中考圆压轴题训练精选

合集下载

2024中考压轴题05 圆的综合(5题型+解题模板+技巧精讲)(原卷版)

2024中考压轴题05 圆的综合(5题型+解题模板+技巧精讲)(原卷版)

压轴题05圆的综合目录题型一切线的判定题型二圆中求线段长度题型三圆中的最值问题题型四圆中的阴影部分面积题型五圆中的比值(相似)问题下图为二次函数图象性质与几何问题中各题型的题型一切线的判定解题模板:技巧:有切点,连半径,证垂直(根据题意,可以证角为90°,如已有90°角,可以尝试证平行) 没切点,作垂直,证半径(通常为证全等,也可以通过计算得到与半径相等)【例1】1.(2023-四川攀枝花-中考真题)如图,AB 为O 的直径,如果圆上的点D 恰使ADC B ∠=∠,求证:直线CD 与O 相切.【变式1-1】(2023-辽宁-中考真题)如图,ABC 内接于O ,AB 是O 的直径,CE 平分ACB ∠交O 于点E ,过点E 作EF AB ∥,交CA 的延长线于点F .求证:EF 与O 相切;【变式1-2】(2023-辽宁-中考真题)如图,AB 是O 的直径,点C E ,在O 上,2CAB EAB ∠=∠,点F 在线段AB 的延长线上,且AFE ABC ∠=∠.(1)求证:EF与O相切;(2)若41sin5BF AFE=∠=,,求BC的长.【变式1-3】(2023-湖北鄂州-中考真题)如图,AB为O的直径,E为O上一点,点C为EB的中点,过点C作CD AE⊥,交AE的延长线于点D,延长DC交AB的延长线于点F.(1)求证:CD是O的切线;题型二圆中求线段长度解题模板:【例2】(2023-西藏-中考真题)如图,已知AB为O的直径,点C为圆上一点,AD垂直于过点C的直线,交O于点E,垂足为点D,AC平分BAD∠.(1)求证:CD 是O 的切线; (2)若8AC =,6BC =,求DE 的长.【变式2-1】(2023-内蒙古-中考真题)如图,AB 是⊙O 的直径,E 为⊙O 上的一点,点C 是AE 的中点,连接BC ,过点C 的直线垂直于BE 的延长线于点D ,交BA 的延长线于点P .(1)求证:PC 为⊙O 的切线;(2)若PC =,10PB =,求BE 的长.【变式2-2】(2023-辽宁大连-中考真题)如图1,在O 中,AB 为O 的直径,点C 为O 上一点,AD 为CAB ∠的平分线交O 于点D ,连接OD 交BC 于点E .(1)求BED ∠的度数;(2)如图2,过点A 作O 的切线交BC 延长线于点F ,过点D 作DG AF ∥交AB 于点G .若AD =4DE =,求DG 的长.【变式2-3】(2023-湖北恩施-中考真题)如图,ABC 是等腰直角三角形,90ACB ∠=︒,点O 为AB 的中点,连接CO 交O 于点E ,O 与AC 相切于点D .(1)求证:BC是O的切线;(2)延长CO交O于点G,连接AG交O于点F,若AC FG的长.题型三圆中的最值问题解题模板:技巧精讲:1、辅助圆模型【例3】(2023-湖南长沙-三模)如图1:在O 中,AB 为直径,C 是O 上一点,3,4AC BC ==.过O 分别作OH BC ⊥于点H ,OD AC ⊥于点D ,点E 、F 分别在线段BC AC 、上运动(不含端点),且保持90EOF ∠=︒.(1)OC =______;四边形CDOH 是______(填矩形/菱形/正方形); CDOH S =四边形______; (2)当F 和D 不重合时,求证:OFD OEH ∽;(3)⊙在图1中,P 是CEO 的外接圆,设P 面积为S ,求S 的最小值,并说明理由;⊙如图2:若Q 是线段AB 上一动点,且1QAQB n =∶∶,90EQF ∠=︒,M 是四边形CEQF 的外接圆,则当n 为何值时,M 的面积最小?最小值为多少?请直接写出答案.【变式3-1】(2023-安徽-模拟预测)如图,半圆的直径4AB =,弦CD AB ∥,连接,,,AC BD AD BC .(1)求证:ADC BCD △≌△;(2)当ACD 的面积最大时,求CAD ∠的度数.【变式3-2】(2023-四川-中考真题)如图1,已知线段AB ,AC ,线段AC 绕点A 在直线AB 上方旋转,连接BC ,以BC 为边在BC 上方作Rt BDC ,且30DBC ∠=︒.(1)若=90BDC ∠︒,以AB 为边在AB 上方作Rt BAE △,且90AEB ∠=︒,30EBA ∠=︒,连接DE ,用等式表示线段AC 与DE 的数量关系是 ;(2)如图2,在(1)的条件下,若DE AB ⊥,4AB =,2AC =,求BC 的长;(3)如图3,若90BCD ∠=︒,4AB =,2AC =,当AD 的值最大时,求此时tan CBA ∠的值.【变式3-3】(2023-陕西西安-模拟预测)【问题情境】如图1,在ABC 中,120A ∠=︒,AB AC =,BC =ABC 的外接圆的半径值为______; 【问题解决】如图2,点P 为正方形ABCD 内一点,且90BPC ∠=︒,若4AB =,求AP 的最小值; 【问题解决】如图3,正方形ABCD 是一个边长为的书展区域设计图,CE 为大门,点E 在边BC 上,CE =,点P 是正方形ABCD 内设立的一个活动治安点,到B 、E 的张角为120︒,即120BPE ∠=︒,点A 、D 为另两个固定治安点,现需在展览区域内部设置一个补水供给点Q ,使得Q 到A 、D 、P 三个治安点的距离和最小,试求QA QD QP ++的最小值.(结果精确到0.1m 1.7≈,214.3205≈)题型四 圆中的阴影部分面积【例4】(2024-西藏拉萨-一模)如图,等腰ABC 的顶点A ,C 在O 上, BC 边经过圆心0且与O 交于D 点,30B ∠=︒.(1)求证:AB 是O 的切线; (2)若6AB =,求阴影部分的面积【变式4-1】(2023-陕西西安-一模)如图,正六边形ABCDEF 内接于O .(1)若P 是CD 上的动点,连接BP ,FP ,求BPF ∠的度数;(2)已知ADF △的面积为O 的面积.【变式4-2】(2023-浙江衢州-中考真题)如图,在Rt ABC △中,90,ACB O ∠=︒为AC 边上一点,连结OB .以OC 为半径的半圆与AB 边相切于点D ,交AC 边于点E .(1)求证:BC BD =.(2)若,2OB OA AE ==.⊙求半圆O 的半径.⊙求图中阴影部分的面积.【变式4-3】(2023-辽宁阜新-中考真题)如图,AB 是O 的直径,点C ,D 是O 上AB 异侧的两点,DE CB ⊥,交CB 的延长线于点E ,且BD 平分ABE ∠.(1)求证:DE 是O 的切线.(2)若60ABC ∠=︒,4AB =,求图中阴影部分的面积.【变式4-4】(2023-山东枣庄-中考真题)如图,AB 为O 的直径,点C 是AD 的中点,过点C 做射线BD 的垂线,垂足为E .(1)求证:CE 是O 切线;(2)若34BE AB ==,,求BC 的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).题型五 圆中的比值(相似)问题 技巧精讲:【例5】(2024-陕西西安-模拟预测)如图,AB 为O 的直径, 点 D 为O 上一点, 过点 B 作O 切线交AD 延长线于点 C ,CE 平分ACB ∠,CE BD ,交于F .(1)求证:BE BF =;(2)若O 半径为2,3sin 5A =,求DF 的长度. 【变式5-1】(2023-湖南湘西-二模)如图,AB 是O 的直径,点C ,D 在O 上,AD 平分CAB ∠,交BC 于点E ,连接BD .(1)求证:BED ABD △△.(2)当3tan 4ABC ∠=,且10AB =时,求线段BD 的长.(3)点G 为线段AE 上一点,且BG 平分ABC ∠,若GE =,3BG =,求CE 的长.【变式5-2】(2024-陕西西安-一模)如图,AB 是O 的直径CD 与O 相切于点C ,与BA 的延长线交于点D ,连接BC ,点E 在线段OB 上,过点E 作BD 的垂线交DC 的延长线于点F ,交BC 于点G .(1)求证:FC FG =;(2)若220AO AD ==,点E 为OB 的中点,求GE 的长.【变式5-3】(2024-陕西西安-一模)如图,AB 是O 的直径,点D 在直径AB 上(D 与,A B 不重合),CD AB ⊥且CD AB =,连接CB ,与O 交于点F ,在CD 上取一点E ,使EF 与O 相切.(1)求证:EF EC =;(2)若D 是OA 的中点,4AB =,求BF 的长.一、解答题1.(2024-云南-模拟预测)如图,四边形ABCD 内接于O ,对角线AC 是O 的直径,过点C 作AC 的垂线交AD 的延长线于点E ,F 为CE 的中点,连接BD ,DF ,BD 与AC 交于点P .(1)求证:DF 是O 的切线;(2)若45DPC ∠=︒,228PD PB +=,求AC 的长.2.(2024-湖北黄冈-模拟预测)如图,PO 平分APD ∠,PA 与⊙O 相切于点A ,延长AO 交PD 于点C ,过点O 作OB PD ⊥,垂足为B .(1)求证:PB 是⊙O 的切线;(2)若⊙O 的半径为4,5OC =,求PA 的长.3.(2024-江苏淮安-模拟预测)如图,已知直线l 与O 相离,OA l ⊥于点A ,交O 于点 P ,点 B 是O 上一点,连接BP 并延长,交直线l 于点 C ,使得AB AC =.(1)判断直线AB 与O 的位置关系并说明理由;(2)4PC OA ==,求线段 PB 的长.4.(2024-四川凉山-模拟预测)如图,CD 是O 的直径,点P 是CD 延长线上一点,且AP 与O 相切于点A ,弦AB CD ⊥于点F ,过D 点作DE AP ⊥于点E .(1)求证:∠∠EAD FAD =;(2)若4PA =,2PD =,求O 的半径和DE 的长.5.(2024-四川凉山-模拟预测)如图,在Rt ABC △中,90ACB ∠=︒,以AC 为直径的O 交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点F .(1)求证:DE 是O 的切线;(2)若30A ∠=︒,3DF =,求CE 长.6.(2024-山东泰安-一模)如图,AB CD ,是O 的两条直径,过点C 的O 的切线交AB 的延长线于点E ,连接AC BD ,.(1)求证:ABD CAB ∠=∠;(2)若B 是OE 的中点,12AC =,求O 的半径.7.(2024-福建南平-一模)如图1,点D 是ABC 的边AB 上一点.AD AC =,CAB α∠=,O 是BCD △的外接圆,点E 在DBC 上(不与点C ,点D 重合),且90CED α∠=︒-.(1)求证:ABC 是直角三角形;(2)如图2,若CE 是⊙O 的直径,且2CE =,折线ADF 是由折线ACE 绕点A 顺时针旋转α得到. ⊙当30α=︒时,求CDE 的面积;⊙求证:点C ,D ,F 三点共线.8.(2023-四川甘孜-中考真题)如图,在Rt ABC △中,=90ABC ∠︒,以BC 为直径的O 交AC 边于点D ,过点C 作O 的切线,交BD 的延长线于点E .(1)求证:=DCE DBC ∠∠;(2)若=2AB ,=3CE ,求O 的半径.9.(2023-湖北黄石-中考真题)如图,AB 为O 的直径,DA 和O 相交于点F ,AC 平分DAB ∠,点C 在O 上,且CD DA ⊥,AC 交BF 于点P .(1)求证:CD 是O 的切线;(2)求证:2AC PC BC ⋅=;(3)已知23BC FP DC =⋅,求AF AB的值.10.(2023-辽宁鞍山-中考真题)如图,四边形ABCD 内接于O ,AB 为O 的直径,过点D 作DF BC ⊥,交BC 的延长线于点F ,交BA 的延长线于点E ,连接BD .若180EAD BDF ∠+∠=︒.(1)求证:EF 为O 的切线.(2)若10BE =,2sin 3BDC ∠=,求O 的半径.11.(2023-湖南湘西-中考真题)如图,点D ,E 在以AC 为直径的O 上,ADC ∠的平分线交O 于点B ,连接BA ,EC ,EA ,过点E 作EH AC ⊥,垂足为H ,交AD 于点F .(1)求证:2AE AF AD =⋅;(2)若sin 5ABD AB ∠==,求AD 的长. 12.(2023-辽宁沈阳-中考真题)如图,AB 是O 的直径,点C 是O 上的一点(点C 不与点A ,B 重合),连接AC 、BC ,点D 是AB 上的一点,AC AD =,BE 交CD 的延长线于点E ,且BE BC =.(1)求证:BE 是O 的切线;(2)若O 的半径为5,1tan 2E =,则BE 的长为______ .13.(2023-黑龙江大庆-中考真题)如图,AB 是O 的直径,点C 是圆上的一点,CD AD ⊥于点D ,AD 交O 于点F ,连接AC ,若AC 平分DAB ∠,过点F 作FG AB ⊥于点G ,交AC 于点H ,延长AB ,DC 交于点E .(1)求证:CD 是O 的切线;(2)求证:AF AC AE AH ⋅=⋅;(3)若4sin 5DEA ∠=,求AH FH的值.14.(2023-四川雅安-中考真题)如图,在Rt ABC △中,90ABC ∠=︒,以AB 为直径的O 与AC 交于点D ,点E 是BC 的中点,连接BD ,DE .(1)求证:DE 是O 的切线;(2)若2DE =,1tan 2BAC ∠=,求AD 的长;(3)在(2)的条件下,点P 是O 上一动点,求PA PB +的最大值.15.(2023-辽宁营口-中考真题)如图,在ABC 中,AB BC =,以BC 为直径作O 与AC 交于点D ,过点D 作DE AB ⊥,交CB 延长线于点F ,垂足为点E .(1)求证:DF 为O 的切线;(2)若3BE =,4cos 5C =,求BF 的长.。

中考压轴题--圆含答案

中考压轴题--圆含答案

中考压轴题(一)-—-———--与圆有关压轴题1.如图,在M 中,AB 所对的圆心角为120,已知圆的半径为2cm ,并建立如图所示的直角坐标系. (1)求圆心M 的坐标; (2)求经过A B C ,,三点的抛物线的解析式;(3)点D 是弦AB 所对的优弧上一动点,求四边形ACBD 的最大面积; (4)在(2)中的抛物线上是否存在一点P ,使PAB △和ABC △相似?若存在,求出点P 的坐标;若不存在,请说明理由. [解] (1)如图(1),连结MA MB ,. 则120AMB ∠=60CMB ∴∠=,30OBM ∠=.112OM MB ∴==,(01)M ∴,. (2)由A B C ,,三点的特殊性与对称性, 知经过A B C ,,三点的抛物线的解析式为2y ax c =+.1OC MC MO =-=,223OB MB OM =-=,(01)(30)C B ∴-,,,.113c a ∴=-=,2113y x ∴=-.(3)ABC ABD ACBD S S S =+△△四边形,又ABC S △与AB 均为定值,∴当ABD △边AB 上的高最大时,ABD S △最大,此时点D 为M 与y 轴的交点,如图1.211143cm 222ABC ABD ACBD S S S AB OC AB OD AB CD ∴=+=+==△△四边形···. (4)方法1:如图2,ABC △为等腰三角形,303ABABC BC∠==,,ABC PAB ∴△∽△等价于302336PAB PB AB PA PB ∠=====,,.设()P x y ,且0x >,则cos3033323x PAAO =-=-=·,sin303y PA ==·. 又(233)P ,的坐标满足2113y x =-,∴在抛物线2113y x =-上,存在点(233)P ,,使ABC PAB △∽△.由抛物线的对称性,知点(233)-,也符合题意.∴存在点P ,它的坐标为(233),或(233)-,. 方法2:如图(3),当ABC PAB △∽△时,30PAB BAC ∠=∠=,又由(1)知30MAB ∠=,yxAM O BCy xBC A MP图2O yxAM OBCD图1∴点P 在直线AM 上.设直线AM 的解析式为y kx b =+,将(30)(01)A M -,,,代入,解得331.k b ⎧=⎪⎨⎪=⎩,∴直线AM 的解析式为313y x =+. 解方程组2313113y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩,得(233)P ,. 又3tan 3233PBx ∠==-,60PBx ∴∠=.30P ∴∠=,ABC PAB ∴△∽△.∴在抛物线2113y x =-上,存在点(233)P ,,使ABC PAB △∽△. 由抛物线的对称性,知点(233)-,也符合题意.∴存在点P ,它的坐标为(233),或(233)-,. 方法3:如图3,ABC △为等腰三角形,且3ABBC=,设()P x y ,则 图3 ABC PAB △∽△等价于23PB AB ==,36PA AB ==.当0x >时,得2222(3)23(3) 6.x y x y ⎧-+=⎪⎨⎪++=⎩,解得(233)P ,. 又(233)P ,的坐标满足2113y x =-,∴在抛物线2113y x =-上,存在点(233)P ,,使ABC PAB △∽△.由抛物线的对称性,知点(233)-,也符合题意.∴存在点P ,它的坐标为(233),或(233)-,. [点评]本题是一道综合性很强也是传统型的压轴题,涉及了函数、方程、相似、圆等大量初中数学的重点知识,解这类问题要求学生必须稳固的掌握各个领域的数学知识,须注意的是在第4小问中涉及了相似三角形的问题,很有可能会有多解的情况出现,此时就要求学生拥有较强的数形结合思想去探索结论的存在性。

中考各省压轴之圆综合问题(9考点39题)—2024年中考数学压轴题(全国通用)(解析版)

中考各省压轴之圆综合问题(9考点39题)—2024年中考数学压轴题(全国通用)(解析版)

中考各省压轴之圆综合问题(9考点39题)一.圆周角定理(共3小题)1.如图,在⊙O中,将沿弦AB翻折,使恰好经过圆心O,C是劣弧AB上一点.已知AE=2,tan∠CBA=,则AB的长为( )A.B.6C.D.【答案】C【解答】解:连接EO并延长交⊙O于点H,连接AH,过点O作OF⊥AB于F,延长OF交⊙O于点G,连接OB,∵EH是⊙O的直径,∴∠EAH=90°,∴tan∠AHE=,∵∠AHE=∠CBA,tan∠CBA=,∴tan∠AHE=tan∠CBA=,∴=,∵AE=2,∴AH=4,∴EH==2,∴⊙O的半径为,∴OG=OB=,∵OG⊥AB于F,∴AB=2BF,根据折叠的性质得,OF=GF,∴OF=OG=,∴BF==,∴AB=,故选:C.2.如图,AB是半圆的直径,点C是弧AB的中点,点E是弧AC的中点,连接EB,CA交于点F,则=( )A.B.C.1﹣D.【答案】D【解答】解:方法1:连接AE、CE.作AD∥CE,交BE于D.∵点E是弧AC的中点,∴可设AE=CE=1,根据平行线的性质得∠ADE=∠CED=45°.∴△ADE是等腰直角三角形,则AD=,BD=AD=.所以BE=+1.再根据两角对应相等得△AEF∽△BEA,则EF==﹣1,BF=2.所以=.方法2:过点C作CO⊥AB于点O,∵AB是半圆的直径,点C是弧AB的中点,∴点O是圆心.连接OE,BC,OE与AC交于点M,∵E为弧AC的中点,易证OE⊥AC,∵∠ACB=90°,∠AOE=45°,∴OE∥BC,设OM=1,则AM=1,∴AC=BC=2,OA=,∴OE=,∴EM=﹣1,∵OE∥BC,∴==.故选:D.3.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则P A+PB的最小值为.【答案】见试题解答内容【解答】解:作点B关于MN的对称点C,连接AC交MN于点P,连接OB,则P点就是所求作的点.此时P A+PB最小,且等于AC的长.连接OA,OC,∵∠AMN=30°,∴∠AON=60°,∵=∴∠AOB=∠BON=30°,∵MN⊥BC,∴=,∴∠CON=∠NOB=30°,则∠AOC=90°,又OA=OC=1,则AC=.二.切线的性质(共1小题)4.为了测量一个圆形铁环的半径,小华采用了如下方法:将铁环平放在水平桌面上,用一个锐角为30°的直角三角板和一个刻度尺,按如图所示的方法得到有关数据,进而求得铁环的半径,若测得AB=10cm,则铁环的半径是 .【答案】见试题解答内容【解答】解:如图所示:连接OB,OC,OA,∵AB为圆O的切线,∴OB⊥AB,即∠OBA=90°,又AC为圆O的切线,∴OC⊥AC,即∠OCA=90°,在Rt△ADE中,∠E=30°,∠ADE=90°,∴∠EAD=60°,∠BAC=120°,∵AC及AB为圆O的切线,∴OA为∠BOC的平分线,则∠BAO=∠OAC,可得∠BOA=∠COA,又∠OBA=∠OCA=90°,∴∠OAB=∠OAC=∠BAC=60°,在Rt△OBA中,∠OBA=90°,∠OAB=60°,AB=10cm,∴tan60°=,即=,则圆的半径OB=10cm.故答案为:10cm三.切线的判定与性质(共2小题)5.如图,点C在以AB为直径的半圆上,AB=4,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①∠F=30°;②CE=CF;③线段EF的最小值为2;④当AD=1时,EF与半圆相切;⑤当点D从点A运动到点B时,线段EF扫过的面积是8.其中正确的结论的序号为.【答案】②③④.【解答】解:①连接CD,如图1所示.∵点E与点D关于AC对称,∴CE=CD.∴∠E=∠CDE.∵DF⊥DE,∴∠EDF=90°.∴∠E+∠F=90°,∠CDE+∠CDF=90°.∴∠F=∠CDF.只有当CD⊥AB时,∠F=∠CDF=∠CBA=30°,故①错误;②又∵∠F=∠CDF,∴CD=CF,∴CE=CD=CF.故②正确;③当CD⊥AB时,如图2所示.∵AB是半圆的直径,∴∠ACB=90°,∵AB=4,∠CBA=30°,∴∠CAB=60°,AC=2,BC=2,∵CD⊥AB,∠CBA=30°,∴CD=BC=,根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为2.故③正确;④当AD=1时,连接OC,如图3所示,∵OA=OC,∠CAB=60°,∴△OAC是等边三角形.∴CA=CO,∠ACO=60°.∵AO=2,AD=1,∴DO=1.∴AD=DO,∴∠ACD=∠OCD=30°,∵点E与点D关于AC对称,∴∠ECA=∠DCA,∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切.故④正确;⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称.∴EF扫过的图形就是图5中阴影部分.∴S阴影=2S△ABC=2וAC•BC=4.故⑤错误.故答案为②③④.6.如图,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD⊥OC于C,ED⊥AB 于F,(1)判断△DCE的形状;(2)设⊙O的半径为1,且OF=,求证:△DCE≌△OCB.【答案】见试题解答内容【解答】解:(1)△DCE为等腰三角形,理由为:∵∠ABC=30°,圆周角∠ABC与圆心角∠AOC都对,∴∠AOC=2∠ABC=60°,又∵OA=OC,∴△OAC为等边三角形,∴∠OAC=∠OCA=60°,∵OC⊥CD,∴∠OCD=90°,∴∠DCE=180°﹣90°﹣60°=30°,又∵EF⊥AF,∴∠AFE=90°,∴∠E=180°﹣90°﹣60°=30°,∴∠DCE=∠E,∴DC=DE,则△DCE为等腰三角形;(2)∵OA=OB=1,OF=,∴AF=AO+OF=1+=,OA=AC=OC=1,在Rt△AEF中,∠E=30°,∴AE=2AF=+1,∴CE=AE﹣AC=+1﹣1=,又∵AB为圆O的直径,∴∠ACB=90°,在Rt△ABC中,∠B=30°,∴cos30°=,即BC=AB cos30°=,∴CB=CE=,在△OBC和△DCE中,∵,∴△OBC≌△DCE(ASA).四.三角形的内切圆与内心(共1小题)7.如图,Rt△ABC中,∠C=90°,AC=8,BC=6,I为Rt△ABC的内心,若M、N分别是斜边AB和直角边AC上的动点,连接IM、MN,则IM+MN的最小值为.【答案】5.2.【解答】解:分别作ID⊥BC,IE⊥AC,IF⊥AB,垂足分别为点D、E、F,延长IF到I',使I'F=IF,作I'N⊥AC于点N,交AB于点M,延长DI,交I'N于点G,连接BI,∵IF⊥AB,I'F=IF,∴IM=I'M,∴IM+MN=I'M+MN,当I'、M、N三点共线,且I'N⊥AC时,I'N最短,即IM+MN的值最小.∵I为Rt△ABC的内心,ID⊥BC,IE⊥AC,IF⊥AB,∴ID=IE=IF,设ID=IE=IF=r,又∵ID⊥BC,IE⊥AC,∠C=90°,∴四边形CEID是正方形,∴CD=IE=CE=ID=r,∵Rt△ABC中,∠C=90°,AC=8,BC=6,∴AB=10,∴BD=6﹣r,AE=8﹣r,在Rt△BID和Rt△BIF中,,∴Rt△BID≌Rt△BIF(HL),∴BD=BF,同理AE=AF,∵AB=AF+BF,∴6﹣r+(8﹣r)=10,解得r=2,∵I'F=IF,∴II'=4,∵IF⊥AB,I'N⊥AC,∠FMI'=∠NMA,∴∠I'=∠A,又∵∠C=90°,I'N⊥AC,∴BC∥I'N,∵ID⊥BC,∴IG⊥I'N,∴四边形CDGN为矩形,△II'G∽△BAC,∴GN=CD=2,,即,∴I'G=3.2,∴I'N=I'G+GN=3.2+2=5.2,∴IM+MN的最小值为5.2.故答案为:5.2.五.圆与圆的位置关系(共1小题)8.如图,⊙O1和⊙O2的半径为1和3,连接O1O2,交⊙O2于点P,O1O2=8,若将⊙O1绕点P按顺时针方向旋转360°,则⊙O1与⊙O2共相切 次.【答案】见试题解答内容【解答】解:两圆相切时,O1O2之间的距离等于4(外切)或者2(内切)时即可,当⊙O1绕P点顺时针旋转时360°时,O1O2的变化范围从8到2再到8,其中有两次外切和一次内切.可以用尺规作图的方法来做,以P为圆心做一个半径为5的圆,再以O2为圆心,做一个半径为4的圆,两者相交即为外切,然后以O2为圆心做一个半径为2的圆,两者相交即为内切.故答案为:3.六.弧长的计算(共1小题)9.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是水平的,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC =40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为 cm.【答案】见试题解答内容【解答】解:A点滚动到D点其圆心所经过的路线=(60+40+40)﹣+=(cm).故答案为:().七.扇形面积的计算(共1小题)10.如图,在△ABC中,AB=8cm,BC=4cm,∠ABC=30°,把△ABC以点B为中心按逆时针方向旋转,使点C旋转到AB边的延长线上的C′′处,那么AC边扫过的图形(图中阴影部分)的面积是 cm2(结果保留π).【答案】见试题解答内容【解答】解:×(64﹣16)=20πcm2.八.圆锥的计算(共3小题)11.现有30%圆周的一个扇形彩纸片,该扇形的半径为40cm,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为 .【答案】见试题解答内容【解答】解:20π=解得:n=90°,∵扇形彩纸片是30%圆周,因而圆心角是108°∴剪去的扇形纸片的圆心角为108°﹣90°=18°.剪去的扇形纸片的圆心角为18°.故答案为18°.12.如图,有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60°的扇形ABC.用此剪下的扇形铁皮围成一个圆锥,该圆锥的侧面积为 .【答案】见试题解答内容【解答】解:连接OA,过点O作OD⊥AB,∵∠CAB=60°,∴∠OAD=30°,∵AO=2,∴DO=1,∴AD=,∴AB=2,∴S阴影==2π.故答案为:2π.13.如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是.【答案】3.【解答】解:∵图扇形的弧长是2π,根据弧长公式得到2π=,∴n=120°即扇形的圆心角是120°,∴弧所对的弦长AA′=2×3sin60°=3,故答案为3.九.圆的综合题(共26小题)14.如图,半径为4的⊙O中,CD为直径,弦AB⊥CD且过半径OD的中点,点E为⊙O 上一动点,CF⊥AE于点F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为( )A.B.C.D.【答案】C【解答】解:连接AC,AO,∵AB⊥CD,∴G为AB的中点,即AG=BG=AB,∵⊙O的半径为4,弦AB⊥CD且过半径OD的中点,∴OG=2,∴在Rt△AOG中,根据勾股定理得:AG==2,又∵CG=CO+GO=4+2=6,∴在Rt△AGC中,根据勾股定理得:AC==4,∵CF⊥AE,∴△ACF始终是直角三角形,点F的运动轨迹为以AC为直径的半圆,当E位于点B时,CG⊥AE,此时F与G重合;当E位于D时,CA⊥AE,此时F与A 重合,∴当点E从点B出发顺时针运动到点D时,点F所经过的路径长,在Rt△ACG中,tan∠ACG==,∴∠ACG=30°,∴所对圆心角的度数为60°,∵直径AC=4,∴的长为=π,则当点E从点B出发顺时针运动到点D时,点F所经过的路径长为π.故选:C.15.定义:如果一个三角形中有两个内角α,β满足α+2β=90°,那我们称这个三角形为“近直角三角形”.(1)若△ABC是“近直角三角形”,∠B>90°,∠C=50°,则∠A= 度;(2)如图1,在Rt△ABC中,∠BAC=90°,AB=3,AC=4.若BD是∠ABC的平分线,①求证:△BDC是“近直角三角形”;②在边AC上是否存在点E(异于点D),使得△BCE也是“近直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.(3)如图2,在Rt△ABC中,∠BAC=90°,点D为AC边上一点,以BD为直径的圆交BC于点E,连接AE交BD于点F,若△BCD为“近直角三角形”,且AB=5,AF=3,求tan∠C的值.【答案】见试题解答内容【解答】解:(1)∠B不可能是α或β,当∠A=α时,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,则β=20°,故答案为20;(2)①如图1,设∠ABD=∠DBC=β,∠C=α,则α+2β=90°,故△BDC是“近直角三角形”;②存在,理由:在边AC上是否存在点E(异于点D),使得△BCE是“近直角三角形”,AB=3,AC=4,则BC=5,则∠ABE=∠C,则△ABC∽△AEB,即,即,解得:AE=,则CE=4﹣=;(3)①如图2所示,当∠ABD=∠DBC=β时,则AE⊥BF,则AF=FE=3,则AE=6,AB=BE=5,过点A作AH⊥BC于点H,设BH=x,则HE=5﹣x,则AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=;cos∠ABE===cos2β,则tan2β=,则tanα=;②如图3所示,当∠ABD=∠C=β时,过点A作AH⊥BE交BE于点H,交BD于点G,则点G是圆的圆心(BE的中垂线与直径的交点),∵∠AEB=∠DAE+∠C=α+β=∠ABC,故AE=AB=5,则EF=AE﹣AF=5﹣3=2,∵DE⊥BC,AH⊥BC,∴ED∥AH,则AF:EF=AG:DE=3:2,则DE=2k,则AG=3k=R(圆的半径)=BG,点H是BE的中点,则GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,BH=2k,AH=AG+HG=4k,∵∠C+∠ABC=90°,∠ABC+∠BAH=90°,∴∠C=∠BAH,∴tan C=tan∠BAH===,综上,tan C的值为或.16.四边形ABCD内接于⊙O,AC是⊙O的直径,连结BD交AC于点G,AF⊥BD,垂足为E.(1)如图1,若AF交BC于点F.①求证:∠BAF=∠CAD;②若⊙O的直径为10,,BF:CG=3:5,求AF的长.(2)如图2,若AF交CD于点F,连结OD,若OD∥AB,,DF=2CF,求⊙O 的直径.【答案】(1)①见解析;②AF=.(2)⊙O的直径为.【解答】(1)①证明:∵AC是⊙O的直径,AF⊥BD,∴∠ABC=90°=∠AEB,∴∠ABE+∠CBD=90°,∠ABE+∠BAF=90°,∴∠CBD=∠BAF,又∵,∴∠CBD=∠CAD,∴∠BAF=∠CAD.②解:如图,过点G作GK⊥BC于点K,在Rt△ABC中,AC=10,cos∠BCA=,∴BC=8,由勾股定理得AB===6,∴sin∠BCA==,tan∠BCA==,在Rt△GKC中,sin∠KCG=sin∠BCA==,tan∠KCG=tan∠BCA==,又∵BF:CG=3:5,∴BF=GK,在△ABF和△BKG中,,∴△ABF≌△BKG(AAS),∴AB=BK=6,∴CK=BC﹣BK=8﹣6=2,∴KG=CK•tan∠KCG=2×=,即BF=KG=,∴AF===.(3)解:如图,设AF交OD于点Q,过点O作OH⊥AF于点H,链接BO并延长交AF 于点P,延长AF交⊙O于点G,连接CG,∵AF⊥BD,OH⊥AF,∴∠OHO=∠BEG=90°,∴OH∥BD,∴∠QOH=∠ODB,∠POH=∠OBD,又∵OB=OD,∴∠ODB=∠OBD,∴∠QOH=∠POH,∴QH=PH,∵AC为⊙O的直径,∴∠AGC=90°=∠OHQ=∠AEB,∴CG∥OH∥BD,∴△AOH∽△ACG⇒⇒CG=2OH,△DEF∽△CGF⇒=⇒DE=2CG⇒DE=4OH,△DEQ∽△OHQ⇒==4⇒QE=4PH,DQ=4OQ⇒EP=6PH,DQ=,△OPH∽△BPE⇒=⇒BE=6OH,∴,∵OD∥AB,∴△ABE∽△QDE,∴⇒QE=⇒AQ==,∵,OD=OC,∴∠OCD=∠ABD=∠ODC,∴∠BAE=90°﹣∠ABD=90°﹣∠ODC=∠ODA,∵OD∥AB,OA=OD,∴∠AQD=∠BAQ=∠ODA=∠OAD,∴AD=AQ=,△DAQ∽△DOA,∴,即AD2=OD•DQ,设⊙O的半径为r,则OD=r,DQ=,∴=,∴r=,∴⊙O的直径为.17.如图,在平面直角坐标系xOy中,点S(﹣1,0),T(1,0).对于一个角α(0°<α≤180°),将一个图形先绕点S顺时针旋转α,再绕点T逆时针旋转α,称为一次“α对称旋转”.(1)点R在线段ST上,则在点A(1,﹣1),B(3,﹣2),C(2,﹣2),D(0,﹣2)中,有可能是由点R经过一次“90°对称旋转”后得到的点是;(2)x轴上的一点P经过一次“α对称旋转”得到点Q.①当α=60°时,PQ= ;②当α=30°时,若QT⊥x轴,求点P的坐标;(3)以点O为圆心作半径为1的圆.若在⊙O上存在点M,使得点M经过一次“α对称旋转”后得到的点在x轴上,直接写出α的取值范围.【答案】(1)B,C;(2)①2;②P(﹣1+,0).(3)0°<α≤30°或150°≤α≤180°.【解答】解:(1)如图,当点R与点O重合时,点R绕点S顺时针旋转90°得到点R′,点R′绕点T逆时针旋转90°得到点C;当点R与点T重合时,点R绕点S顺时针旋转90°得到点R″,点R″绕点T逆时针旋转90°得到点B;故答案为:B,C;(2)①当α=60°时,如图,∵x轴上的一点P经过一次“α对称旋转”得到点Q,∴△SPP′和△TQP′均为等边三角形,∴SP′=PP′,TP′=QP′,∠SP′P=∠TP′Q=60°,∴∠SP′T+∠TP′P=∠TP′P+∠PP′Q,∴∠SP′T=∠PP′Q,∴△P′ST≌△P′PQ(SAS),∴PQ=ST=2,故答案为:2;②当α=30°时,设点P绕点S顺时针旋转30°得到点P′,则SP′=SP,如图,将x轴作一次“α对称旋转”后得到直线y=﹣1,∵QT⊥x轴,点P经过一次“α对称旋转”得到点Q,∴点Q的坐标为Q(1,﹣1),∵点P′绕点T逆时针旋转30°得到点Q,∴P′T=QT=1,∠P′TQ=30°,∴∠STP′=90°﹣∠P′TQ=60°,∵∠TSP′=30°,∴∠SP′T=180°﹣∠STP′﹣∠TSP′=90°,∵ST=2,∴SP′==,∴SP=SP′=,∴点P的坐标为P(﹣1+,0).(3)点M在⊙O上,则M绕S顺时针旋转α度以后的M′的轨迹为O绕S顺时针旋转α度以后的⊙O′上,M′关于T逆时针旋转α度以后得到点N,则N在O′关于T逆时针旋转α度以后的⊙O″上,若满足题意,只需⊙O′与x轴有交点O″在粉弧上,且O′T=O″T,如图,⊙O″与x轴相切,则O″H=1,在x轴上取点R,连接O″R,使O″R=2,″∴HR=,∴∠O″RH=30°,TR=O′S=1,O″R=ST=2,O″T=O′T,∴△O″TR≌△TO′S(SSS),∴∠TSO′=∠O″RT=30°,故0°<α≤30°;如图,⊙O″与x轴相切,则O″H=1,在x轴上取点R,连接O″R,使O″R=2,∴∠HRO″=30°,ST=O″R,∴∠TRO″=150°,∵∠SO′T+∠STO′=∠STO′+∠RTO″,∴∠SO′T=∠RTO″,∵O′T=TO″,∴△O′ST≌△TRO″(SAS),∴∠O′ST=∠TRO″=150°,∴α=150°,∴150°≤α≤180°;综上所述,0°<α≤30°或150°≤α≤180°.18.问题提出(1)如图①,已知直线a∥b,点A,B在直线a上,点C,D在直线b上,则S△ACD S(填“>”“<”或“=”);△BCD问题探究(2)如图②,⊙O的直径为20,点A,B,C都在⊙O上,AB=12,求△ABC面积的最大值;问题解决(3)如图③,在△ABC中,∠ACB=90°,AB=20,BC=10,根据设计要求,点D为∠ABC内部一点,且∠ADB=60°,过点C作CE∥AD交BD于点E,连接AE,CD,试求满足设计要求的四边形ADCE的最大面积.【答案】(1)=;(2)△ABC面积的最大值为108;(3)四边形ADCE的最大面积是75.【解答】解:(1)如图①所示,分别过A、B两点向直线b作垂线,垂足为M、N.∵a∥b,∴∠MAB=∠AMN=90°,∴四边形AMNB是矩形,∴AM=BN,∴CD•AM=CD•BN又S△ACD=CD•AM,S△BCD=CD•BN,∴S△ACD=S△BCD;故答案为:=;(2)取优弧的中点记为C1,过C1作AB的垂线,垂足为D,由垂径定理知C1D过O 且AD=BD,如图②所示.过点C作AB的平行线a,∵当直线a向上平移时,a距AB的距离增大,即△ABC的AB边上的高增大,∴当a运动到最高点C时,△ABC的AB边上的高最大,又∵AB为常数,∴当C运动到C1时,△ABC的面积最大,下面计算△ABC1的面积:连接OB,在Rt△OBD中,∵AB=12,⊙O的直径为20,∴BD=6,BO=10,OC1=10,由勾股定理得:OD===8,∴C1D=OD+OC1=8+10=18,∴△ABC1的面积为:AB•C1D=×12×18=108,∴△ABC面积的最大值为108;(3)过点C作CF∥BD交AD的延长线于F,如图③﹣1所示,∵CF∥BD,∴∠F=∠ADB=60°,∵AD∥CE,∴四边形DECF是平行四边形,∴DF=CE,FC=DE,∵DC=CD∴△DFC≌△CED(SSS),∴S△DFC=S△CED,又由(1)的结论知S△DAC=S△DAE,∴S四边形ADCE=S△DAE+S△CED=S△DAC+S△DFC=S△AFC,所以只需求得S△AFC最大值即得S四边形ADCE的最大值.以AC为边向△ABC外作等边△AGC,再作等边△AGC的外接圆,过G作GJ⊥AC于J,如图③﹣2所示,∵∠F=60°,∴点F在△AGC的外接圆上,由第(2)问的解决知,当F运动到点G时,S△AFC最大=S△ACG;在Rt△ABC中:由勾股定理得AC===10,∴AJ=AC=5,∴GJ=×10=15,∴S△ACG=AC×GJ=×10×15=75;∴四边形ADCE的最大面积是75.19.课本再现(1)在圆周角和圆心角的学习中,因为圆内接四边形的每一个角都是圆周角,所以我们可以利用圆周角定理,来研究圆内接四边形的角之间的关系.如图1,四边形ABCD为⊙O的内接四边形,AC为直径,则∠B=∠D= 度,∠BAD+∠BCD= 度.(2)如果⊙O的内接四边形ABCD的对角线AC不是⊙O的直径,如图2、图3,请选择一个图形证明:圆内接四边形的对角互补.知识运用(3)如图4,等腰三角形ABC的腰AB是⊙O的直径,底边和另一条腰分别与⊙O交于点D,E.点F是线段CE的中点,连接DF,求证:DF是⊙O的切线.【答案】(1)90,180;(2)证明见解答;(3)证明见解答.【解答】(1)解:∵四边形ABCD为⊙O的内接四边形,AC为直径,∴∠B=∠D=90°,∴∠BAD+∠BCD=360°﹣(∠B+∠D)=360°﹣180°=180°,故答案为:90,180;(2)证明:如图2,连接OB,OD,∵=,∴∠BOD=2∠C,∠1=2∠A,∵∠BOD+∠1=360°,∴2∠C+2∠A=360°,∴∠C+∠A=180°,在四边形ABCD中,∠ABC+∠ADC=360°﹣(∠A+∠C)=180°,即圆内接四边形的对角互补;如图3,连接OA,OC,∵=,∴∠AOC=2∠B,∠1=2∠D,∵∠AOC+∠1=360°,∴2∠B+2∠D=360°,∴∠B+∠D=180°,在四边形ABCD中,∠BAD+∠DCB=360°﹣(∠B+∠D)=180°,即圆内接四边形的对角互补;(3)证明:连接OD,DE,如图4,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵四边形ABDE是圆内接四边形,∴∠B+∠AED=180°,∵∠DEC+∠AED=180°,∴∠B=∠DEC,∴∠C=∠DEC,∴DC=DE,∵点F是线段CE的中点,∴DF⊥AC,∴OD∥AC,∴DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线.20.如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E是BC的中点,连接OE、DE.(1)求证:DE是⊙O的切线;(2)若sin C=,DE=5,求AD的长;(3)求证:2DE2=CD•OE.【答案】(1)证明见解答;(2)AD的长为;(3)证明见解答.【解答】(1)证明:连接OD,BD,在Rt△ABC中,∠ABC=90°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠BDC=180°﹣∠ADB=90°,∵点E是BC的中点,∴DE=BE=EC,∵OB、OD是⊙O的半径,∴OB=OD,又∵OE=OE,∴△ODE≌△OBE(SSS),∴∠ODE=∠OBE=90°,∴半径OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,如图,由(1)知:DE=BE=EC,∠ADB=∠BDC=∠ABC=90°,∵DE=5,∴BC=10,∵sin C=,∴=,∴BD=8,∵∠C+∠CBD=∠ABD+∠CBD=90°,∴∠ABD=∠C,∴sin∠ABD=sin∠C=,∴=,设AD=4x,则AB=5x,∵AD2+BD2=AB2,∴(4x)2+82=(5x)2,解得:x=(负值舍去),∴AD=4x=4×=;(3)证明:连接BD,由(1)(2)得:∠BDC=∠OBE=90°,BE=DE,∵点O是AB的中点,点E是BC的中点,∴OE∥AC,BC=2BE,∴∠C=∠OEB,∴△BCD∽△OEB,∴=,即=,∴2DE2=CD•OE.21.已知在Rt△ABC中,∠ACB=90°,BC=6,AC=8,以边AC为直径作⊙O,与AB 边交于点D,点M为边BC的中点,连接DM.(1)求证:DM是⊙O的切线;(2)点P为直线BC上任意一动点,连接AP交⊙O于点Q,连接CQ.①当tan∠BAP=时,求BP的长;②求的最大值.【答案】(1)证明见解答;(2)①BP的长为或;②的最大值为.【解答】(1)证明:如图,连接OD,CD,∵AC是⊙O的直径,∴∠ADC=90°,∴∠BDC=180°﹣∠ADC=90°,∵点M为边BC的中点,∴MC=MD,∴∠MDC=∠MCD,∵OC=OD,∴∠ODC=∠OCD,∵∠ACB=90°,即∠MCD+∠OCD=90°,∴∠MDC+ODC=∠MCD+∠OCD=90°,即∠ODM=90°,∴DM⊥OD,∵OD是⊙O的半径,∴DM是⊙O的切线;(2)①当点P在线段BC上时,如图,过点P作PT⊥AB于点T,在Rt△ABC中,AB===10,设PT=x,∵tan∠BAP=,∴=,∴AT=3PT=3x,∴BT=AB﹣AT=10﹣3x,∵tan∠ABC==,∴=,解得:x=,∴PT=,∵sin∠ABC==,即=,∴BP=;当点P在CB的延长线上时,如图,过点B作BK⊥AP于点K,∵tan∠BAP=,∴=,设BK=a,则AK=3a,在Rt△ABK中,AK2+BK2=AB2,即(3a)2+a2=102,解得:a1=,a2=﹣(舍去),∴AK=3,BK=,∵S△ABP=AP•BK=BP•AC,∴==,设BP=m,则AP=m,在Rt△ACP中,AC2+CP2=AP2,即82+(m+6)2=(m)2,解得:m1=,m2=﹣(舍去),∴BP=;综上所述,BP的长为或;②设CP=n,则AP==,如图,∵AC是⊙O的直径,∴CQ⊥AP,∵CQ•AP=AC•CP,∴CQ==,∴=,∵n>0,∴(n﹣8)2≥0,∴64+n2≥16n,∴=≤=,∴的最大值为.22.如图(1),已知在Rt△ABC中,∠ACB=90°,以AC为直径的圆O交斜边AC于点E,点D为BC中点,连接DE.(1)求证:DE是圆O的切线;(2)如图(2),EH⊥AC,垂足为H,若AC=6,BC=8,求EH的长;(3)如图(3),在⊙O上取一点P,使PE=CE,连接PE,AP,试探究AP、AH、HC 之间的数量关系,并说明理由.【答案】见试题解答内容【解答】(1)连结OE,∵AC是直径,∴∠AEC=90°∴∠CEB=90°,∵D是BC的中点,∴CD=DE,∴∠DCE=∠DEC,∵∠ACB=90°,∴∠DCE+∠OCE=90°,∵OE=OC,∴∠OCE=∠OEC,∴∠OEC+∠DEC=90°,∴OE⊥DE,∵OE是圆O的半径,∴DE是圆O的切线;(2)连结CE,∵AC=6,BC=8,∴,∵∠B=∠B,∠CEB=∠ACB=90°,∴△CEB∽△ACB,∴,∴,∵HE⊥AC,∴∠EHC=90°,∴,∴,∴;(3)在AC上取点M,使CM=AP,∵PE=CE,∠P=∠MCE∴△APE≌△MCE(SAS)∴AE=ME∵EH⊥AC∴AH=MH∴CM=CH﹣MH=CH﹣AH,∴AP=CH﹣AH.23.在平面直角坐标系xOy中,⊙O的半径为1,A为任意一点,B为⊙O上任意一点.给出如下定义:记A,B两点间的距离的最小值为p(规定:点A在⊙O上时,p=0),最大值为q,那么把的值称为点A与⊙O的“关联距离”,记作d(A,⊙O).(1)如图,点D,E,F的横、纵坐标都是整数.①d(D,⊙O)= ;②若点M在线段EF上,求d(M,⊙O)的取值范围;(2)若点N在直线y=上,直接写出d(N,⊙O)的取值范围;(3)正方形的边长为m,若点P在该正方形的边上运动时,满足d(P,⊙O)的最小值为1,最大值为,直接写出m的最小值和最大值.【答案】(1)①2;②2≤d(M,⊙O)≤3;(2)d(N,⊙O)≥;(3)m的最小值为﹣,最大值为.【解答】解:(1)①∵D(0,2)到⊙O的距离的最小值p=1,最大值q=3,∴d(D,⊙O)==2,故答案为:2;②当M在点E处,d(E,⊙O)=2,当M在点F处,d(F,⊙O)==3,∴2≤d(M,⊙O)≤3;(2)设ON=d,∴p=d﹣r=d﹣1,q=d+r=d+1,∴d(N,⊙O)===d,∵点N在直线y=上,设直线交x轴于点B,交y轴于点A,如图1,则x=0时,y=2,y=0时,x=﹣2,∴A(0,2),B(﹣2,0),∴OA=2,OB=2,∴AB==4,当ON⊥AB时,d(N,⊙O)最小,∴S△AOB=OA•OB=AB•ON,即×2×2=×4ON,∴ON=,∵ON无最大值,∴d(N,⊙O)≥;(3)如图2,∵d(P,⊙O)的最小值为1,最大值为,∴两个同心圆中,小圆的半径为1,大圆的半径为,∵KL=﹣1,∴m的最小值是=﹣,在Rt△OMH中,OM=,OH=m﹣1,MH=m,∴(m﹣1)2+(m)2=()2,解得:m=﹣2(舍去)或m=;∴m的最小值为﹣,最大值为.24.在⊙O中=,顺次连接A、B、C.(1)如图1,若点M是的中点,且MN∥AC交BC延长线于点N,求证:MN为⊙O 的切线;(2)如图2,在(1)的条件下,连接MC,过点A作AP⊥BM于点P,若BP=a,MP =b,CM=c,则a、b、c有何数量关系?(3)如图3,当∠BAC=60°时,E是BC延长线上一点,D是线段AB上一点,且BD =CE,若BE=5,△AEF的周长为9,请求出S△AEF的值?【答案】(1)证明见解答;(2)a=b+c;(3).【解答】解:(1)如图1,连接OM,∵M是的中点,∴OM⊥AC,∵MN∥AC,∴OM⊥MN,∵OM为⊙O的半径,∴MN为⊙O的切线;(2)如图2,连接OM交AC于K,连结AM,∵M是的中点,∴=,∴AM=CM=c,∵AP⊥BM,∴∠APM=∠APB=90°,∴AP2=AM2﹣PM2=c2﹣b2,∴AB2=AP2+BP2=c2﹣b2+a2,∴AC=AB=,∵M是的中点,∴OM⊥AC,∴AK=CK=AC=,∵∠APB=∠CKM=90°,∠ABP=∠MCK,∴△ABP∽△MCK,∴=,∴BP•CM=CK•AB,∴ac=•,∴2ac=c2﹣b2+a2,∴(a﹣c)2﹣b2=0,∴(a+b﹣c)(a﹣b﹣c)=0,∵a+b﹣c>0,∴a﹣b﹣c=0,∴a=b+c;(3)过点B作BH∥AC,过点D作DH∥BC,BH与DH交于点H,连接CH,则∠BDH=∠ABC=60°,∠DBH=∠ACB=60°,∴△BDH是等边三角形,∴BH=BD,∠DBH=60°,∴BH=CE,∠CBH=∠ABC+∠DBH=60°+60°=120°,∵∠ACE=180°﹣∠ACB=120°=∠CBH,AC=BC,∴△ACE≌△CBH(SAS),∴∠CAE=∠BCH,AE=CH,∵DH∥BC,DH=CE,∴四边形CEDH是平行四边形,∴CE∥ED,CH=ED,∴∠BCH=∠BED,CH=AE,∴∠BED=∠CAE,AE=ED,过点E作ET⊥AB于点T,交AC于点L,连接DL,则AT=TD=AD,AL=DL,∵∠BAC=60°,∴△ADL是等边三角形,∴∠ALD=60°=∠ACB,∴DL∥BC,即HD与DL在同一直线上,∴四边形BCLH是平行四边形,∴CL=BH=BD=CE,LH=BC,设CE=x,则CL=x,BC=AC=5﹣x,AD=DL=AL=AC﹣CL=5﹣2x,AT=,∵DF∥CH,∴=,即=,∴LF=,∴AF=AL+LF=5﹣2x+=,在Rt△BET中,ET=BE•sin60°=,∵AE2=AT2+ET2,∴AE2=()2+()2=x2﹣5x+25,延长BH,ED交于点R,则∠RHD=∠FCE,∠R=∠CFE,DH=CE,∴△HDR≌△CEF(AAS),∴DR=EF,∴ER=ED+DR=AE+EF=9﹣AF=9﹣=,∵CH∥ED,∴=,∴CH=•ER=×=,∴AE=,∴x2﹣5x+25=()2,解得:x1=5(舍去),x2=,∴AD=5﹣2×=,AF==10﹣=2,作DM⊥AL于点M,则DM=AD•sin60°=×=,∴S△AEF=S△ADE﹣S△ADF=AD•ET﹣AF•DM=××﹣×2×=.25.在平面直角坐标系xOy中,⊙O的半径为1,AB=1,且A,B两点中至少有一点在⊙O 外.给出如下定义:平移线段AB,得到线段A′B′(A′,B′分别为点A,B的对应点),若线段A′B′上所有的点都在⊙O的内部或⊙O上,则线段AA′长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图1,点A1,B1的坐标分别为(﹣3,0),(﹣2,0),线段A1B1到⊙O的“平移距离”为,点A2,B2的坐标分别为(﹣,),(,),线段A2B2到⊙O的“平移距离”为;(2)若点A,B都在直线y=x+2上,记线段AB到⊙O的“平移距离”为d,求d的最小值;(3)如图2,若点A坐标为(1,),线段AB到⊙O的“平移距离”为1,画图并说明所有满足条件的点B形成的图形(不需证明).【答案】(1)2,;(2).(3)所有满足条件的点B形成的图形是以A为圆心圆心角为120°的.【解答】解:(1)根据“平移距离”的定义可得:线段A1B1到⊙O的“平移距离”为2,如图1,设A2B2与y轴交于E,线段A2B2向下平移得到⊙O的弦A′2B′2,线段A′2B′2与y轴交于点F,则A′2F=,OA′2=1,OE=,∴OF=,∴A2A′2=EF=OE﹣OF=﹣=,∴线段A2B2到⊙O的“平移距离”为,故答案为:2,;(2)如图2中,作等边△OEF,点E在x轴上,OE=EF=OF=1,设直线y=x+2交x轴于M,交y轴于N.则M(﹣2,0),N(0,2),过点E作EH⊥MN于H,∵OM=2,ON=2,∴tan∠NMO=,∴∠NMO=60°,∴EH=EM•sin60°=,观察图象可知,线段AB到⊙O的“平移距离”为d1的最小值为.(3)如图3,连接OA,交⊙O于点A′,则OA==2,∴OA到⊙O任意一点距离的最小值为OA′=OA﹣1=1,∴点A′(,),设平移后圆上另一点为B′,由题意得:A′B′=1,有三种情况:①点B′与点O重合,则点B的坐标为(,);②点B′与点(1,0)重合,则点B的坐标为(,);③点B′与点(﹣,)重合,则点B的坐标为(0,);如图可知所有满足条件的点B形成的图形是以A为圆心圆心角为120°的.26.【了解概念】定义:在平面直角坐标系xOy中,组成图形的各点中,与点P连线段最短的点叫做点P 于这个图形的短距点,这条最短线段的长度叫做点P这个图形的短距.【理解运用】(1)已知点P(﹣3,0),以原点为圆心,1半径作⊙O,则点P于⊙O的短距点的坐标是;(2)如图,点P(3,),等边三角形OAB的顶点A的坐标为(6,0),顶点B在第一象限,判断点P于△OAB的短距点的个数,并说明理由;【拓展提升】(3)已知P(p,﹣p+6),A(6,0),B(0,6),点C在第一象限内,且∠CBO=75°,∠ACB=90°,若点P到四边形OACB的短距大于2,请直接写出p的取值范围.【答案】(1)(﹣1,0);(2)3个,理由见解答过程;(3)p<﹣或2<p<4或p>6+.【解答】解:(1)如图:根据短距点定义,点P于⊙O的短距点为A,坐标是(﹣1,0),故答案为:(﹣1,0);(2)点P关于△OAB的短距点有3个,理由如下:过P作PC⊥OA于C,PE⊥AB于E,PD⊥OB于D,如图:∵P(3,),∴OC=3,PC=,∴tan∠POC=,∴∠POC=30°,∵△OAB是等边三角形,∴∠BOC=60°,OA=6,∴∠BOP=∠POC=30°,又PC⊥OA,PD⊥OB,∴PD=PC=,∵AC=OA﹣OC=3,PC=,∴tan∠P AC=,∴∠P AC=30°,同理∠P AE=∠P AC=30°,PE=PC,∴PC=PD=PE,即点P关于△OAB的短距点有C、D、E,∴点P关于△OAB的短距点有3个;(3)∵P(p,﹣p+6),∴P在直线y=﹣x+6上,直线经过A(6,0)、B(0,6),且∠ABO=∠BAO=45°,①当p<0时,过P作PD⊥x轴于D,过B作PE⊥PD于E,如图:△PBE是等腰直角三角形,若PB=2,则BE=PE=,而DE=OB=6,∴PD=6+,∴P(﹣,6+),由图可知:此时p<﹣,点P到四边形OACB的短距大于2,②当0≤p≤6时,过P作PD⊥BC于D,设PD=2,作PE⊥OB,PF⊥OA,过P'作P'G ⊥OA,设P'G=2,如图:∵∠PBD=∠OBC﹣∠ABC=30°,PD=2,∴BP=4,∵△PBE是等腰直角三角形,∴BE=PE=2,PF=OE=OB﹣BE=6﹣2,。

2024中考备考数学重难点05 圆的综合压轴题(6大题型+满分技巧+限时分层检测

2024中考备考数学重难点05 圆的综合压轴题(6大题型+满分技巧+限时分层检测

重难点05 圆的综合压轴题中考数学中《圆的综合压轴题》部分主要考向分为六类:一、圆中弧长和面积的综合题二、圆与全等三角形的综合题三、圆的综合证明问题四、圆与等腰三角形的综合题五、圆的阅读理解与新定义问题六、圆与特殊四边形的综合题圆的综合问题是中考数学中的压轴题中的一类,也是难度较大的一类,所以,对应的训练很有必要。

考向一:圆中弧长与面积的综合题1.(2023•河北)装有水的水槽放置在水平台面上,其横截面是以AB为直径的半圆O,AB=50cm,如图1和图2所示,MN为水面截线,GH为台面截线,MN∥GH.计算:在图1中,已知MN=48cm,作OC⊥MN于点C.(1)求OC的长.操作:将图1中的水槽沿GH向右作无滑动的滚动,使水流出一部分,当∠ANM=30°时停止滚动.如图2.其中,半圆的中点为Q,GH与半圆的切点为E,连接OE交MN于点D.探究:在图2中.(2)操作后水面高度下降了多少?(3)连接OQ并延长交GH于点F,求线段EF与的长度,并比较大小.2.(2023•乐山)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动.【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图1,将一个三角形纸板△ABC绕点A逆时针旋转θ到达的位置△AB′C′的位置,那么可以得到:AB=AB′,AC=AC′,BC=B′C′;∠BAC=∠B′AC′,∠ABC=∠AB′C′,∠ACB=∠AC′B′.(_____)刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键.故数学就是一门哲学.【问题解决】(1)上述问题情境中“(_____)”处应填理由:;(2)如图2,小王将一个半径为4cm,圆心角为60°的扇形纸板ABC绕点O逆时针旋转90°到达扇形纸板A′B′C′的位置.①请在图中作出点O;②如果BB′=6cm,则在旋转过程中,点B经过的路径长为;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置.另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止.此时,两个纸板重叠部分的面积是多少呢?如图3所示,请你帮助小李解决这个问题.考向二:圆与全等三角形综合题1.(2023•济宁)如图,已知AB是⊙O的直径,CD=CB,BE切⊙O于点B,过点C作CF⊥OE交BE于点F,EF=2BF.(1)如图1,连接BD,求证:△ADB≌△OBE;(2)如图2,N是AD上一点,在AB上取一点M,使∠MCN=60°,连接MN.请问:三条线段MN,BM,DN有怎样的数量关系?并证明你的结论.2.(2023•哈尔滨)已知△ABC内接于⊙O,AB为⊙O的直径,N为的中点,连接ON交AC于点H.(1)如图①,求证:BC=2OH;(2)如图②,点D在⊙O上,连接DB,DO,DC,DC交OH于点E,若DB=DC,求证OD∥AC;(3)如图③,在(2)的条件下,点F在BD上,过点F作FG⊥DO,交DO于点G,DG=CH,过点F 作FR⊥DE,垂足为R,连接EF,EA,EF:DF=3:2,点T在BC的延长线上,连接AT,过点T作TM ⊥DC,交DC的延长线于点M,若FR=CM,AT=4,求AB的长.3.(2023•长春)【感知】如图①,点A、B、P均在⊙O上,∠AOB=90°,则锐角∠APB的大小为45度.【探究】小明遇到这样一个问题:如图②,⊙O是等边三角形ABC的外接圆,点P在弧AC上(点P不与点A、C重合),连接PA、PB、PC.求证:PB=PA+PC.小明发现,延长PA至点E,使AE=PC,连接BE,通过证明△PBC≌△EBA.可推得△PBE是等边三角形,进而得证.下面是小明的部分证明过程:证明:延长PA至点E,使AE=PC,连接BE.∵四边形ABCP是⊙O的内接四边形,∴∠BAP+∠BCP=180°,∵∠BAP+∠BAE=180°,∴∠BCP=∠BAE,∵△ABC是等边三角形,∴BA=BC,∴△PBC≌△EBA(SAS).请你补全余下的证明过程.【应用】如图③,⊙O是△ABC的外接圆,∠ABC=90°,AB=BC,点P在⊙O上,且点P与点B在AC的两侧,连接PA、PB、PC,若,则的值为.考向三:圆的综合证明问题1.(2023•黄石)如图,AB为⊙O的直径,DA和⊙O相交于点F,AC平分∠DAB,点C在⊙O上,且CD ⊥DA,AC交BF于点P.(1)求证:CD是⊙O的切线;(2)求证:AC•PC=BC2;(3)已知BC2=3FP•DC,求的值.2.如图,在⊙O中,直径AB垂直弦CD于点E,连接AC,AD,BC,作CF⊥AD于点F,交线段OB于点G(不与点O,B重合),连接OF.(1)若BE=1,求GE的长.(2)求证:BC2=BG•BO.(3)若FO=FG,猜想∠CAD的度数,并证明你的结论.3.(2023•永州)如图,以AB为直径的⊙O是△ABC的外接圆,延长BC到点D.使得∠BAC=∠BDA,点E在DA的延长线上,点M在线段AC上,CE交BM于N,CE交AB于G.(1)求证:ED是⊙O的切线;(2)若,BD=5,AC>CD,求BC的长;(3)若DE•AM=AC•AD,求证:BM⊥CE.4.(2023•广东)综合探究如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A′.连接AA′交BD于点E,连接CA′.(1)求证:AA'⊥CA';(2)以点O为圆心,OE为半径作圆.①如图2,⊙O与CD相切,求证:;②如图3,⊙O与CA′相切,AD=1,求⊙O的面积.考向四:圆与等腰三角形的综合1.(2023•宁波)如图,在Rt△ABC中,∠C=90°,E为AB边上一点,以AE为直径的半圆O与BC相切于点D,连结AD,BE=3,BD=3.P是AB边上的动点,当△ADP为等腰三角形时,AP的长为.2.(2023•上海)如图(1)所示,已知在△ABC中,AB=AC,O在边AB上,点F是边OB中点,以O 为圆心,BO为半径的圆分别交CB,AC于点D,E,连接EF交OD于点G.(1)如果OG=DG,求证:四边形CEGD为平行四边形;(2)如图(2)所示,连接OE,如果∠BAC=90°,∠OFE=∠DOE,AO=4,求边OB的长;(3)连接BG,如果△OBG是以OB为腰的等腰三角形,且AO=OF,求的值.3.(2023•泰州)已知:A、B为圆上两定点,点C在该圆上,∠C为所对的圆周角.知识回顾(1)如图①,⊙O中,B、C位于直线AO异侧,∠AOB+∠C=135°.①求∠C的度数;②若⊙O的半径为5,AC=8,求BC的长;逆向思考(2)如图②,若P为圆内一点,且∠APB<120°,PA=PB,∠APB=2∠C.求证:P为该圆的圆心;拓展应用(3)如图③,在(2)的条件下,若∠APB=90°,点C在⊙P位于直线AP上方部分的圆弧上运动.点D在⊙P上,满足CD=CB﹣CA的所有点D中,必有一个点的位置始终不变.请证明.考向五:圆的阅读理解与新定义问题1.(2023•青海)综合与实践车轮设计成圆形的数学道理小青发现路上行驶的各种车辆,车轮都是圆形的.为什么车轮要做成圆形的呢?这里面有什么数学道理吗?带着这样的疑问,小青做了如下的探究活动:将车轮设计成不同的正多边形,在水平地面上模拟行驶.(1)探究一:将车轮设计成等边三角形,转动过程如图1,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,BA=CA=DA=2,圆心角∠BAD=120°.此时中心轨迹最高点是C(即的中点),转动一次前后中心的连线是BD(水平线),请在图2中计算C 到BD的距离d1.(2)探究二:将车轮设计成正方形,转动过程如图3,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,BA=CA=DA=2,圆心角∠BAD=90°.此时中心轨迹最高点是C(即的中点),转动一次前后中心的连线是BD(水平线),请在图4中计算C到BD的距离d2(结果保留根号).(3)探究三:将车轮设计成正六边形,转动过程如图5,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,圆心角∠BAD=.此时中心轨迹最高点是C(即的中点),转动一次前后中心的连线是BD(水平线),在图6中计算C 到BD的距离d3=(结果保留根号).(4)归纳推理:比较d1,d2,d3大小:,按此规律推理,车轮设计成的正多边形边数越多,其中心轨迹最高点与转动一次前后中心连线(水平线)的距离(填“越大”或“越小”).(5)得出结论:将车轮设计成圆形,转动过程如图7,其中心(即圆心)的轨迹与水平地面平行,此时中心轨迹最高点与转动前后中心连线(水平线)的距离d=.这样车辆行驶平稳、没有颠簸感.所以,将车轮设计成圆形.2.(2023•陕西)(1)如图①,∠AOB=120°,点P在∠AOB的平分线上,OP=4.点E,F分别在边OA,OB上,且∠EPF=60°,连接EF.求线段EF的最小值;(2)如图②,是一个圆弧型拱桥的截面示意图.点P是拱桥的中点,桥下水面的宽度AB=24m,点P到水面AB的距离PH=8m.点P1,P2均在上,=,且P1P2=10m,在点P1,P2处各装有一个照明灯,图中△P1CD和△P2EF分别是这两个灯的光照范围.两灯可以分别绕点P1,P2左右转动,且光束始终照在水面AB上.即∠CP1D,∠EP2F可分别绕点P1,P2按顺(逆)时针方向旋转(照明灯的大小忽略不计),线段CD,EF在AB上,此时,线段ED是这两灯照在水面AB上的重叠部分的水面宽度.已知∠CP1D=∠EP2F=90°,在这两个灯的照射下,当整个水面AB都被灯光照到时,求这两个灯照在水面AB上的重叠部分的水面宽度.(可利用备用图解答)3.(2023•北京)在平面直角坐标系xOy中,⊙O的半径为1.对于⊙O的弦AB和⊙O外一点C给出如下定义:若直线CA,CB中一条经过点O,另一条是⊙O的切线,则称点C是弦AB的“关联点”.(1)如图,点A(﹣1,0),B1(,),B2(,).①在点C1(﹣1,1),C2(,0),C3(0,)中,弦AB1的“关联点”是;②若点C是弦AB2的“关联点”,直接写出OC的长;(2)已知点M(0,3),N(,0),对于线段MN上一点S,存在⊙O的弦PQ,使得点S是弦PQ的“关联点”.记PQ的长为t,当点S在线段MN上运动时,直接写出t的取值范围.4.在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论,解决以下问题:如图1,△ABC中,AB=AC,∠BAC=α(60°<α<180°).点D是BC边上的一动点(点D不与B,C重合),将线段AD绕点A顺时针旋转α到线段AE,连接BE.(1)求证:A,E,B,D四点共圆;(2)如图2,当AD=CD时,⊙O是四边形AEBD的外接圆,求证:AC是⊙O的切线;(3)已知α=120°,BC=6,点M是边BC的中点,此时⊙P是四边形AEBD的外接圆,直接写出圆心P与点M距离的最小值.考向六:圆与特殊四边形综合1.(2023•威海)已知:射线OP平分∠MON,A为OP上一点,⊙A交射线OM于点B,C,交射线ON 于点D,E,连接AB,AC,AD.(1)如图1,若AD∥OM,试判断四边形OBAD的形状,并说明理由;(2)如图2,过点C作CF⊥OM,交OP于点F;过点D作DG⊥ON,交OP于点G.求证:AG=AF.2.(2023•益阳)如图,线段AB与⊙O相切于点B,AO交⊙O于点M,其延长线交⊙O于点C,连接BC,∠ABC=120°,D为⊙O上一点且的中点为M,连接AD,CD.(1)求∠ACB的度数;(2)四边形ABCD是否是菱形?如果是,请证明;如果不是,请说明理由;(3)若AC=6,求的长.(建议用时:80分钟)1.(2023•宜昌)如图1,已知AB是⊙O的直径,PB是⊙O的切线,PA交⊙O于点C,AB=4,PB=3.(1)填空:∠PBA的度数是,PA的长为;(2)求△ABC的面积;(3)如图2,CD⊥AB,垂足为D.E是上一点,AE=5EC.延长AE,与DC,BP的延长线分别交于点F,G,求的值.2.(2023•台州)我们可以通过中心投影的方法建立圆上的点与直线上点的对应关系,用直线上点的位置刻画圆上点的位置.如图,AB是⊙O的直径,直线l是⊙O的切线,B为切点.P,Q是圆上两点(不与点A重合,且在直径AB的同侧),分别作射线AP,AQ交直线l于点C,点D.(1)如图1,当AB=6,弧BP长为π时,求BC的长;(2)如图2,当,时,求的值;(3)如图3,当,BC=CD时,连接BP,PQ,直接写出的值.3.(2023•遂宁)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,AD=CD,过点D的直线l交BA的延长线于点M.交BC的延长线于点N且∠ADM=∠DAC.(1)求证:MN是⊙O的切线;(2)求证:AD2=AB•CN;(3)当AB=6,sin∠DCA=时,求AM的长.4.(2023•丽水)如图,在⊙O中,AB是一条不过圆心O的弦,点C,D是的三等分点,直径CE交AB于点F,连结AD交CF于点G,连结AC,过点C的切线交BA的延长线于点H.(1)求证:AD∥HC;(2)若=2,求tan∠FAG的值;(3)连结BC交AD于点N,若⊙O的半径为5.下面三个问题,依次按照易、中、难排列.请根据自己的认知水平,选择其中一道问题进行解答.①若OF=,求BC的长;②若AH=,求△ANB的周长;③若HF•AB=88,求△BHC的面积.5.(2023•长沙)如图,点A,B,C在⊙O上运动,满足AB2=BC2+AC2,延长AC至点D,使得∠DBC =∠CAB,点E是弦AC上一动点(不与点A,C重合),过点E作弦AB的垂线,交AB于点F,交BC 的延长线于点N,交⊙O于点M(点M在劣弧上).(1)BD是⊙O的切线吗?请作出你的判断并给出证明;(2)记△BDC,△ABC,△ADB的面积分别为S1,S2,S,若S1•S=(S2)2,求(tan D)2的值;(3)若⊙O的半径为1,设FM=x,FE•FN•=y,试求y关于x的函数解析式,并写出自变量x的取值范围.6.(2023•宁波)如图1,锐角△ABC内接于⊙O,D为BC的中点,连结AD并延长交⊙O于点E,连结BE,CE,过C作AC的垂线交AE于点F,点G在AD上,连结BG,CG,若BC平分∠EBG且∠BCG =∠AFC.(1)求∠BGC的度数.(2)①求证:AF=BC.②若AG=DF,求tan∠GBC的值.(3)如图2,当点O恰好在BG上且OG=1时,求AC的长.(建议用时:80分钟)1.(2023•东营区校级一模)如图,PA、PB是⊙O的切线,切点分别为A、B,BC是⊙O的直径,PO交⊙O于E点,连接AB交PO于F,连接CE交AB于D点.下列结论:①PA=PB;②OP⊥AB;③CE 平分∠ACB;④;⑤E是△PAB的内心;⑥△CDA≌△EDF.其中一定成立的有()个.A.5B.4C.3D.22.(2023•鹿城区校级三模)如图1,在△ABC中,∠ACB=90°,BC=2AC=2,过BC上一点D作DE ⊥BC,交AB于点E,以点D为圆心,DE的长为半径作半圆,交AC,AB于点F,G,交直线BC于点H,I(点I在H左侧).当点D与点C重合时(如图2),GH=;当EF=GH时,CD=.3.(2023•湖北模拟)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为D,直线DC与AB的延长线交于点P,弦CE平分∠ACB,交AB于点F,连接BE,BE=7,下列四个结论:①AC平分∠DAB;②PF2=PB•PA;③若BC=OP,则阴影部分的面积为;④若PC=24,则tan∠PCB=;其中,所有正确结论的序号是.4.(2024•鄞州区校级一模)如图1,AB,CD是⊙O的两条互相垂直的弦,垂足为E,连结BC,BD,OC.(1)求证:∠BCO=∠ABD.(2)如图2,过点A作AF⊥BD,交CD于G,求证:CE=EG.(3)如图3,在(2)的条件上,连结BG,若BG恰好经过圆心O,若⊙O的半径为5,,求AB的长.5.(2024•常州模拟)对于⊙C和⊙C上的一点A,若平面内的点P满足:射线AP与⊙C交于点Q(点Q 可以与点P重合,且,则点P称为点A关于⊙C的“阳光点”.已知点O为坐标原点,⊙O 的半径为1,点A(﹣1,0).(1)若点P是点A关于⊙O的“阳光点”,且点P在x轴上,请写出一个符合条件的点P的坐标;(2)若点B是点A关于⊙O的“阳光点”,且,求点B的横坐标t的取值范围;(3)直线与x轴交于点M,且与y轴交于点N,若线段MN上存在点A关于⊙O的“阳光点”,请直接写出b的取值范围是或.6.(2024•广东一模)如图1,在⊙O中,AB为⊙O的直径,点C为⊙O上一点,点D在劣弧BC上,CE ⊥CD交AD于E,连接BD.(1)求证:△ACE~△BCD;(2)若cos∠ABC=m,求;(用含m的代数式表示)(3)如图2,DE的中点为G,连接GO,若BD=a,cos∠ABC=,求OG的长.7.(2024•镇海区校级模拟)在矩形ABCD中,M、N分别在边BC、CD上,且AM⊥MN,以MN为直径作⊙O,连结AN交⊙O于点H,连结CH交MN于点P,AB=8,AD=12.(1)求证:∠MAD=∠MHC;(2)若AM平分∠BAN,求MP的长;(3)若△CMH为等腰三角形,直接写出BM的长.8.(2024•浙江一模)如图,在⊙O中,AB是一条不过圆心O的弦,C,D是的三等分点,直径CE交AB于点F,连结BD交CF于点G,连结AC,DC,过点C的切线交AB的延长线于点H.(1)求证:FG=CG.(2)求证:四边形BDCH是平行四边形.(3)若⊙O的半径为5,OF=3,求△ACH的周长.9.(2024•五华区校级模拟)如图,AB,CD是⊙O的两条直径,且AB⊥CD,点E是上一动点(不与点B,D重合),连接DE并延长交AB的延长线于点F,点P在AF上,且∠PEF=∠DCE,连接AE,CE分别交OD,OB于点M,N,连接AC,设⊙O的半径为r.(1)求证:PE是⊙O的切线;(2)当∠DCE=15°时,求证:AM=2ME;(3)在点E的移动过程中,判断AN•CM是否为定值,若是,求出该定值;若不是,请说明理由.10.(2024•福建模拟)已知:如图,⊙O内两条弦AB、CD,且AB⊥CD于E,OA为⊙O半径,连接AC、BD.(1)求证:∠OAC=∠BCD;(2)作EN⊥BD于N,延长NE交AC于点H.求证:AH=CH;(3)在(2)的条件下,作∠EHF=60°交AB于点F,点P在FE上,连接PC交HN于点L,当EL=HF=,CL=8,BE=2PF时,求⊙O的半径.11.(2024•鹿城区校级一模)如图1,锐角△ABC内接于⊙O,点E是AB的中点,连结EO并延长交BC 于D,点F在AC上,连结AD,DF,∠BAD=∠CDF.(1)求证:DF∥AB.(2)当AB=9,AF=FD=4时,①求tan∠CDF的值;②求BC的长.(3)如图2,延长AD交⊙O于点G,若,求的值.12.(2024•正阳县一模)【材料】自从《义务教育数学课程标准(2022年版)》实施以来,九年级的晏老师通过查阅新课标获悉:切线长定理由“选学”改为“必学”,并新增“会过圆外的一个点作圆的切线”,在学习完《切线的性质与判定》后,她布置一题:“已知:如图所示,⊙O及⊙O外一点P.求作:直线PQ,使PQ与⊙O相切于点Q.李蕾同学经过探索,给出了如下的一种作图方法:(1)连接OP,分别以O、P为圆心,以大于的长为半径作弧,两弧分别交于A、B两点(A、B 分别位于直线OP的上下两侧);(2)作直线AB,AB交OP于点C;(3)以点C为圆心,CO为半径作⊙C,⊙C交⊙O于点Q(点Q位于直线OP的上侧);(4)连接PQ,PQ交AB于点D,则直线PQ即为所求.【问题】(1)请按照步骤完成作图,并准确标注字母(尺规作图,保留作图痕迹);(2)结合图形,说明PQ是⊙O切线的理由;(3)若⊙O半径为2,OP=6.依据作图痕迹求QD的长.13.(2024•泌阳县一模)小贺同学在数学探究课上,用几何画板进行了如下操作:首先画一个正方形ABCD,一条线段OP(OP<AB),再以点A为圆心,OP的长为半径,画⊙A分别交AB于点E.交AD于点G.过点E,G分别作AB,AD的垂线交于点F,易得四边形AEFG也是正方形,连接CF.(1)【探究发现】如图1,BE与DG的大小和位置关系:.(2)【尝试证明】如图2,将正方形AEFG绕圆心A转动,在旋转过程中,上述(1)的关系还存在吗?请说明理由.(3)【思维拓展】如图3,若AB=2OP=4,则:①在旋转过程中,点B,A,G三点共线时,CF的值为;②在旋转过程中,CF的最大值是.14.(2024•秦都区校级一模)问题提出:(1)如图①,⊙O的半径为4,弦AB=4,则点O到AB的距离是.问题探究:(2)如图②,⊙O的半径为5,点A、B、C都在⊙O上,AB=6,求△ABC面积的最大值.问题解决:(3)如图③,是一圆形景观区示意图,⊙O的直径为60m,等边△ABP的边AB是⊙O的弦,顶点P在⊙O内,延长AP交⊙O于点C,延长BP交⊙O于点D,连接CD.现准备在△PAB和△PCD 区域内种植花卉,圆内其余区域为草坪.按照预算,草坪的面积尽可能大,求草坪的最大面积.(提示:花卉种植面积尽可能小,即花卉种植面积S△PAB +S△PCD的最小值)15.(2024•碑林区校级一模)问题探究(1)寒假期间,乐乐同学参观爸爸的工厂,看到半径分别为2和3的两个圆形零件⊙A、⊙B按如图1所示的方式放置,点A到直线m的距离AC=4,点B到直线m的距离BD=6,CD=5,M是⊙A上一点,N是⊙B上一点,在直线m上找一点P,使得PM+PN最小.请你在直线m上画出点P的位置,并直接写出PM+PN的最小值.问题解决(2)如图2,乐乐爸爸的工厂欲规划一块花园,如图所示的矩形ABCD,其中米,BC=30米,点E、F为花园的两个入口,米,DF=10米.若在△BCD区域内设计一个亭子G(亭子大小忽略不计),满足∠BDG=∠GBC,从入口到亭子铺设两条景观路.已知铺设小路EG所用的景观石材每米的造价是400元,铺设小路FG所用的景观石材每米的造价是200元,你能否帮乐乐同学分析一下,是否存在点G,使铺设小路EG和FG的总造价最低?若存在,求出最低总造价,并求出此时亭子G到边AB的距离;若不存在,请说明理由.16.(2024•雁塔区校级一模)问题发现(1)在△ABC中,AB=2,∠C=60°,则△ABC面积的最大值为;(2)如图1,在四边形ABCD中,AB=AD=6,∠BCD=∠BAD=90°,AC=8,求BC+CD的值.问题解决(3)有一个直径为60cm的圆形配件⊙O,如图2所示.现需在该配件上切割出一个四边形孔洞OABC,要求∠O=∠B=60°,OA=OC,并使切割出的四边形孔洞OABC的面积尽可能小.试问,是否存在符合要求的面积最小的四边形OABC?若存在,请求出四边形OABC面积的最小值及此时OA的长;若不存在,请说明理由.17.(2024•东莞市校级一模)如图①,点C,D在线段AB上,点C在点D的左侧,若线段AC,CD,DB 满足AC2+BD2=CD2,称C,D是线段AB的勾股点.(1)如图②,C,D是线段AB的勾股点,分别以线段AC,CD,DB为边向AB的同侧作正△ACE,正△CDF,正△DBG,已知正△ACE、正△CDF的面积分别是3,5,则正△DBG的面积是;(2)如图①,AB=12,C,D是线段AB的勾股点,当AC=AB时,求CD的长;(3)如图③,C,D是线段AB的勾股点,以CD为直径画⊙O,P在⊙O上,AC=CP,连接PA,PB,若∠A=2∠B,求∠B的度数.18.(2023•西湖区模拟)如图,已知CE是圆O的直径,点B在圆O上,且BD=BC,过点B作弦CD的平行线与CE的延长线交于点A.(1)若圆O的半径为2,且点D为弧EC的中点时,求线段CD的长度;(2)在(1)的条件下,当DF=a时,求线段BD的长度;(答案用含a的代数式表示)(3)若AB=3AE,且CD=12,求△BCD的面积.19.古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.小明决定研究一下圆,如图,AB是⊙O的直径,点C是⊙O上的一点,延长AB至点D,连接AC、BC、CD,且∠CAB=∠BCD,过点C 作CE⊥AD于点E.(1)求证:CD是⊙O的切线;(2)若OB=BD,求证:点E是OB的中点;(3)在(2)的条件下,若点F是⊙O上一点(不与A、B、C重合),求的值.。

压轴题 圆的五种考法(解析版)--九年级数学常考压轴题

压轴题  圆的五种考法(解析版)--九年级数学常考压轴题

压轴题圆的五种考法目录解题知识必备压轴题型讲练类型一、四点共圆类型二、圆中最值问题类型三、定点定长构造辅助圆类型四、定弦定角构造辅助圆类型五、对角互补构造辅助圆压轴能力测评(10题)类型一、四点共圆一.填空题1.(2022秋•大丰区期中)如图,ΔABC中,AD⊥BC,∠B=45°,∠C=30°.以AD为弦的圆分别交AB、AC于E、F两点.点G在AC边上,且满足∠EDG=120°.若CD=4+22,则ΔDEG的面积的最小值是.【分析】连接EF,利用四点共圆和同弧所对的圆周角相等证明EF⎳DG,从而得到SΔEDG=S△EDG,当FG最小时,ΔDFG的面积就最小,作ΔDFG的外接圆O,过O点作OH⊥FG交于点H,连接OF、OG,DO+OH=12+22FG,当DO+OH最小时,FG就最小,当D、O、H三点共线时,DO+OH最小,此时DH⊥FG,在RtΔFHO中,(2FH)2=FH2+(2+2-2FH)2,求出FH=2,可得FG的最小值为22,再求SΔDFG =22+2,即ΔDEG的面积的最小值为22+2.【解答】解:连接EF,AD⊥BC,∠B=45°,∠C=30°,∴∠B=45°,∠DAC=60°,∵∠BAC=105°,∵A、E、F、D四点共圆,∴∠EDF=75°,∵∠EDG=120°,∴∠FDG=45°,∵ED =ED ,∴∠EFD =∠FDG ,∴EF ⎳DG ,∴S ΔEDG =S △EDG ,∵CD =4+22,∠C =30°,∴AC =833+463,AD =433+263,∴AC 边上的高=AD ⋅DC AC=2+2,∴当FG 最小时,ΔDFG 的面积就最小,作ΔDFG 的外接圆O ,过O 点作OH ⊥FG 交于点H ,连接OF 、OG ,∵∠FDG =45°,∴∠FOG =90°,∵OF =GO ,∴ΔFOG 是等腰直角三角形,∵∠FOH =12∠FOG =45°,∴ΔFOH 是等腰直角三角形,∴FH =OH =12FG ,FO =2FH ,∴DO +OH =22FG +12FG =12+22FG ,∴当DO +OH 最小时,FG 就最小,∵DO +OH ≥DH ,∴当D 、O 、H 三点共线时,DO +OH 最小,此时DH ⊥FG ,∴DH =2+2,在Rt ΔFHO 中,(2FH )2=FH 2+(2+2-2FH )2,解得FH =2或FH =4+32,∵OH =2+2=FH +FO ,∴FH =2,∴FG 的最小值为22,∴S ΔDFG =12×22×(2+2)=22+2,∴ΔDEG 的面积的最小值为22+2,故答案为:22+2.【点评】本题考查圆的综合应用,熟练掌握圆心角与圆周角的关系,四点共圆的性质,三角形外接圆的性质是解题的关键.二.解答题2.(2022秋•建湖县期中)如图,在⊙O 的内接四边形ABCD 中,DB =DC ,∠DAE 是四边形ABCD 的一个外角.(1)若∠DAE =75°,则∠DAC =°;(2)过点D 作DE ⊥AB 于E ,判断AB 、AE 、AC 之间的数量关系并证明;(3)若AB =6、AE =2,求BD 2-AD 2的值.【分析】(1)根据四边形外接圆的性质,同弧所对的圆周角相等,可得∠DCB=∠DBC=∠DAC=75°;(2)过点D作DF⊥AC于点F,可证明ΔBDE≅ΔCDF(AAS),ΔADE≅ΔADF(AAS),则AC=AF+FC= AE+BE=AE+AE+AB=2AE+AB;(3)在RtΔBDE中,BD2=64+DE2,在RtΔAED中,AD2=4+ED2,再求解即可.【解答】解:(1)∵四边形ABCD是圆O的内接四边形,∴∠BCD+∠BAD=180°,∵∠DAE是四边形ABCD的一个外角,∴∠DAE=∠BCD,∵BD=CD,∴∠CBD=∠DCB,∵弧CD所对的圆周角分别为∠CAD、∠CBD,∴∠CBD=∠CAD,∵∠DAE=75°,∴∠DCB=∠DBC=∠DAC=75°,故答案为:75;(2)过点D作DF⊥AC于点F,∵DE⊥AB,∴∠DEA=90°,∵∠ABD=∠ACD,BD=CD,∠E=∠DFC=90°,∴ΔBDE≅ΔCDF(AAS),∴DE=DF,AE=CF,∴∠ADE=∠ADF,又∵∠E=∠AFD,AD=AD,∴ΔADE≅ΔADF(AAS),∴AE=AF,∴AC=AF+FC=AE+BE=AE+AE+AB=2AE+AB,即AC=2AE+AB;(3)在RtΔBDE中,BD2=BE2+DE2,在RtΔAED中,AD2=AE2+ED2,∵AB=6,AE=2,∴BE=8,∴BD2=64+DE2,AD2=4+ED2,∴BD2-AD2=60.【点评】本题考查圆的综合应用,熟练掌握同弧所对的圆周角相等,四点共圆的性质,直角三角形勾股定理,三角形全等的判定及性质是解题的关键.3.(2023秋•鄞州区期中)如图,在△ABC 中,点D ,E 为AB ,AC 上的点,BE =CD ,DC ,BE 交于F ,△BDF 与△CEF 的外接圆相交于点G (异于F ),H 1,H 2分别为△ABC 和△ADE 的垂心.证明:(1)GF 平分∠BFC ;(2)H 1,H 2,G 三点共线.(注:利用坐标系、复数解题者不给分)【分析】(1)通过证明△BGE ≅△DGC 得出DG =BG ,然后由BG =DG 推导出∠BFG +∠DFG =180°,再由邻补角的性质得出∠BFG =∠GFC ,即可证明结论;(2)根据题意构造B 、E 、B ′、E ′四点共⊙P ,以及D 、C 、D ′、C ′四点共⊙Q ,然后由相似三角形推导出点H 1、H 2对于⊙P 和⊙Q 等幂,再由根轴的性质得出H 1H 2是PQ 的垂直平分线,最后根据GP =GQ 得到GM ⊥PQ ,进而证得三点共线.【解答】(1)证明:在△BGE 和△DGC 中,∠GBE =∠GDC ,BE =CD ,∠GEB =∠GCD ,∴△BGE ≅△DGC (ASA ).∴DG =BG ,∴BG =DG ,∵DBG +DG =2πR (R 为△BDF 的外接圆半径).∴∠BFG +∠DFG =180°.又∵∠GFC +∠DFG =180°,∴∠BFG =∠GFC ,∴GF 平分∠BFC .(2)证明:连接BH 1、DH 2并延长分别交AC 于B ′、D ′,连接CH 1、EH 2并延长交AB 于C ′、E ′.BE 中点为P ,CD 中点为Q .∵BB ′⊥AC ,EE ′⊥AB ,∴B 、E 、B ′、E ′四点共⊙P .∵DD ′⊥AC ,CC ′⊥AB ,∴D 、C 、D ′、C ′四点共⊙Q .∵∠DE ′H 2=∠ED ′H 2,∠DH 2E ′∽△EH 2D ′,∴△DE ′H2∽△ED ′H 2,∴DH 2:EH 2=E ′H 2:D ′H 2,∴DH 2⋅D ′H 2=EH 2⋅E ′H 2.同理得CH 1⋅C ′H 1=BH 1⋅B ′H 1.∴H 1,H 2在⊙P 和⊙Q 的根轴上.∵⊙P 和⊙Q 的根轴是过两圆的交点的直线.∴H 1,H 2在⊙P 和⊙Q 的公共弦JK 上.又∵BE =CD ,即⊙P 和⊙Q 是等圆,∴四边形PJQK 为菱形.∴H 1H 2是PQ 的垂直平分线,M 为PQ 中点.由(1)知△BGE ≅△DGC ,∵GP 、GQ 分别为△BGE 和△DGC 的对应边上的中线,∴GP =GQ ,∴点G 在PQ 的垂直平分线上.∴H 1,H 2,G 三点共线.【点评】本题考查了全等三角形的判定和性质,圆周角定理,圆幂定理,菱形的性质,等腰三角形的性质等.本题辅助线繁多,综合性强,通过四点共圆判断出H 1、H 2两点对于⊙P 和⊙Q 等幂是解答本题的关键.4.(2022秋•沙坪坝区校级期中)在ΔABC 中,已知AB =AC ,作AM ⊥BC ,D 是AM 上一点,∠DBC =30°,连接BD 、CD ,在BD 上截取DE =AD ,连接AE .(1)如图1所示,若∠BAC =90°,AD =3,求ΔABE 的周长;(2)如图2所示,若分别取AE 、AC 的中点N 、H ,连接MN 、MH ,求证:MN =MH ;(3)如图3所示,∠BAC =90°,BC =2,将AC 沿着直线AP 翻折得到AQ ,连接BQ ,直线BQ 交AP 于点P ,N 为AE 中点,当PN 取得最小值时,请直接写出ΔAPN 的面积.【分析】(1)过点D 作DL ⊥AE 于L ,则∠ALD =∠ELD =90°,由∠DBC =30°,可得BD =2DM ,设DM =x ,则BD =2x ,由勾股定理可得BM =3x ,AM =x +3,可得BM =CM =AM =33+32,AB =2BM =2×33+32=36+322,利用勾股定理可得AL =AD 2-DL 2=(3)2-32 2=32,进而可得AE =2AL =2×32=3,即可求得答案;(2)延长AM 至F ,使MF =AM ,在DF 上截取DT =DE ,连接EF ,ET ,设∠ABM =α,则∠BAM =90°-α,可证得ΔDET 是等边三角形,得出:DT =ET =DE =AD ,∠DTE =60°,再证得ΔABD ≅ΔEFT (SAS ),可得AB =EF =AC ,利用三角形中位线定理可得MN =12EF ,再由直角三角形性质可得MH =12AC ,即可证得结论;(3)连接CP ,先证得点P 在ΔABC 的外接圆⊙M 上,当且仅当点P 为半径MP 经过点N 时,PN 取得最小值,连接DN ,过点N 作NG ⊥AM 于G ,利用解直角三角形可得DM =BM ⋅tan30°=33,AD =DE =1-33,AN =EN =32AD =321-33 ,NG =12AN =12×321-33 =3-14,AG =3NG =3-34,GM =AM -AG =1-3-34=1+34,由勾股定理可得MN =GM 2+NG 2=1+34 2+3-14 2=22,PN =MP -MN =1-22,再利用S ΔAPN S ΔAMN =PN MN=2-1,即可求得答案.【解答】(1)解:过点D 作DL ⊥AE 于L ,则∠ALD =∠ELD =90°,∵∠BAC =90°,AB =AC ,AM ⊥BC ,∴AM =BM =CM ,∠BMD =90°,∠ABM =∠BAM =45°,∵∠DBC =30°,∴BD =2DM ,设DM =x ,则BD =2x ,∴BM =BD 2-DM 2=(2x )2-x 2=3x ,AM =x +3,∴3x =x +3,∴x =3+32,∴BM =CM =AM =33+32,∴AB =2BM =2×33+32=36+322,∵DE =AD ,∴∠DAE =∠DEA ,∵∠DAE +∠DEA =∠BDM =90°-30°=60°,∴∠DAE =∠DEA =30°,∴∠BAE =∠BAM -∠DAE =45°-30°=15°,∵∠ABD =∠ABM -∠DBC =45°-30°=15°,∴∠BAE =∠ABD ,∴AE =BE ,在Rt ΔADL 中,DL =12AD =32,∴AL =AD 2-DL 2=(3)2-322=32,∵DE =AD ,DL ⊥AE ,∴AE =2AL =2×32=3,∴ΔABE 的周长=AB +AE +BE =36+322+3+3=36+32+122;(2)证明:延长AM 至F ,使MF =AM ,在DF 上截取DT =DE ,连接EF ,ET ,设∠ABM =α,则∠BAM =90°-α,∵∠DBC =30°,∴∠BDT =60°,∠ABD =α-30°,BD =2DM ,∵DE =AD ,∴∠AED =∠DAE =30°,∴ΔDET 是等边三角形,∴DT =ET =DE =AD ,∠DTE=60°,∵AF =2(AD +DM )=AT +FT ,∴FT =2DM =BD ,∵∠EDT =∠ETD =60°,∴∠ADB =180°-60°=120°=∠ETF ,在ΔABD 和ΔEFT 中,AD =ET∠ADB =∠ETF BD =FT,∴ΔABD ≅ΔEFT (SAS ),∴AB =EF ,∵AB =AC ,∴EF =AC ,∵N 、M 分别是AE 、AF 的中点,∴MN =12EF ,∵点H 是Rt ΔACM 斜边AC 的中点,∴MH =12AC ,∴MN =MH ;(3)解:如图,连接CP ,由翻折得:∠ACP =∠AQP ,AC =AQ ,∵AB =AC ,∠BAC =90°,BC =2,AM ⊥BC ,∴AB =AQ ,AM =BM =CM =1,∴∠ABP =∠AQB ,∵∠AQB +∠AQP =180°,∴∠ABP +∠ACP =180°,∴点P 在ΔABC 的外接圆⊙M 上,当且仅当点P 为半径MP 经过点N 时,PN 取得最小值,如图,连接DN ,过点N 作NG ⊥AM 于G ,∵∠DBC =30°,∴DM =BM ⋅tan30°=33,∴AD =DE =1-33,∴AN =EN =32AD =321-33,∵∠AGN =90°,∠NAG =30°,∴NG =12AN =12×321-33 =3-14,∴AG =3NG =3-34,∴GM =AM -AG =1-3-34=1+34,在Rt ΔMNG 中,MN =GM 2+NG 2=1+342+3-14 2=22,∴PN =MP -MN =1-22,∴SΔAPNSΔAMN=PNMN=1-2222=2-1,∵SΔAMN=12AM⋅NG=12×1×3-14=3-18,∴SΔAPN=(2-1)SΔAMN=(2-1)×3-18=6-3-2+18.【点评】本题是几何综合题,考查了等腰三角形性质,等腰直角三角形性质,直角三角形性质,等边三角形性质,全等三角形的判定和性质,勾股定理,圆内接四边形的判定,三角形面积等,涉及知识点多,难度大,添加适当的辅助线是解题的关键与难点.5.(2022秋•鼓楼区期中)以下是“四点共圆”的几个结论,你能证明并运用它们吗?Ⅰ.若两个直角三角形有公共斜边,则这两个三角形的4个顶点共圆(图1、2);Ⅱ.若四边形的一组对角互补,则这个四边形的4个顶点共圆(图3);Ⅲ.若线段同侧两点与线段两端点连线的夹角相等,则这两点和线段两端点共圆(图4).(1)在图1、2中,取AC的中点O,根据得OA=OB=OC=OD,即A,B,C,D共圆;(2)在图3中,画⊙O经过点A,B,D(图5).假设点C落在⊙O外,BC交⊙O于点E,连接DE,可得=180°,所以∠BED=,得出矛盾;同理点C也不会落在⊙O内,即A,B,C,D共圆.结论Ⅲ同理可证.(3)利用四点共圆证明锐角三角形的三条高交于一点.已知:如图6,锐角三角形ABC的高BD,CE相交于点H,射线AH交BC于点F.求证:AF是ΔABC的高.(补全以下证明框图,并在图上作必要标注)(4)如图7,点P是ΔABC外部一点,过P作直线AB,BC,CA的垂线,垂足分别为E,F,D,且点D,E,F在同一条直线上.求证:点P在ΔABC的外接圆上.【分析】(1)根据直角三角形斜边中线的性质可得结论;(2)由圆周角的性质可得∠BED+∠A=180°,再结合题干条件,得出矛盾,由此可得出结论;(3)如图,连接DE,由点B、C、D、E四点共圆得∠BDE=∠ECB,由点A、D、H、E四点共圆得∠BDE=∠BAF,从而证明∠BAF+∠ABF=90°即可;(4)连接BP和CP,由点A,E,P,F四点共圆可得,∠BEF=∠BPF,由点C,P,D,F四点共圆可得∠CDF =∠CPF,再由外角的性质及角的和差可得∠BAC=∠BPC,由此可得点A,B,C,P四点共圆,即点P在ΔABC的外接圆上.【解答】解:(1)在图1、2中,取AC的中点O,根据直角三角形斜边上的中线等于斜边的一半,得OA=OB= OC=OD,即A,B,C,D共圆;故答案为:直角三角形斜边上的中线等于斜边的一半;(2)在图3中,画⊙O经过点A,B,D(图5).假设点C落在⊙O外,BC交⊙O于点E,连接DE,可得∠BED+∠A=180°,∴∠BED=180°-∠A,得出矛盾;同理点C也不会落在⊙O内,即A,B,C,D共圆.结论Ⅲ同理可证.故答案为:∠BED+∠A;180°-∠A;(3)如图6,连接DE,由点B、C、D、E四点共圆得∠BDE=∠ECB,由点A、D、H、E四点共圆得∠BDE=∠BAF,∴∠ECB=∠BAF,∵∠BEC=90°,∴∠ECB+∠ABF=90°,∴∠BAF+∠ABF=90°,∴∠BFA=90°,∴AF为ΔABC的边BC上的高.(4)如图7,连接BP和CP,由点A,E,P,F四点共圆可得∠BEF=∠BPF,由点C,P,D,F四点共圆可得∠CDF=∠CPF,∵∠ADE=∠CDF,∴∠ADE=∠CPF,∵∠BAC=∠BEF+∠ADE,∠BPC=∠BPF+∠CPF,∴∠BAC=∠BPC,∴点A,B,C,P四点共圆,即点P在ΔABC的外接圆上.【点评】本题考查了圆的定义,直角三角形斜边上的中线等于斜边一半,圆内接四边形对角互补,圆周角定理,内心的定义.第(3)(4)题解题关键是选取适当的四点证明共圆,再利用圆周角定理证明角相等.类型二、圆中最值问题一.填空题6.(2022秋•长沙期中)如图,⊙O 的半径为1,P A ,PB 为⊙O 的切线,切点为A ,B ,∠APB =60°,点M 为劣弧AB 上一动点,过点M 作⊙O 的切线,分别交P A ,PB 于点E ,F ,EF 的最小值是.【分析】由切线的性质定理,全等三角形的判定和性质,三角形外心的性质,可以求解.【解答】解:连接OA ,OE ,OM ,OF ,OB ,∵P A ,PB 为⊙O 的切线,EF 切⊙O 于M ,∴OA ⊥P A ,OB ⊥PB ,OM ⊥EF ,∵四边形PBOA 内角和是360°,∴∠P +∠AOB =360°-∠P AB -∠PBA =180°,∴∠AOB =180°-∠P =120°,∵OE =OE ,OA =OM ,∴Rt ΔOAE ≅Rt ΔOME (HL ),∴∠AOE =∠MOE ,同理:∠MOF =∠BOF ,∴∠EOF =∠EOM +∠FOM =12∠AOB =60°,设ΔOEF 的外心是点C ,作CH ⊥EF 于H ,连接CO ,CE ,CF ,OM ,∵点C 是ΔOEF 的外心,∴OC =EC =FC ,∴∠CEF =∠CFE ,EH =FH ,∵∠ECF =2∠EOF =120°,∴∠CEF =30°,∴CH =12CE =12OC ,∵OC +CH ≥OM ,∴3CH ≥1,∴CH ≥13,∵tan ∠CEH =CH EH,∴EH =3CH ,∴EF =2EH =23CH ,∴EF ≥233,∴EF 的最小值是233,故答案为:233.【点评】本题考查有关圆的最值问题,关键是掌握切线的性质定理,全等三角形的判定和性质,三角形外心的性二.解答题7.(2022秋•东城区校级期中)对于平面直角坐标系xOy中的图形G和点P给出如下定义;Q为图形G上任意一点,若P,Q两点间距离的最大值和最小值都存在,且最大值是最小值的k倍,则称点P为图形G 的“k分点”.已知点N(3,0),A(1,0),B(0,3),C(1,-1).(1)①在点A,B,C中,线段ON的“2分点”是;②点D(a,0),若点C为线段OD的“二分点”,求a的值;(2)以点O为圆心,r为半径画图,若线段AN上存在⊙O的“二分点”,直接写出r的取值范围.【分析】(1)①分别求出点A、B、C到线段ON的最小值和最大值,看是否满足“2分点”定义即可,②对a的取值分情况讨论:0<a≤1,1<a≤2,a>2和a<0,根据“二分点”的定义可求解,(2)设线段AN上存在⊙O的“二分点”为M(m,0)(1≤m≤3).对r的取值分情况讨论0<r≤1,1<r<3且m<r,1<r<3且m>r,r≥3,根据二分点的定义可求解.【解答】(1)解:①如图,∵点A在ON上,故最小值为0,不符合题意,点B到ON的最小值为OB=3,最大值为BN=32+32=32,∴点B是线段ON的“2分点”,点C到ON的最小值为1,最大值为CN=22+12=5∴点C不是线段ON的“2分点”,故答案为:点B;②当0<a≤1时,点C到OD的最小值为CD=(1-a)2+(-1)2=2-2a+a2,点C到OD的最大值为CO=12+(-1)2=2,∴2=22-2a+a2,即2a2-4a+3=0,∵△<0,故无解,舍去;当1<a≤2时,点C到OD的最小值为1,点C到OD的最大值为CO=12+(-1)2=2,最大值不是最小值的2倍,所以舍去,当a>2时,点C到OD的最小值为1,点C到OD的最大值为CD=(a-1)2+(0-1)2=a2-2a+2,∵点C为线段OD的“二分点”,∴a2-2a+2=2×1,a1=1+3,a2=1-3(舍去),当a<0时,点C到OD的最小值为CO=12+(-1)2=2,点C到OD的最大值为CD=(1-a)2+(-1-0)2=a2-2a+2,∵点C为线段OD的“二分点”,同0<a≤1时,无解,舍去;综上,a=1+3.(2)如图所示,设线段AN上存在⊙O的“二分点”为M(m,0)(1≤m≤3),当0<r≤1时,最小值为:m-r,最大值为:m+r,m,∴2(m-r)=m+r,即r=13∵1≤m≤3,≤r≤1,∴13当1<r<3且m<r时,最小值为:r-m,最大值为r+m,∴2(r-m)=r+m,即r=3m,∵1≤m≤3,∴3≤r≤9,∵1<r<3,∴r不存在,当1<r<3且m>r时,最小值为:m-r,最大值为:m+r,m,∴2(m-r)=r+m,即r=13≤r≤1,∴13∵1<r<3,∴r 不存在.当r ≥3时,最小值为:r -m ,最大值为:m +r ,∴2(r -m )=r +m ,即r =3m ,∴3≤r ≤9.综上所述,r 的取值范围为13≤r ≤1或3≤r ≤9.【点评】本题考查坐标上的两点距离,勾股定理,点到圆的距离.根据题目所给条件,掌握“k 分点”的定义是解题的关键.8.(2022秋•江阴市期中)如图,在平面直角坐标系中,点A 的坐标为(-3,0),点B 在y 轴的正半轴上,且∠ABO =30°,以点B 为圆心,1为半径画⊙B ,与y 轴交于点C (点C 在点B 的下方),点Q 是AB 的中点,点P 是⊙B 上的一个动点,从点C 开始以5度/秒的速度沿圆周逆时针运动一周,设运动时间为t 秒.(1)如图1,连接OQ ,当OQ ⎳BP 时,求t 的值;(2)如图2,点P 在运动过程中,连接AP ,以AP 为边在左侧作等边ΔAPD ,①当t =12秒时,求点D 的坐标;②连接DQ ,当DQ 最大时,求此时t 的值和这个最大值.【分析】(1)如图,过点B 作BP ⎳OQ ,交⊙B 于点P 1,P 2,由平行得出点P 的旋转角,进而可得出时间t ;(2)①将线段AB 绕点A 逆时针旋转60°到线段AB ′,连接B ′D ,易证△AB ′D ≅ΔABP (SAS ),所以B ′D =BP =1,∠AB ′D =∠ABP =90°;过点B ′作B ′N ⊥x 轴于点N ,过点D 作DM ⊥B ′N 于点M ,所以∠M =∠ANB ′=90°,由互余可知,∠MBD ′=∠B ′AN ,所以∠B ′AB =60°,∠BAO =60°,所以∠B ′AN =60°,AN =3,B ′N =3,则MB ′=12,MD =32,进而可得点D 的坐标;②由旋转可知,点D 在以点B ′为圆心,1长为半径的圆上运动,当DQ 最大时,点D ,B ′,Q 三点共线,设⊙B与y 轴的另一个交点为C ′,则C ′(0,4),OC ′=4,由点Q 是AB 的中点可知,Q -32,32,B ′(-23,3),进而可得B ′Q =3,所以DQ =4,易证△AB ′Q ≅ΔABO (SSS ),进而可得ΔADQ ≅△AC ′O (SAS ),所以AD =AC ′,即此时点P 与点C ′重合,所以t =180°5°=36.【解答】解:(1)如图:∵ΔABO 是直角三角形,Q 是AB 中点,∴OQ =QA =QB ,∴∠BOQ =∠ABO =30°,又∵OQ ⎳BP 1,∴∠OBP 1=∠BOQ =30°,∴点P 的轨迹是⊙B 中30°圆心角所对的弧,∴t =30°5°=6,∵当点P 运动到P 1B 延长线与⊙B 的交点P 2时,点P 的轨迹是⊙B 中180°+30°=210°圆心角所对的弧,∴t =210°5°=42.故t 的值为6或42;(2)①如图,∵∠ABO =30°,OA =3,∴OB =3,AB =23,当t =12时,∠CBP =60°,∴∠ABP =90°,将线段AB 绕点A 逆时针旋转60°到线段AB ′,连接B ′D ,由旋转可知,∠BAB ′=60°,AB =AB ′=23,∵ΔADP 是等边三角形,∴∠DAP =60°,AD =AP ,∴∠B ′AD =∠BAP ,∴△AB ′D ≅ΔABP (SAS ),∴B ′D =BP =1,∠AB ′D =∠ABP =90°,过点B ′作B ′N ⊥x 轴于点N ,过点D 作DM ⊥B ′N 于点M ,∴∠M =∠ANB ′=90°,∴∠AB ′N +∠B ′AN =90°,∠MB ′D +∠AB ′N =90°,∴∠MB ′D =∠B ′AN ,∵∠B ′AB =60°,∠BAO =60°,∴∠B ′AN =60°,AN =3,B ′N =3,∴∠MB ′D =60°,∴MB ′=12,MD =32,∴MN =72.∴D -332,72;②由旋转可知,点D 在以点B ′为圆心,1长为半径的圆上运动,∴当DQ 最大时,点D ,B ′,Q 三点共线,如图所示,设⊙B 与y 轴的另一个交点为C ′,∴C ′(0,4),∴OC ′=4,∵点Q 为AB 的中点,∴AQ =BQ =3,AB ′=AB =23,由①可知,B (0,3),∴Q -32,32,B ′(-23,3),∴DQ =4,∴B ′Q =BO ,AQ =BQ =3,AB ′=AB =23,∴△AB ′Q ≅ΔABO (SSS ),∴∠AQB ′=∠AOB =90°,∵DQ =OC ′,AQ =AO ,∴ΔADQ ≅△AC ′O (SAS ),∴AD =AC ′,即此时点P 与点C ′重合,∴t =180°5°=36.综上,t =36,DQ 最大值是4.【点评】本题属于圆的综合题,涉及考查旋转的性质,等边三角形的性质,全等三角形的性质与判定,相似三角形的相似与判定,含30°的直角三角形的三边关系,根据题意得出点D 的轨迹是解题关键.类型三、定点定长构造辅助圆一.填空题9.(2023秋•常州期中)如图,点A ,B 的坐标分别为A (4,0),B (0,4),C 为坐标平面内一点,BC =2,点M 为线段AC 的中点,连接OM ,OM 的最大值为.【分析】先判断出点C 的运动轨迹是在半径为2的⊙B 上,再取OD =OA =4,连接OD ,则OM 是ΔACD 的中位线,OM =12CD ,进而可得OM 最大值时,CD 取最大值,此时D 、B 、C 三点共线,计算即可求出结果.【解答】解:∵C 为坐标平面内一点,BC =2,∴点C 的运动轨迹是在半径为2的⊙B 上,如图,取OD =OA =4,连接OD ,∵点M 为线段AC 的中点,∴OM 是ΔACD 的中位线,∴OM =12CD ,∴OM 最大值时,CD 取最大值,此时D 、B 、C 三点共线,此时在Rt ΔOBD 中,BD =42+42=42,∴CD =2+42,∴OM 的最大值是1+22.故答案为:1+22.【点评】本题考查了坐标和三角形的中位线,定点定长构造辅助圆等,解题关键是确定点C 的运动轨迹.二.解答题10.(2022秋•秀洲区期中)如图,ΔABC 中,AC =BC =4,∠ACB =90°,过点C 任作一条直线CD ,将线段BC 沿直线CD 翻折得线段CE ,直线AE 交直线CD 于点F .(1)小智同学通过思考推得当点E 在AB 上方时,∠AEB 的角度是不变的,请按小智的思路帮助小智完成以下推理过程:∵AC =BC =EC ,∴A 、B 、E 三点在以C 为圆心以AC 为半径的圆上.∴∠AEB =∠ACB =°.(2)若BE =2,求CF 的长.(3)线段AE 最大值为;若取BC 的中点M ,则线段MF 的最小值为.【分析】(1)根据AC =BC =EC ,得A 、B 、E 三点在以C 为圆心以AC 为半径的圆上,根据圆周角定理可知∠AEB 的度数;(2)由ΔEFG 是等腰三角形可求出FG =1,利用勾股定理求出CG 的长,从而得出答案;(3)根据直径是圆中最大的弦知当AE 经过圆心C 时,线段AE 的最大值为2AC =8,取AB 的中点O ,连接OF ,可证∠AFB =90°,则点F 在以AB 为直径的圆O 上,当OF 经过点M 时,MF 最短,此时OF ⊥BC ,从而解决问题.【解答】解:(1)∵AC =BC =EC ,∴A 、B 、E 三点在以C 为圆心以AC 为半径的圆上,∴∠AEB =12∠ACB =45°,故答案为:12,45;(2)由折叠可知,CD 垂直平分BE ,∴BE ⊥CD ,设CD 、BE 交于点G ,则GE =BG =12BE =1,∴∠FGE =90°,∵∠AEB =45°,∴FG =GE =1,在Rt ΔCEG 中,由勾股定理得,CG =CE 2-DE 2=15,∴CF =CG -FG =15-1;当点E 在AB 的下方时,如图,∵AC =BC =EC ,∴A 、B 、E 三点在以C 为圆心以AC 为半径的圆上,∴∠EAB +∠EBA =12∠ACB =45°,即∠BEF =45°,由翻折可知,∠EGF=90°,EG=GB 12BE=1,∴ΔEGF是等腰直角三角形,∴GF=EG=1,在RtΔCEG中,CG=CE2-EG2=42-12=15,∴CF=15+1,综上所述,CF的长为15-1或15+1;(3)∵A,B,E,三点在以C为圆心,以AC为半径的圆上,∴当AE经过圆心C时,线段AE的最大值为2AC=8,在RtΔABC中,AC=BC=4,∠ACB=90°,∴AB=AC2+BC2=42,BM=CM=12BC=2,∠ABC=∠BAC=45°,连接BF,取AB的中点O,连接OF,如图,∵CD垂直平分BE,∠AEB=45°,∴BF=EF,∴∠EBF=∠AEB=45°,∴∠EFB=90°,∴∠AFB=90°,∴OF=12AB=OA=OB=22,∴点F在以点O为圆心,AB为直径的圆上,∵∠ACB=90°,∴点C在⊙O上,∴当OF经过点M时,MF最短,此时OF⊥BC,∴OM=BM⋅tan∠ABC=2×1=2,∴MF=OF-OM=22-2,即线段MF的最小值为22-2,故答案为:8;22-2.【点评】本题是圆的综合题,主要考查了等腰直角三角形的性质,线段垂直平分线的性质,圆周角定理,利用定点定长构造辅助圆是解题的关键.类型四、定弦定角构造辅助圆一.填空题11.(2023春•梁子湖区期中)如图,矩形ABCD的边AB=8,AD=6,M为BC的中点,P是矩形内部一动点,且满足∠ADP=∠P AB,N为边CD上的一个动点,连接PN,MN,则PN+MN的最小值为.【分析】先找出点P 的运动路线为以AD 为直径的圆,设圆心为O ,作点M 关于直线DC 的对称点M ′,连接OM ′交⊙O 于点P ′,可推出M ′P ′的长即为PN +MN 的最小值,再求出M ′P ′的长即可.【解答】解:∵四边形ABCD 是矩形,∴∠BAD =90°,∵∠ADP =∠P AB ,∴∠ADP +∠P AD =∠P AB +∠P AD =∠BAD =90°,∴点P 的运动路线为以AD 为直径的圆,作以AD 为直径的⊙O ,作点M 关于直线DC 的对称点M ′,连接OM ′交⊙O 于点P ′,连接M ′N ,OP ,则OP =OP ′=3,M ′N =MN ,∴PN +MN =PN +M ′N =PN +M ′N +OP -OP ′≥OM ′-OP ′=OM ′-3,∴PN +MN 的最小值为OM ′-3;连接OM ,∵四边形ABCD 是矩形,点O 是AD 的中点,点M 为BC 的中点,∴OD =12AD =12BC =CM =3,OD ⎳CM ,∠ODC =90°,∴四边形OMCD 是矩形,∴OM =DC =AB =8,∵点M 关于直线DC 的对称点M ′,∴M ′M =2MC =6,在Rt △M ′OM 中,由勾股定理,得OM ′=OM 2+M ′M 2=82+62=10,∴PN +MN 的最小值为OM ′-3=10-3=7,故答案为:7.【点评】本题考查轴对称-最短路线问题,矩形的性质,勾股定理,能利用一条线段的长表示两线段的和的最小值是解题的关键.二.解答题小赵同学在学习完“圆”这一章内容后,感觉到一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.我们把这个过程称为“化隐圆为显圆”.①已知:如图1,OA =OB =OC ,若∠AOB =50°,求∠ACB 的度数.解:若以点O 为圆心,OA 为半径作辅助圆,∠AOB 是⊙O 的圆心角,而∠ACB 是圆周角,从而可容易得到∠ACB = °.②如图2,点P 为正方形ABCD 内一点,且∠BPC =90°,若AB =4,求AP 的最小值.解:∵BC =4,∠BPC =90°,∴点P 在以BC 为直径的圆上,设圆心为点O ,则O 、P 、A 三点共线时AP 最小,最小值为 .(2)【问题解决】①如图3,在平行四边形ABCD 中,已知AB =4,BC =6,∠ABC =60°,点P 是BC 边上一动点(点P 不与B ,C 重合),连接AP ,作点B 关于直线AP 的对称点Q ,则线段QC 的最小值为 .②如图4,△ABC 中,∠BAC =90°,AB =4,AC =3,D 为AC 上一动点,以AD 为直径的⊙O 交BD 于E ,求线段CE 的最小值.(3)【问题拓展】如图5,在平面直角坐标系中,已知两点A (2,3),B (6,7),x 轴上有一动点P ,当∠APB 最大时,直接写出点P 的坐标 .【分析】(1)①利用圆周角定理即可求得答案;②由正方形性质可得:∠ABC =90°,BC =AB =4,OB =12BC =2,由勾股定理得:AO =25,推出点P 在以BC 为直径的⊙O 上,则O 、P 、A 三点共线时AP 最小,即可求得答案;(2)①过点A 作AH ⊥BC 于H ,利用解直角三角形得AH =AB ⋅sin ∠ABC =23,BH =AB ⋅cos ∠ABC =2,CH =BC -BH =4,由勾股定理得AC =27,再由AQ =AB =4,可得点Q 在以A 为圆心AB 为半径的⊙A 上,即当C 、Q 、A 三点共线时QC 最小,QC 的最小值=AC -AQ =27-4;②连接AE ,由AD 是⊙O 的直径,可得∠AED =90°,推出∠AEB =90°,即点E 在以AB 为直径的圆上,进而可得当C 、E 、Q 三点共线时,CE 最小,运用勾股定理即可求得答案;(3)当∠APB 最大时,过A 、B 两点的⊙O ′与x 轴相切,利用待定系数法可得直线AB 的解析式为y =x +1,线段AB 的垂直平分线为y =-x +9,设O ′(m ,-m +9),根据O ′A =O ′B =O ′P ,建立方程求解即可得出答【解答】解:(1)①如图1,以点O为圆心,OA为半径作辅助圆⊙O,∵AB =AB ,∠AOB=50°,∠AOB=25°,∴∠ACB=12故答案为:25.②点P为正方形ABCD内一点,且∠BPC=90°,若AB=4,求AP的最小值.如图②,以BC为直径作⊙O,∵四边形ABCD是正方形,∴∠ABC=90°,BC=AB=4,BC=2,∴OB=12在Rt△ABO中,AO=AB2+OB2=42+22=25,∵BC=4,∠BPC=90°,∴点P在以BC为直径的⊙O上,则O、P、A三点共线时AP最小,∴AP的最小值=AO-OP=25-2,故答案为:25-2.(2)①如图3,过点A作AH⊥BC于H,∵AB=4,BC=6,∠ABC=60°,则AH=AB⋅sin∠ABC=4sin60°=23,BH=AB⋅cos∠ABC=4cos60°=2,∴CH=BC-BH=6-2=4,在Rt△ACH中,AC=AH2+CH2=(23)2+42=27,∵点B与点Q关于直线AP对称,∴AQ=AB=4,∴点Q在以A为圆心AB为半径的⊙A上,∴当C、Q、A三点共线时QC最小,QC的最小值=AC-AQ=27-4,故答案为:27-4.②如图4,连接AE,∵AD是⊙O的直径,∴∠AED=90°,∴∠AEB=180°-∠AED=90°,以AB 为直径作⊙Q ,交⊙O 于E ,当C 、E 、Q 三点共线时,CE 最小,∵△ABC 中,∠BAC =90°,AB =4,AC =3,∴QE =AQ =12AB =2,∴CQ =AC 2+AQ 2=32+22=13,∴CE =CQ -QE =13-2,故线段CE 的最小值为13-2.(3)当∠APB 最大时,过A 、B 两点的⊙O ′与x 轴相切,设直线AB 的解析式为y =kx +b ,把A (2,3),B (6,7)代入,得:2k +b =36k +b =7 ,解得:k =1b =1 ,∴直线AB 的解析式为y =x +1,∵线段AB 的中点坐标为(4,5),圆心O ′在AB 的垂直平分线上,∴线段AB 的垂直平分线为y =-x +9,设O ′(m ,-m +9),∵O ′A =O ′B =O ′P ,∴(m -2)2+(-m +9-3)2=(-m +9)2,解得:m =42-1或m =-42-1(舍去),∴点P 的坐标为(42-1,0),故答案为:42-1.【点评】本题是圆的综合题,考查了圆的有关知识,正方形的性质,平行四边形的性质,解直角三角形等知识,灵活运用这些性质解决问题是解题的关键.13.(2022秋•泗洪县期中)已知:⊙O 和⊙O 外一点P .(1)如图甲,P A 和PB 是⊙O 的两条切线,A 、B 分别为切点,求证:P A =PB .(2)尺规作图:在图乙中,过P 点画⊙O 的两条切线PE 、PF ,E 、F 为切点(要求:保留作图痕迹,不写作法).【分析】(1)如图,连接OP、OA、OB.只要证明RtΔP AO≅RtΔPBO(HL),可得P A=PB.(2)以OP为直径作⊙O′,两圆交于点E、F,直线PE、PF即为所求;【解答】解:(1)如图,连接OP、OA、OB.∵P A、PB是切线,∴P A⊥OA,PB⊥OB,∴∠P AO=∠PBO=90°,在RtΔP AO和RtΔPBO中,OP=OP,OA=OB∴RtΔP AO≅RtΔPBO,∴P A=PB.(2)以OP为直径作⊙O′,两圆交于点E、F,直线PE、PF即为所求;【点评】本题考查切线的性质、全等三角形的判定和性质,直径的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用辅助圆解决问题,属于中考常考题型.类型五、对角互补构造辅助圆14.(2021秋•越秀区校级期中)如图1,在ΔABC中,∠ACB=90°,CD平分∠ACB,且AD⊥BD于点D.(1)判断ΔABD的形状;(2)如图2,在(1)的结论下,若BQ=22,DQ=3,∠BQD=75°,求AQ的长;(3)如图3,在(1)的结论下,若将DB绕着点D顺时针旋转α(0°<α<90°)得到DP,连接BP,作DE⊥BP交AP于点F.试探究AF与DE的数量关系,并说明理由.【分析】(1)由∠ACB+∠ADB=90°+90°=180°,知点A、C、B、D上四点共圆,则∠ACD=∠ABD=45°,即可得出结论;(2)将ΔADQ绕点D顺时针旋转90°得ΔBDE,连接EQ,过点B作EQ的垂线,交EQ的延长线于H,得ΔQDE是等腰直角三角形,从而可解直角三角形BQH,在RtΔBEH中,利用勾股定理得可求出BE的长度,从而解决问题;(3)在AF上截取AM=PF,利用SAS证明ΔADM≅ΔPDF,得∠ADM=∠PDE,DM=DF,可证明ΔMDF、ΔPEF是等腰直角三角形,从而解决问题.【解答】解:(1)∵∠ACB=90°,CD平分∠ACB,∴∠ACD=45°,∵∠ACB+∠ADB=90°+90°=180°,∴点A、C、B、D上四点共圆,∴∠ACD=∠ABD=45°,∴∠BAD=∠ABD=45°,∴ΔABD是等腰直角三角形;(2)将ΔADQ绕点D顺时针旋转90°得ΔBDE,连接EQ,过点B作EQ的垂线,交EQ的延长线于H,∴DQ=DE,∠QDE=90°,AQ=BE,∴ΔQDE是等腰直角三角形,∴∠DQE=45°,∴QE=2DQ=32,∵∠BQD=75°,∴∠BQE=∠BQD+∠DQE=120°,∴∠BQH=60°,BQ=2,BH=6,∴QH=12在RtΔBEH中,由勾股定理得BE=BH2+EH2=(42)2+(6)2=38,∴AQ=BE=38;(3)AF=2DE.,理由如下:如图,在AF上截取AM=PF,∵DA=DP,∴∠DAM=∠DPF,∴ΔADM≅ΔPDF(SAS),∴∠ADM=∠PDE,DM=DF,∵BD=DP,DE⊥BP,∴∠BDE=∠PDE,∴∠ADM=∠BDE,∴ΔMDF是等腰直角三角形,∴∠MFD=45°,MF=2DF,∴∠EFP=45°,∴ΔPEF是等腰直角三角形,∴PF=2EF,∴AF=2DE.【点评】本题主要考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,等腰三角形的性质,含30°角的直角三角形的性质,勾股定理,四点共圆等知识,作辅助线构造全等三角形是解题的关键.15.(2021秋•西城区校级期中)如图,ΔABC为等边三角形,点P是线段AC上一动点(点P不与A,C重合),连接BP,过点A作直线BP的垂线段,垂足为点D,将线段AD绕点A逆时针旋转60°得到线段AE,连接DE,CE.(1)求证:BD=CE;(2)延长ED交BC于点F,求证:F为BC的中点;(3)若ΔABC的边长为1,直接写出EF的最大值.【分析】(1)利用SAS证明ΔBAD≅ΔCAE,即可得出结论;(2)过点C作CG⎳BP交DF的延长线于点G,利用等角对等边可得CG=CE,由(1)ΔBAD≅ΔCAE,得BD=CE,再利用AAS证明ΔBDF≅ΔCGF,从而解决问题;(3)由(2)知∠AFC=∠AEC=90°,则点A,F,C,E四点在以AC为直径的圆上,故EF的最大值为直径.【解答】(1)证明:∵线段AD绕点A逆时针旋转60°得到线段AE,∴ΔADE是等边三角形,∴AD=AE,∠DAE=60°,∵ΔABC是等边三角形,∴AB=AC,∠BAC=60°,∴∠BAC=∠DAE,∴∠BAD=∠CAE,在ΔBAD和ΔCAE中,AB=AC∠BAD=∠CAE AD=AE,∴ΔBAD≅ΔCAE(SAS),∴BD=CE;(2)证明:如图,过点C作CG⎳BP交DF的延长线于点G,∴∠G=∠BDF,∴∠G =30°,由(1)可知,BD =CE ,∠CEA =∠BDA ,∵AD ⊥BP ,∴∠BDA =90°,∴∠CEA =90°,∵∠AED =60°,∴∠CED =30°=∠G ,∴CE =CG ,∴BD =CG ,在ΔBDF 和ΔCGF 中,∠BDF =∠G∠BFD =∠CFG BD =CG,∴ΔBDF ≅ΔCGF (AAS ),∴BF =FC ,即F 为BC 的中点;(3)解:如图,连接AF ,∵ΔABC 是等边三角形,BF =FC ,∴AF ⊥BC ,∴∠AFC =90°,∴∠AFC =∠AEC =90°,∴点A ,F ,C ,E 四点在以AC 为直径的圆上,∴EF 的最大值为直径,即最大值为1.【点评】本题主要考查了等边三角形的性质,全等三角形的判定与性质,四点共圆等知识,作辅助线构造全等三角形是解题的关键.16.(2023秋•东城区校级期中)如图1,在Rt ΔABC 中,∠ABC =90°,BA =BC ,直线MN 是过点A 的直线CD ⊥MN 于点D ,连接BD .(1)观察猜想张老师在课堂上提出问题:线段DC ,AD ,BD 之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B 作BE ⊥BD ,交MN 于点E ,进而得出:DC +AD =BD .(2)探究证明将直线MN 绕点A 顺时针旋转到图2的位置写出此时线段DC ,AD ,BD之间的数量关系,并证明(3)拓展延伸在直线MN 绕点A 旋转的过程中,当ΔABD 面积取得最大值时,若CD 长为1,请直接写BD 的长.【分析】(1)由题意:ΔBAE≅ΔBCD,推出AE=CD,BE=BD,推出CD+AD=AD+AE=DE,ΔBDE是等腰直角三角形,推出DE=2BD,可得DC+AD=2BD;(2)结论:AD-DC=2BD.过点B作BE⊥BD,交MN于点E.AD交BC于O.只要证明ΔCDB≅ΔAEB,即可解决问题;(3)如图3中,当点D在线段AB的垂直平分线上且在AB的右侧时,ΔABD的面积最大.【解答】解:(1)如图1中,由题意:ΔBAE≅ΔBCD,∴AE=CD,BE=BD,∴CD+AD=AD+AE=DE,∵ΔBDE是等腰直角三角形,∴DE=2BD,∴DC+AD=2BD,故答案为2.(2)AD-DC=2BD.证明:如图,过点B作BE⊥BD,交MN于点E.AD交BC于O.∵∠ABC=∠DBE=90°,∴∠ABE+∠EBC=∠CBD+∠EBC,∴∠ABE=∠CBD.∵∠BAE+∠AOB=90°,∠BCD+∠COD=90°,∠AOB=∠COD,∴∠BAE=∠BCD,∴∠ABE=∠DBC.又∵AB=CB,∴ΔCDB≅ΔAEB,∴CD=AE,EB=BD,∴△BD为等腰直角三角形,DE=2BD.∵DE=AD-AE=AD-CD,∴AD-CD=2BD.(3)如图3中,易知A、B、C、D四点共圆,当点D在线段AB的垂直平分线上且在AB的右侧时,ΔABD的面积最大.。

中考数学压轴题-圆的压轴题 含解析

中考数学压轴题-圆的压轴题   含解析

圆的压轴题(1)1、如图,BF 为⊙O 的直径,直线AC 交⊙O 于A ,B 两点,点D 在⊙O 上,BD 平分∠OBC ,DE ⊥AC 于点E 。

(1)求证:直线DE 是⊙O 的切线;(2)若 BF=10,sin ∠BDE=,求DE 的长。

2、如图,AN 是M ⊙的直径,NB x ∥轴,AB 交M ⊙于点C .(1)若点()0,6A ,()0,2N ,30ABN =∠°,求点B 的坐标;(2)若D 为线段NB 的中点,求证:直线CD 是M ⊙的切线.x y C D M O B NA3、如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.4、已知△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若=,如图1,.(1)判断△ABC的形状,并证明你的结论;(2)设AE与DF相交于点M,如图2,AF=2FC=4,求AM的长.5、如图,AB是⊙O的直径,AC是上半圆的弦,过点C作⊙O的切线DE交AB的延长线于点E,过点A作切线DE的垂线,垂足为D,且与⊙O交于点F,设∠DAC,∠CEA的度数分别是α,β.(1)用含α的代数式表示β,并直接写出α的取值范围;(2)连接OF与AC交于点O′,当点O′是AC的中点时,求α,β的值.6、如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.7、如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.8、如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=2 ,求阴影部分的面积.9、如图,已知⊙O的直径CD=6,A,B为圆周上两点,且四边形OABC是平行四边形,过A点作直线EF∥BD,分别交CD,CB的延长线于点E,F,AO与BD交于G点.(1)求证:EF是⊙O的切线;(2)求AE的长.10、如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(2)求阴影部分的面积(结果保留π和根号).11、如图,MN是⊙O的直径,MN=4,点A在⊙O上,∠AMN=30°,B为的中点,P是直径MN上一动点.(1)利用尺规作图,确定当PA+PB最小时P点的位置(不写作法,但要保留作图痕迹).(2)求PA+PB的最小值.12、如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.13、如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.14、如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF ∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.15、如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.16、已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN.求证:(1)DE是⊙O的切线;(2)ME2=MD•MN.参考答案1、【解答】解:(1)如图所示,连接OD,∵OD=OB,∴∠ODB=∠OBD,∵BD平分∠OBC,∴∠OBD=∠DBE,∴∠ODB=∠DBE,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵OD是⊙O的半径,∴直线DE是⊙O的切线;(2)如图,连接DF,∵BF是⊙O的直径,∴∠FDB=90°,∴∠F+∠OBD=90°,∵∠OBD=∠DBE,∠BDE+∠DBE=90°,∴∠F=∠BDE,在Rt△BDF中,=sinF=sin∠BDE=,∴BD=10×=2,∴在Rt△BDE中,sin∠BDE==,∴BE=2×=2,∴在Rt△BDE中,DE===4。

中考压轴题--圆含答案

中考压轴题(一)--------与圆有关压轴题1.如图,在M e 中,»AB 所对的圆心角为120o ,已知圆的半径为2cm ,并建立如图所示的直角坐标系. (1)求圆心M 的坐标;(2)求经过A B C ,,三点的抛物线的解析式;(3)点D 是弦AB 所对的优弧上一动点,求四边形ACBD 的最大面积; (4)在(2)中的抛物线上是否存在一点P ,使PAB △求出点P 的坐标;若不存在,请说明理由. [解] (1)如图(1),连结MA MB ,.则120AMB ∠=o 60CMB ∴∠=o ,30OBM ∠=o .112OM MB ∴==,(01)M ∴,. (2)由A B C ,,三点的特殊性与对称性,知经过A B C ,,三点的抛物线的解析式为2y ax c =+.1OC MC MO =-=Q ,223OB MB OM =-=,(01)(30)C B ∴-,,,.113c a ∴=-=,2113y x ∴=-.(3)ABC ABD ACBD S S S =+Q △△四边形,又ABC S △与AB 均为定值,∴当ABD △边AB 上的高最大时,ABD S △最大,此时点D 为M e 与y 轴的交点,如图1.211143cm 222ABC ABD ACBD S S S AB OC AB OD AB CD ∴=+=+==△△四边形···. (4)方法1:如图2,ABC Q △为等腰三角形,303ABABC BC ∠==o ,,ABC PAB ∴△∽△等价于302336PAB PB AB PA PB ∠=====o ,,.设()P x y ,且0x >,则cos3033323x PAAO =-=-=o ·,sin303y PA ==o ·. yAM O BCyxBCAM P图2Oy xA MOBCD又(233)P Q ,的坐标满足2113y x =-,∴在抛物线2113y x =-上,存在点(233)P ,,使ABC PAB △∽△. 由抛物线的对称性,知点(233)-,也符合题意.∴存在点P ,它的坐标为(233),或(233)-,. 方法2:如图(3),当ABC PAB △∽△时,30PAB BAC ∠=∠=o ,又由(1)知30MAB ∠=o , ∴点P 在直线AM 上.设直线AM 的解析式为y kx b =+,将(30)(01)A M -,,,代入,解得31.k b ⎧=⎪⎨⎪=⎩,∴直线AM 的解析式为31y x =+. 解方程组231113y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩,得(233)P ,. 又tan 3233PBx ∠==-Q ,60PBx ∴∠=o .30P ∴∠=o ,ABC PAB ∴△∽△.∴在抛物线2113y x =-上,存在点(233)P ,,使ABC PAB △∽△. 由抛物线的对称性,知点(233)-,也符合题意.∴存在点P ,它的坐标为(233),或(233)-,. 方法3:如图3,ABC Q △为等腰三角形,且3ABBC=,设()P x y ,则 图3 ABC PAB △∽△等价于23PB AB ==,36PA AB ==.当0x >时,得2222(3)23(3) 6.x y x y ⎧-+=⎪⎨⎪++=⎩,解得(233)P ,. 又Q (233)P ,的坐标满足2113y x =-,∴在抛物线2113y x =-上,存在点(233)P ,,使ABC PAB △∽△. 由抛物线的对称性,知点(233)-,也符合题意.∴存在点P ,它的坐标为(233),或(233)-,. [点评]本题是一道综合性很强也是传统型的压轴题,涉及了函数、方程、相似、圆等大量初中数学的重点知识,解这类问题要求学生必须稳固的掌握各个领域的数学知识,须注意的是在第4小问中涉及了相似三角形的问题,很有可能会有多解的情况出现,此时就要求学生拥有较强的数形结合思想去探索结论的存在性。

中考数学圆的综合提高练习题压轴题训练含答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.2.在⊙O 中,点C是AB上的一个动点(不与点A,B重合),∠ACB=120°,点I是∠ABC的内心,CI的延长线交⊙O于点D,连结AD,BD.(1)求证:AD=BD.(2)猜想线段AB与DI的数量关系,并说明理由.(3)若⊙O的半径为2,点E,F是AB的三等分点,当点C从点E运动到点F时,求点I 随之运动形成的路径长.【答案】(1)证明见解析;(2)AB=DI,理由见解析(3)23【解析】分析:(1)根据内心的定义可得CI平分∠ACB,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出ID=BD,再根据AB=BD,即可证得结论;(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I是∠ABC的内心∴CI平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.3.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.(1)求证:CD是⊙O的切线;(2)若圆O的直径等于2,填空:①当AD=时,四边形OADC是正方形;②当AD=时,四边形OECB是菱形.【答案】(1)见解析;(2)①1;②3.【解析】试题分析:(1)依据SSS证明△OAD≌△OCD,从而得到∠OCD=∠OAD=90°;(2)①依据正方形的四条边都相等可知AD=OA;②依据菱形的性质得到OE=CE,则△EOC为等边三角形,则∠CEO=60°,依据平行线的性质可知∠DOA=60°,利用特殊锐角三角函数可求得AD的长.试题解析:解:∵AM⊥AB,∴∠OAD=90°.∵OA=OC,OD=OD,AD=DC,∴△OAD≌△OCD,∴∠OCD=∠OAD=90°.∴OC⊥CD,∴CD是⊙O的切线.(2)①∵当四边形OADC是正方形,∴AO=AD=1.故答案为:1.②∵四边形OECB是菱形,∴OE=CE.又∵OC=OE,∴OC=OE=CE.∴∠CEO=60°.∵CE∥AB,∴∠AOD=60°.在Rt△OAD中,∠AOD=60°,AO=1,∴AD=.故答案为:.点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键.4.如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D 作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.【答案】详见解析【解析】【分析】(1)连接OD,由AB为⊙O的直径,根据圆周角定理得∠ACB=90°,再由∠ACD=∠BCD=45°,则∠DAB=∠ABD=45°,所以△DAB为等腰直角三角形,所以DO⊥AB,根据切线的性质得OD⊥PD,于是可得到DP∥AB.(2)先根据勾股定理计算出AB=10,由于△DAB为等腰直角三角形,可得到AD5222===△ACE为等腰直角三角形,得到AE CE3222====,在Rt△AED中利用勾股定理计算出DE=2,则CD=2,易证得∴△PDA∽△PCD,得到PD PA AD52PC PD CD72===,所以PA=57PD,PC=75PD,然后利用PC=PA+AC可计算出PD.【详解】解:(1)证明:如图,连接OD,∵AB为⊙O的直径,∴∠ACB=90°.∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD=45°.∴∠DAB=∠ABD=45°.∴△DAB为等腰直角三角形.∴DO⊥AB.∵PD为⊙O的切线,∴OD⊥PD.∴DP∥AB.(2)在Rt△ACB中,,∵△DAB为等腰直角三角形,∴.∵AE⊥CD,∴△ACE为等腰直角三角形.∴.在Rt△AED中,,∴.∵AB∥PD,∴∠PDA=∠DAB=45°.∴∠PAD=∠PCD.又∵∠DPA=∠CPD,∴△PDA∽△PCD.∴.∴PA=75PD,PC=57PD.又∵PC=PA+AC,∴75PD+6=57PD,解得PD=.5.如图,△ABC内接于⊙O,弦AD⊥BC,垂足为H,连接OB.(1)如图1,求证:∠DAC=∠ABO;(2)如图2,在弧AC上取点F,使∠CAF=∠BAD,在弧AB取点G,使AG∥OB,若∠BAC=600,求证:GF=GD;(3)如图3,在(2)的条件下,AF、BC的延长线相交于点E,若AF:FE=1:9,求sin∠ADG的值。

(名师整理)最新数学中考专题冲刺《圆》压轴真题训练(含答案)

冲刺中考《圆》压轴真题训练1.(2019•遂宁)如图,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC =,BC=6.(1)求证:∠COD=∠BAC;(2)求⊙O的半径OC;(3)求证:CF是⊙O的切线.解:(1)∵AG是⊙O的切线,AD是⊙O的直径,∴∠GAF=90°,∵AG∥BC,∴AE⊥BC,∴CE=BE,∴∠BAC=2∠EAC,∵∠COE=2∠CAE,∴∠COD=∠BAC;(2)∵∠COD=∠BAC,1∴cos∠BAC=cos∠COE ==,∴设OE=x,OC=3x,∵BC=6,∴CE=3,∵CE⊥AD,∴OE2+CE2=OC2,∴x2+32=9x2,∴x =(负值舍去),∴OC=3x =,∴⊙O的半径OC 为(3)∵DF=2OD,∴OF=3OD=3OC,∴,∵∠COE=∠FOC,∴△COE∽△FOC,∴∠OCF=∠DEC=90°,∴CF是⊙O的切线.2.(2019•温州)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.2(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD =AB时,求⊙O的直径长.(1)证明:连接AE,∵∠BAC=90°,∴CF是⊙O的直径,∵AC=EC,∴CF⊥AE,∵AD是⊙O的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG是平行四边形;(2)解:由CD =AB,3设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB ==8=8x,∴x=1,在Rt△ACF中,AF=3,AC=6,∴CF ==3,即⊙O的直径长为3.43.(2019•杭州)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD =OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.解:(1)①连接OB、OC,则∠BOD =∠BOC=∠BAC=60°,∴∠OBC=30°,∴OD =OB =OA;②∵BC长度为定值,5∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD =,△ABC 面积的最大值=×BC×AD =×2OB sin60°×=;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣mx﹣nx =∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°﹣mx﹣nx+2mx=180°+mx﹣nx,∵OE=OD,∴∠AOD=180°﹣2x,即:180°+mx﹣nx=180°﹣2x,化简得:m﹣n+2=0.4.(2019•宁波)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.6(2)当AF:EF=3:2,AC=6时,求AE的长.(3)设=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.证明:(1)∵△ABC是等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D,∴BD=BE;(2)如图1,过点A作AG⊥BC于点G,∵△ABC是等边三角形,AC=6,∴BG =,∴在Rt△ABG中,AG =BG=3,∵BF⊥EC,∴BF∥AG,7∴,∵AF:EF=3:2,∴BE =BG=2,∴EG=BE+BG=3+2=5,在Rt△AEG中,AE =;(3)①如图1,过点E作EH⊥AD于点H,∵∠EBD=∠ABC=60°,∴在Rt△BEH 中,,∴EH =,BH =,∵,∴BG=xBE,∴AB=BC=2BG=2xBE,∴AH=AB+BH=2xBE +BE=(2x +)BE,8∴在Rt△AHE中,tan∠EAD =,∴y =;②如图2,过点O作OM⊥BC于点M,设BE=a,∵,∴CG=BG=xBE=ax,∴EC=CG+BG+BE=a+2ax,∴EM =EC =a+ax,∴BM=EM﹣BE=ax ﹣a,∵BF∥AG,∴△EBF∽△EGA,∴,∵AG =,9∴BF =,∴△OFB 的面积=,∴△AEC 的面积=,∵△AEC的面积是△OFB的面积的10倍,∴,∴2x2﹣7x+6=0,解得:,∴,5.(2019•怀化)如图,A、B、C、D、E是⊙O上的5等分点,连接AC、CE、EB、BD、DA,得到一个五角星图形和五边形MNFGH.(1)计算∠CAD的度数;(2)连接AE,证明:AE=ME;(3)求证:ME2=BM•BE.解:(1)∵A、B、C、D、E是⊙O上的5等分点,∴的度数==72°10∴∠COD=72°∵∠COD=2∠CAD∴∠CAD=36°(2)连接AE∵A、B、C、D、E是⊙O上的5等分点,∴∴∠CAD=∠DAE=∠AEB=36°∴∠CAE=72°,且∠AEB=36°∴∠AME=72°∴∠AME=∠CAE∴AE=ME(3)连接AB∵11∴∠ABE=∠DAE,且∠AEB=∠AEB∴△AEN∽△BEA∴∴AE2=BE•NE,且AE=ME∴ME2=BE•NE∵∴AE=AB,∠CAB=∠CAD=∠DAE=∠BEA=∠ABE=36°∴∠BAD=∠BNA=72°∴BA=BN,且AE=ME∴BN=ME∴BM=NE∴ME2=BE•NE=BM•BE6.(2019•湖州)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(﹣3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2:y=3x﹣3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,2为半径画圆.①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点,连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.12解:(1)如图1,连接BC,∵∠BOC=90°,∴点P在BC上,∵⊙P与直线l1相切于点B,∴∠ABC=90°,而OA=OB,∴△ABC为等腰直角三角形,则⊙P的直径长=BC=AB=3;(2)过点作CM⊥AB,13由直线l2:y=3x﹣3得:点C(1,0),则CM=AC sin45°=4×=2=圆的半径,故点M是圆与直线l1的切点,即:直线l1与⊙Q相切;(3)如图3,①当点M、N在两条直线交点的下方时,由题意得:MQ=NQ,∠MQN=90°,设点Q的坐标为(m,3m﹣3),则点N(m,m+3),则NQ=m+3﹣3m+3=2,14解得:m=3﹣;②当点M、N在两条直线交点的上方时,同理可得:m=3;故点Q的坐标为(3﹣,6﹣3)或(3+,6+3).7.(2019•天津)已知PA,PB分别与⊙O相切于点A,B,∠APB=80°,C为⊙O上一点.(Ⅰ)如图①,求∠ACB的大小;(Ⅱ)如图②,AE为⊙O的直径,AE与BC相交于点D.若AB=AD,求∠EAC的大小.解:(Ⅰ)连接OA、OB,∵PA,PB是⊙O的切线,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣80°=100°,由圆周角定理得,∠ACB =∠AOB=50°;(Ⅱ)连接CE,∵AE为⊙O的直径,∴∠ACE=90°,∵∠ACB=50°,15∴∠BCE=90°﹣50°=40°,∴∠BAE=∠BCE=40°,∵AB=AD,∴∠ABD=∠ADB=70°,∴∠EAC=∠ADB﹣∠ACB=20°.8.(2019•株洲)四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结AC、BD.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交于点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB =PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.16证明:(1)∵∠DBC=∠DAC,∠ACH=∠CBD∴∠DAC=∠ACH∴AD∥CH,且AD=CH∴四边形ADCH是平行四边形(2)①∵AB是直径∴∠ACB=90°=∠ADB,且AC=BC∴∠CAB=∠ABC=45°,∴∠CDB=∠CAB=45°∵AD∥CH∴∠ADH=∠CHD=90°,且∠CDB=45°∴∠CDB=∠DCH=45°∴CH=DH,且∠CHD=90°∴△DHC为等腰直角三角形;②∵四边形ABCD是⊙O的圆内接四边形,∴∠ADP=∠PBC,且∠P=∠P∴△ADP∽△CBP17∴,且PB =PD,∴,AD=CH,∴∵∠CDB=∠CAB=45°,∠CHD=∠ACB=90°∴△CHD∽△ACB∴∴AB =CD∵AB+CD=2(+1)∴CD+CD=2(+1)∴CD=2,且△DHC为等腰直角三角形∴CH =9.(2019•威海)(1)方法选择如图①,四边形ABCD是⊙O的内接四边形,连接AC,BD,AB=BC=AC.求证:BD=AD+CD.小颖认为可用截长法证明:在DB上截取DM=AD,连接AM…小军认为可用补短法证明:延长CD至点N,使得DN=AD…请你选择一种方法证明.(2)类比探究【探究1】如图②,四边形ABCD是⊙O的内接四边形,连接AC,BD,BC是⊙O的直径,AB=AC.试用等式表示线段AD,BD,CD之间的数量关系,并证明你的结论.18【探究2】如图③,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,∠ABC=30°,则线段AD,BD,CD 之间的等量关系式是BD=CD+2AD.(3)拓展猜想如图④,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,BC:AC:AB=a:b:c,则线段AD,BD,CD之间的等量关系式是BD=CD+AD.解:(1)方法选择:∵AB=BC=AC,∴∠ACB=∠ABC=60°,如图①,在BD上截取DM=AD,连接AM,∵∠ADB=∠ACB=60°,∴△ADM是等边三角形,∴AM=AD,∵∠ABM=∠ACD,∵∠AMB=∠ADC=120°,∴△ABM≌△ACD(AAS),∴BM=CD,∴BD=BM+DM=CD+AD;19(2)类比探究:如图②,∵BC是⊙O的直径,∴∠BAC=90°,∵AB=AC,∴∠ABC=∠ACB=45°,过A作AM⊥AD交BD于M,∵∠ADB=∠ACB=45°,∴△ADM是等腰直角三角形,∴AM=AD,∠AMD=45°,∴DM =AD,∴∠AMB=∠ADC=135°,∵∠ABM=∠ACD,∴△ABM≌△ACD(AAS),∴BM=CD,∴BD=BM+DM=CD +AD;【探究2】如图③,∵若BC是⊙O的直径,∠ABC=30°,∴∠BAC=90°,∠ACB=60°,过A作AM⊥AD交BD于M,∵∠ADB=∠ACB=60°,∴∠AMD=30°,∴MD=2AD,20∵∠ABD=∠ACD,∠AMB=∠ADC=150°,∴△ABM∽△ACD,∴=,∴BM =CD,∴BD=BM+DM =CD+2AD;故答案为:BD =CD+2AD;(3)拓展猜想:BD=BM+DM =CD +AD;理由:如图④,∵若BC是⊙O的直径,∴∠BAC=90°,过A作AM⊥AD交BD于M,∴∠MAD=90°,∴∠BAM=∠DAC,∴△ABM∽△ACD,∴=,∴BM =CD,∵∠ADB=∠ACB,∠BAC=∠MAD=90°,∴△ADM∽△ACB,∴==,∴DM =AD,21∴BD=BM+DM =CD +AD.故答案为:BD =CD +AD10.(2019•扬州)如图,AB是⊙O的弦,过点O作OC⊥OA,OC交AB于P,CP=BC.(1)求证:BC是⊙O的切线;(2)已知∠BAO=25°,点Q 是上的一点.①求∠AQB的度数;22②若OA=18,求的长.(1)证明:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵PC=CB,∴∠CPB=∠PBC,∵∠APO=∠CPB,∴∠APO=∠CBP,∵OC⊥OA,∴∠AOP=90°,∴∠OAP+∠APO=90°,∴∠CBP+∠ABO=90°,∴∠CBO=90°,∴BC是⊙O的切线;(2)解:①∵∠BAO=25°,∴∠ABO=25°,∠APO=65°,∴∠POB=∠APO﹣∠ABO=40°,23∴∠AQB =(∠AOP+∠POB )=130°=65°;②∵∠AQB=65°,∴∠AOB=130°,∴的长=的长==23π.11.(2019•鄂州)如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;(2)求证:E为△PAB的内心;(3)若cos∠PAB =,BC=1,求PO的长.(1)证明:连结OB,∵AC为⊙O的直径,∴∠ABC=90°,∵AB⊥PO,24∴PO∥BC∴∠AOP=∠C,∠POB=∠OBC,OB=OC,∴∠OBC=∠C,∴∠AOP=∠POB,在△AOP和△BOP中,,∴△AOP≌△BOP(SAS),∴∠OBP=∠OAP,∵PA为⊙O的切线,∴∠OAP=90°,∴∠OBP=90°,∴PB是⊙O的切线;(2)证明:连结AE,∵PA为⊙O的切线,∴∠PAE+∠OAE=90°,∵AD⊥ED,∴∠EAD+∠AED=90°,∵OE=OA,∴∠OAE=∠AED,25∴∠PAE=∠DAE,即EA平分∠PAD,∵PA、PB为⊙O的切线,∴PD平分∠APB∴E为△PAB的内心;(3)解:∵∠PAB+∠BAC=90°,∠C+∠BAC=90°,∴∠PAB=∠C,∴cos∠C=cos∠PAB =,在Rt△ABC中,cos∠C ===,∴AC =,AO =,∵△PAO∽△ABC,∴,∴PO ===5.12.(2019•淄博)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;26(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.解:(1)①连接OD,∵AD是∠BAC的平分线,∴∠DAB=∠DAO,∵OD=OA,∴∠DAO=∠ODA,则∠DAB=∠ODA,∴DO∥AB,而∠B=90°,∴∠ODB=90°,∴BC是⊙O的切线;②连接DE,∵BC是⊙O的切线,∴∠CDE=∠DAC,∠C=∠C,∴△CDE∽△CAD,∴CD2=CE•CA;(2)连接DE、OD、DF、OF,设圆的半径为R,27∵点F是劣弧AD的中点,∴是OF是DA中垂线,∴DF=AF,∴∠FDA=∠FAD,∵DO∥AB,∴∠ODA=∠DAF,∴∠ADO=∠DAO=∠FDA=∠FAD,∴AF=DF=OA=OD,∴△OFD、△OFA是等边三角形,则DF∥AC,故S阴影=S扇形DFO,∴∠C=30°,∴OD =OC =(OE+EC),而OE=OD,∴CE=OE=R=3,S=S扇形DFO =×π×32=.阴影13.(2019•成都)如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB 交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.28证明:(1)∵OC=OB∴∠OBC=∠OCB∵OC∥BD∴∠OCB=∠CBD∴∠OBC=∠CBD∴(2)连接AC,∵CE=1,EB=3,∴BC=4∵∴∠CAD=∠ABC,且∠ACB=∠ACB∴△ACE∽△BCA∴∴AC2=CB•CE=4×1∴AC=2,∵AB是直径29∴∠ACB=90°∴AB ==2∴⊙O 的半径为(3)如图,过点O作OH⊥FQ于点H,连接OQ,∵PC是⊙O切线,∴∠PCO=90°,且∠ACB=90°∴∠PCA=∠BCO=∠CBO,且∠CPB=∠CPA∴△APC∽△CPB∴∴PC=2PA,PC2=PA•PB∴4PA2=PA×(PA +2)∴PA =∴PO =∵PQ∥BC∴∠CBA=∠BPQ,且∠PHO=∠ACB=90°30∴△PHO∽△BCA∴即∴PH =,OH =∴HQ ==∴PQ=PH+HQ =14.(2019•江西)如图1,AB为半圆的直径,点O为圆心,AF为半圆的切线,过半圆上的点C作CD∥AB交AF于点D,连接BC.(1)连接DO,若BC∥OD,求证:CD是半圆的切线;(2)如图2,当线段CD与半圆交于点E时,连接AE,AC,判断∠AED和∠ACD的数量关系,并证明你的结论.(1)证明:连接OC,∵AF为半圆的切线,AB为半圆的直径,∴AB⊥AD,∵CD∥AB,BC∥OD,∴四边形BODC是平行四边形,31∴OB=CD,∵OA=OB,∴CD=OA,∴四边形ADCO是平行四边形,∴OC∥AD,∵CD∥BA,∴CD⊥AD,∵OC∥AD,∴OC⊥CD,∴CD是半圆的切线;(2)解:∠AED+∠ACD=90°,理由:如图2,连接BE,∵AB为半圆的直径,∴∠AEB=90°,∴∠EBA+∠BAE=90°,∵∠DAE+∠BAE=90°,∴∠ABE=∠DAE,∵∠ACE=∠ABE,∴∠ACE=∠DAE,∵∠ADE=90°,∴∠DAE+∠AED=∠AED+∠ACD=90°.3215.(2019•天门)已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,DC.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式:AB +AC=AD;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=5,BD=4,求的值.解:(1)如图①在AD上截取AE=AB,连接BE,∵∠BAC=120°,∠BAC的平分线交⊙O于点D,33∴∠DBC=∠DAC=60°,∠DCB=∠BAD=60°,∴△ABE和△BCD都是等边三角形,∴∠DBE=∠ABC,AB=BE,BC=BD,∴△BED≌△BAC(SAS),∴DE=AC,∴AD=AE+DE=AB+AC;故答案为:AB+AC=AD.(2)AB+AC =AD.理由如下:如图②,延长AB至点M,使BM=AC,连接DM,∵四边形ABDC内接于⊙O,∴∠MBD=∠ACD,∵∠BAD=∠CAD=45°,∴BD=CD,∴△MBD≌△ACD(SAS),34∴MD=AD,∠M=∠CAD=45°,∴MD⊥AD.∴AM =,即AB+BM =,∴AB+AC =;(3)如图③,延长AB至点N,使BN=AC,连接DN,∵四边形ABDC内接于⊙O,∴∠NBD=∠ACD,∵∠BAD=∠CAD,∴BD=CD,∴△NBD≌△ACD(SAS),∴ND=AD,∠N=∠CAD ,∴∠N=∠NAD=∠DBC=∠DCB,∴△NAD∽△CBD,35∴,∴,又AN=AB+BN=AB+AC,BC=5,BD=4,∴=.16.如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB =.点P为AB延长线上一点,过点A作⊙O切CP于点P,设BP=x.(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE与BC的位置关系;(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP 与劣弧长度的大小;(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围.解:(1)如图1,AP经过圆心O,∵CP与⊙O相切于P,∴∠APC=90°,∵▱ABCD,∴AD∥BC,∴∠PBC=∠DAB36∴=tan∠PBC=tan∠DAB =,设CP=4k,BP=3k,由CP2+BP2=BC2,得(4k)2+(3k)2=152,解得k1=﹣3(舍去),k2=3,∴x=BP=3×3=9,故当x=9时,圆心O落在AP上;∵AP是⊙O的直径,∴∠AEP=90°,∴PE⊥AD,∵▱ABCD,∴BC∥AD∴PE⊥BC(2)如图2,过点C作CG⊥AP于G,∵▱ABCD,∴BC∥AD,∴∠CBG=∠DAB∴=tan∠CBG=tan∠DAB =,设CG=4m,BG=3m,由勾股定理得:(4m)2+(3m)2=152,解得m=3,∴CG=4×3=12,BG=3×3=9,PG=BG﹣BP=9﹣4=5,AP=AB+BP=3+4=7,∴AG=AB+BG=3+9=12∴tan∠CAP ===1,∴∠CAP=45°;37连接OP,OQ,过点O作OH⊥AP于H,则∠POQ=2∠CAP=2×45°=90°,PH =AP =,在Rt△CPG 中,==13,∵CP是⊙O的切线,∴∠OPC=∠OHP=90°,∠OPH+∠CPG=90°,∠PCG+∠CPG=90°∴∠OPH=∠PCG∴△OPH∽△PCG∴,即PH×CP=CG×OP ,×13=12OP,∴OP =∴劣弧长度==,∵<2π<7∴弦AP 的长度>劣弧长度.(3)如图3,⊙O与线段AD只有一个公共点,即圆心O位于直线AB下方,且∠OAD≥90°,当∠OAD=90°,∠CPM=∠DAB时,此时BP取得最小值,过点C作CM⊥AB于M,∵∠DAB=∠CBP,∴∠CPM=∠CBP∴CB=CP,∵CM⊥AB∴BP=2BM=2×9=18,∴x≥183817.(2019•宜昌)已知:在矩形ABCD中,E,F分别是边AB,AD上的点,过点F作EF的垂线交DC于点H,以EF为直径作半圆O.(1)填空:点A在(填“在”或“不在”)⊙O 上;当=时,tan∠AEF的值是;(2)如图1,在△EFH中,当FE=FH时,求证:AD=AE+DH;(3)如图2,当△EFH的顶点F是边AD的中点时,求证:EH=AE+DH;(4)如图3,点M在线段FH的延长线上,若FM=FE,连接EM交DC于点N,连接FN,当AE=AD时,FN=4,HN=3,求tan∠AEF的值.39解:(1)连接AO,∵∠EAF=90°,O为EF中点,∴AO =EF,∴点A在⊙O上,当=时,∠AEF=45°,∴tan∠AEF=tan45°=1,故答案为:在,1;(2)∵EF⊥FH,∴∠EFH=90°,在矩形ABCD中,∠A=∠D=90°,∴∠AEF+∠AFE=90°,∠AFE+∠DFH=90°,∴∠AEF=∠DFH,40又FE=FH,∴△AEF≌△DFH(AAS),∴AF=DH,AE=DF,∴AD=AF+DF=AE+DH;(3)延长EF交HD的延长线于点G,∵F分别是边AD上的中点,∴AF=DF,∵∠A=∠FDG=90°,∠AFE=∠DFG,∴△AEF≌△DGF(ASA),∴AE=DG,EF=FG,∵EF⊥FH,∴EH=GH,∴GH=DH+DG=DH+AE,∴EH=AE+DH;(4)过点M作MQ⊥AD于点Q.41设AF=x,AE=a,∵FM=FEEF⊥FH,∴△EFM为等腰直角三角形,∴∠FEM=∠FMN=45°,∵FM=FE,∠A=∠MQF=90°,∠AEF=∠MFQ,∴△AEF≌△QFM(ASA),∴AE=FQ=a,AF=QM,∵AE=AD,∴AF=DQ=QM=x,∵DC∥QM,∴,∵DC∥AB∥QM,∴,∴,42∵FE=FM,∴,∠FEM=∠FMN=45°,∴△FEN~△HMN,∴,∴.43。

中考数学(圆的综合提高练习题)压轴题训练含答案

中考数学(圆的综合提高练习题)压轴题训练含答案一、圆的综合1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E.(1)如图1,求证:∠DAC=∠PAC;(2)如图2,点F(与点C位于直径AB两侧)在⊙O上,»»BF FA=,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG;(3)在(2)的条件下,如图3,若AE=23DG,PO=5,求EF的长.【答案】(1)证明见解析;(2)证明见解析;(3)EF=32.【解析】【分析】(1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可;(2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案;(3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出EH∥DG,求出OM=12AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO=12MOBM=,tanP=12COPO=,设OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】(1)证明:连接OC,∵PC为⊙O的切线,∴OC⊥PC,∵AD⊥PC,∴OC∥AD,∴∠OCA=∠DAC,∵OC=OA,∴∠PAC=∠OCA,∴∠DAC=∠PAC;(2)证明:连接BE交GF于H,连接OH,∵FG∥AD,∴∠FGD+∠D=180°,∵∠D=90°,∴∠FGD=90°,∵AB为⊙O的直径,∴∠BEA=90°,∴∠BED=90°,∴∠D=∠HGD=∠BED=90°,∴四边形HGDE是矩形,∴DE=GH,DG=HE,∠GHE=90°,∵»»BF AF=,∴∠HEF=∠FEA=12∠BEA=1902o⨯=45°,∴∠HFE=90°﹣∠HEF=45°,∴∠HEF=∠HFE,∴FH=EH,∴FG=FH+GH=DE+DG;(3)解:设OC交HE于M,连接OE、OF,∵EH=HF,OE=OF,HO=HO,∴△FHO≌△EHO,∴∠FHO=∠EHO=45°,∵四边形GHED 是矩形,∴EH ∥DG ,∴∠OMH=∠OCP=90°,∴∠HOM=90°﹣∠OHM=90°﹣45°=45°,∴∠HOM=∠OHM ,∴HM=MO ,∵OM ⊥BE ,∴BM=ME ,∴OM=12AE , 设OM=a ,则HM=a ,AE=2a ,AE=23DG ,DG=3a , ∵∠HGC=∠GCM=∠GHE=90°,∴四边形GHMC 是矩形,∴GC=HM=a ,DC=DG ﹣GC=2a ,∵DG=HE ,GC=HM ,∴ME=CD=2a ,BM=2a ,在Rt △BOM 中,tan ∠MBO=122MO a BM a ==, ∵EH ∥DP ,∴∠P=∠MBO , tanP=12CO PO =, 设OC=k ,则PC=2k ,在Rt △POC 中,,解得:在Rt △OME 中,OM 2+ME 2=OE 2,5a 2=5,a=1,∴HE=3a=3,在Rt △HFE 中,∠HEF=45°,∴.【点睛】考查了切线的性质,矩形的性质和判定,解直角三角形,勾股定理等知识点,能综合运用性质进行推理是解此题的关键.2.如图,△ABC 是⊙O 的内接三角形,点D 在BC uuu r上,点E 在弦AB 上(E 不与A 重合),且四边形BDCE 为菱形.(1)求证:AC=CE ;(2)求证:BC2﹣AC2=AB•AC;(3)已知⊙O的半径为3.①若ABAC=53,求BC的长;②当ABAC为何值时,AB•AC的值最大?【答案】(1)证明见解析;(2)证明见解析;(3)2;②3 2【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证△BEF∽△BGA得BE BGBF BA=,即BF•BG=BE•AB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(3)①设AB=5k、AC=3k,由BC2-AC2=AB•AC知6k,连接ED交BC于点M,Rt△DMC中由DC=AC=3k、MC=126k求得22CD CM-3,可知OM=OD-3,在Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=3-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=36-4d2、AC2=DC2=DM2+CM2=(3-d)2+9-d2,由(2)得AB•AC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.详解:(1)∵四边形EBDC为菱形,∴∠D=∠BEC,∵四边形ABDC是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴BE BGBF BA=,即BF•BG=BE•AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;(3)设AB=5k、AC=3k,∵BC2﹣AC2=AB•AC,∴6k,连接ED交BC于点M,∵四边形BDCE是菱形,∴DE垂直平分BC,则点E、O、M、D共线,在Rt△DMC中,DC=AC=3k,MC=126k,∴223CD CM k-=,∴OM=OD﹣DM=33k,在Rt△COM中,由OM2+MC2=OC2得(33)2+6k)2=32,解得:23k=0(舍),∴62;②设OM=d,则MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=36﹣4d2,AC2=DC2=DM2+CM2=(3﹣d)2+9﹣d2,由(2)得AB•AC=BC2﹣AC2=﹣4d 2+6d+18=﹣4(d ﹣34)2+814, ∴当d=34,即OM=34时,AB•AC 最大,最大值为814, ∴DC 2=272, ∴AC=DC=36, ∴AB=96,此时32AB AC . 点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.3.如图,以O 为圆心,4为半径的圆与x 轴交于点A ,C 在⊙O 上,∠OAC=60°. (1)求∠AOC 的度数;(2)P 为x 轴正半轴上一点,且PA=OA ,连接PC ,试判断PC 与⊙O 的位置关系,并说明理由;(3)有一动点M 从A 点出发,在⊙O 上按顺时针方向运动一周,当S △MAO =S △CAO 时,求动点M 所经过的弧长,并写出此时M 点的坐标.【答案】(1)60°;(2)见解析;(3)对应的M 点坐标分别为:M 1(2,﹣3M 2(﹣2,﹣3)、M 3(﹣2,3M 4(2,3).【解析】【分析】(1)由于∠OAC=60°,易证得△OAC 是等边三角形,即可得∠AOC=60°.(2)由(1)的结论知:OA=AC ,因此OA=AC=AP ,即OP 边上的中线等于OP 的一半,由此可证得△OCP 是直角三角形,且∠OCP=90°,由此可判断出PC 与⊙O 的位置关系. (3)此题应考虑多种情况,若△MAO 、△OAC 的面积相等,那么它们的高必相等,因此有四个符合条件的M 点,即:C 点以及C 点关于x 轴、y 轴、原点的对称点,可据此进行求解.【详解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等边三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=12OP,因此△OCP是直角三角形,且∠OCP=90°,而OC是⊙O的半径,故PC与⊙O的位置关系是相切.(3)如图;有三种情况:①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣3劣弧MA的长为:6044 1803ππ⨯=;②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣3劣弧MA的长为:12048 1803ππ⨯=;③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,3优弧MA的长为:240416 1803ππ⨯=;④当C、M重合时,C点符合M点的要求,此时M4(2,3);优弧MA的长为:300420 1803ππ⨯=;综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为481620,,,3333ππππ对应的M点坐标分别为:M1(2,﹣3M2(﹣2,﹣3)、M3(﹣2,3M4(2,3【点睛】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.4.(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC =∠BOD ,求证:AO =OB ; (2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数.【答案】(1)证明见解析;(2)25°.【解析】试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数.试题解析:(1)∵∠AOC=∠BOD∴∠AOC -∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四边形ABCD 是矩形∴∠A=∠B=90°,AD=BC∴AOD BOC ∆≅∆∴AO=OB(2)解:∵AB 是O e 的直径,PA 与O e 相切于点A ,∴PA ⊥AB ,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°,∵OB=OC ,∴∠B=∠OCB.又∵∠AOP=∠B+∠OCB , ∴1252B OCB AOP ∠=∠=∠=︒.5.在⊙O 中,点C 是AB u u u r 上的一个动点(不与点A ,B 重合),∠ACB=120°,点I 是∠ABC 的内心,CI 的延长线交⊙O 于点D ,连结AD,BD .(1)求证:AD=BD.(2)猜想线段AB与DI的数量关系,并说明理由.(3)若⊙O的半径为2,点E,F是»AB的三等分点,当点C从点E运动到点F时,求点I 随之运动形成的路径长.【答案】(1)证明见解析;(2)AB=DI,理由见解析(3)23【解析】分析:(1)根据内心的定义可得CI平分∠ACB,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出ID=BD,再根据AB=BD,即可证得结论;(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I是∠ABC的内心∴CI平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.6.如图,PA、PB是⊙O的切线,A,B为切点,∠APB=60°,连接PO并延长与⊙O交于C 点,连接AC、BC.(Ⅰ)求∠ACB的大小;(Ⅱ)若⊙O半径为1,求四边形ACBP的面积.【答案】(Ⅰ)60°;(Ⅱ)33 2【解析】分析:(Ⅰ)连接AO,根据切线的性质和切线长定理,得到OA⊥AP,OP平分∠APB,然后根据角平分线的性质和三角形的外角的性质,30°角的直角三角形的性质,得到∠ACB的度数;(Ⅱ)根据30°角的直角三角形的性质和等腰三角形的性质,结合等底同高的性质求三角形的面积即可.详解:(Ⅰ)连接OA,如图,∵PA、PB是⊙O的切线,∴OA⊥AP,OP平分∠APB,∴∠APO=12∠APB=30°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACO=12AOP=30°, 同理可得∠BCP=30°,∴∠ACB=60°; (Ⅱ)在Rt △OPA 中,∵∠APO=30°,∴AP=3OA=3,OP=2OA=2,∴OP=2OC ,而S △OPA =12×1×3, ∴S △AOC =12S △PAO =3, ∴S △ACP =33, ∴四边形ACBP 的面积=2S △ACP =33. 点睛:本题考查了切线的性质,解直角三角形,等腰三角形的判定,熟练掌握切线的性质是解题的关键.7.如图1O e ,的直径12AB P =,是弦BC 上一动点(与点B C ,不重合)30ABC o ,∠=,过点P 作PD OP ⊥交O e 于点D .()1如图2,当//PD AB 时,求PD 的长;()2如图3,当»»DC AC =时,延长AB 至点E ,使12BE AB =,连接DE . ①求证:DE 是O e 的切线;②求PC 的长.【答案】(1)262)333①见解析,②.【解析】分析:()1根据题意首先得出半径长,再利用锐角三角函数关系得出OP PD ,的长; ()2①首先得出OBD V 是等边三角形,进而得出ODE OFB 90∠∠==o ,求出答案即可;②首先求出CF 的长,进而利用直角三角形的性质得出PF 的长,进而得出答案.详解:()1如图2,连接OD ,//OP PD PD AB ⊥Q ,,90POB ∴∠=o ,O Q e 的直径12AB =,6OB OD ∴==,在Rt POB V 中,30ABC o ∠=, 3tan30623OP OB ∴=⋅=⨯=o , 在Rt POD V 中, 22226(23)26PD OD OP =-=-=;()2①证明:如图3,连接OD ,交CB 于点F ,连接BD ,»»DC AC =Q ,30DBC ABC ∴∠=∠=o ,60ABD o ∴∠=,OB OD =Q ,OBD ∴V 是等边三角形,OD FB ∴⊥,12BE AB =Q , OB BE ∴=,//BF ED ∴,90ODE OFB o ∴∠=∠=,DE ∴是O e 的切线;②由①知,OD BC ⊥,3cos306332CF FB OB ∴==⋅=⨯=o , 在Rt POD V 中,OF DF =, 13(2PF DO ∴==直角三角形斜边上的中线,等于斜边的一半), 333CP CF PF ∴=-=-.点睛:此题主要考查了圆的综合以及直角三角形的性质和锐角三角函数关系,正确得出OBD V 是等边三角形是解题关键.8.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线;(2)若AE =4,tan ∠ACD =3,求FC 的长.【答案】(1)见解析 【解析】分析:(1)利用圆周角定理以及等腰三角形的性质得出∠OCF=90°,进而得出答案; (2)根据正切的性质求出EC 的长,然后利用垂径定理求出圆的半径,再根据等边三角形的性质,利用勾股定理求出即可.详解:(1)证明:连接OC.∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠OCB +∠ACO =90°.∵OB =OC ,∴∠B =∠OCB.又∵∠FCA =∠B ,∴∠FCA =∠OCB ,∴∠FCA +∠ACO =90°,即∠FCO =90°,∴FC ⊥OC ,∴FC 是⊙O 切线.(2)解:∵AB ⊥CD ,∴∠AEC =90°,∴EC=AE 43tan ACE 33∠== 设OA =OC =r ,则OE =OA -AE =r -4.在Rt △OEC 中,OC 2=OE 2+CE 2,即r 2=(r -4)2+32,解得r =8.∴OE =r -4=4=AE.∵CE ⊥OA ,∴CA =CO =8,∴△AOC是等边三角形,∴∠FOC=60°,∴∠F=30°.在Rt△FOC中,∵∠OCF=90°,OC=8,∠F=30°,∴OF=2OC=16,∴FC=22OF OC83-=.点睛:此题主要考查了切线的判定、垂径定理的推论以及勾股定理等知识,得出BC的长是解题关键.9.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA 的延长线相交于点E,G是AD的中点,连结CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF:(2)求证:PA是⊙O的切线;(3)若FG=BF,且⊙O的半径长为32,求BD的长度.【答案】(1)证明见解析;(2) 证明见解析;(3)2【解析】分析:(1)利用平行线截三角形得相似三角形,得△BFC∽△DGC且△FEC∽△GAC,得到对应线段成比例,再结合已知条件可得BF=EF;(2)利用直角三角形斜边上的中线的性质和等边对等角,得到∠FAO=∠EBO,结合BE是圆的切线,得到PA⊥OA,从而得到PA是圆O的切线;(3)点F作FH⊥AD于点H,根据前两问的结论,利用三角形的相似性质即可以求出BD 的长度.详解:证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.∴△BFC∽△DGC,△FEC∽△GAC,∴BFDG=CFCG,EFAG=CFCG,∴BFDG=EFAG,∵G是AD的中点,∴BF=EF;(2)连接AO,AB.∵BC是圆O的直径,∴∠BAC=90°,由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB,又∵OA=OB,∴∠ABO=∠BAO,∵BE是圆O的切线,∴∠EBO=90°,∴∠FBA+∠ABO=90°,∴∠FAB+∠BAO=90°,即∠FAO=90°,∴PA⊥OA,∴PA是圆O的切线;(3)过点F作FH⊥AD于点H,∵BD⊥AD,FH⊥AD,∴FH∥BC,由(2),知∠FBA=∠BAF,∴BF=AF.∵BF=FG,∴AF=FG,∴△AFG是等腰三角形.∵FH⊥AD,∴AH=GH,∴DG =2HG . 即12HG DG =, ∵FH ∥BD ,BF ∥AD ,∠FBD =90°,∴四边形BDHF 是矩形,∴BD =FH ,∵FH ∥BC∴△HFG ∽△DCG ,∴12FH HG CD DG ==, 即12BD CD =, ∴23 2.153≈, ∵O 的半径长为32,∴BC =62,∴BD =13BC =22. 点睛:本题考查了切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质.结合已知条件准确对图形进行分析并应用相应的图形性质是解题的关键.10.已知A (2,0),B (6,0),CB ⊥x 轴于点B ,连接AC画图操作:(1)在y 正半轴上求作点P ,使得∠APB=∠ACB (尺规作图,保留作图痕迹)理解应用:(2)在(1)的条件下,①若tan ∠APB 12=,求点P 的坐标②当点P的坐标为时,∠APB最大拓展延伸:(3)若在直线y43=x+4上存在点P,使得∠APB最大,求点P的坐标【答案】(1)图形见解析(2)(0,2),(0,4)(0,23)(3)(953-,125)【解析】试题分析:(1)以AC为直径画圆交y轴于P,连接PA、PB,∠PAB即为所求;(2)①由题意AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6);②当⊙K与y轴相切时,∠APB的值最大,(3)如图3中,当经过AB的园与直线相切时,∠APB最大.想办法求出点P坐标即可解决问题;试题解析:解:(1)∠APB如图所示;(2)①如图2中,∵∠APB=∠ACB,∴tan∠ACB=tan∠APB=12=ABBC.∵A(2,0),B(6,0),∴AB=4,BC=8,∴C(6,8),∴AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6).②当⊙K与y轴相切时,∠APB的值最大,此时AK=PK=4,AC=8,∴BC22AC AB-3,∴C(6,3∴K(4,2),∴P(0,3案为:(0,23).(3)如图3中,当经过AB的园与直线相切时,∠APB最大.∵直线y=43x+4交x轴于M(﹣3,0),交y轴于N(0,4).∵MP是切线,∴MP2=MA•MB,∴MP=35,作PK⊥OA于K.∵ON∥PK,∴ONPK=OMMK=NMMP,∴4PK=3MK=535,∴PK=1255,MK=955,∴OK=955﹣3,∴P(955﹣3,1255).点睛:本题考查了一次函数综合题、直线与圆的位置关系、平行线的性质、切线的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线解决问题,学会构造辅助圆解决最大角问题,属于中考压轴题.11.解决问题:()1如图①,半径为4的Oe外有一点P,且7PO=,点A在Oe上,则PA的最大值和最小值分别是______和______.()2如图②,扇形AOB的半径为4,45AOB∠=o,P为弧AB上一点,分别在OA边找点E,在OB边上找一点F,使得PEFV周长的最小,请在图②中确定点E、F的位置并直接写出PEFV周长的最小值;拓展应用()3如图③,正方形ABCD的边长为42;E是CD上一点(不与D、C重合),CF BE⊥于F,P在BE上,且PF CF=,M、N分别是AB、AC上动点,求PMNV周长的最小值.【答案】(1)11,3;(2)图见解析,PEF V 周长最小值为3).【解析】【分析】()1根据圆外一点P 到这个圆上所有点的距离中,最远是和最近的点是过圆心和该点的直线与圆的交点,容易求出最大值与最小值分别为11和3;()2作点P 关于直线OA 的对称点1P ,作点P 关于直线OB 的对称点2P ,连接1P 、2P ,与OA 、OB 分别交于点E 、F ,点E 、F 即为所求,此时PEF V 周长最小,然后根据等腰直角三角形求解即可;()3类似()2题作对称点,PMN V 周长最小12PP =,然后由三角形相似和勾股定理求解.【详解】解:()1如图①,Q 圆外一点P 到这个圆上所有点的距离中,最大距离是和最小距离都在过圆心的直线OP 上,此直线与圆有两个交点,圆外一点与这两个交点的距离个分别最大距离和最小距离. PA ∴的最大值227411PA PO OA ==+=+=,PA 的最小值11743PA PO OA ==-=-=,故答案为11和3;()2如图②,以O 为圆心,OA 为半径,画弧AB 和弧BD ,作点P 关于直线OA 的对称点1P ,作点P 关于直线OB 的对称点2P ,连接1P 、2P ,与OA 、OB 分别交于点E 、F ,点E 、F 即为所求.连接1OP 、2OP 、OP 、PE 、PF ,由对称知识可知,1AOP AOP ∠∠=,2BOP BOP ∠∠=,1PE PE =,2PF P F = ∴1245AOP BOP AOP BOP AOB ∠∠∠∠∠+=+==o ,12454590POP o o o ∠=+=,12POP ∴V 为等腰直角三角形,121PP ∴==PEF V 周长1212PE PF EF PE P F EF PP =++=++=,此时PEF V 周长最小.故答案为;()3作点P 关于直线AB 的对称1P ,连接1AP 、1BP ,作点P 关于直线AC 的对称2P , 连接1P 、2P ,与AB 、AC 分别交于点M 、N .如图③由对称知识可知,1PM PM =,2PN P N =,PMN V 周长1212PM PN MN PM P N MN PP =++=++=,此时,PMN V 周长最小12PP =.由对称性可知,1BAP BAP ∠∠=,2EAP EAP ∠∠=,12APAP AP ==, ∴1245BAP EAP BAP EAP BAC o ∠∠∠∠∠+=+==12454590P AP ∠=+=o o o ,12P AP V ∴为等腰直角三角形,PMN ∴V 周长最小值122PP AP =,当AP 最短时,周长最小. 连接DF . CF BE Q ⊥,且PF CF =, 45PCF ∠∴=o ,2PC CF= 45ACD ∠=o Q ,PCF ACD ∠∠∴=,PCA FCD ∠∠=,又2AC CD=, ∴在APC V 与DFC V 中,AC PC CD CF=,PCA FCD ∠∠= C AP ∴V ∽DFC V ,2AP AC DF CD∴==, ∴2AP DF =90BFC ∠=o Q ,取AB 中点O .∴点F 在以BC 为直径的圆上运动,当D 、F 、O 三点在同一直线上时,DF 最短. 2222(22)(42)2221022DF DO FO OC CD OC =-=+-=+-=-, AP ∴最小值为2AP DF =∴此时,PMN V 周长最小值()12222222102241042PP AP DF ==⋅=⋅-=-.【点睛】本题考查圆以及正方形的性质,运用圆的对称性和正方形的对称性是解答本题的关键.12.在O e 中,AB 为直径,C 为O e 上一点.(Ⅰ)如图①,过点C 作O e 的切线,与AB 的延长线相交于点P ,若28CAB ∠=︒,求P ∠的大小;(Ⅱ)如图②,D 为弧AC 的中点,连接OD 交AC 于点E ,连接DC 并延长,与AB 的延长线相交于点P ,若12CAB ∠=︒,求P ∠的大小.【答案】(1)∠P =34°;(2)∠P =27°【解析】【分析】(1)首先连接OC ,由OA=OC ,即可求得∠A 的度数,然后由圆周角定理,求得∠POC 的度数,继而求得答案;(2)因为D 为弧AC 的中点,OD 为半径,所以OD ⊥AC ,继而求得答案.【详解】(1)连接OC ,∵OA =OC ,∴∠A =∠OCA =28°,∴∠POC =56°,∵CP 是⊙O 的切线,∴∠OCP =90°,∴∠P =34°;(2)∵D 为弧AC 的中点,OD 为半径,∴OD ⊥AC ,∵∠CAB =12°,∴∠AOE =78°,∴∠DCA =39°,∵∠P =∠DCA ﹣∠CAB ,∴∠P =27°.【点睛】本题考查切线的性质以及等腰三角形的性质.注意准确作出辅助线是解此题的关键.13.如图1,等腰直角△ABC 中,∠ACB=90°,AC=BC ,过点A ,C 的圆交AB 于点D ,交BC 于点E ,连结DE(1)若AD=7,BD=1,分别求DE ,CE 的长(2)如图2,连结CD ,若CE=3,△ACD 的面积为10,求tan ∠BCD(3)如图3,在圆上取点P 使得∠PCD=∠BCD (点P 与点E 不重合),连结PD ,且点D 是△CPF 的内心①请你画出△CPF ,说明画图过程并求∠CDF 的度数②设PC=a ,PF=b ,PD=c ,若(a-2c )(b-2c )=8,求△CPF 的内切圆半径长.【答案】(1)DE=1,CE=322)tan ∠BCD=14;(3)①135°;②2. 【解析】【分析】 (1)由A 、C 、E 、D 四点共圆对角互补为突破口求解;(2)找∠BDF 与∠ODA 为对顶角,在⊙O 中,∠COD=2∠CAD ,证明△OCD 为等腰直角三角形,从而得到∠EDC+∠ODA=45°,即可证明∠CDF=135°;(3)过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D e 切线PF 交CB 的延长线于点F ,结合圆周角定理得出∠CPD=∠CAD=45°,再根据圆的内心是三角形三个内角角平分线的交点,得出∠CPF=90°,然后根据角平分线性质得出114522DCF CFD PCF PFC ∠+∠=∠+∠=︒,最后再根据三角形内角和定理即可求解;证明∠DCF+∠CFD=45°,从而证明∠CPF 是直角,再求证四边形PKDN 是正方形,最后以△PCF面积不变性建立等量关系,结合已知(a-2c)(b-2c)=8,消去字母a,b求出c值,即求出△CPF的内切圆半径长为22c.【详解】(1)由图可知:设BC=x.在Rt△ABC中,AC=BC.由勾股定理得:AC2+BC2=AB2,∵AB=AD+BD,AD=7,BD=1,∴x2+x2=82,解得:x=42.∵⊙O内接四边形,∠ACD=90°,∴∠ADE=90°,∴∠EDB=90°,∵∠B=45°,∴△BDE是等腰直角三形.∴DE=DB,又∵DB=1,∴DE=1,又∵CE=BC-BE,∴CE=42232-=.(2)如图所示:在△DCB中过点D作DM⊥BE,设BE=y,则DM=12 y,又∵CE=3,∴BC=3+y,∵S△ACB=S ACD+S DCB,∴()1114242103y y 222⨯⨯=+⨯+⨯, 解得:y=2或y=-11(舍去).∴EM=1,CM=CE+ME=1+3=4,又∵∠BCD=∠MCD ,∴tan ∠BCD=tan ∠MCD , 在Rt △DCM 中,tan ∠MCD=DM CM =14, ∴tan ∠BCD=14. (3)①如下图所示:过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D e 切线PF 交CB 的延长线于点F .∵∠CAD=45°,∴∠CPD=∠CAD=45°,又∵点D 是CPF ∆的内心,∴PD 、CD 、DF 都是角平分线,∴∠FPD=∠CPD =45°,∠PCD=∠DCF ,∠PFD=∠CFD∴∠CPF=90°∴∠PCF+∠PFC=90°∴114522DCF CFD PCF PFC ∠+∠=∠+∠=︒ ∴∠CDF=180°-∠DCF-∠CFD F=90°+45°=135°,即∠CDF 的度数为135°.②如下图所示过点D 分别作DK ⊥PC ,DM ⊥CF ,DN ⊥PF 于直线PC ,CF 和PF 于点K ,M ,N 三点, 设△PCF 内切圆的半径为m ,则DN=m ,∵点D 是△PCF 的内心,∴DM=DN=DK ,又∵∠DCF+∠CFD+∠FDC=180°,∠FDC=45°,∴∠DCF+∠CFD=45°,又∵DC ,DF 分别是∠PCF 和∠PFC 的角平分线,∴∠PCF=2∠DCF ,∠PFC=2∠DFC ,∴∠PCF+∠PFC=90°,∴∠CPF=90°.在四边形PKDN 中,∠PND=∠NPK=∠PKD=90°,∴四边形PKDN 是矩形,又∵KD=ND ,∴四边形PKDN 是正方形.又∵∠MBD=∠BDM=45°,∠BDM=∠KDP ,∴∠KDP=45°.∵PC=a ,PF=b ,PD=c ,∴2, ∴NF=2b -,CK=2a -, 又∵CK=CM ,FM=FN ,CF=CM+FM ,∴CF=a b 2c +,又∵S △PCF =S △PDF +S △PDC +S △DCF , ∴112121ab a c b c (a b 2222222=⨯+⨯++-)×2c 2, 化简得:)22a b c c +-------(Ⅰ),又∵若(2c )(2c )=8 化简得:()2ab 2c a b 2c 8++=------(Ⅱ), 将(Ⅰ)代入(Ⅱ)得:c 2=8,解得:c 22=,或c 22=-(舍去),∴m=22c 22222=⨯=, 即△CPF 的内切圆半径长为2.【点睛】本题考查圆的内接四边形性质,圆的内心,圆心角、圆周角,同弧(或等弧)之间的相互关系,同时也考查直角三角形,勾股定理,同角或等角的三角函数值相等和三角形的面积公式,正方形,对顶角和整式的运算等知识点;难点是作辅助线和利用等式求△CPF 的内切圆半径长.14.已知四边形ABCD 是⊙O 的内接四边形,∠DAB =120°,BC =CD ,AD =4,AC =7,求AB 的长度.【答案】AB =3.【解析】【分析】作DE ⊥AC ,BF ⊥AC ,根据弦、弧、圆周角、圆心角的关系,求得BC CD =u u u r u u u r,进而得到∠DAC =∠CAB =60°,在Rt △ADE 中,根据60°锐角三角函数值,可求得DE =23,AE =2,再由Rt △DEC 中,根据勾股定理求出DC 的长,在△BFC 和△ABF 中,利用60°角的锐角三角函数值及勾股定理求出AF 的长,然后根据求出的两个结果,由AB =2AF ,分类讨论求出AB 的长即可.【详解】作DE ⊥AC ,BF ⊥AC ,∵BC =CD , ∴BC CD =u u u r u u u r ,∴∠CAB =∠DAC ,∵∠DAB =120°,∴∠DAC =∠CAB =60°,∵DE ⊥AC ,∴∠DEA =∠DEC =90°,∴sin60°=4DE ,cos60°=4AE , ∴DE =AE =2,∵AC =7,∴CE =5,∴DC= ∴BC ,∵BF ⊥AC ,∴∠BFA =∠BFC =90°,∴tan60°=BF AF,BF 2+CF 2=BC 2, ∴BF,∴()2227AF +-=, ∴AF =2或AF =32, ∵cos60°=AF AB, ∴AB =2AF ,当AF =2时,AB =2AF =4,∴AB =AD ,∵DC =BC ,AC =AC ,∴△ADC ≌△ABC (SSS ),∴∠ADC =∠ABC ,∵ABCD 是圆内接四边形,∴∠ADC+∠ABC =180°,∴∠ADC =∠ABC =90°,但AC 2=49,2222453AD DC +=+=,AC 2≠AD 2+DC 2,∴AB =4(不合题意,舍去), 当AF =32时,AB =2AF =3, ∴AB =3.【点睛】此题主要考查了圆的相关性质和直角三角形的性质,解题关键是构造直角三角形模型,利用直角三角形的性质解题.15.如图,AB是⊙O的直径,∠ACB的平分线交AB于点D,交⊙O于点E,过点C作⊙O 的切线CP交BA的延长线于点P,连接AE.(1)求证:PC=PD;(2)若AC=5cm,BC=12cm,求线段AE,CE的长.【答案】(1)见解析 (2) EC=1722AE=1322【解析】试题分析:(1)如图1中,连接OC、OE.利用等角的余角相等,证明∠PCD=∠PDC即可;(2)如图2中.作EH⊥BC于H,EF⊥CA于F.首先证明Rt△AEF≌Rt△BEH,推出AF=BH,设AF=BH=x,再证明四边形CFEH是正方形,推出CF=CH,可得5+x=12﹣x,推出x=72,延长即可解决问题;试题解析:(1)证明:如图1中,连接OC、OE.∵AB直径,∴∠ACB=90°,∴CE平分∠ACB,∴∠ECA=∠ECB=45°,∴¶AE=¶BE,∴OE⊥AB,∴∠DOE=90°.∵PC是切线,∴OC⊥PC,∴∠PCO=90°.∵OC=OE,∴∠OCE=∠OEC.∵∠PCD+∠OCE=90°,∠ODE+∠OEC=90°,∠PDC=∠ODE,∴∠PCD=∠PDC,∴PC=PD.(2)如图2中.作EH⊥BC于H,EF⊥CA于F.∵CE 平分∠ACB ,EH ⊥BC 于H ,EF ⊥CA 于F ,∴EH =EF ,∠EFA =∠EHB =90°.∵¶AE =¶BE,∴AE =BE ,∴Rt △AEF ≌Rt △BEH ,∴AF =BH ,设AF =BH =x .∵∠F =∠FCH =∠CHE =90°,∴四边形CFEH 是矩形.∵EH =EF ,∴四边形CFEH 是正方形,∴CF =CH ,∴5+x =12﹣x ,∴x =72,∴CF =FE =172,∴EC 2CF 172,AE 22EF AF +2217722()()+132 点睛:本题考查了切线的性质、圆周角定理、勾股定理、垂径定理、正方形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都中考圆压轴题训练一.选择题(共15小题)1.如图1,⊙O的直径为AB,过半径OA的中点G作弦CE⊥AB,在上取一点D,分别作直线CD,ED,交直线AB于点F、M.(1)求∠COA和∠FDM的度数;(2)求证:△FDM∽△COM;(3)如图2,若将垂足G改取为半径OB上任意一点,点D改取在上,仍作直线CD、ED,分别交直线AB于点F、M.试判断:此时是否仍有△FDM∽△COM?证明你的结论.2.已知:如图,BC为半圆的直径,O为圆心,D是弧AC的中点,四边形ABCD 的对角线AC、BD交于点E.(1)求证:△ABE∽△DBC;(2)已知BC=,CD=,求sin∠AEB的值;(3)在(2)的条件下,求弦AB的长.3.如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x ,△DOE 的面积为y ,求y 关于x 的函数关系式,并写出它的定义域.4.如图,⊙M 交x 轴于B 、C 两点,交y 轴于A ,点M 的纵坐标为2.B (﹣3,O ),C (,O ). (1)求⊙M 的半径;(2)若CE ⊥AB 于H ,交y 轴于F ,求证:EH=FH .(3)在(2)的条件下求AF 的长.5.已知:如图,△ABC 内接于⊙O ,BC 为直径,AD ⊥BC 于点D ,点E 为DA 延长线上一点,连接BE ,交⊙O 于点F ,连接CF ,交AB 、AD 于M 、N 两点.(1)若线段AM 、AN 的长是关于x 的一元二次方程x 2﹣2mx +n 2﹣mn +m 2=0的两个实数根,求证:AM=AN ;(2)若AN=,DN=,求DE 的长;(3)若在(1)的条件下,S △AMN :S △ABE =9:64,且线段BF 与EF 的长是关于y 的一元二次方程5y 2﹣16ky +10k 2+5=0的两个实数根,求直径BC 的长.6.如图,以⊙O两条互相垂直的直径所在直线为轴建立平面直角坐标系,两坐标轴交⊙O于A,B,C,D四点,点P在弧CD上,连PA交y轴于点E,连CP 并延长交y轴于点F.(1)求∠FPE的度数;(2)求证:OB2=OE•OF;(3)若⊙O的半径为,以线段OE,OF的长为根的一元二次方程为x2﹣x+m=0,求直线CF的解析式;(4)在(3)的条件下,过点P作⊙O的切线PM与x轴交于点M,求△PCM的面积.7.如图,AB为⊙O直径,且弦CD⊥AB于,过点的切线与AD的延长线交于点.(1)若M是AD的中点,连接ME并延长ME交BC于N.求证:MN⊥BC.(2)若cos∠C=,DF=3,求⊙O的半径.(3)猜测线段AE、BE、CN、CB之间有怎样的数量关系?证明你的猜想.8.已知:AB是⊙O的直径,DA、DC分别是⊙O的切线,点A、C是切点,连接DO交弧AC于点E,连接AE、CE.(1)如图1,求证:EA=EC;(2)如图2,延长DO交⊙O于点F,连接CF、BE交于点G,求证:∠CGE=2∠F;(3)如图3,在(2)的条件下,DE=AD,EF=2,求线段CG的长.9.已知:如图,△ABC内接于⊙O,直径CD⊥AB,垂足为E,弦BF交CD于点M,交AC于点N,且BF=AC,连结AD.(1)求证:AD•BE=DE•BC;(2)请判断线段BM、MN、MF之间有怎样的等量关系,并给予证明;(3)当∠ACB=30°,⊙O半径为4时,求的值.10.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D 是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;(2)若CF=3,cosA=,求出⊙O的半径和BE的长;(3)连接CG,在(2)的条件下,求的值.11.如图,在⊙S中,AB是直径,AC、BC是弦,D是⊙S外一点,且DC与⊙S 相切于点C,连接DS,DB,其中DS交BC于E,交⊙S于F,F为弧BC的中点.(1)求证:DB=DC;(2)若AB=10,AC=6,P是线段DS上的动点,设DP长为x,四边形ACDP面积为y.①求y与x的函数关系式;②求△PAC周长的最小值,并确定这时x的值.12.如图,AB是⊙0的直径,AC切⊙0于点A,AD是⊙0的弦,OC⊥AD于F交⊙0于E,连接DE,BE,BD.AE.(1)求证:∠C=∠BED;(2)如果AB=10,tan∠BAD=,求AC的长;(3)如果DE∥AB,AB=10,求四边形AEDB的面积.13.如图,在锐角△ABC中,AC是最短边;以AC中点O为圆心,AC长为半径作⊙O,交BC于E,过O作OD∥BC交⊙O于D,连接AE、AD、DC.(1)求证:D是的中点;(2)求证:∠DAO=∠B+∠BAD;(3)若,且AC=4,求CF的长.14.己知:如图.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)若⊙O的半径为5,AF=,求tan∠ABF的值.15.在△ABC中,∠ABC=90°,AB=4,BC=3,O是边AC上的一个动点,以点O 为圆心作半圆,与边AB相切于点D,交线段OC于点E,作EP⊥ED,交射线AB 于点P,交射线CB于点F.(1)如图,求证:△ADE∽△AEP;(2)设OA=x,AP=y,求y关于x的函数解析式,并写出它的定义域;(3)当BF=1时,求线段AP的长.二.解答题(共15小题)16.如图1,在平面直角坐标系xOy中,点M在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C、D两点,且C为的中点,AE交y轴于G点,若点A的坐标为(﹣2,0),AE=8.(1)求点C的坐标;(2)连接MG、BC,求证:MG∥BC;(3)如图2,过点D作⊙M的切线,交x轴于点P.动点F在⊙M的圆周上运动时,的比值是否发生变化?若不变,求出比值;若变化,说明变化规律.17.如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC于点D,且ED⊥AC.(1)试判断△ABC的形状,并说明理由;(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O 的半径和BF的长.18.如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB 分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.19.如图所示,P是⊙O外一点,PA是⊙O的切线,A是切点,B是⊙O 上一点,且PA=PB,连接AO、BO、AB,并延长BO与切线PA相交于点Q.(1)求证:PB是⊙O的切线;(2)求证:AQ•PQ=OQ•BQ;(3)设∠AOQ=α,若,OQ=15,求AB的长.20.如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.(1)求证:AE•FD=AF•EC;(2)求证:FC=FB;(3)若FB=FE=2,求⊙O的半径r的长.21.如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO 的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=,求cos∠ACB的值和线段PE的长.22.已知:如图,在半径为4的⊙O中,AB,CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=.(1)求证:AM•MB=EM•MC;(2)求sin∠EOB的值;(3)若P是直径AB延长线上的点,且BP=12,求证:直线PE是⊙O的切线.23.如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线.(2)求证:AF=CF.(3)若∠EAB=30°,CF=2,求GA的长.24.如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F,连接AF,AF的延长线交DE于点P.(1)求证:DE是⊙O的切线;(2)求tan∠ABE的值;(3)若OA=2,求线段AP的长.25.如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)试猜想线段AE,EF,BF之间有何数量关系,并加以证明;(3)若AC=6,BC=8,求线段PD的长.26.如图,已知AB是⊙O直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C作⊙O的切线与ED的延长线交于点P.(1)求证:PC=PG;(2)点C在劣弧AD上运动时,其他条件不变,若点G是BC的中点,试探究CG、BF、BO三者之间的数量关系,并写出证明过程;(3)在满足(2)的条件下,已知⊙O的半径为5,若点O到BC的距离为时,求弦ED的长.27.如图,AB,AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O 的切线AP,AP与OD的延长线交于点P.连接PC并延长与AB的延长线交于点F.(1)求证:PC是半⊙O的切线;(2)若∠CAB=30°,AB=10,求线段BF的长.28.如图1,AB为⊙O的直径,直线CD切⊙O于点C,AD⊥CD于点D,交⊙O 于点E.(1)求证:AC平分∠DAB;(2)若4AB=5AD,求证:AE=3DE;(3)如图2,在(2)的条件下,CF交⊙O于点F,若AB=10,∠ACF=45°,求CF的长.29.已知四边形ABCD内接于⊙O,∠ADC=90°,∠DCB<90°,对角线AC平分∠DCB,延长DA,CB相交于点E.(1)如图1,EB=AD,求证:△ABE是等腰直角三角形;(2)如图2,连接OE,过点E作直线EF,使得∠OEF=30°,当∠ACE≥30°时,判断直线EF与⊙O的位置关系,并说明理由.30.如图,AB为⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.(1)求证:∠PCA=∠ABC;(2)过点A作AE∥PC,交⊙O于点E,交CD于点F,连接BE.若sin∠P=,CF=5,求BE的长.成都中考圆压轴题训练参考答案一.选择题(共15小题)1.;2.;3.;4.;5.;6.;7.;8.;9.;10.;11.;12.;13.;14.;15.;二.解答题(共15小题)16.;17.;18.;19.;20.;21.;22.;23.;24.;25.;26.;27.;28.;29.;30.;---精心整理,希望对您有所帮助。

相关文档
最新文档