指定区域以外的答案一律无效.4.选择题用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号、作图题用2B铅笔(加黑加粗,描写清楚)或0.5毫米的黑色签字笔作答.其它题目用0.5毫米的黑色签字笔作答.如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.5.不要求保留精确度的题目,计算结果保留准确值.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.一批食品,标准质量为每袋.现随机抽取4个样品进行检测,把超过标准质量的克数用正数表示,不足的克数用负数表示.那么,最接近标准质量的是()A. B. C. D.【答案】C【解析】【分析】本题考查了绝对值的意义,正负数的意义,直接利用正负数的意义以及绝对值的意义可得最接近标准是哪一袋.【详解】解:∵超过标准质量的克数用正数表示,不足的克数用负数表示.∴∴最接近标准质量的是故选:C.2.据央视网2023年10月11日消息,中国科学技术大学中国科学院量子创新研究院与上海微系统所、国家并行计算机工程技术研究中心合作,成功构建了255个光子的量子计算原型机“九章三号”,再度刷新了光量子信息的技术水平和量子计算优越性的世界纪录.“九章三号”处理高斯玻色取样的速度比上一代“九章二号”提升一百万倍,在百万分之一秒时间内所处理的最高复杂度的样本,需要当前最强的超级计算机花费超过二百亿年的时间.将“百万分之一”用科学记数法表示为()A. B. C. D.【答案】B【解析】【分析】本题考查了用科学记数法表示绝对值较小的数,用科学记数法表示绝对值较小的数,一般形式为,其中,为整数.【详解】解:百万分之一.故选:B.3.下列各数中,最小的数是()A. B. C. D.【答案】A【解析】【分析】本题考查了实数的大小比较,根据实数的大小比较即可求解.【详解】解:,∵∴最小的数是故选:A.4.下列运算正确的是()A. B.C. D.【答案】C【解析】【分析】本题主要考查合并同类项、同底数幂的除法、积的乘方,根据合并同类项、同底数幂的除法、积的乘方的运算法则计算即可.【详解】A、,运算错误,该选项不符合题意;B、,运算错误,该选项不符合题意;C、,运算正确,该选项符合题意;D、,运算错误,该选项不符合题意.故选:C5.下列几何体都是由四个大小相同的小正方体搭成的.其中主视图、左视图和俯视图完全相同的是()A. B. C. D.【答案】D 【解析】【分析】本题考查了三视图;分别画出四个选项中几何体的左视图与俯视图,通过比较即可得出答案.【详解】解:A 、主视图为,左视图为,主视图与左视图不同,故该选项不符合题意;B 、主视图为,左视图为,主视图与左视图不同,故该选项不符合题意;C 、主视图为,左视图为,主视图与左视图不同,故该选项不符合题意;D 、主视图为,左视图为,主视图与左视图相同,故该选项符合题意;故选:D .6.如图,在扇形中,,点是的中点.过点作交于点,过点作,垂足为点.在扇形内随机选取一点,则点落在阴影部分的概率是()A. B. C. D.【答案】B 【解析】【分析】本题考查的是求不规则图形的面积,几何概率,根据阴影部分面积等于扇形的面积,即可求解.【详解】解:∵,,∴四边形是矩形,∴∴∵点是的中点∴∴∴∴,,点落在阴影部分的概率是故选:B.7.定义新运算:①在平面直角坐标系中,表示动点从原点出发,沿着轴正方向()或负方向().平移个单位长度,再沿着轴正方向()或负方向()平移个单位长度.例如,动点从原点出发,沿着轴负方向平移个单位长度,再沿着轴正方向平移个单位长度,记作.②加法运算法则:,其中,,,为实数.若,则下列结论正确的是()A.,B.,C.,D.,【答案】B【解析】【分析】本题考查了新定义运算,平面直角坐标系,根据新定义得出,即可求解.【详解】解:∵,∴解得:,故选:B.8.《九章算术》是我国古老的数学经典著作,书中提到这样一道题目:以绳测井.若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.绳长、井深各几何?题目大意是:用绳子测量水井的深度.如果将绳子折成三等份,一份绳长比井深多尺;如果将绳子折成四等份,一份绳长比井深多尺.绳长、井深各是多少尺?若设绳长尺,井深尺,则符合题意的方程组是()A. B.C. D.【答案】C【解析】【分析】本题考查二元一次方程组的应用,此题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺,不变的是井深,据此即可得方程组.正确理解题意,找准等量关系解题的关键.【详解】解:设绳长x尺,井深y尺,依题意,得:.故选:C.9.如图,在中,对角线,交于点,点在上,点在上,连接,,,交于点.下列结论错误的是()A.若,则B.若,,,则C.若,,则D.若,,则【答案】D【解析】【分析】本题考查了相似三角形的性质与判定,菱形的性质与判定,垂直平分线的性质,全等三角形的性质与判定;根据相似三角形的性质与判定即可判断A,根据题意可得四边形是的角平分线,进而判断四边形是菱形,证明可得则垂直平分,即可判断B选项,证明四边形是菱形,即可判断C选项,D选项给的条件,若加上,则成立,据此,即可求解.【详解】解:∵四边形是平行四边形,∴A.若,即,又,∴∴∴,故A选项正确,B.若,,,∴是的角平分线,∴∵∴∴∴∴四边形是菱形,∴在中,∴∴又∵∴∴,故B选项正确,C.∵,∴∵,∴∴∴∵∴∴四边形是菱形,又∵∴,则∴∴∴,故C选项正确;D.若,则四边形是菱形,由,且时,可得垂直平分,∵∴,故D选项不正确故选:D.10.同一条公路连接,,三地,地在,两地之间.甲、乙两车分别从地、地同时出发前往地.甲车速度始终保持不变,乙车中途休息一段时间,继续行驶.下图表示甲、乙两车之间的距离()与时间()的函数关系.下列结论正确的是()A.甲车行驶与乙车相遇B.,两地相距C.甲车的速度是D.乙车中途休息分钟【答案】A【解析】【分析】本题考查了函数图象,根据函数图象结合选项,逐项分析判断,即可求解.【详解】解:根据函数图象可得两地之间的距离为()两车行驶了小时,同时到达地,如图所示,在小时时,两侧同向运动,在第2小时,即点时,两者距离发生改变,此时乙车休息,点的意义是两车相遇,点意义是乙车休息后再出发,∴乙车休息了1小时,故D不正确,设甲车的速度为,乙车的速度为,根据题意,乙车休息后两者同时到达地,则甲车的速度比乙车的速度慢,∵即在时,乙车不动,则甲车的速度是,∴乙车速度为,故C不正确,∴的距离为千米,故B不正确,设小时两辆车相遇,依题意得,解得:即小时时,两车相遇,故A正确故选:A.二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)11.计算:________.【答案】【解析】【分析】本题考查了二次根式的混合运算,根据二次根式的性质以及二次根式的乘法进行计算即可求解.【详解】解:故答案为:.12.因式分解:________.【答案】【解析】【分析】本题主要考查了用完全平方公式分解因式,先按照多项式乘以多项式展开,然后利用完全平方公式分解因式即可.【详解】解:故答案为:.13.如图,在正六边形中,,,垂足为点I.若,则________.【答案】##50度【解析】【分析】本题考查了正六边形的内角和、平行平行线的性质及三角形内角和定理,先求出正六边形的每个内角为,即,则可求得的度数,根据平行线的性质可求得的度数,进而可求出的度数,再根据三角形内角和定理即可求出的度数.【详解】解:∵正六边形的内角和,每个内角为:,,,,,,,,,,.故答案为:.14.计算:________.【答案】##【解析】【分析】本题考查分式的加减,根据同分母分式的加减法则解题即可.【详解】.故答案为:.15.如图,在平面直角坐标系中,直线与双曲线交于点,.则满足的的取值范围______.【答案】或【解析】【分析】本题考查了一次函数与反比例函数的交点问题,根据图象解答即可求解,利用数形结合思想解答是解题的关键.【详解】解:由图象可得,当或时,,∴满足的的取值范围为或,故答案为:或.16.将一张矩形纸片(四边形)按如图所示的方式对折,使点C落在上的点处,折痕为,点D落在点处,交于点E.若,,,则________.【答案】【解析】【分析】本题考查矩形的折叠问题,全等三角形的判定和性质,勾股定理,先根据勾股定理求出,然后证明,得到,,即可得到,,然后在中,利用解题即可.【详解】解:在中,,由折叠可得,,又∵是矩形,∴,∴,∴,又∵,∴,∴,,∴,,∴,,设,则,在中,,即,解得:,故答案为.三、解答题(本大题共8小题,共72分)17.某公司为节能环保,安装了一批型节能灯,一年用电千瓦·时.后购进一批相同数量的型节能灯,一年用电千瓦·时.一盏型节能灯每年的用电量比一盏型节能灯每年用电量的倍少千瓦·时.求一盏型节能灯每年的用电量.【答案】千瓦·时,过程见详解【解析】【分析】本题考查分式方程,根据题意列方程是关键,并注意检验.根据两种节能灯数量相等列式分式方程求解即可.【详解】解:设一盏型节能灯每年的用电量为千瓦·时,则一盏型节能灯每年的用电量为千瓦·时整理得解得经检验:是原分式方程的解.答:一盏型节能灯每年的用电量为千瓦·时18.为增强学生体质,某校在八年级男生中试行“每日锻炼,每月测试”的引体向上训练活动,设定6个及以上为合格.体育组为了解一学期的训练效果,随机抽查了20名男生2至6月份的测试成绩.其中,2月份测试成绩如表1,6月份测试成绩如图1(尚不完整).整理本学期测试数据得到表2和图2(尚不完整).2月份测试成绩统计表个数人数表1本学期测试成绩统计表1平均数/个众数/个中位数/个合格率2月3月4月5月6月表2请根据图表中的信息,解答下列问题:(1)将图1和图2中的统计图补充完整,并直接写出a,b,c的值;(2)从多角度分析本次引体向上训练活动的效果;(3)若将此活动在邻校八年级推广,该校八年级男生按400人计算,以随机抽查的20名男生训练成绩为样本,估算经过一学期的引体向上训练,可达到合格水平的男生人数.【答案】(1)见解析,(2)见解析(3)【解析】【分析】(1)根据总人数减去引体向上为其他个数人数,进而补充条形统计图,根据题意求得合格率,补充折线统计图,根据平均数,众数的定义,即可得出的值;(2)根据平均数,众数,中位数,合格率,分析;(3)根据样本估计总体即可求解.【小问1详解】解:月测试成绩中,引体向上个的人数为根据表2可得,;【小问2详解】解:本次引体向上训练活动的效果明显,从平均数和合格率看,平均数和合格率逐月增加,从中位数看,引体向上个数逐月增加,从众数看,引体向上的个数越来越大,(答案不唯一,合理即可)【小问3详解】解:(人)答:估算经过一学期的引体向上训练,可达到合格水平的男生人数为人【点睛】本题考查了条形统计图,折线统计图,统计表,样本估计总体,以及求平均数,众数,中位数的意义;掌握相关的统计量的意义是解题的关键.19.某校九年级学生开展利用三角函数解决实际问题的综合与实践活动,活动之一是测量某护堤石坝与地平面的倾斜角.测量报告如下表(尚不完整)课题测量某护堤石坝与地平面的倾斜角成员组长:×××组员:×××,×××,×××测量工具竹竿,米尺测量示意图说明:是一根笔直的竹竿.点是竹竿上一点.线段的长度是点到地面的距离.是要测量的倾斜角.测量数据…………(1)设,,,,,,,,请根据表中的测量示意图,从以上线段中选出你认为需要测量的数据,把表示数据的小写字母填写在“测量数据”一栏.(2)根据()中选择的数据,写出求的一种三角函数值的推导过程.(3)假设,,,根据()中的推导结果,利用计算器求出的度数,你选择的按键顺序为________.【答案】(1),,,;(2),推导见解析;(3).【解析】【分析】()根据题意选择需要的数据即可;()过点作于点,可得,得到,即得,得到,再根据正弦的定义即可求解;()根据()的结果即可求解;本题考查了解直角三角形,相似三角形的的判定和性质,正确作出辅助线是解题的关键.【小问1详解】解:需要的数据为:,,,;【小问2详解】解:过点作于点,则,∵,∴,∴∴,即∴,∴;【小问3详解】解:∵,∴按键顺序为,故答案为:.20.感悟如图1,在中,点,在边上,,.求证:.应用(1)如图2,用直尺和圆规在直线上取点,点(点在点的左侧),使得,且(不写作法,保留作图痕迹);(2)如图3,用直尺和圆规在直线上取一点,在直线上取一点,使得,且(不写作法,保留作图痕迹).【答案】见解析【解析】【分析】本题主要考查全等三角形的判定及性质、尺规作图:证明,即可求得;应用(1):以点为圆心,以长度为半径作圆,交直线于一点,该点即为点,以点为圆心,以长度为半径作圆,交直线于一点,该点即为点,连接,;应用(2):以点为圆心,以长为半径作圆,交的延长线于一点,该点即为点,以点为圆心,以长为半径作圆,交直线于一点,该点即为点,连接.【详解】∵,∴.在和中∴.∴.应用(1):以点为圆心,以长度为半径作圆,交直线于一点,该点即为点,以点为圆心,以长度为半径作圆,交直线于一点,该点即为点,连接,,图形如图所示.应用(2):以点为圆心,以长为半径作圆,交的延长线于一点,该点即为点,以点为圆心,以长为半径作圆,交直线于一点,该点即为点,连接,图形如图所示.21.定义我们把数轴上表示数a的点与原点的距离叫做数a的绝对值.数轴上表示数a,b的点A,B之间的距离.特别的,当时,表示数a的点与原点的距离等于.当时,表示数a的点与原点的距离等于.应用如图,在数轴上,动点A从表示的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A,B之间的距离等于3个单位长度?(2)求点A,B到原点距离之和的最小值.【答案】(1)过4秒或6秒(2)3【解析】【分析】本题考查了一元一次方程的应用,不等式的性质,绝对值的意义等知识,解题的关键是:(1)设经过x秒,则A表示的数为,B表示的数为,根据“点A,B之间的距离等于3个单位长度”列方程求解即可;(2)先求出点A,B到原点距离之和为,然后分,,三种情况讨论,利用绝对值的意义,不等式的性质求解即可.【小问1详解】解:设经过x秒,则A表示的数为,B表示的数为,根据题意,得,解得或6,答,经过4秒或6秒,点A,B之间的距离等于3个单位长度;【小问2详解】解:由(1)知:点A,B到原点距离之和为,当时,,∵,∴,即,当时,,∵,∴,即,当时,,∵,∴,即,综上,,∴点A,B到原点距离之和的最小值为3.22.如图,已知是的直径,点C,D在上,且.点E是线段延长线上一点,连接并延长交射线于点F.的平分线交射线于点H,.(1)求证:是切线;(2)若,,求的长.【答案】(1)见解析(2)【解析】【分析】本题考查切线的判定,勾股定理,相似三角形的判定和性质,圆周角定理,根据角平分线的定义得到是解题的关键.(1)连接,根据圆周角定理得到,即可得到,然后根据角平分线的定义得到,然后得到即可证明切线;(2)设的半径为,根据,可以求出,然后根据,即可得到结果.【小问1详解】证明:连接,则,又∵,∴,∴,∴,∴,∴,∵平分,∴,∴,∴,又∵是半径,∴是的切线;【小问2详解】解:设的半径为,则,∵,即,解得,∴,,又∵∴,∴,即,解得.23.如图,在菱形中,,,为对角线上一动点,以为一边作,交射线于点,连接.点从点出发,沿方向以每秒的速度运动至点处停止.设的面积为,点的运动时间为秒.(1)求证:;(2)求与的函数表达式,并写出自变量的取值范围;(3)求为何值时,线段长度最短.【答案】(1)证明见解析;(2);(3).【解析】【分析】()设与相交于点,证明,可得,,利用三角形外角性质可得,即得,即可求证;()过点作于,解直角三角形得到,,可得,由等腰三角形三线合一可得,即可由三角形面积公式得到与的函数表达式,最后由,可得自变量的取值范围;()证明为等边三角形,可得,可知线段的长度最短,即的长度最短,当时,取最短,又由菱形的性质可得为等边三角形,利用三线合一求出即可求解;本题考查了菱形的性质,全等三角形的判定和性质,三角形的外角性质,解直角三角形,求二次函数解析式,等腰三角形的性质,等边三角形的判定和性质,垂线段最短,掌握菱形的性质及等边三角形的判定和性质是解题的关键.【小问1详解】证明:设与相交于点,∵四边形为菱形,∴,,,∵在和中,,∴,∴,,∵,又∵,∴,∴,∴;【小问2详解】解:过点作于,则,∵,∴,∵四边形为菱形,,∴,,即,∵,∴,,∴,∴,∴,∴,∴;【小问3详解】解:∵,,∴,∵,∴为等边三角形,∴,∴,∴线段的长度最短,即的长度最短,当时,取最短,如图,∵四边形是菱形,∴,∵,∴为等边三角形,∴,∵,∴,∴,∴当时,线段的长度最短.24.已知抛物线与x轴交点的坐标分别为,,且.(1)若抛物线与x轴交点的坐标分别为,,且.试判断下列每组数据的大小(填写、或):①________;②________;③________.(2)若,,求b的取值范围;(3)当时,最大值与最小值的差为,求b的值.【答案】(1);;;(2)(3)b的值为或或或.【解析】【分析】本题考查根与系数的关系,二次函数图像与性质,不等式性质,二次函数最值情况,解题的关键在于熟练掌握二次函数图像与性质.(1)根据根与系数关系得到,以及,即可判断①,利用二次函数的图像与性质得到,进而得到,利用不等式性质变形,即可判断②③.(2)根据题意得到,结合进行求解,即可解题;(3)根据题意得到抛物线顶点坐标为,对称轴为;当时,,当时,,由最大值与最小值的差为,分以下情况①当在取得最大值,在取得最小值时,②当在取得最大值,在顶点取得最小值时,③当在取得最大值,在顶点取得最小值时,建立等式求解,即可解题.【小问1详解】解:与x轴交点的坐标分别为,,且,,且抛物线开口向上,与x轴交点的坐标分别为,,且.即向上平移1个单位,,且,①;,,即②;,即③.故答案为;;;;【小问2详解】解:,,,,;【小问3详解】解:抛物线顶点坐标为,对称轴为;当时,,当时,,①当在取得最大值,在取得最小值时,有,解得;②当在取得最大值,在顶点取得最小值时,有,解得(舍去)或,③当在取得最大值,在顶点取得最小值时,有,解得或;综上所述,b值为或或或.。

2023-2024学年山东省威海市环翠区八年级(上)期末数学试卷(五四学制)(含答案)

2023-2024学年山东省威海市环翠区八年级(上)期末数学试卷(五四学制)(含答案)

2023-2024学年山东省威海市环翠区八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列图形中是中心对称的是( )A. B. C. D.2.下列由左边到右边的变形,是因式分解的是( )A. m(a+b)=am+bmB. 4x2−2x=x(4x−2)C. y2−1−3y=(y+1)(y−1)−3yD. m2−16=(m+4)(m−4)3.已知一个样本数据为2,3,4,5,6,则这组数据的方差和标准差分别是( )A. 2,2B. 3,3C. 2,2D. 3,34.关于平行四边形的性质,下列描述错误的是( )A. 平行四边形既是轴对称图形又是中心对称图形B. 平行四边形的对角相等C. 平行四边形的对角线互相平分D. 平行四边形的对边平行且相等5.经过28分钟,时针旋转了( )度.A. 7B. 14C. 21D. 286.将点A先向下平移5个单位,再向右平移3个单位得到点A′坐标为(4,−2),则点A坐标为( )A. (9,3)B. (7,−7)C. (−1,1)D. (1,3)7.下列分式是最简分式的是( )A. 2a+64a B. 3a−3ba2−b2C. m−n−m+nD. m−5m+n8.若正多边形的一个外角为30度,则多边形的内角和为( )度.A. 1620B. 1800C. 1980D. 21609.为了解某公司员工的年收入情况,小丽随机调查了该公司10名员工,其年收入(单位:万元)为4,4,5,5,5,6,6,6,8,20.下列说法正确的是( )A. 平均数可以反映该公司员工年工资水平B. 众数是5C. 中位数是5.5D. 平均数是6.610.如图,点F,G,H分别是AD,BD,BC边的中点,且AB=CD,∠ABD=30°,∠BDC=80°,则∠GHF=( )A. 25°B. 30°C. 35°D. 40°二、填空题:本题共6小题,每小题3分,共18分。

2015-2016年山东省潍坊市八年级(上)数学期中试卷及参考答案

2015-2016学年山东省潍坊市八年级(上)期中数学试卷一、选择题.(本题共12个小题,在每小题所列四个选项中,只有一个选项符合题意,把符合题意的选项写在答题卡中)1.(3分)下列“表情图”中,属于轴对称图形的是()A.B.C.D.2.(3分)如图,△ABC≌△DCB,点A与点D,点B与点C对应,如果AC=6cm,AB=3cm,那么DC的长为()A.3cm B.5cm C.6cm D.无法确定3.(3分)点P(﹣2,1),那么点P关于x轴对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(2,1)4.(3分)如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F5.(3分)如图,∠CBD、∠ADE为△ABD的两个外角,∠CBD=70°,∠ADE=149°,则∠A的度数是()A.28°B.31°C.39°D.42°6.(3分)等腰三角形的一条边长为6,另一边长为13,则它的周长为()A.25 B.25或32 C.32 D.197.(3分)多边形的每个内角都等于150°,则从此多边形的一个顶点出发可作的对角线共有()A.8条 B.9条 C.10条D.11条8.(3分)如图所示,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,BE=6cm,则AC等于()A.6cm B.5cm C.4cm D.3cm9.(3分)如图,直线l是一条河,P,Q两地在直线l的同侧,欲在l上的某点M处修建一个水泵站,分别向P,Q两地供水.现有如下四种铺设方案,则铺设的管道最短的方案是()A.B.C.D.10.(3分)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°11.(3分)如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1个 B.2个 C.3个 D.4个12.(3分)如图,已知在△ABC中,PR⊥AB于R,PS⊥AC于S,PR=PS,∠1=∠2,则四个结论:①AR=AS;②PQ∥AB;③△BPR≌△CPS;④BP=CP中()A.全部正确B.仅①②正确C.仅①正确D.仅①④正确二、填空题.(每题4分,共24分.请把答案填写在答题卡中的相应横线上)13.(4分)如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为.14.(4分)一木工师傅现有两根木条,木条的长分别为4cm和5cm,他要选择第三根木条,将它们钉成一个三角形木架.设第三根木条长为x cm,则x的取值范围是.15.(4分)如图,△ABC中,AB=AC=6,BC=4.5,分别以A、B为圆心,4为半径画弧交于两点,过这两点的直线交AC于点D,连接BD,则△BCD的周长是.16.(4分)已知AD为△ABC的中线,AB=5cm,且△ACD的周长比△ABD的周长少2cm,则AC=.17.(4分)如图,△ABC为等边三角形,AD为BC边上的高,E为AC边上的一点,且AE=AD,则∠EDC=.18.(4分)如图,已知△ABC中,∠ABC的平分线与∠ACE的平分线交于点D,若∠A=50°,则∠D=度.三、解答题.(填写在答案卡中)19.(6分)如图,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.20.(8分)已知:如图,D是AB上一点,E是AC上的一点,BE、CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°.求:(1)∠BDC的度数;(2)∠BFD的度数.21.(8分)如图,点F、B、E、C在同一直线上,并且BF=CE,∠ABC=∠DEF.能否由上面的已知条件证明△ABC≌△DEF?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC≌△DEF,并给出证明.提供的三个条件是:①AB=DE;②AC=DF;③AC∥DF.22.(8分)将一张矩形纸条ABCD按如图所示折叠,若折叠角∠FEC=64°.(1)求∠1的度数;(2)求证:△EFG是等腰三角形.23.(8分)如图,△ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1),(1)作出△ABC关于y轴对称的△A′B′C′,并写出A′,B′,C′的坐标.(2)求△ABC的面积.24.(10分)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,(1)求证:DE=DF.(2)连接BC,求证:线段AD垂直平分线段BC.25.(12分)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图2),求证:△BCE≌△CAM.2015-2016学年山东省潍坊市八年级(上)期中数学试卷参考答案与试题解析一、选择题.(本题共12个小题,在每小题所列四个选项中,只有一个选项符合题意,把符合题意的选项写在答题卡中)1.(3分)下列“表情图”中,属于轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确;故选:D.2.(3分)如图,△ABC≌△DCB,点A与点D,点B与点C对应,如果AC=6cm,AB=3cm,那么DC的长为()A.3cm B.5cm C.6cm D.无法确定【解答】解:∵△ABC≌△DCB,∴DC=AB,∵AB=3cm,∴DC=3cm,故选:A.3.(3分)点P(﹣2,1),那么点P关于x轴对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(2,1)【解答】解:∵点P与点P′关于x轴对称,已知点P(﹣2,1),∴P′的坐标为(﹣2,﹣1).故选:B.4.(3分)如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F【解答】解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.5.(3分)如图,∠CBD、∠ADE为△ABD的两个外角,∠CBD=70°,∠ADE=149°,则∠A的度数是()A.28°B.31°C.39°D.42°【解答】解:∵∠ABD+∠CBD=180°,∠CBD=70°,∴∠ABD=110°,∵∠ADE=∠ABD+∠A,∠ADE=149°,∴∠A=39°.故选:C.6.(3分)等腰三角形的一条边长为6,另一边长为13,则它的周长为()A.25 B.25或32 C.32 D.19【解答】解:三角形的三边长为13、13、6时,它的周长为32,三角形的三边长为13、6、6时,不能组成三角形,∴三角形的周长为32,故选:C.7.(3分)多边形的每个内角都等于150°,则从此多边形的一个顶点出发可作的对角线共有()A.8条 B.9条 C.10条D.11条【解答】解:∵多边形的每个内角都等于150°,∴多边形的每个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=12,∴对角线条数=12﹣3=9.故选:B.8.(3分)如图所示,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,BE=6cm,则AC等于()A.6cm B.5cm C.4cm D.3cm【解答】解:∵在△ABC中,∠ACB=90°,∠B=15°,∴∠BAC=90°﹣15°=75°,∵DE垂直平分AB,交BC于点E,BE=6cm,∴BE=AE=6cm,∴∠EAB=∠B=15°,∴∠EAC=75°﹣15°=60°,∵∠C=90°,∴∠AEC=30°,∴AC=AE=6cm=3cm,故选:D.9.(3分)如图,直线l是一条河,P,Q两地在直线l的同侧,欲在l上的某点M处修建一个水泵站,分别向P,Q两地供水.现有如下四种铺设方案,则铺设的管道最短的方案是()A.B.C.D.【解答】解:作点P关于直线l的对称点P′,连接QP′交直线l于M.根据两点之间,线段最短,可知选项B修建的管道,所需管道最短.又由垂线段最短,可知铺设的管道最短的方案是选项A.故选:A.10.(3分)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°【解答】解:∵∠B=46°,∠C=54°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:C.11.(3分)如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:当①②③为条件,④为结论时:∵∠A′CA=∠B′CB,∴∠A′CB′=∠ACB,∵BC=B′C,AC=A′C,∴△A′CB′≌△ACB,∴AB=A′B′,当①②④为条件,③为结论时:∵BC=B′C,AC=A′C,AB=A′B′∴△A′CB′≌△ACB,∴∠A′CB′=∠ACB,∴∠A′CA=∠B′CB.故选:B.12.(3分)如图,已知在△ABC中,PR⊥AB于R,PS⊥AC于S,PR=PS,∠1=∠2,则四个结论:①AR=AS;②PQ∥AB;③△BPR≌△CPS;④BP=CP中()A.全部正确B.仅①②正确C.仅①正确D.仅①④正确【解答】解:∵在Rt△APR和Rt△APS中,,∴Rt△APR≌Rt△APS,(HL)∴AR=AS,①正确,∠BAP=∠1,∵∠1=∠2,∴∠BAP=∠2,∴QP∥AB,②正确,∵△BRP和△QSP中,只有一个条件PR=PS,再没有其余条件可以证明△BRP≌△QSP,故③④错误;故选:B.二、填空题.(每题4分,共24分.请把答案填写在答题卡中的相应横线上)13.(4分)如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为80°.【解答】解:∵l1∥l2,∴∠3=∠1=60°,∵∠A=40°,∴∠4=180°﹣∠A﹣∠3=80°,∴∠2=∠4=80°;故答案为:80°.14.(4分)一木工师傅现有两根木条,木条的长分别为4cm和5cm,他要选择第三根木条,将它们钉成一个三角形木架.设第三根木条长为x cm,则x的取值范围是1<x<9.【解答】解:由三角形三边关系定理得5﹣4<x<5+4,即1<x<9.即x的取值范围是1<x<9.故答案为:1<x<9.15.(4分)如图,△ABC中,AB=AC=6,BC=4.5,分别以A、B为圆心,4为半径画弧交于两点,过这两点的直线交AC于点D,连接BD,则△BCD的周长是10.5.【解答】解:根据作法,点D在线段AB的垂直平分线上,则BD=AD,则△BCD的周长=BD+CD+BC=AD+CD+BC=AC+BC,∵AC=6,BC=4.5,∴△BCD的周长=6+4.5=10.5.故答案为:10.5.16.(4分)已知AD为△ABC的中线,AB=5cm,且△ACD的周长比△ABD的周长少2cm,则AC=3cm.【解答】解:∵AD为△ABC的中线,∴BD=CD,∵△ACD的周长比△ABD的周长少2cm,∴(AB+BD+AD)﹣(AC+AD+CD)=AB﹣AC=2(cm),∴AC=AB﹣2=5﹣2=3cm.17.(4分)如图,△ABC为等边三角形,AD为BC边上的高,E为AC边上的一点,且AE=AD,则∠EDC=15°.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°.∵AD⊥BC,∴∠CAD=30°,∠ADC=90°,∵AE=AD,∴∠ADE==75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.故答案为:15°.18.(4分)如图,已知△ABC中,∠ABC的平分线与∠ACE的平分线交于点D,若∠A=50°,则∠D=25度.【解答】解:∵∠ACE=∠A+∠ABC,∴∠ACD+∠ECD=∠A+∠ABD+∠DBE,∠DCE=∠D+∠DBC,又BD平分∠ABC,CD平分∠ACE,∴∠ABD=∠DBE,∠ACD=∠ECD,∴∠A=2(∠DCE﹣∠DBC),∠D=∠DCE﹣∠DBC,∴∠A=2∠D,∵∠A=50°,∴∠D=25°.故答案为:25.三、解答题.(填写在答案卡中)19.(6分)如图,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.【解答】证明:∵AB∥DE,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D.20.(8分)已知:如图,D是AB上一点,E是AC上的一点,BE、CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°.求:(1)∠BDC的度数;(2)∠BFD的度数.【解答】解:(1)在△ACD中,∵∠A=62°,∠ACD=35°,∴∠BDC=∠ACD+∠A=62°+35°=97°;(2)在△BDF中,∠BFD=180°﹣∠ABE﹣∠BDF=180°﹣20°﹣97°=63°.故答案为:(1)97°,(2)63°.21.(8分)如图,点F、B、E、C在同一直线上,并且BF=CE,∠ABC=∠DEF.能否由上面的已知条件证明△ABC≌△DEF?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC≌△DEF,并给出证明.提供的三个条件是:①AB=DE;②AC=DF;③AC∥DF.【解答】解:不能;选择条件:①AB=DE;∵BF=CE,∴BF+BE=CE+BE,即EF=CB,在△ABC和△DFE中,∴△ABC≌△DFE(SAS).22.(8分)将一张矩形纸条ABCD按如图所示折叠,若折叠角∠FEC=64°.(1)求∠1的度数;(2)求证:△EFG是等腰三角形.【解答】(1)解:∵∠GEF=∠FEC=64°,∴∠BEG=180°﹣64°×2=52°(2分),∵AD∥BC(3分),∴∠1=∠BEG=52°(5分).(2)证明:∵AD∥BC,∴∠GFE=∠FEC(7分),∴∠GEF=∠GFE(8分),∴GE=GF,∴△EFG是等腰三角形(10分).23.(8分)如图,△ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1),(1)作出△ABC关于y轴对称的△A′B′C′,并写出A′,B′,C′的坐标.(2)求△ABC的面积.【解答】解:(1)所作图形如图所示:A′(﹣4,6),B′(﹣5,2),C′(﹣2,1);=3×5﹣×1×3﹣×1×4﹣×2×5(2)S△ABC=6.5.24.(10分)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,(1)求证:DE=DF.(2)连接BC,求证:线段AD垂直平分线段BC.【解答】解:(1)如图,连接AD.在△ACD和△ABD中,∴△ACD≌△ABD(SSS).∴∠FAD=∠EAD,即AD平分∠EAF.又∵DE⊥AE,DF⊥AF,∴DE=DF.(2)∵△ACD≌△ABD(已证).∴DC=DB,∴点D在线段BC的垂直平分线上.又∵AB=AC∴点A在线段BC的垂直平分线上.∵两点确定一条直线,∴AD垂直平分BC.25.(12分)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图2),求证:△BCE≌△CAM.【解答】解:(1)∵点D是AB的中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∠CAD=∠CBD=45°.∴∠CAE=∠BCG.又BF⊥CE,∴∠CBG+∠BCF=90°.又∠ACE+∠BCF=90°,∴∠ACE=∠CBG.在△AEC和△CGB中,∴△AEC≌△CGB.∴AE=CG.(2)∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°.∴∠CMA=∠BEC.又AC=BC,∠ACM=∠CBE=45°,在△BCE和△CAM中∴△BCE≌△CAM(AAS).。

开县五校联考2015-2016学年八年级上期中数学试卷含答案解析

2015-2016学年重庆市开县五校联考八年级(上)期中数学试卷一、选择题(此题只要认真思考并不难,每题只有一个正确选项!8×3=24分)1.若等腰三角形的一边长等于5,另一边长等于3,则它的周长等于( )A.10 B.11 C.13 D.11或132.如图,AB∥CD,AD∥BC,OE=OF,则图中全等三角形的组数是( )A.3 B.4 C.5 D.63.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B.带②去C.带③去D.带①和②去4.如图在△ABD和△ACE都是等边三角形,则△ADC≌△ABE的根据是( )A.SSS B.SAS C.ASA D.AAS5.如图,△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,那么M到AB的距离是( )A.10cm B.15cm C.20cm D.25cm6.下列判定直角三角形全等的方法,错误的是( )A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两锐角相等7.小芳有两根长度为4cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为( )的木条.A.5cm B.3cm C.17cm D.12cm8.若一个多边形的内角和与它的外角和相等,则这个多边形是( )A.三角形B.四边形C.五边形D.六边形二、填空题(共8小题,每小题3分,满分24分)9.在①线段、②角、③圆、④长方形、⑤梯形、⑥三角形、⑦等边三角形中,是轴对称图形的有__________ (只填序号)10.如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有__________条对角线.11.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了__________米.12.如图,△ABC≌△DCB,∠DBC=40°,则∠AEB=__________度.13.如图,∠ABC=∠DEF,AB=DE,要证明△ABC≌△DEF,需要添加一个条件为:__________(只添加一个条件即可)14.已知:如图,AC⊥BC于C,DE⊥AC于E,AD⊥AB于A,BC=AE.若AB=5,则AD=__________.15.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC 的周长为__________.16.已知A、B两点的坐标分别是(﹣2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原点对称;④若A、B之间的距离为4.其中正确的有__________个.三、解答题(共3小题,满分30分)17.如图,写出A、B、C关于y轴对称的点坐标,并作出与△ABC关于x轴对称的图形.18.如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,求∠DBC的度数.19.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,求∠CAB的度数.四、证明题(后面的更简单,加油!2×11=22分)20.如图,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE∥BC.求证:EF∥CD.21.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB+BD与DE的长度有什么关系?并加以证明.2015-2016学年重庆市开县五校联考八年级(上)期中数学试卷一、选择题(此题只要认真思考并不难,每题只有一个正确选项!8×3=24分)1.若等腰三角形的一边长等于5,另一边长等于3,则它的周长等于( )A.10 B.11 C.13 D.11或13【考点】等腰三角形的性质.【分析】由若等腰三角形的一边长等于5,另一边长等于3,分别从腰长为5,底边长为3与底边长为3,腰长为5去分析求解即可求得答案.【解答】解:若腰长为5,底边长为3,∵5+3>5,∴5,5,3能组成三角形,则它的周长等于:5+5+3=13,若底边长为3,腰长为5,∵3+3=6>5,∴3,3,5能组成三角形.∴它的周长为11或13.故选D.【点评】此题考查了等腰三角形的性质.此题难度不大,注意掌握分类讨论思想的应用.2.如图,AB∥CD,AD∥BC,OE=OF,则图中全等三角形的组数是( )A.3 B.4 C.5 D.6【考点】全等三角形的判定.【分析】先根据题意AB∥CD,AD∥BC,可得多对角相等,再利用平行四边形的性质可得线段相等,所以有△AFO≌△CEO,△AOD≌△COB,△FOD≌△EOB,△ACB≌△ACD,△ABD≌△DCB,△AOB≌△COD共6对.【解答】解:∵AB∥CD,AD∥BC∴∠ABD=∠CDB,∠ADB=∠CDB又∵BD=DB∴△ABD≌△CDB∴AB=CD,AD=BC∵OA=OC,OB=OD∴△ABO≌△CDO,△BOC≌△DOA∵OB=OD,∠CBD=∠ADB,∠BOF=∠DOE∴△BFO≌△DEO∴OE=OF∵OA=OC,∠COF=∠AOE∴△COF≌△AOE∵AB=DC,BC=AD,AC=AC∴△ABC≌△DCA,共6组;故选D.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.考查三角形判定和细心程度.3.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B.带②去C.带③去D.带①和②去【考点】全等三角形的应用.【专题】应用题.【分析】此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.【解答】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.【点评】主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.4.如图在△ABD和△ACE都是等边三角形,则△ADC≌△ABE的根据是( )A.SSS B.SAS C.ASA D.AAS【考点】全等三角形的判定.【分析】因为△ABD和△ACE都是等边三角形,所以有AD=AB,AC=AE,又因为∠DAB+∠BAC=∠EAC+∠BAC,所以∠DAC=∠BAE,故可根据SAS判定△ADC≌△ABE.【解答】解:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,又∵∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,∴△ADC≌△ABE(SAS).故选B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,那么M到AB的距离是( )A.10cm B.15cm C.20cm D.25cm【考点】角平分线的性质.【分析】过点M作MN⊥AB于N,根据角平分线上的点到角的两边的距离相等可得MN=CM,从而得解.【解答】解:如图,过点M作MN⊥AB于N,∵∠C=90°,AM平分∠CAB,∴MN=CM,∵CM=20cm,∴MN=20cm,即M到AB的距离是20cm.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,点到直线的距离,熟记性质并作出辅助线是解题的关键.6.下列判定直角三角形全等的方法,错误的是( )A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两锐角相等【考点】直角三角形全等的判定.【专题】证明题.【分析】根据全等三角形的判定方法对A、B、C、D选项逐个分析是否可求证两三角形全等,然后即可得出正确选项.【解答】解:如果在两个直角三角形中,两条直角边对应相等,那么根据SAS即可判断两三角形全等,故选项A正确.如果如果在两个直角三角形中,斜边和一锐角对应相等,那么根据AAS也可判断两三角形全等,故选项B正确.如果如果在两个直角三角形中,斜边和一直角边对应相等,那么根据HL也可判断两三角形全等,故选项C正确.故选D.【点评】此题主要考查学生对直角三角形全等得判定的理解和掌握,解得此题的关键是根据A、B、C选项给出的已知条件都可判断出三角形全等,所以答案就很明显了.7.小芳有两根长度为4cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为( )的木条.A.5cm B.3cm C.17cm D.12cm【考点】三角形三边关系.【专题】计算题.【分析】根据三角形两边之和大于第三边,三角形的两边差小于第三边用排除法即可得出答案.【解答】解:对A,∵4+5=9,不符合三角形两边之和大于第三边,故错误;对B,∵4+3<9,不符合三角形两边之和大于第三边,故错误;对C,∵4+9<17,不符合三角形两边之和大于第三边,故错误;对D,∵4+9>12,12﹣9<4,符合两边之和大于第三边,三角形的两边差小于第三边,故正确;故选:D.【点评】本题考查了三角形三边关系,属于基础题,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.8.若一个多边形的内角和与它的外角和相等,则这个多边形是( )A.三角形B.四边形C.五边形D.六边形【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°与多边形的外角和定理列式进行计算即可得解.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选B.【点评】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.二、填空题(共8小题,每小题3分,满分24分)9.在①线段、②角、③圆、④长方形、⑤梯形、⑥三角形、⑦等边三角形中,是轴对称图形的有①②③④⑦(只填序号)【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:①线段是轴对称图形;②角是轴对称图形;③圆是轴对称图形;④长方形是轴对称图形;⑤梯形不一定是轴对称图形;⑥三角形不一定是轴对称图形⑦等边三角形是轴对称图形;综上可得是轴对称图形的有①②③④⑦.故答案为:①②③④⑦.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.10.如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有6条对角线.【考点】多边形内角与外角;多边形的对角线.【分析】首先根据多边形内角和公式可得多边形的边数,再计算出对角线的条数.【解答】解:设此多边形的边数为x,由题意得:(x﹣2)×180=1260,解得;x=9,从这个多边形的一个顶点出发所画的对角线条数:9﹣3=6,故答案为:6.【点评】此题主要考查了多边形的内角和计算公式求多边形的边数,关键是掌握多边形的内角和公式180(n﹣2).11.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.【考点】多边形内角与外角.【专题】应用题.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.故答案为:120.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.12.如图,△ABC≌△DCB,∠DBC=40°,则∠AEB=80度.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠ACB,根据三角形的外角性质得出∠AEB=∠ACB+∠DBC,代入求出即可.【解答】解:∵△ABC≌△DCB,∠DBC=40°,∴∠ACB=∠DBC=40°,∴∠AEB=∠ACB+∠DBC=40°+40°=80°,故答案为:80.【点评】本题考查了三角形的外角性质,全等三角形的性质的应用,能根据全等三角形的性质求出∠ACB的度数是解此题的关键,注意:全等三角形的对应角相等,对应边相等.13.如图,∠ABC=∠DEF,AB=DE,要证明△ABC≌△DEF,需要添加一个条件为:BC=EF (只添加一个条件即可)【考点】全等三角形的判定.【专题】开放型.【分析】本题是开放题,应先确定题中给出的条件,再对应三角形全等条件求解.【解答】解:所添条件为:BC=EF.∵BC=EF,∠ABC=∠DEF,AB=DE∴△ABC≌△DEF(SAS).【点评】本题考查了全等三角形的判定,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.14.已知:如图,AC⊥BC于C,DE⊥AC于E,AD⊥AB于A,BC=AE.若AB=5,则AD=5.【考点】全等三角形的判定与性质.【分析】此题可根据已知条件用AAS证明△ABC≌△DAE,则AD=AB=5.【解答】解:∵AC⊥BC于C,DE⊥AC于E,∴∠C=∠AED=90°,∠CAB+∠B=90°,∵AD⊥AB于A,∴∠CAB+∠EAD=90°,∴∠B=∠EAD(同角的余角相等)∵BC=AE,∴△ABC≌△DAE(AAS),∴AD=AB=5.故填5【点评】此题主要利用AAS直角三角形全等,还有同角的余角相等的性质,做题时要注意应用条件.15.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC 的周长为19.【考点】线段垂直平分线的性质.【分析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD,AC=2AE,结合周长,进行线段的等量代换可得答案.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19.【点评】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.16.已知A、B两点的坐标分别是(﹣2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原点对称;④若A、B之间的距离为4.其中正确的有2个.【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【专题】应用题.【分析】关于横轴的对称点,横坐标相同,纵坐标变成相反数;关于纵轴的对称点,纵坐标相同,横坐标变成相反数;A,B两点的坐标分别是(﹣2,3)和(2,3),纵坐标相同,因而AB平行于x轴,A,B之间的距离为4.【解答】解:根据平面内点对称的特点,①A、B关于x轴对称,错误;②A,B关于y轴对称,正确;③A、B关于原点对称,错误;④若A,B之间的距离为4,正确;正确的只有②④,故答案为2个.【点评】本题考查的是如何利用点的坐标判断两点关于x轴,y轴是否对称.三、解答题(共3小题,满分30分)17.如图,写出A、B、C关于y轴对称的点坐标,并作出与△ABC关于x轴对称的图形.【考点】作图-轴对称变换.【专题】作图题.【分析】根据关于y轴对称的点的坐标,横坐标互为相反数,纵坐标相同解答;先根据平面直角坐标系找出点A、B、C的对应点的位置,然后顺次连接即可得解.【解答】解:A、B、C关于y轴对称的点坐标分别为(4,1),(1,﹣1),(3,2);如图所示△A′B′C′即为所求作的△ABC关于x轴对称的图形.【点评】本题考查了利用轴对称变换作图,根据平面直角坐标系准确找出对应点的位置是解题的关键.18.如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,求∠DBC的度数.【考点】线段垂直平分线的性质.【专题】探究型.【分析】先根据等腰三角形的性质及三角形内角和定理求出∠ABC及∠ACB的度数,再根据线段垂直平分线的性质求出∠ABD的度数即可进行解答.【解答】解:∵AB=AC,∴∠ABC=∠ACB==70°,∵MN的垂直平分AB,∴DA=DB,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30°.【点评】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.19.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,求∠CAB的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠BAC+∠ABC,∠PCD=∠P+∠PCB,根据角平分线的定义可得∠PCD=∠ACD,∠PBC=∠ABC,然后整理得到∠PCD=∠BAC,再代入数据计算即可得解.【解答】解:在△ABC中,∠ACD=∠BAC+∠ABC,在△PBC中,∠PCD=∠BPC+∠PBC,∵PB、PC分别是∠ABC和∠ACD的平分线,∴∠PCD=∠ACD,∠PBC=∠ABC,∴∠BPC+∠PCB=(∠BAC+∠ABC)=∠BAC+∠ABC=∠BAC+∠PCB,∴∠PCD=∠BAC,∴∠BPC=40°,∴∠BAC=2×40°=80°,即∠CAB=80°.【点评】本题考查了三角形内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记定理与性质并求出∠PCD=∠BAC是解题的关键.四、证明题(后面的更简单,加油!2×11=22分)20.如图,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE∥BC.求证:EF∥CD.【考点】全等三角形的判定与性质;平行线的判定与性质.【专题】证明题.【分析】由于AE∥BC,根据平行线的性质可得∠A=∠B,又AD=BF,根据等式性质可得AF=BD,再结合AE=BC,利用SAS可证△AEF≌△BCD,于是∠AFE=∠BDC,那么EF∥CD.【解答】证明:∵AE∥BC,∴∠A=∠B,∵AD=BF,∴AD+DF=BF+DF,∴AF=BD,在△AEF和△BCD中,,∴△AEF≌△BCD,∴∠AFE=∠BDC,∴EF∥CD.【点评】本题考查了全等三角形的判定和性质、平行线的判定和性质,解题的关键是找出SAS所需要的三个条件.21.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB+BD与DE的长度有什么关系?并加以证明.【考点】线段垂直平分线的性质.【专题】探究型.【分析】AB+BD=DE,根据线段的垂直平分线的性质可得AB=AC,AC=EC,∵AC+CD=AB+BD,∴EC+CD=AB+BD,即AB+BD=DE.【解答】解:AB+BD=DE.理由是:∵AD⊥BC,BD=DC,∴AB=AC.又∵点C在AE的垂直平分线上,∴AC=EC.∵AC+CD=AB+BD,∴EC+CD=AB+BD.即AB+BD=EC+CD=DE.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.。

2024年山东省威海市中考数学真题(解析版)

威海市2024年初中学业考试数学注意事项:1.本试卷共6页,共120分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.答题前,请务必用0.5毫米黑色签字笔将自己的姓名、考生号、座号填写在答题卡和试卷规定的位置上.3.所有的试题都必须在专用的“答题卡”上作答.写在试卷上或答题卡指定区域以外的答案一律无效.4.选择题用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号、作图题用2B铅笔(加黑加粗,描写清楚)或0.5毫米的黑色签字笔作答.其它题目用0.5毫米的黑色签字笔作答.如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.5.不要求保留精确度的题目,计算结果保留准确值.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.一批食品,标准质量为每袋.现随机抽取4个样品进行检测,把超过标准质量的克数用正数表示,不足的克数用负数表示.那么,最接近标准质量的是()A. B. C. D.【答案】C【解析】【分析】本题考查了绝对值的意义,正负数的意义,直接利用正负数的意义以及绝对值的意义可得最接近标准是哪一袋.【详解】解:∵超过标准质量的克数用正数表示,不足的克数用负数表示.∴∴最接近标准质量的是故选:C.2.据央视网2023年10月11日消息,中国科学技术大学中国科学院量子创新研究院与上海微系统所、国家并行计算机工程技术研究中心合作,成功构建了255个光子的量子计算原型机“九章三号”,再度刷新了光量子信息的技术水平和量子计算优越性的世界纪录.“九章三号”处理高斯玻色取样的速度比上一代“九章二号”提升一百万倍,在百万分之一秒时间内所处理的最高复杂度的样本,需要当前最强的超级计算机花费超过二百亿年的时间.将“百万分之一”用科学记数法表示为()A. B. C. D.【答案】B【解析】【分析】本题考查了用科学记数法表示绝对值较小的数,用科学记数法表示绝对值较小的数,一般形式为,其中,为整数.【详解】解:百万分之一.故选:B.3.下列各数中,最小的数是()A. B. C. D.【答案】A【解析】【分析】本题考查了实数的大小比较,根据实数的大小比较即可求解.【详解】解:,∵∴最小的数是故选:A.4.下列运算正确的是()A. B.C. D.【答案】C【解析】【分析】本题主要考查合并同类项、同底数幂的除法、积的乘方,根据合并同类项、同底数幂的除法、积的乘方的运算法则计算即可.【详解】A、,运算错误,该选项不符合题意;B、,运算错误,该选项不符合题意;C、,运算正确,该选项符合题意;D、,运算错误,该选项不符合题意.故选:C5.下列几何体都是由四个大小相同的小正方体搭成的.其中主视图、左视图和俯视图完全相同的是()A. B. C. D.【答案】D【解析】【分析】本题考查了三视图;分别画出四个选项中几何体的左视图与俯视图,通过比较即可得出答案.【详解】解:A、主视图为,左视图为,主视图与左视图不同,故该选项不符合题意;B、主视图为,左视图为,主视图与左视图不同,故该选项不符合题意;C、主视图为,左视图为,主视图与左视图不同,故该选项不符合题意;D、主视图为,左视图为,主视图与左视图相同,故该选项符合题意;故选:D.6.如图,在扇形中,,点是的中点.过点作交于点,过点作,垂足为点.在扇形内随机选取一点,则点落在阴影部分的概率是()A. B. C. D.【答案】B【解析】【分析】本题考查的是求不规则图形的面积,几何概率,根据阴影部分面积等于扇形的面积,即可求解.【详解】解:∵,,∴四边形是矩形,∴∴∵点是的中点∴∴∴∴,,点落在阴影部分的概率是故选:B.7.定义新运算:①在平面直角坐标系中,表示动点从原点出发,沿着轴正方向()或负方向().平移个单位长度,再沿着轴正方向()或负方向()平移个单位长度.例如,动点从原点出发,沿着轴负方向平移个单位长度,再沿着轴正方向平移个单位长度,记作.②加法运算法则:,其中,,,为实数.若,则下列结论正确的是()A.,B.,C.,D.,【答案】B【解析】【分析】本题考查了新定义运算,平面直角坐标系,根据新定义得出,即可求解.【详解】解:∵,∴解得:,故选:B.8.《九章算术》是我国古老的数学经典著作,书中提到这样一道题目:以绳测井.若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.绳长、井深各几何?题目大意是:用绳子测量水井的深度.如果将绳子折成三等份,一份绳长比井深多尺;如果将绳子折成四等份,一份绳长比井深多尺.绳长、井深各是多少尺?若设绳长尺,井深尺,则符合题意的方程组是()A. B.C. D.【答案】C 【解析】【分析】本题考查二元一次方程组的应用,此题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺,不变的是井深,据此即可得方程组.正确理解题意,找准等量关系解题的关键.【详解】解:设绳长x 尺,井深y 尺,依题意,得:.故选:C .9.如图,在中,对角线,交于点,点在上,点在上,连接,,,交于点.下列结论错误的是()A.若,则B.若,,,则C.若,,则D.若,,则【答案】D 【解析】【分析】本题考查了相似三角形的性质与判定,菱形的性质与判定,垂直平分线的性质,全等三角形的性质与判定;根据相似三角形的性质与判定即可判断A ,根据题意可得四边形是的角平分线,进而判断四边形是菱形,证明可得则垂直平分,即可判断B选项,证明四边形是菱形,即可判断C选项,D选项给的条件,若加上,则成立,据此,即可求解.【详解】解:∵四边形是平行四边形,∴A.若,即,又,∴∴∴,故A选项正确,B.若,,,∴是的角平分线,∴∵∴∴∴∴四边形是菱形,∴在中,∴∴又∵∴∴,故B选项正确,C.∵,∴∵,∴∴∴∵∴∴四边形是菱形,又∵∴,则∴∴∴,故C选项正确;D.若,则四边形是菱形,由,且时,可得垂直平分,∵∴,故D选项不正确故选:D.10.同一条公路连接,,三地,地在,两地之间.甲、乙两车分别从地、地同时出发前往地.甲车速度始终保持不变,乙车中途休息一段时间,继续行驶.下图表示甲、乙两车之间的距离()与时间()的函数关系.下列结论正确的是()A.甲车行驶与乙车相遇B.,两地相距C.甲车的速度是D.乙车中途休息分钟【答案】A【解析】【分析】本题考查了函数图象,根据函数图象结合选项,逐项分析判断,即可求解.【详解】解:根据函数图象可得两地之间的距离为()两车行驶了小时,同时到达地,如图所示,在小时时,两侧同向运动,在第2小时,即点时,两者距离发生改变,此时乙车休息,点的意义是两车相遇,点意义是乙车休息后再出发,∴乙车休息了1小时,故D不正确,设甲车的速度为,乙车的速度为,根据题意,乙车休息后两者同时到达地,则甲车的速度比乙车的速度慢,∵即在时,乙车不动,则甲车的速度是,∴乙车速度为,故C不正确,∴的距离为千米,故B不正确,设小时两辆车相遇,依题意得,解得:即小时时,两车相遇,故A正确故选:A.二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)11.计算:________.【答案】【解析】【分析】本题考查了二次根式的混合运算,根据二次根式的性质以及二次根式的乘法进行计算即可求解.【详解】解:故答案为:.12.因式分解:________.【答案】【解析】【分析】本题主要考查了用完全平方公式分解因式,先按照多项式乘以多项式展开,然后利用完全平方公式分解因式即可.【详解】解:故答案为:.13.如图,在正六边形中,,,垂足为点I.若,则________.【答案】##50度【解析】【分析】本题考查了正六边形的内角和、平行平行线的性质及三角形内角和定理,先求出正六边形的每个内角为,即,则可求得的度数,根据平行线的性质可求得的度数,进而可求出的度数,再根据三角形内角和定理即可求出的度数.【详解】解:∵正六边形的内角和,每个内角为:,,,,,,,,,,.故答案为:.14.计算:________.【答案】##【解析】【分析】本题考查分式的加减,根据同分母分式的加减法则解题即可.【详解】.故答案为:.15.如图,在平面直角坐标系中,直线与双曲线交于点,.则满足的的取值范围______.【答案】或【解析】【分析】本题考查了一次函数与反比例函数的交点问题,根据图象解答即可求解,利用数形结合思想解答是解题的关键.【详解】解:由图象可得,当或时,,∴满足的的取值范围为或,故答案为:或.16.将一张矩形纸片(四边形)按如图所示的方式对折,使点C落在上的点处,折痕为,点D落在点处,交于点E.若,,,则________.【答案】【解析】【分析】本题考查矩形的折叠问题,全等三角形的判定和性质,勾股定理,先根据勾股定理求出,然后证明,得到,,即可得到,,然后在中,利用解题即可.【详解】解:在中,,由折叠可得,,又∵是矩形,∴,∴,∴,又∵,∴,∴,,∴,,∴,,设,则,在中,,即,解得:,故答案为.三、解答题(本大题共8小题,共72分)17.某公司为节能环保,安装了一批型节能灯,一年用电千瓦·时.后购进一批相同数量的型节能灯,一年用电千瓦·时.一盏型节能灯每年的用电量比一盏型节能灯每年用电量的倍少千瓦·时.求一盏型节能灯每年的用电量.【答案】千瓦·时,过程见详解【解析】【分析】本题考查分式方程,根据题意列方程是关键,并注意检验.根据两种节能灯数量相等列式分式方程求解即可.【详解】解:设一盏型节能灯每年的用电量为千瓦·时,则一盏型节能灯每年的用电量为千瓦·时整理得解得经检验:是原分式方程的解.答:一盏型节能灯每年的用电量为千瓦·时18.为增强学生体质,某校在八年级男生中试行“每日锻炼,每月测试”的引体向上训练活动,设定6个及以上为合格.体育组为了解一学期的训练效果,随机抽查了20名男生2至6月份的测试成绩.其中,2月份测试成绩如表1,6月份测试成绩如图1(尚不完整).整理本学期测试数据得到表2和图2(尚不完整).2月份测试成绩统计表个数人数表1本学期测试成绩统计表1平均数/个众数/个中位数/个合格率2月3月4月5月6月表2请根据图表中的信息,解答下列问题:(1)将图1和图2中的统计图补充完整,并直接写出a ,b ,c 的值;(2)从多角度分析本次引体向上训练活动的效果;(3)若将此活动在邻校八年级推广,该校八年级男生按400人计算,以随机抽查的20名男生训练成绩为样本,估算经过一学期的引体向上训练,可达到合格水平的男生人数.【答案】(1)见解析,(2)见解析(3)【解析】【分析】(1)根据总人数减去引体向上为其他个数人数,进而补充条形统计图,根据题意求得合格率,补充折线统计图,根据平均数,众数的定义,即可得出的值;(2)根据平均数,众数,中位数,合格率,分析;(3)根据样本估计总体即可求解.【小问1详解】解:月测试成绩中,引体向上个的人数为根据表2可得,;【小问2详解】解:本次引体向上训练活动的效果明显,从平均数和合格率看,平均数和合格率逐月增加,从中位数看,引体向上个数逐月增加,从众数看,引体向上的个数越来越大,(答案不唯一,合理即可)【小问3详解】解:(人)答:估算经过一学期的引体向上训练,可达到合格水平的男生人数为人【点睛】本题考查了条形统计图,折线统计图,统计表,样本估计总体,以及求平均数,众数,中位数的意义;掌握相关的统计量的意义是解题的关键.19.某校九年级学生开展利用三角函数解决实际问题的综合与实践活动,活动之一是测量某护堤石坝与地平面的倾斜角.测量报告如下表(尚不完整)课题测量某护堤石坝与地平面的倾斜角成员组长:×××组员:×××,×××,×××测量工具竹竿,米尺测量示意图说明:是一根笔直的竹竿.点是竹竿上一点.线段的长度是点到地面的距离.是要测量的倾斜角.测量数据…………(1)设,,,,,,,,请根据表中的测量示意图,从以上线段中选出你认为需要测量的数据,把表示数据的小写字母填写在“测量数据”一栏.(2)根据()中选择的数据,写出求的一种三角函数值的推导过程.(3)假设,,,根据()中的推导结果,利用计算器求出的度数,你选择的按键顺序为________.【答案】(1),,,;(2),推导见解析;(3).【解析】【分析】()根据题意选择需要的数据即可;()过点作于点,可得,得到,即得,得到,再根据正弦的定义即可求解;()根据()的结果即可求解;本题考查了解直角三角形,相似三角形的的判定和性质,正确作出辅助线是解题的关键.【小问1详解】解:需要的数据为:,,,;【小问2详解】解:过点作于点,则,∵,∴,∴∴,即∴,∴;【小问3详解】解:∵,∴按键顺序为,故答案为:.20.感悟如图1,在中,点,在边上,,.求证:.应用(1)如图2,用直尺和圆规在直线上取点,点(点在点的左侧),使得,且(不写作法,保留作图痕迹);(2)如图3,用直尺和圆规在直线上取一点,在直线上取一点,使得,且(不写作法,保留作图痕迹).【答案】见解析【解析】【分析】本题主要考查全等三角形的判定及性质、尺规作图:证明,即可求得;应用(1):以点为圆心,以长度为半径作圆,交直线于一点,该点即为点,以点为圆心,以长度为半径作圆,交直线于一点,该点即为点,连接,;应用(2):以点为圆心,以长为半径作圆,交的延长线于一点,该点即为点,以点为圆心,以长为半径作圆,交直线于一点,该点即为点,连接.【详解】∵,∴.在和中∴.∴.应用(1):以点为圆心,以长度为半径作圆,交直线于一点,该点即为点,以点为圆心,以长度为半径作圆,交直线于一点,该点即为点,连接,,图形如图所示.应用(2):以点为圆心,以长为半径作圆,交的延长线于一点,该点即为点,以点为圆心,以长为半径作圆,交直线于一点,该点即为点,连接,图形如图所示.21.定义我们把数轴上表示数a的点与原点的距离叫做数a的绝对值.数轴上表示数a,b的点A,B之间的距离.特别的,当时,表示数a的点与原点的距离等于.当时,表示数a的点与原点的距离等于.应用如图,在数轴上,动点A从表示的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A,B之间的距离等于3个单位长度?(2)求点A,B到原点距离之和的最小值.【答案】(1)过4秒或6秒(2)3【解析】【分析】本题考查了一元一次方程的应用,不等式的性质,绝对值的意义等知识,解题的关键是:(1)设经过x秒,则A表示的数为,B表示的数为,根据“点A,B之间的距离等于3个单位长度”列方程求解即可;(2)先求出点A,B到原点距离之和为,然后分,,三种情况讨论,利用绝对值的意义,不等式的性质求解即可.【小问1详解】解:设经过x秒,则A表示的数为,B表示的数为,根据题意,得,解得或6,答,经过4秒或6秒,点A,B之间的距离等于3个单位长度;【小问2详解】解:由(1)知:点A,B到原点距离之和为,当时,,∵,∴,即,当时,,∵,∴,即,当时,,∵,∴,即,综上,,∴点A,B到原点距离之和的最小值为3.22.如图,已知是的直径,点C,D在上,且.点E是线段延长线上一点,连接并延长交射线于点F.的平分线交射线于点H,.(1)求证:是切线;(2)若,,求的长.【答案】(1)见解析(2)【解析】【分析】本题考查切线的判定,勾股定理,相似三角形的判定和性质,圆周角定理,根据角平分线的定义得到是解题的关键.(1)连接,根据圆周角定理得到,即可得到,然后根据角平分线的定义得到,然后得到即可证明切线;(2)设的半径为,根据,可以求出,然后根据,即可得到结果.【小问1详解】证明:连接,则,又∵,∴,∴,∴,∴,∴,∵平分,∴,∴,∴,又∵是半径,∴是的切线;【小问2详解】解:设的半径为,则,∵,即,解得,∴,,又∵∴,∴,即,解得.23.如图,在菱形中,,,为对角线上一动点,以为一边作,交射线于点,连接.点从点出发,沿方向以每秒的速度运动至点处停止.设的面积为,点的运动时间为秒.(1)求证:;(2)求与的函数表达式,并写出自变量的取值范围;(3)求为何值时,线段长度最短.【答案】(1)证明见解析;(2);(3).【解析】【分析】()设与相交于点,证明,可得,,利用三角形外角性质可得,即得,即可求证;()过点作于,解直角三角形得到,,可得,由等腰三角形三线合一可得,即可由三角形面积公式得到与的函数表达式,最后由,可得自变量的取值范围;()证明为等边三角形,可得,可知线段的长度最短,即的长度最短,当时,取最短,又由菱形的性质可得为等边三角形,利用三线合一求出即可求解;本题考查了菱形的性质,全等三角形的判定和性质,三角形的外角性质,解直角三角形,求二次函数解析式,等腰三角形的性质,等边三角形的判定和性质,垂线段最短,掌握菱形的性质及等边三角形的判定和性质是解题的关键.【小问1详解】证明:设与相交于点,∵四边形为菱形,∴,,,∵∴,在和中,,∴,∴,,∵,又∵,∴,∴,∴;【小问2详解】解:过点作于,则,∵,∴,∵四边形为菱形,,∴,,即,∵,∴,,∴,∴,∴,∵,∴,∴;【小问3详解】解:∵,,∴,∵,∴为等边三角形,∴,∴,∴线段的长度最短,即的长度最短,当时,取最短,如图,∵四边形是菱形,∴,∵,∴为等边三角形,∴,∵,∴,∴,∴当时,线段的长度最短.24.已知抛物线与x轴交点的坐标分别为,,且.(1)若抛物线与x轴交点的坐标分别为,,且.试判断下列每组数据的大小(填写、或):①________;②________;③________.(2)若,,求b的取值范围;(3)当时,最大值与最小值的差为,求b的值.【答案】(1);;;(2)(3)b的值为或或或.【解析】【分析】本题考查根与系数的关系,二次函数图像与性质,不等式性质,二次函数最值情况,解题的关键在于熟练掌握二次函数图像与性质.(1)根据根与系数关系得到,以及,即可判断①,利用二次函数的图像与性质得到,进而得到,利用不等式性质变形,即可判断②③.(2)根据题意得到,结合进行求解,即可解题;(3)根据题意得到抛物线顶点坐标为,对称轴为;当时,,当时,,由最大值与最小值的差为,分以下情况①当在取得最大值,在取得最小值时,②当在取得最大值,在顶点取得最小值时,③当在取得最大值,在顶点取得最小值时,建立等式求解,即可解题.【小问1详解】解:与x轴交点的坐标分别为,,且,,且抛物线开口向上,与x轴交点的坐标分别为,,且.即向上平移1个单位,,且,①;,,即②;,即③.故答案为;;;;【小问2详解】解:,,,,;【小问3详解】解:抛物线顶点坐标为,对称轴为;当时,,当时,,①当在取得最大值,在取得最小值时,有,解得;②当在取得最大值,在顶点取得最小值时,有,解得(舍去)或,③当在取得最大值,在顶点取得最小值时,有,解得或;综上所述,b值为或或或.。

八年级上学期期中考试数学试卷(附参考答案与解析)

八年级上学期期中考试数学试卷(附参考答案与解析)班级:___________姓名:___________考号:___________一、选择题(每题3分,共36分)1.9的平方根为()A.3B.﹣3C.±3D.2.在给出的一组数中,无理数有()A.1个B.2个C.3个D.5个3.在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是()A.∠C=90°B.a2=b2﹣c2C.c2=2a2D.a=b4.若点P关于x轴的对称点为P1(﹣2,3),则点P关于原点的对称点P2的坐标()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)5.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A.B.C.D.6.在△ABC中,AB=15,AC=8,AD是中线,且AD=8.5,则BC的长为()A.15B.16C.17D.187.某一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的表达式可能是()A.y=2x+4B.y=3x﹣1C.y=﹣3x+1D.y=﹣2x+48.若的整数部分为x,小数部分为y,则的值是()A.B.C.1D.39.若表示a、b两个实数的点在数轴上的位置如图所示,则化简|a﹣b|+的结果为()A.2a B.2b C.﹣2a D.﹣2b10.下列语句中,说法错误的是()A.点(0,0)是坐标原点B.对于坐标平面内的任一点,都有唯一的一对有序实数与它对应C.点A(a,﹣b )在第二象限,则点B(﹣a,b)在第四象限D.若点P的坐标为(a,b),且a•b=0,则点P一定在坐标原点11.已知一个直角三角形的面积为96,并且两直角边的比为3:4,则这个三角形的斜边为()A.10B.20C.5D.1512.一次函数y=kx+b与y=kbx,它们在同一坐标系内的图象可能为()A.B.C.D.二、填空题(每题3分,共3×5=15分)13.的算术平方根是,﹣=.14.已知一次函数y=kx﹣1的图象不经过第二象限,则正比例函数y=(k+1)x必定经过第象限.15.若a<<b,且a,b为连续正整数,则b2﹣a2=.16.已知点P在第四象限,且到x轴的距离是5,到y轴的距离是4,则P点坐标为.17.函数y=3x+m的图象与两坐标轴围成的三角形面积为24,则m=.三、解答题(共69分)18.计算题(1)+(1﹣)0(2)已知:x=,y=,求的值.19.如图,在直角坐标系中,Rt△AOB的两条直角边OA,OB分别在x轴的负半轴,y轴的负半轴上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的像沿x轴正方向平移1个单位,得△CDO.(1)写出点A,C的坐标;(2)求点A和点C之间的距离.20.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系.(2)请作出△ABC关于y轴对称的△A′B′C′.(3)求△ABC的面积.21.阅读材料:小明发现一些含根号的式子可以写成另一个式子的平方如3+2=(1+)2,善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为正整数)则有:a+b=m2+2n2+2mn,所以a=m2+2n2,b=2mn.这样小明就找到了一种把a+b的式子化为平方式的方法.请仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得a=,b=(2)若a+4=(m+n)2(其中a、b、m、n均为正整数),求a的值.22.某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费,甲乙两厂所收取的费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.(1)甲厂的制版费,其证书印刷单价,y与x的函数解析式.甲与x的函数解析式.(2)请求出印刷数量x≥2时,y乙(3)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?(4)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?23.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)若AO=n2+1,AD=n2﹣1,OD=2n(n为大于1的整数),求α的度数;(3)当α为多少度时,△AOD是等腰三角形?24.正方形ABCD的边长为4,将此正方形置于平面直角坐标系中,使AB边落在X轴的正半轴上,且A点的坐标是(1,0).(1)直线y=x经过点C,且与x轴交与点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F(﹣,0),且与直线y=3x平行,将(2)中直线l沿着y轴向上平移个单位交轴x于点M,交直线l1于点N,求△NMF的面积.参考答案与解析一、选择题(每题3分,共3×12=36分)1.9的平方根为()A.3B.﹣3C.±3D.【考点】平方根.【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.【解答】解:9的平方根有:=±3.故选C.2.在给出的一组数0,π,,3.14,,中,无理数有()A.1个B.2个C.3个D.5个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:π,和共有3个.故选C.3.在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是()A.∠C=90°B.a2=b2﹣c2C.c2=2a2D.a=b【考点】勾股定理.【分析】首先根据△ABC角度之间的比,可求出各角的度数.∠C为90度.根据勾股定理可分别判断出各项的真假.【解答】解:由∠A:∠B:∠C=1:1:2;得:∠A=∠B=45°,∠C=90°;所以A正确.由勾股定理可得:c2=a2+b2,所以B错误.因为∠A=∠B=45°,则a=b,同时c2=a2+b2=2a2.所以C、D正确.故选B.4.若点P关于x轴的对称点为P1(﹣2,3),则点P关于原点的对称点P2的坐标()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)【考点】关于x轴、y轴对称的点的坐标;关于原点对称的点的坐标.【分析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【解答】解:点P关于x轴的对称点为P1(﹣2,3),得P(﹣2,﹣3)则点P关于原点的对称点P2的坐标(2,3)故选:A.5.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A.B.C.D.【考点】一次函数的应用;一次函数的图象.【分析】根据实际情况即可解答.【解答】解:蜡烛剩下的长度随时间增长而缩短,根据实际意义不可能是D,更不可能是A、C.故选B.6.在△ABC中,AB=15,AC=8,AD是中线,且AD=8.5,则BC的长为()A.15B.16C.17D.18【考点】全等三角形的判定与性质;勾股定理的逆定理.【分析】延长AD至E使ED=AD,利用好AD是中线这个条件,再根据题中的数据的特点正好符合勾股定理逆定理,得到直角三角形,根据直角三角形斜边上的中线的性质就可以求出BD 的长度了,再根据BC=2BD,所以BC的长也就求出了.【解答】解:延长AD至E,使DE=AD;连接BE,如图∵AD=8.5∴AE=2×8.5=17在△ACD和△BED中∵∴△ACD≌△BED(SAS)∴BE=AC=8BE2+AB2=82+152=289AE2=172=289所以∠ABE=90°∵在Rt△BED中,BD是中线∴BD=AE=8.5∴BC=2BD=2×8.5=17.故选:C.7.某一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的表达式可能是()A.y=2x+4B.y=3x﹣1C.y=﹣3x+1D.y=﹣2x+4【考点】一次函数的性质.【分析】设一次函数关系式为y=kx+b,y随x增大而减小,则k<0;图象经过点(1,2),可得k、b之间的关系式.综合二者取值即可.【解答】解:设一次函数关系式为y=kx+b∵图象经过点(1,2)∴k+b=2;∵y随x增大而减小∴k<0.即k取负数,满足k+b=2的k、b的取值都可以.故选D.8.若的整数部分为x,小数部分为y,则的值是()A.B.C.1D.3【考点】二次根式的加减法.【分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答】解:∵的整数部分为1,小数部分为﹣1∴x=1,y=﹣1∴=﹣(﹣1)=1.故选:C.9.若表示a、b两个实数的点在数轴上的位置如图所示,则化简|a﹣b|+的结果为()A.2a B.2b C.﹣2a D.﹣2b【考点】二次根式的性质与化简;实数与数轴.【分析】由数轴可判断出a<0,b<0,|a|<|b|,得出a﹣b>0,a+b<0,然后再根据这两个条件对式子化简.【解答】解:∵由数轴可得a<0,b<0,|a|<|b|∴a﹣b>0,a+b<0∴|a﹣b|+=|a﹣b|+|a+b|=a﹣b﹣(a+b)=﹣2b.故选:D.10.下列语句中,说法错误的是()A.点(0,0)是坐标原点B.对于坐标平面内的任一点,都有唯一的一对有序实数与它对应C.点A(a,﹣b )在第二象限,则点B(﹣a,b)在第四象限D.若点P的坐标为(a,b),且a•b=0,则点P一定在坐标原点【考点】点的坐标.【分析】根据各象限内点的坐标特征、有序实数对与平面的关系,解答即可.【解答】解:A、点(0,0)是坐标原点,故A不符合题意;B、对于坐标平面内的任一点,都有唯一的一对有序实数与它对应,故B不符合题意;C、点A(a,﹣b )在第二象限,得a<0,﹣b>0﹣a>0,b<0,则点B(﹣a,b)在第四象限,故C不符合题意;D、若点P的坐标为(a,b),且a•b=0,则点P一定在坐标轴上,故D符合题意;故选:D.11.已知一个直角三角形的面积为96,并且两直角边的比为3:4,则这个三角形的斜边为()A.10B.20C.5D.15【考点】勾股定理.【分析】根据两直角边的比为3:4,这个直角三角形的面积等于96.可设两直角边的长度分别为3a、4a,那么根据以上两个等量关系可以列出一个关于a的方程,求出a的值,再根据勾股定理求出斜边的长.【解答】解:设两直角边的长度分别为3a、4a,则3a•4a÷2=96解得a2=16则这个三角形的斜边为=20.故选B.12.一次函数y=kx+b与y=kbx,它们在同一坐标系内的图象可能为()A.B.C.D.【考点】一次函数的图象.【分析】根据一次函数的图象与系数的关系,有由一次函数y=kx+b图象分析可得k、b的符号,进而可得k•b的符号,从而判断y=kbx的图象是否正确,进而比较可得答案.【解答】解:根据一次函数的图象分析可得:A、由一次函数y=kx+b图象可知k<0,b>0;一次函数y=k的图象可知kb<0,两函数解析式均成立;B、由一次函数y=kx+b图象可知k<0,b>0;即kb<0,与次函数y=k的图象可知kb>0矛盾;C、由一次函数y=kx+b图象可知k>0,b<0;即kb<0,与次函数y=k的图象可知kb>0矛盾;D、由一次函数y=kx+b图象可知k>0,b>0;即kb>0,与次函数y=k的图象可知kb<0矛盾.故选A.二、填空题(每题3分,共3×5=15分)13.的算术平方根是3,﹣=.【考点】算术平方根.【分析】(1)先将原数化简,然后根据算术平方根的性质即可求出答案.(2)根据二次根式的性质进行化简,然后根据二次根式加法法则即可求出答案.【解答】解:∵==9∴9的算术平方根是3原式=2﹣=故答案为:3;14.已知一次函数y=kx﹣1的图象不经过第二象限,则正比例函数y=(k+1)x必定经过第一、三象限.【考点】正比例函数的性质;一次函数的性质.【分析】根据已知条件可知k>0,则正比例函数y=(k+1)x中,k+1必定大于0,所以必经过第一、三象限.【解答】解:∵一次函数y=kx﹣1的图象经过第一、三、四象限∴k>0∴k+1>0∴正比例函数y=(k+1)x必定经过第一、三象限.15.若a<<b,且a,b为连续正整数,则b2﹣a2=7.【考点】估算无理数的大小.【分析】因为32<13<42,所以3<<4,求得a、b的数值,进一步求得问题的答案即可.【解答】解:∵32<13<42∴3<<4即a=3,b=4∴b2﹣a2=7.故答案为:7.16.已知点P在第四象限,且到x轴的距离是5,到y轴的距离是4,则P点坐标为(4,﹣5).【考点】点的坐标.【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,点到x轴的距离是纵坐标的绝对值,点到y轴的距离是横坐标的绝对值,可得答案.【解答】解:由到x轴的距离是5,到y轴的距离是4,得|x|=4,|y|=5.由点位于第四象限,得则P点坐标为(4,﹣5)故答案为:(4,﹣5).17.函数y=3x+m的图象与两坐标轴围成的三角形面积为24,则m=±12.【考点】一次函数图象上点的坐标特征.【分析】根据题意确定与x轴与y轴的交点,利用三角形的面积公式求出m的值.【解答】解:直线y=3x+m与x轴的交点坐标是(﹣,0),与y轴的交点坐标是(0,m)根据三角形的面积是24,得到|﹣|•|m|=24,即=24解得:m=±12.故答案为±12.三、解答题(共69分)18.计算题(1)+(1﹣)0(2)已知:x=,y=,求的值.【考点】二次根式的化简求值;零指数幂.【分析】(1)首先分母有理化,计算0次幂,然后进行加减即可;(2)首先对x和y进行分母有理化,然后把所求的分式约分,然后代入x和y的数值计算即可.【解答】解:(1)原式=+1=5+1=6;(2)x=(+)2=5+2,y=(﹣)2=5﹣2则原式==则当x=5+2,y=5﹣2时,原式===.19.如图,在直角坐标系中,Rt△AOB的两条直角边OA,OB分别在x轴的负半轴,y轴的负半轴上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的像沿x轴正方向平移1个单位,得△CDO.(1)写出点A,C的坐标;(2)求点A和点C之间的距离.【考点】坐标与图形变化﹣旋转;坐标与图形变化﹣平移.【分析】(1)根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减:可得A、C点的坐标;(2)根据点的坐标,在Rt△ACD中,AD=OA+OD=3,CD=2,借助勾股定理可求得AC的长.【解答】解:(1)点A的坐标是(﹣2,0),点C的坐标是(1,2).(2)连接AC,在Rt△ACD中,AD=OA+OD=3,CD=2∴AC2=CD2+AD2=22+32=13∴AC=.20.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系.(2)请作出△ABC关于y轴对称的△A′B′C′.(3)求△ABC的面积.【考点】作图﹣轴对称变换.【分析】(1)根据C点坐标确定原点位置,然后作出坐标系即可;(2)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;(3)利用长方形的面积剪去周围多余三角形的面积即可.【解答】解:(1)如图所示:(2)如图所示:(3)△ABC的面积:3×4﹣4×2﹣2×1﹣2×3=12﹣4﹣1﹣3=4.21.阅读材料:小明发现一些含根号的式子可以写成另一个式子的平方如3+2=(1+)2,善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为正整数)则有:a+b=m2+2n2+2mn,所以a=m2+2n2,b=2mn.这样小明就找到了一种把a+b的式子化为平方式的方法.请仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得a=m2+3n2,b=2mn(2)若a+4=(m+n)2(其中a、b、m、n均为正整数),求a的值.【考点】二次根式的混合运算.【分析】(1)利用完全平方公式把(m+n)2展开即可得到a、b的值;(2)利用(1)中结论得到a=m2+3n2,2mn=4,即mn=2,利用有理数的整除性确定m和n的值,然后计算a的值.【解答】解:(1)(m+n)2=m2+3n2+2mn所以a=m2+3n2,b=2mn;故答案为m2+3n2,2mn;(2)由(1)得a=m2+3n2,2mn=4而a、b、m、n均为正整数所以m=2,n=1或m=1,n=2.所以当m=2,n=1时,a=22+3×12=7.当m=1,n=2时,a=12+3×22=13.22.某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费,甲乙两厂所收取的费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.(1)甲厂的制版费1千元,其证书印刷单价0.5元/张,y甲与x的函数解析式y甲=x+1.(2)请求出印刷数量x≥2时,y乙与x的函数解析式.(3)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?(4)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?【考点】一次函数的应用.【分析】(1)当x=0时,y=1,由此即可得出甲厂的制版费为1千元,设y甲与x间的函数解析式为y甲=kx+b(k≠0),根据函数图象找出点的坐标,再利用待定系数法即可求出函数解析式;根据“单价=总价÷印刷数量”即可求出甲厂的印刷单价;(2)设y乙与x间的函数解析式为y乙=mx+n(m≠0),观察函数图象找出点的坐标,利用待定系数法即可求出函数解析式;(3)代入x=8,分别求出y甲与y乙的值,比较做差即可得出结论;(4)结合(2)的结论,根据“减少的单价=减少费用÷印刷数量”算出结果即可.【解答】解:(1)当x=0时,y甲=1∴甲厂的制版费为1千元.设y甲与x间的函数解析式为y甲=kx+b(k≠0)将点(0,1)、(6,4)代入y甲=kx+b中得:,解得:∴y甲与x间的函数解析式为y甲=x+1.证书印刷单价为:(4﹣1)÷6=0.5(元/张).答:甲厂的制版费为1千元,y甲与x间的函数解析式为y甲=x+1,证书印刷单价为0.5元/张.(2)设y乙与x间的函数解析式为y乙=mx+n(m≠0)当x≥2时,将点(2,3)、(6,4)代入y乙=mx+n中得:,解得:∴y乙=x+.(3)当x=8时,y甲=×8+1=5;当x=8时,y乙=×8+=.∵5>,且5﹣=(千元)=500(元).∴当印制证书8千个时,选择乙厂,节省费用500元.(4)每个证书降低费用为:500÷8000==0.0625(元).答:如果甲厂想把8千个证书的印制费用不大于乙厂,在不降低制版费的前提下,每个证书最少降低0.0625元.23.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)若AO=n2+1,AD=n2﹣1,OD=2n(n为大于1的整数),求α的度数;(3)当α为多少度时,△AOD是等腰三角形?【考点】等边三角形的判定与性质;全等三角形的判定与性质.【分析】(1)根据旋转的性质可得CO=CD,∠OCD=60°,根据有一个角是60°的等腰三角形是等边三角形解答;(2)利用勾股定理逆定理判定△AOD是直角三角形,并且∠ADO=90°,从而求出∠ADC=150°,再根据旋转变换只改变图形的位置不改变图形的形状与大小可得α=∠ADC;(3)根据周角为360°用α表示出∠AOD,再根据旋转的性质表示出∠ADO,然后利用三角形的内角和定理表示出∠DAO,再分∠AOD=∠ADO,∠AOD=∠DAO,∠ADO=∠DAO三种情况讨论求解.【解答】解:(1)△COD是等边三角形.理由如下:∵△BOC绕点C按顺时针方向旋转60°得△ADC∴CO=CD,∠OCD=60°∴△COD是等边三角形;(2)∵AD2+OD2=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2=AO2∴△AOD是直角三角形,且∠ADO=90°∵△COD是等边三角形∴∠CDO=60°∴∠ADC=∠ADO+∠CDO=90°+60°=150°根据旋转的性质,α=∠ADC=150;(3)∵α=∠ADC,∠CDO=60°∴∠ADO=α﹣60°又∵∠AOD=360°﹣110°﹣α﹣60°=190°﹣α∴∠DAO=180°﹣﹣(α﹣60°)=180°﹣190°+α﹣α+60°=50°∵△AOD是等腰三角形∴①∠AOD=∠ADO时,190°﹣α=α﹣60°解得α=125°②∠AOD=∠DAO时,190°﹣α=50°解得α=140°③∠ADO=∠DAO时,α﹣60°=50°解得α=110°综上所述,α为125°或140°或110°时,△AOD是等腰三角形.24.正方形ABCD的边长为4,将此正方形置于平面直角坐标系中,使AB边落在X轴的正半轴上,且A点的坐标是(1,0).(1)直线y=x经过点C,且与x轴交与点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F(﹣,0),且与直线y=3x平行,将(2)中直线l沿着y轴向上平移个单位交轴x于点M,交直线l1于点N,求△NMF的面积.【考点】一次函数综合题.【分析】(1)求得C的坐标,以及E的坐标,则求得AE的长,根据直角梯形的面积公式即可求得四边形的面积;(2)经过点E且将正方形ABCD分成面积相等的两部分的直线与CD的交点F到C的距离一定等于AE,则F的坐标可以求得,利用待定系数法即可求得直线EF的解析式;(3)根据直线l1经过点F(﹣,0)且与直线y=3x平行,知k=3,把F的坐标代入即可求出b的值即可得出直线11,同理求出解析式y=2x﹣3,进一步求出M、N的坐标,利用三角形的面积公式即可求出△MNF的面积..【解答】解:(1)在y=x中令y=4,即x=4解得:x=5,则B的坐标是(5,0);令y=0,即x=0解得:x=2,则E的坐标是(2,0).则OB=5,OE=2,BE=OB﹣OA=5﹣2=3∴AE=AB﹣BE=4﹣3=1边形AECD=(AE+CD)•AD=(4+1)×4=10;(2)经过点E且将正方形ABCD分成面积相等的两部分,则直线与CD的交点F,必有CF=AE=1,则F的坐标是(4,4).设直线的解析式是y=kx+b,则解得:.则直线l的解析式是:y=2x﹣4;(3)∵直线l1经过点F(﹣,0)且与直线y=3x平行设直线11的解析式是y1=kx+b则:k=3代入得:0=3×(﹣)+b解得:b=∴y1=3x+已知将(2)中直线l沿着y轴向上平移个单位,则所得的直线的解析式是y=2x﹣4+即:y=2x﹣3当y=0时,x=∴M(,0)解方程组得:即:N(﹣7,﹣19)S△NMF=×[﹣(﹣)]×|﹣19|=.答:△NMF的面积是.第21页共21页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年山东省威海市开发区八年级(上)期中数学试卷(五四学制)一、选择题(每小题3分,共36分)1.(3分)若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠02.(3分)下列多项式中,不能用完全平方公式分解因式的是()A. B.﹣x2+2xy﹣y2C.﹣a2+14ab+49b2D.3.(3分)如果4x2﹣kx+25是一个完全平方式,那么k的值是()A.10 B.±10 C.20 D.±204.(3分)下列计算错误的是()A.=B.=a﹣bC.=D.﹣=﹣5.(3分)某数学小组的同学们调查了20户家庭某月的用电量,结果如表所示:则这20户家庭该月用电量的众数和中位数分别是()A.180,160 B.180,170 C.180,180 D.180,1756.(3分)某公司承担了制作500套校服的任务,原计划每天制作x套,实际平均每天比原计划多制作了12套,因此提前4天完成任务.根据题意,下列方程正确的是()A.﹣=12 B.﹣=12C.﹣=4 D.+12=7.(3分)一鞋店试销一种新款女鞋,试销期间卖出情况如表:对于这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是()A.平均数B.众数C.中位数D.方差8.(3分)如图是2014年1﹣12月份某市居民消费价格指数、工业品出厂价格指数以及原材料等购进价格指数的折线统计图.由统计图可知,三种价格指数方差最小的是()A.居民消费价格指数B.工业品出厂价格指数C.原材料等购进价格指数D.不能确定9.(3分)多项式x2﹣11x+30分解因式的结果为()A.(x+5)(x﹣6)B.(x﹣5)(x+6)C.(x﹣5)(x﹣6) D.(x+5)(x+6)10.(3分)一个射击运动员连续射击5次,所得环数分别是8,6,10,7,9,则这个运动员本次射击所得环数的标准差为()A.2 B.C.0 D.11.(3分)257﹣512能被下列四个数①12;②15;③24;④60整除的个数是()A.1个 B.2个 C.3个 D.4个12.(3分)已知(x﹣y)(2x﹣y)=0(xy≠0),则+的值是()A.2 B.﹣2C.﹣2或﹣2D.2或2二、填空题(每小题3分,共18分)13.(3分)已知x+y=6,xy=4,则x2y+xy2的值为.14.(3分)化简=.15.(3分)关于x的方程﹣=0无解,则m的值是.16.(3分)如果4m2﹣m﹣1=0,那么4m3﹣m2﹣m+6=.17.(3分)某养鸡场养了2000只鸡,上市前,随机抽取了10只鸡,称得重量统计如表:根据表中数据可估计这批鸡的总重量为kg.18.(3分)若a1=1﹣,a2=1﹣,a3=1,…,则a2015的值为.三、解答题(本题共7小题,共66分)19.(16分)分解因式:(1)(a2+1)2﹣4a2(2)﹣ax2﹣a+xa(3)6(x﹣y)2﹣12(y﹣x)3(4)(x+3y)2+(2x+6y)(3y﹣4x)+(4x﹣3y)2.20.(6分)解方程:=﹣1.21.(7分)化简求值:已知﹣3=0,求﹣﹣的值.22.(8分)某学校开展“文明礼仪”演讲比赛,八(1)、八(2)班派出的5名选手的比赛成绩如图所示:(1)根据图,完成表格:(2)结合两班选手成绩的平均分和方差,分析两个班级参加比赛选手的成绩;(3)如果在每班参加比赛的选手中分别选出3人参加决赛,从平均分看,你认为哪个班的实力更强一些?并说明理由.23.(9分)甲、乙两地间铁路长2400千米,经技术改造后,列车实现了提速.提速后比提速前速度增加20千米/时,列车从甲地到乙地行驶时间减少4小时.已知列车在现有条件下安全行驶的速度不超过140千米/时.请你用学过的数学知识说明这条铁路在现有条件下是否还可以再次提速?24.(10分)某超市招聘收银员一名,对三名申请人进行了三次素质测试,下面是三名候选人的素质测试成绩:公司根据实际需要,对计算机、商品知识、语言三项测试成绩分别赋予权:4,3,2,这三人中谁将被录用?25.(10分)烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.2014-2015学年山东省威海市开发区八年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠0【解答】解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选:C.2.(3分)下列多项式中,不能用完全平方公式分解因式的是()A. B.﹣x2+2xy﹣y2C.﹣a2+14ab+49b2D.【解答】解:m+1+=(m2+4m+4)=(m+2)2;﹣x2+2xy﹣y2=﹣(x2﹣2xy+y2)=﹣(x﹣y)2;﹣a2+14ab+49b2=﹣(a2﹣14ab﹣49b2),它不能用完全平方公式分解因式;﹣n+1=(n2﹣6n+9)=(n﹣3)2.故选:C.3.(3分)如果4x2﹣kx+25是一个完全平方式,那么k的值是()A.10 B.±10 C.20 D.±20【解答】解:﹣kx=±2×2x×5,则k=±20.故选:D.4.(3分)下列计算错误的是()A.=B.=a﹣bC.=D.﹣=﹣【解答】解:A、分子分母都除以a2b2,故A正确;B、分子除以(a﹣b),分母除以(b﹣a),故B错误;C、分子分母都乘以10,故C正确;D、同分母分式相加减,分母不变,分子相加减,故D正确;故选:B.5.(3分)某数学小组的同学们调查了20户家庭某月的用电量,结果如表所示:则这20户家庭该月用电量的众数和中位数分别是()A.180,160 B.180,170 C.180,180 D.180,175【解答】解:在这一组数据中180是出现次数最多的,故众数是180;将这组数据从小到大的顺序排列后,处于中间位置的两个数是160,180,那么由中位数的定义可知,这组数据的中位数是(160+180)÷2=170.故选:B.6.(3分)某公司承担了制作500套校服的任务,原计划每天制作x套,实际平均每天比原计划多制作了12套,因此提前4天完成任务.根据题意,下列方程正确的是()A.﹣=12 B.﹣=12C.﹣=4 D.+12=【解答】解:设原计划每天制作x套,实际平均每天制作(x+12)套,由题意得,﹣=4.故选:C.7.(3分)一鞋店试销一种新款女鞋,试销期间卖出情况如表:对于这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是()A.平均数B.众数C.中位数D.方差【解答】解:对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.故选:B.8.(3分)如图是2014年1﹣12月份某市居民消费价格指数、工业品出厂价格指数以及原材料等购进价格指数的折线统计图.由统计图可知,三种价格指数方差最小的是()A.居民消费价格指数B.工业品出厂价格指数C.原材料等购进价格指数D.不能确定【解答】解:从折线统计图中可以明显看出居民消费价格指数的波动最小,故方差最小的是居民消费价格指数.故选:A.9.(3分)多项式x2﹣11x+30分解因式的结果为()A.(x+5)(x﹣6)B.(x﹣5)(x+6)C.(x﹣5)(x﹣6) D.(x+5)(x+6)【解答】解:x2﹣11x+30=(x﹣5)(x﹣6).故选:C.10.(3分)一个射击运动员连续射击5次,所得环数分别是8,6,10,7,9,则这个运动员本次射击所得环数的标准差为()A.2 B.C.0 D.【解答】解:由题意知:平均数==8,方差S2=[(8﹣8)2+(6﹣8)2+(10﹣8)2+(7﹣8)2+(9﹣8)2]=2,所以标准差s=.故选:B.11.(3分)257﹣512能被下列四个数①12;②15;③24;④60整除的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:∵原式=512(52﹣1)=24×512=120×511.∴257﹣512能被①12;②15;③24;④60整除.故选:D.12.(3分)已知(x﹣y)(2x﹣y)=0(xy≠0),则+的值是()A.2 B.﹣2C.﹣2或﹣2D.2或2【解答】解:∵(x﹣y)(2x﹣y)=0(xy≠0),∴x﹣y=0或2x﹣y=0,解得x=y或2x=y.原式==﹣2,当x=y时,原式=﹣2=4﹣2=2;当2x=y时,原式=﹣2=4.5﹣2=2.5.∴原式的值是2或2.故选:D.二、填空题(每小题3分,共18分)13.(3分)已知x+y=6,xy=4,则x2y+xy2的值为24.【解答】解:∵x+y=6,xy=4,∴x2y+xy2=xy(x+y)=4×6=24.故答案为:24.14.(3分)化简=.【解答】解:原式==﹣==,故答案为:.15.(3分)关于x的方程﹣=0无解,则m的值是1或3.【解答】解:方程两边都乘(x+1)(x﹣1)得,m﹣1﹣(x+1)=0,解得,x=m﹣2,(x+1)(x﹣1)=0,即x=±1时最简公分母为0,分式方程无解.①x=﹣1时,m=1,②x=1时,m=3,所以m=1或3时,原方程无解.故答案为:1或3.16.(3分)如果4m2﹣m﹣1=0,那么4m3﹣m2﹣m+6=6.【解答】解:∵4m2﹣m﹣1=0,∴4m3﹣m2﹣m+6=m(4m2﹣m﹣1)+6=6.故答案为:6.17.(3分)某养鸡场养了2000只鸡,上市前,随机抽取了10只鸡,称得重量统计如表:根据表中数据可估计这批鸡的总重量为5000kg.【解答】解:×2000=5000(kg).故答案为:5000.18.(3分)若a1=1﹣,a2=1﹣,a3=1,…,则a2015的值为.【解答】解:a1=1﹣,a2=1﹣=1﹣,a3=1=1﹣(1﹣m)=m,a4=1﹣=1﹣,每三次一循环:2015÷3=671…2,a2015是即第671轮第二个:,故答案为:.三、解答题(本题共7小题,共66分)19.(16分)分解因式:(1)(a2+1)2﹣4a2(2)﹣ax2﹣a+xa(3)6(x﹣y)2﹣12(y﹣x)3(4)(x+3y)2+(2x+6y)(3y﹣4x)+(4x﹣3y)2.【解答】解:(1)原式=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2;(2)原式=﹣a(x﹣)2;(3)原式=6(x﹣y)2+12(x﹣y)3=6(x﹣y)2(1+2x﹣2y);(4)原式=(x+3y)2+2(x+3y)(3y﹣4x)+(4x﹣3y)2=9(2y﹣x)2.20.(6分)解方程:=﹣1.【解答】解:去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解.21.(7分)化简求值:已知﹣3=0,求﹣﹣的值.【解答】解:原式=﹣=﹣=,∵﹣3=0,∴a=3b,∴原式==.22.(8分)某学校开展“文明礼仪”演讲比赛,八(1)、八(2)班派出的5名选手的比赛成绩如图所示:(1)根据图,完成表格:(2)结合两班选手成绩的平均分和方差,分析两个班级参加比赛选手的成绩;(3)如果在每班参加比赛的选手中分别选出3人参加决赛,从平均分看,你认为哪个班的实力更强一些?并说明理由.【解答】解:(1)∵共有5个人,八(1)的成绩分别是75,65,70,75,90,把这组数据从小到大排列为65,70,75,75,90,∴这组数据的中位数是75,方差是:[(75﹣75)2+(65﹣75)2+(70﹣75)2+(75﹣75)2+(90﹣75)2]=70;八(2)的极差是:90﹣60=30;故答案为:75、70、30.(2)两个班的平均分相同,八(1)班的方差小,则八(1)班选手的成绩总体上较稳定.(3)∵八(1)班、八(2)班前三名选手的平均成绩分别为分、分,∴八(2)班的实力更强一些.23.(9分)甲、乙两地间铁路长2400千米,经技术改造后,列车实现了提速.提速后比提速前速度增加20千米/时,列车从甲地到乙地行驶时间减少4小时.已知列车在现有条件下安全行驶的速度不超过140千米/时.请你用学过的数学知识说明这条铁路在现有条件下是否还可以再次提速?【解答】解:设提速后列车速度为x千米/时,则:.(4分)解之得:x1=120,x2=﹣100(舍去).(7分)经检验x=120是原方程的根.∵120<140,∴仍可再提速.答:这条铁路在现有条件下仍可再次提速.(9分)24.(10分)某超市招聘收银员一名,对三名申请人进行了三次素质测试,下面是三名候选人的素质测试成绩:公司根据实际需要,对计算机、商品知识、语言三项测试成绩分别赋予权:4,3,2,这三人中谁将被录用?【解答】解:∵小赵的成绩是:=65,小钱的成绩是:=72,小孙的成绩是:=65,∴小钱被录用.25.(10分)烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.【解答】解:(1)设苹果进价为每千克x元,根据题意得:400x+10%x(﹣400)=2100,解得:x=5,经检验x=5是原方程的解,答:苹果进价为每千克5元.(2)由(1)得,每个超市苹果总量为:=600(千克),大、小苹果售价分别为10元和5.5元,则乙超市获利600×(﹣5)=1650(元),∵甲超市获利2100元,∵2100>1650,∴将苹果按大小分类包装销售,更合算.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

相关文档
最新文档