2012高三数学一轮复习单元练习题:函数(Ⅰ)

合集下载

【新人教】2012年高考数学总复习《函数》

【新人教】2012年高考数学总复习《函数》

函数测试卷一、选择题(共50分):1.已知函数y f x =+()1的图象过点(3,2),则函数f x ()的图象关于x 轴的对称图形一定过点A. (2,-2)B. (2,2)C. (-4,2)D. (4,-2)2.如果奇函数()f x 在区间[](),0a b b a >>上是增函数,且最小值为m ,那么()f x 在区间[],b a --上是A.增函数且最小值为mB.增函数且最大值为m -C.减函数且最小值为mD.减函数且最大值为m -3. 与函数()lg 210.1x y -=的图象相同的函数解读式是A .121()2y x x =->B .121y x =-C .11()212y x x =>- D .121y x =- 4.对一切实数x ,不等式1||2++x a x ≥0恒成立,则实数a 的取值范围是A .-∞(,-2]B .[-2,2]C .[-2,)+∞D .[0,)+∞5.已知函数)12(+=x f y 是定义在R 上的奇函数,函数)(x g y =的图象与函数)(x f y =的图象关于直线x y =对称,则)()(x g x g -+的值为 A .2 B .0 C .1 D .不能确定6.把函数)(x f y =的图像沿x 轴向右平移2个单位,所得的图像为C ,C 关于x 轴对称的图像为xy 2=的图像,则)(x f y =的函数表达式为A. 22+=x y B. 22+-=x yC. 22--=x y D. )2(log 2+-=x y7.当01a b <<<时,下列不等式中正确的是A.b ba a )1()1(1->- B.(1)(1)ab a b +>+C.2)1()1(b b a a ->- D.(1)(1)a ba b ->-8.当[]2,0∈x 时,函数3)1(4)(2--+=x a ax x f 在2=x 时取得最大值,则a 的取值范围是A.1[,)2-+∞B.[)+∞,0C.[)+∞,1D.2[,)3+∞ 9.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是 A.(0,1) B.1(0,)3C.1[,1)7D.11[,)7310.某种电热水器的水箱盛满水是200升,加热到一定温度,即可用来洗浴。

【新人教】2012年高考数学总复习专题训练函数训练

【新人教】2012年高考数学总复习专题训练函数训练

2012年高考数学总复习函数一、填空题:(每题4分,共44分)1.函数y=lg(x -1)的定义域为. 2. 函数y =cos (2x +4π)的最小正周期是 3.等比数列{a n }中,2,211-==q a ,则a 3= 4.直线3x -y +1=0的倾斜角为 5.椭圆22x +y 2=1的长轴长为6.已知向量a =(1,2), b =(-2,1),则a 与b 的夹角的大小为 7.若a >0,b >0,ab =4,则a+b 的最小值为. 8.511213x y i i i+=---,x 、y ∈R,则x y +=. 9.设函数f (x )=x 2+x ,若f (a )<0,则f (a +1)与0的大小关系是f (a +1)0(填“>”或“<”) 10.()f x 表示6x -+和2246x x -++中较小者,则函数()f x 的最大值是 11.已知函数()sin(ω+)f x x =ϕ(πω0,||2>ϕ<),给出下列四个论断: ①()f x 的图象关于直线π12x =对称。

②()f x 的图象关于点π(,0)3对称。

③()f x 的周期为π。

④()f x 在π[,0]6-上是增函数,试以其中两个为条件,另两个为结论,写出一个你认为正确的命题(填序号即可).二、选择题:(每题4分,共16分)12.已知a 、b 是两条不同的直线,α是平面,且a ⊥α,设命题p :b //α;命题q :a ⊥b ,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件题号1-1112-15161718192021总分得分13.过原点的直线与圆x 2+y 2-4x +3=0相切,若切点在第四象限,则该直线的方程是 ( ) A .y =3xB .y =33x C .y =-3x D .y =-33x 14.在△ABC 中,若a =2b cosC ,则△ABC 的形状是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等腰或直角三角形15.设函数()y f x =是定义在R 上奇函数,且满足(2)()f x f x -=-对一切x R ∈都成立,又当[]1,1x ∈-时3()f x x =则下列四个命题:①函数()y f x =是以4为周期的周期函数②当[]1,3x ∈时3()(2)f x x =-③函数()y f x =图像的对称轴中有x=1④当[]3,5x ∈时3()(2)f x x =-其中正确的命题个数为 ( )A 1B 2C 3D 4 三、解答题:(满分90分)16.(12分)如图,在直三棱柱ABC —A 1B 1C 1 中,AB =AC =1,AA 1 =2,AB ⊥AC .求异面直线BC 1与AC 所成角的度数. .17.(14分)已知等差数列{}n a 中,21531=++a a a ,94=a ,求:(1)首项1a 和公差d ; (2)该数列的前8项的和8S 的值.(第16题)A 1A BB 1CC 118.(14分)已知函数()sin(θ)cos(θ)f x x x =++-的定义域为R. (1)当πθ=2时,求()f x 的单调增区间。

2012年高考第一轮复习集合与函数综合测试卷两套

2012年高考第一轮复习集合与函数综合测试卷两套

2012年高考第一轮复习集合与函数综合测试卷(一) 一.选择题1.设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是 ( )A .1B .3C .4D .82.函数f(x)=lg 1-x 2的定义域为( )A .[0,1]B .(-1,1)C .[-1,1]D .(-∞,-1)∪(1,+∞) 3.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为y = x 2,值域为{1,4}的“同族函数”共有( ) A .7个 B .8个 C .9个 D .10个 4.函数x xx y +=的图象是( )AB CD5.定义在R 上的偶函数f (x )在(-∞,0]上是增函数,若x 1>x 2且x 1 + x 2>0,则( ) A .f (x 1 )>f (x 2 ) B .f (x 1 )<f (-x 2 )C .f (-x 1 )>f (x 2 )D .f (x 1 )和f (x 2)大小与x 1、x 2取值有关 6. 函数(2)1y f x =--是奇函数,则函数()y f x =的图象关于 ( ) A .直线 x=-2对称 B .直线 x=2对称 C .点(2,-1)对称 D .点(-2,1)对称 7.已知x 0是函数f(x)=2x+11x-的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则( ) A.f(x 1)<0,f(x 2)<0 B.f(x 1)<0,f(x 2)>0 C.f(x 1)>0,f(x 2)<0 D.f(x 1)>0,f(x 2)>08.设函数)(x f 是R 上以2为周期的奇函数,已知当,11log )(),1,0(2xx f x -=∈则函数)(x f 在(1,2)上是 ( )A .增函数,且0)(<x fB .增函数,且0)(>x fC .减函数,且0)(<x fD .减函数,且0)(>x f二.填空题9.已知集合M ={x|x <3},N ={x|log 2x >1},则M ∩N = 10.函数)13lg(13)(2++-=x xx x f 的定义域是11.已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x ∈(-1,1)恒有()0<x f ,成立,若f(-2a 2+2)+f(a 2+2a +1)<0,则实数a 的取值范围是 .12.已知函数f(x)=|x|+|2-x|,若函数g(x)=f(x)-a 的零点个数不为0,则a 的最小值为 13.已知最小正周期为2的函数y =f(x),当x∈[-1,1]时,f(x)=x 2,则函数y =f(x)(x∈R)的图象与y =|log 5x|的图象的交点个数为________.14. 已知函数f(x)满足:f (p+q)= f (p) f (q) , f (1)=3, 则)7()8()4()5()6()3()3()4()2()1()2()1(2222f f f f f f f f f f f f +++++++= 15.关于函数),0(||1lg )(2R x x x x x f ∈≠+=有下列命题:①函数)(x f y =的图象关于y 轴对称;②在区间)0,(-∞上,函数)(x f y =是减函数; ③函数)(x f 的最小值为2lg ;④在区间),1(∞上,函数)(x f 是增函数. 其中正确命题序号为_______________.三.解答题16. 已知集合2{320}A x x x =-+=,集合2{10}B x x ax a =-+-=,若A B A ⋃=,求实数a 的值.17.设函数54)(2--=x x x f .(1)在区间]6,2[-上画出函数)(x f 的图像; (2)设集合{}),6[]4,0[]2,(,5)(∞+-∞-=≥= B x f x A . 试判断集合A 和B 之间的关系,并给出证明;(3)当2>k 时,求证:在区间]5,1[-上,3y kx k =+的图像位于函数)(x f 图像的 上方.18. 设函数f x x a ax ()||=--,其中01<<a 为常数。

高三第一轮复习训练题数学(二)(函数1)(教学借鉴)

高三第一轮复习训练题数学(二)(函数1)(教学借鉴)

2009-2010学年度高三第一轮复习精品训练题数学(二)(函数1)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合}21|{≤≤=x x A ,}41|{≤≤=y y B ,则下述对应法则f 中,不能构成A 到B 的映射的是A.2:x y x f =→ B.23:-=→x y x f C.4:+-=→x y x f D.24:x y x f -=→2.若函数)23(x f -的定义域为[-1,2],则函数)(x f 的定义域是A .]1,25[--B .[-1,2]C .[-1,5]D .]2,21[3,已知函数⎩⎨⎧<+≥-=10)]5([103)(n n f f n n n f ,其中*∈N n ,则)8(f 的值为A 8B 7C 6D 44.已知函数12||4)(-+=x x f 的定义域是[]b a ,(,)a b ∈Z ,值域是[]1,0,那么满足条件的整数数对),(b a 共有 (A )2个 (B )3个 (C ) 5个 (D )无数个5.设()⎩⎨⎧<≥=1,1,2x x x x x f ,()x g 是二次函数,若()[]x g f 的值域是[)+∞,0,则()x g 的值域是A.(][)+∞-∞-,11,B.(][)+∞-∞-,01,C. [)+∞,1D. [)+∞,06.已知函数)(1x fy -=的图象过点)0,1(,则)121(-=x f y 的反函数的图象一定过点A .)2,1(B .)1,2(C .)2,0(D .)0,2(78普通教学2A B (C ) (D )9.函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是A.4B.3C.2D.1 10.图中的图象所表示的函数的解析式为A .|1|23-=x y (0≤x ≤2) B .|1|1--=x y (0≤x ≤2) C .|1|23--=x y (0≤x ≤2)D .|1|2323--=x y (0≤x ≤2)11.客车从甲地以60km/h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h 的速度匀速行驶1小时到达丙地,下列描述客车从甲地出发.经过乙地,最后到达丙地所经过的路程s 与时间t 之间关系的图象中,正确的是( )A. B. C. D. 12.设定义在R 上的函数)(x f 的反函数为)(1x f-,且对于任意的R x ∈,都有3)()(=+-x f x f ,则)4()1(11x f x f -+---等于A .0B .-2C .2D .42-x二、填空题:本大题共4小题;每小题4分,共16分,把答案填在题中的横线上。

2012高三数学一轮复习单元练习题:函数、导数及其应用

2012高三数学一轮复习单元练习题:函数、导数及其应用

2012 版高三数学一轮精品复习学案:函数、导数及其应用2.7 导【高考目标定位】一、变化率与导数、导数的计算 1、考纲点击 (1)了解导数概念的实际背景 (2)理解导数的几何意义; (3)能根据导数定义求函数 y=c,y=x,y=x2,y=x3,y=1 x数,y x 的导数;(4)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。

能求简单的复 合函数(仅限于形如 f(ax+b)的复合函数)的导数。

2、热点提示 (1)导数的几何意义是高考考查的重点内容,常以选择题、填空题的形式出现,有时也出现在解答题 中; (2)导数的运算每年必考,一般不单独考查,在考查导数应用研究的同时考查导数的运算。

二、导数在研究函数中的应用与生活中的优化问题 1、考纲点击 (1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项 式函数一般不超过三次); (2)了解函数在某点取得极值域的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多 项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)。

(3)会利用导数解决某些实际问题。

2、热点提示 (1)在高考中,重点考查利用导数研究函数的单调性,求单调区间、极值、最值,以及利用导数解决 生活中的优化问题。

有时在导数与解析几何、不等式、平面向量等知识交汇点处命题。

(2)多以解答题的形式出现,属中、高档题目。

【考纲知识梳理】一、变化率与导数、导数的计算 1、函数 y=f(x)从 x1 到 x2 的平均变化率函数 y=f(x)从 x1 到 x2 的平均变化率为y xf ( x 2 )  f ( x1 ) x 2  x1,若  x  x 2  x1 ,  y  f ( x 2 )  f ( x1 ) 则平均变化率可表示为。

2、函数 y=f(x)在 x=x0 处导数 (1)定义 称函数 y=f(x)在 x=x0 处的瞬时变化率x  0limf ( x0   x )  f ( x0 ) x0 limy x y xx 0为 y=f(x)在 x=x0 处导数,记作 limx  0f  ( x 0 ) 或 y  | x  x , 即 f  ( x 0 )  limf ( x0   x )  f ( x0 ) xx  0(2)几何意义 函数 f(x)在点 x 处的导数 f  ( x 0 ) 的几何意义是在曲线 y=f(x)上点( x 0 , f  ( x 0 ) )处的切线的斜率。

2012高三数学一轮复习阶段性测试题(2):函数1(2021年整理)

2012高三数学一轮复习阶段性测试题(2):函数1(2021年整理)

2012高三数学一轮复习阶段性测试题(2):函数1(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2012高三数学一轮复习阶段性测试题(2):函数1(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2012高三数学一轮复习阶段性测试题(2):函数1(word版可编辑修改)的全部内容。

阶段性测试题二(函数)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分.考试时间120分钟。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。

)1.(文)(2011·山东日照调研)函数f(x)=ln(x+1)-错误!(x〉0)的零点所在的大致区间是( )A.(0,1)B.(1,2)C.(2,e) D.(3,4)[答案] B[解析] f(1)=ln2-2<0,f(2)=ln3-1〉0,又y=ln(x+1)是增函数,y=-错误!在(0,+∞)上也是增函数,∴f(x)在(0,+∞)上是增函数,∴f(x)在(1,2)上有且仅有一个零点.(理)(2011·宁夏银川一中检测)已知a是f(x)=2x-log错误!x的零点,若0<x0〈a,则f(x0)的值满足()A.f(x0)=0 B.f(x0)〈0C.f(x0)>0 D.f(x0)的符号不确定[答案] B[解析]∵函数f(x)=2x+log2x在(0,+∞)上单调递增,且这个函数有零点,∴这个零点是唯一的,根据函数的单调递增性知,在(0,a)上这个函数的函数值小于零,即f(x0)〈0.[点评]在定义域上单调的函数如果有零点,则只能有唯一的零点,并且以这个零点为分界点把定义域分成两个区间,在其中一个区间内函数值都大于零,在另一个区间内函数值都小于零.2.(文)(2011·辽宁丹东四校联考)若关于x的方程log错误!x=错误!在区间(0,1)上有解,则实数m的取值范围是()A.(0,1) B.(1,2)C.(-∞,1)∪(2,+∞)D.(-∞,0)∪(1,+∞)[答案] A[分析]要使方程有解,只要错误!在函数y=log错误!x(0〈x〈1)的值域内,即错误!>0.[解析] ∵x∈(0,1),∴log错误!x〉0,∴错误!〉0,∴0<m<1。

高三一轮复习 函数全章 练习(11套)+易错题+答案

第二章函数第1节函数概念及其表示方法一、选择题1.下列集合A到集合B的对应f是函数的是( A )(A)A={-1,0,1},B={0,1},f:A中的数平方(B)A={0,1},B={-1,0,1},f:A中的数开方(C)A=Z,B=Q,f:A中的数取倒数(D)A=R,B={正实数},f:A中的数取绝对值解析:按照函数定义,选项B中集合A中的元素1对应集合B中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C中的元素0取倒数没有意义,也不符合函数定义中集合A中任意元素都对应唯一函数值的要求;选项D中,集合A中的元素0在集合B 中没有元素与其对应,也不符合函数定义,只有选项A符合函数定义.2.已知f(x-1)=2x-5,且f(a)=6,则a等于( B )(A)- (B) (C) (D)-解析:令t=x-1,则x=2t+2,f(t)=2(2t+2)-5=4t-1,又由f(a)=6,则4a-1=6,解得a=.3.若f(1-2x)=(x≠0),那么f()等于( C )(A)1 (B)3 (C)15 (D)30解析:法一令1-2x=t,则x=(t≠1),则f(t)=-1,则f()=16-1=15.法二令1-2x=,得x=,则f()=16-1=15.4.已知f(x)=的值域为R,那么a的取值范围是( C )(A)(-∞,-1] (B)(-1,)(C)[-1,) (D)(0,)解析:要使函数f(x)的值域为R,需使则则-1≤a<.即a的取值范围是[-1,).5.已知函数f(x)=且f(a)=-1,则f(6-a)等于( A )(A)1 (B)2 (C)3 (D)4解析:由题意,知a>0,则由-log2(a+1)+2=-1,解得a=7,所以f(6-a)= f(-1)=2-1+1=1,故选A.6.设函数y=f(x)在R上有定义,对于任一给定的正数p,定义函数f p(x)=则称函数f p(x)为f(x)的“p界函数”,若给定函数f(x)=x2-2x-1,p=2,则下列结论不成立的是( B )(A)f p[f(0)]=f[f p(0)] (B)f p[f(1)]=f[f p(1)](C)f p[f p(2)]=f[f(2)] (D)f p[f p(3)]=f[f(3)]解析:给定函数f(x)=x2-2x-1,p=2,则f(1)=-2,f p(1)=-2,所以f[f p(1)]=f(-2)=7,f p[f(1)]=f p(-2)=2,所以f p[f(1)]≠f[f p(1)],故选B.二、填空题7.函数y=的定义域是.解析:要使函数有意义,需满足即x<且x≠-1.答案:(-∞,-1)∪(-1,)8.已知函数f(x)=且f(a)=-3,则f(5-a)= . 解析:若a≤1,则2a-2=-3,即2a=-1,不合题设;故a>1,即-log2(a+1)=-3,解之得a=7,代入f(5-a)=f(-2)=-2=-.答案:-9.已知f(2x-2)的定义域是[1,2],则f(2x+1)的定义域为.解析:由题知f(2x-2)中1≤x≤2,则0≤2x-2≤2,即f(x)的定义域为[0,2],所以0≤2x+1≤2,得-≤x≤,故f(2x+1)的定义域为[-,].答案:[-,]10.定义在R上的函数f(x)满足f(x-1)=2f(x),若当0≤x≤1时,f(x)=x(1-x),则当1≤x≤2时,f(x)= .解析:由f(x-1)=2f(x),则f(x)=f(x-1).由1≤x≤2,则0≤x-1≤1.又当0≤x≤1时,f(x)=x(1-x),则f(x-1)=(x-1)[1-(x-1)]=(x-1)(2-x),则f(x)=f(x-1)=(x-1)(2-x).答案:(x-1)(2-x)11.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R), f(1)=2,则f(-3)= .解析:令x=1,y=1,则f(2)=f(1)+f(1)+2=6,令x=2,y=1,则f(3)=f(2)+f(1)+4=12,令x=0,y=0,则f(0)=0,令y=-x,则f(0)=f(x)+f(-x)-2x2,则f(-x)=f(0)-f(x)+2x2,则f(-3)=f(0)-f(3)+2×32=0-12+18=6.答案:612.设函数f(x)=则满足f(f(a))=2f(a)的a的取值范围为.解析:由f(f(a))=2f(a)得,f(a)≥1.当a<1时,有3a-1≥1,则a≥,则≤a<1;当a≥1时,有2a≥1,则a≥0,则a≥1.综上,a≥.答案:[,+∞)三、解答题13.设函数f(x)满足2f()+f()=1+x,其中x≠0,x∈R,求f(x). 解:令x=t,则2f()+f()=1+t,①令x=-t,则2f()+f()=1-t,②由①②得f()=t+,令=x可得f(x)=+,x≠1.14.已知函数f(x)满足f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0,若f()=0,求f(π)及f(2π)的值.解:令x=y=0,则f(0)+f(0)=2[f(0)]2,则f(0)[f(0)-1]=0,由f(0)≠0,则f(0)=1,令x=y=,则f(π)+f(0)=2[f()]2=0,则f(π)=-1;令x=y=π,则f(2π)+f(0)=2[f(π)]2=2,则f(2π)=1.第2节二次函数一、选择题1.函数f(x)=2x2-mx+3,当x∈[-2,+∞)时,f(x)是增函数,当x∈(-∞,-2]时,f(x)是减函数,则f(1)的值为( B )(A)-3 (B)13 (C)7 (D)5解析:函数f(x)=2x2-mx+3图象的对称轴为直线x=,由函数f(x)的增减区间可知=-2,所以m=-8,即f(x)=2x2+8x+3,所以f(1)=2+8+3=13.2.已知二次函数f(x)满足f(2+x)=f(2-x),且f(x)在[0,2]上是增函数,若f(a)≥f(0),则实数a的取值范围是( C )(A)[0,+∞) (B)(-∞,0](C)[0,4] (D)(-∞,0]∪[4,+∞)解析:由f(2+x)=f(2-x)可知,函数f(x)图象的对称轴为x==2,又函数f(x)在[0,2]上单调递增,所以由f(a)≥f(0)可得0≤a≤4.3.若函数f(x)=(1-x2)(x2+ax-5)的图象关于直线x=0对称,则f(x)的最大值是( B )(A)-4 (B)4 (C)4或-4 (D)不存在解析:依题意,函数f(x)是偶函数,则y=x2+ax-5是偶函数,故a=0,则f(x)=(1-x2)(x2-5)=-x4+6x2-5=-(x2-3)2+4,当x2=3时,f(x)取最大值为4.4.设函数f(x)=x2-23x+60,g(x)=f(x)+|f(x)|,则g(1)+g(2)+…+g(20)等于( B )(A)56 (B)112 (C)0 (D)38解析:由二次函数图象的性质得,当3≤x≤20时,f(x)+|f(x)|=0,所以g(1)+g(2)+…+g(20)=g(1)+g(2)=f(1)+|f(1)|+f(2)+|f(2)|=112.5.已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x2-2x-3|与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则x1+x2+…+x m等于( B )(A)0 (B)m (C)2m (D)4m解析:由f(x)=f(2-x)知函数f(x)的图象关于直线x=1对称,又y=|x2-2x-3|的图象也关于直线x=1对称,所以这两函数的交点也关于直线x=1对称.不妨设x1<x2<…<x m,则=1,即x1+x m=2,同理x2+x m-1=2,x3+x m-2=2,…,设S m=x1+x2+…+x m,则S m=x m+x m-1+ (x1)所以2S m=(x1+x m)+(x2+x m-1)+…+(x m+x1)=2m,所以S m=m.6.设函数f(x)=,g(x)=ax2+bx(a,b∈R,a≠0),若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是( D )(A)当a<0时,x1+x2<0,y1+y2<0(B)当a<0时,x1+x2>0,y1+y2>0(C)当a>0时,x1+x2>0,y1+y2<0(D)当a>0时,x1+x2<0,y1+y2>0解析:当a<0时,作出两个函数的图象,如图,因为函数f(x)是奇函数,所以A与A′关于原点对称,显然x2>-x1>0,即x1+x2>0,-y1>y2,即y1+y2<0;当a>0时,作出两个函数的图象,同理有x1+x2<0,y1+y2>0.二、填空题7.二次函数的图象与x轴只有一个交点,对称轴为x=3,与y轴交于点(0,3).则它的解析式为 .解析:由题意知,可设二次函数的解析式为y=a(x-3)2,又图象与y轴交于点(0,3),所以3=9a,即a=,所以y=(x-3)2=x2-2x+3.答案:y=x2-2x+38.若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)= .解析:由f(x)是偶函数知f(x)图象关于y轴对称,所以b=-2,所以f(x)=-2x2+2a2,又f(x)的值域为(-∞,4],所以2a2=4,故f(x)=-2x2+4.答案:-2x2+49.若关于x的不等式x2-4x≥m对任意x∈(0,1]恒成立,则m的取值范围为.解析:只需要在x∈(0,1]时,(x2-4x)min≥m即可.因为函数f(x)=x2-4x在(0,1]上为减函数,所以当x=1时,(x2-4x)min=1-4=-3,所以m≤-3.答案:(-∞,-3]10.若函数f(x)=x2-x+a的定义域和值域均为[1,b](b>1),则a= ,b= .解析:因为f(x)=(x-1)2+a-,所以其对称轴为x=1,即[1,b]为f(x)的单调递增区间.所以f(x)min=f(1)=a-=1,①f(x)max=f(b)=b2-b+a=b,②由①②解得答案: 311.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为.解析:由题意知,y=f(x)-g(x)=x2-5x+4-m在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y=m与y=x2-5x+4(x∈[0,3])的图象如图所示,结合图象可知,当x∈[2,3]时,y=x2-5x+4∈[-,-2],故当m∈(-,-2]时,函数y=m与y=x2-5x+4(x∈[0,3])的图象有两个交点.答案:(-,-2]12.若函数f(x)=cos 2x+asin x在区间(,)上是减函数,则a的取值范围是.解析:f(x)=cos 2x+asin x=-2sin2x+asin x+1,令sin x=t,则f(x)=-2t2+at+1,因为x∈(,),所以t∈(,1).因为f(x)在x∈(,)上是减函数,所以y=-2t2+at+1在t∈(,1)上是减函数,又对称轴是t=,所以≤,所以a≤2.答案:(-∞,2]三、解答题13.已知二次函数f(x)的二次项系数为a,且f(x)>-2x的解集为{x|1<x<3},方程f(x)+6a=0有两个相等的实根,求f(x)的解析式. 解:设f(x)+2x=a(x-1)(x-3)(a<0),则f(x)=ax2-4ax+3a-2x,因为f(x)+6a=ax2-(4a+2)x+9a=0有两个相等的实根,所以Δ=(4a+2)2-36a2=0,解得a=-,或a=1(舍去).因此f(x)的解析式为f(x)=-x2-x-.14.已知函数f(x)=x2-2ax+5(a>1).若f(x)在区间(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求实数a的取值范围.解:因为f(x)的对称轴方程为x=a,且f(x)在区间(-∞,2]上是减函数,所以a≥2.又x∈[1,a+1],且(a+1)-a≤a-1,所以f(x)max=f(1)=6-2a,f(x)min=f(a)=5-a2.因为对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,所以f(x)max-f(x)min≤4,得-1≤a≤3.又a≥2,所以2≤a≤3.所以a的取值范围是[2,3].15.已知函数f(x)= (k∈Z)满足f(2)<f(3).(1)求k的值并求出相应的f(x)的解析式;(2)对于(1)中得到的函数f(x),试判断是否存在q>0,使函数g(x)=1-qf(x)+(2q-1)x在区间[-1,2]上的值域为[-4,]?若存在,求出q;若不存在,请说明理由.解:(1)由已知,f(x)在第一象限是增函数.故-k2+k+2>0,解得-1<k<2.又因为k∈Z,所以k=0或k=1.当k=0或k=1时,-k2+k+2=2,所以f(x)=x2.(2)假设存在q>0满足题设,由(1)知g(x)=-qx2+(2q-1)x+1,x∈[-1,2].因为g(2)=-1,所以两个最值点只能在端点(-1,g(-1))和顶点(,)处取得.所以-1<<2,q>0,g(x)max==,g(x)min=g(-1)=2-3q=-4.解得q=2,所以存在q=2满足题意.第3节二次函数与不等式一、选择题1.已知不等式2x≤x2的解集为P,不等式(x-1)(x+2)<0的解集为Q,则集合P∩Q等于( B )(A){x|-2<x≤2} (B){x|-2<x≤0}(C){x|0≤x<1} (D){x|-1<x≤2}解析:P={x|x2-2x≥0}={x|x≤0或x≥2},Q={x|-2<x<1},所以P∩Q={x|-2<x≤0}.2.使不等式2x2-5x-3≥0成立的一个充分不必要条件是( C )(A)x≥0 (B)x<0或x>2(C)x∈{-1,3,5} (D)x≤-或x≥3解析:不等式2x2-5x-3≥0的解集是{x|x≥3或x≤-}.由题意,选项中x的范围应该是上述解集的真子集,只有C满足. 3.已知函数f(x)=-x2-mx+1,若对于任意x∈[m,m+1],都有f(x)>0成立,则实数m的取值范围是( B )(A)[-,0] (B)(-,0)(C)[0,] (D)(0,)解析:函数f(x)=-x2-mx+1的图象开口向下,且过点(0,1),所以为使对于任意x∈[m,m+1],都有f(x)>0,须即所以-<m<0.4.若关于x的不等式ax-b>0的解集是(-∞,-2),则关于x的不等式>0的解集为( B )(A)(-2,0)∪(1,+∞)(B)(-∞,0)∪(1,2)(C)(-∞,-2)∪(0,1)(D)(-∞,1)∪(2,+∞)解析:关于x的不等式ax-b>0的解集是(-∞,-2),所以a<0,=-2,所以b=-2a,所以=>0,因为a<0,所以<0,解得x<0或1<x<2.5.若不等式x2+ax-2>0在区间[1,5]上有解,则a的取值范围是( A )(A)(-,+∞) (B)[-,1](C)(1,+∞) (D)(-∞,-]解析:由Δ=a2+8>0,知方程恒有两个不等实根,又知两根之积为负,所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解的充要条件是f(5)>0,解得a>-,故a的取值范围为(-,+∞).6.已知f(x)=不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,则实数a的取值范围是( A )(A)(-∞,-2) (B)(-∞,0)(C)(0,2) (D)(-2,0)解析:f(x)为R上的减函数,故f(x+a)>f(2a-x)⇔x+a<2a-x,即2x<a在[a,a+1]上恒成立,所以(2x)max=2(a+1)<a,得a<-2.二、填空题7.不等式<4的解集为.解析:由题意得x2-x<2⇒-1<x<2,解集为(-1,2).答案:(-1,2)8. 若“x∈{a,3}”是“不等式2x2-5x-3≥0成立”的一个充分不必要条件,则实数a的取值范围是.解析:由题设2a2-5a-3≥0,解得a≥3或a≤-,由集合中元素的互异性可得a≠3.答案:(-∞,-]∪(3,+∞)9.设f(x)是定义在R上的以3为周期的奇函数,若f(1)>1,f(2)=,则实数a的取值范围是.解析:因为f(x+3)=f(x),所以f(2)=f(-1+3)=f(-1)=-f(1)<-1. 所以<-1⇔<0⇔(3a-2)(a+1)<0,所以-1<a<.答案:(-1,)10.在R 上定义运算:( a b c d )=ad-bc,若不等式(121 x a a x --+ )≥1对任意实数x 恒成立,则实数a 的最大值为 .解析:由定义知,不等式(121 x a a x --+ )≥1等价于x 2-x-(a 2-a-2)≥1, 所以x 2-x+1≥a 2-a 对任意实数x 恒成立.因为x 2-x+1=(x-)2+≥,所以a 2-a ≤,解得-≤a ≤,则实数a 的最大值为.答案:11.对于实数x,规定[x]表示不大于x 的最大整数,那么不等式4[x]2-36[x]+45<0的解集为 .解析:由题意解得<[x]<,所以[x]的取值为2,3,4,5,6,7,又[x]表示不大于x 的最大整数,故2≤x<8.答案:[2,8)12.已知f(x)=m(x-2m)(x+m+3),g(x)=2x -2.若同时满足条件: ①对任意x ∈R,f(x)<0或g(x)<0;②存在x∈(-∞,-4),f(x)g(x)<0.则m的取值范围是.解析:当x<1时,g(x)<0,当x>1时,g(x)>0,当x=1时,g(x)=0,m=0不符合要求;当m>0时,根据函数f(x)和函数g(x)的单调性,一定存在区间[a,+∞)使f(x)≥0且g(x)≥0,故m>0时不符合第①条的要求;当m<0时,如图所示,如果符合①的要求,则函数f(x)的两个零点都得小于1,如果符合第②条要求,则函数f(x)至少有一个零点小于-4,问题等价于函数f(x)有两个不相等的零点,其中较大的零点小于1,较小的零点小于-4,函数f(x)的两个零点是2m,-(m+3),故m满足或解第一个不等式组得-4<m<-2,第二个不等式组无解,故所求m的取值范围是(-4,-2).答案:(-4,-2)三、解答题13.已知函数f(x)=x2-(a+1)x+b.(1)若f(x)<0的解集为(-1,3),求a,b的值;(2)当a=1时,若对任意x∈R,f(x)≥0恒成立,求实数b的取值范围;(3)当b=a时,解关于x的不等式f(x)<0(结果用a表示).解:(1)由已知,x2-(a+1)x+b=0的两个根为-1和3,所以解得a=1,b=-3.(2)当a=1时,f(x)=x2-2x+b,因为对任意x∈R,f(x)≥0恒成立,所以Δ=(-2)2-4b≤0,解得b≥1,所以实数b的取值范围是[1,+∞).(3)当b=a时,f(x)<0,即x2-(a+1)x+a<0,所以(x-1)(x-a)<0,所以当a<1时,不等式f(x)<0的解集为{x|a<x<1};当a=1时,不等式f(x)<0的解集为 ;当a>1时,不等式f(x)<0的解集为{x|1<x<a}.14.已知a是实数,函数f(x)=2ax2+2x-3在[-1,1]上恒小于零,求实数a的取值范围.解:由题可知2ax2+2x-3<0在[-1,1]上恒成立.当x=0时,有-3<0恒成立;当x≠0时,a<(-)2-,因为∈(-∞,-1]∪[1,+∞),当=1,即x=1时,不等式右边取最小值,所以a<.实数a的取值范围是(-∞,).15.已知函数f(x)=ax2+bx+c(a>0,b∈R,c∈R).(1)若函数f(x)的最小值是f(-1)=0,且c=1,F(x)=求F(2)+F(-2)的值;(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.解:(1)由已知c=1,a-b+c=0,且-=-1,解得a=1,b=2.所以f(x)=(x+1)2.所以F(x)=所以F(2)+F(-2)=(2+1)2-(-2+1)2=8.(2)由题可知,f(x)=x2+bx,原命题等价于-1≤x2+bx≤1在(0,1]上恒成立,即b≤-x且b≥--x在(0,1]上恒成立.又-x的最小值为0,--x的最大值为-2,所以-2≤b≤0.故b的取值范围是[-2,0].第4节函数的单调性与最值一、选择题1.给定函数①y=,②y=lo(x+1),③y=,④y=2x+1.其中在区间(0,1)上单调递减的函数序号是( B )(A)①②(B)②③(C)③④(D)①④解析:①y=在(0,1)上递增;②因为t=x+1在(0,1)上递增,且0<<1,故y=lo(x+1)在(0,1)上递减;③结合图象可知y=|x-1|在(0,1)上递减;④因为u=x+1在(0,1)上递增,且2>1,故y=2x+1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.2.定义在R上的函数f(x)的图象关于直线x=2对称,且f(x)在(-∞,2)上是增函数,则( A )(A)f(-1)<f(3) (B)f(0)>f(3)(C)f(-1)=f(3) (D)f(0)=f(3)解析:依题意得f(3)=f(1),且-1<1<2,于是由函数f(x)在(-∞,2)上是增函数得f(-1)<f(1)=f(3).同理f(0)<f(3).3.函数y=()的单调递增区间为( B )(A)(1,+∞) (B)(-∞,](C)(,+∞) (D)[,+∞)解析:令u=2x2-3x+1=2(x-)2-.因为u=2(x-)2-在(-∞,]上单调递减,函数y=()u在R上单调递减.所以y=()在(-∞,]上单调递增,即该函数的单调递增区间为(-∞,].4.已知f(x)=是(-∞,+∞)上的减函数,那么a的取值范围是( C )(A)(0,1) (B)(0,)(C)[,) (D)[,1)解析:当x=1时,log a1=0,若f(x)为R上的减函数,则(3a-1)x+4a>0在x<1时恒成立,令g(x)=(3a-1)x+4a,则必有即解得≤a<.此时,log a x是减函数,符合题意.5.已知a>0,设函数f(x)=(x∈[-a,a])的最大值为M,最小值为N,那么M+N等于( D )(A)2 016 (B)2 018(C)4 032 (D)4 034解析:由题意得f(x)==2018-.因为y=2 018x+1在[-a,a]上是单调递增的,所以f(x)=2018-在[-a,a]上是单调递增的,所以M=f(a),N=f(-a),所以M+N=f(a)+f(-a)=4 036--=4 034.6.已知函数f(x)的图象关于(1,0)对称,当x>1时,f(x)=log a(x-1),且f(3)=-1,若x1+x2<2,(x1-1)(x2-1)<0,则( B )(A)f(x1)+f(x2)<0 (B)f(x1)+f(x2)>0(C)f(x1)+f(x2)可能为0 (D)f(x1)+f(x2)可正可负解析:因为当x>1时,f(x)=log a(x-1),f(3)=log a2=-1,所以a=,故函数f(x)在(1,+∞)上为减函数,若x1+x2<2,则x2<2-x1,又(x1-1)(x2-1)<0,不妨令x1<1,x2>1,所以f(x2)>f(2-x1),又因为函数f(x)的图象关于(1,0)对称,所以f(x1)=-f(2-x1),此时f(x1)+f(x2)=-f(2-x1)+f(x2)>0.二、填空题7.函数y=-(x-3)|x|的递增区间是.解析:y=画图象如图所示,可知递增区间为[0,].答案:[0,]8.已知函数f(x)为(0,+∞)上的增函数,若f(a2-a)>f(a+3),则实数a 的取值范围为.解析:由已知可得解得-3<a<-1或a>3.答案:(-3,-1)∪(3,+∞)9.函数f(x)=lg(9-x2)的定义域为;其单调递增区间为.解析:对于函数f(x)=lg(9-x2),令9-x2>0,解得-3<x<3,即函数的定义域为(-3,3).令g(x)=9-x2,则函数f(x)=lg(g(x)),又函数g(x)在定义域内的增区间为(-3,0].所以函数f(x)=lg(9-x2)在定义域内的单调递增区间为(-3,0].答案:(-3,3) (-3,0]10.已知函数f(x)=则f(x)的最小值是.解析:当x≥1时,x+-3≥2-3=2-3,当且仅当x=,即x=时等号成立,此时f(x)min=2-3<0;当x<1时,lg(x2+1)≥lg(02+1)=0,此时f(x)min=0.所以f(x)的最小值为2-3.答案:2-311.设0<x<1,则函数y=+的最小值是.解析:y=+=,当0<x<1时,0<x(1-x)=-(x-)2+≤.所以y≥4.答案:412.已知f(x)=不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,则实数a的取值范围是.解析:作出函数f(x)图象的草图如图,易知函数f(x)在R上为减函数,所以不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立等价于x+a<2a-x,即x<在[a,a+1]上恒成立,所以只需a+1<,即a<-2.答案:(-∞,-2)三、解答题13.求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值.解:f(x)=(x-a)2-1-a2,对称轴为x=a.(1)当a<0时,由图①可知,f(x)min=f(0)=-1,f(x)max=f(2)=3-4a.(2)当0≤a<1时,由图②可知,f(x)min=f(a)=-1-a2,f(x)max=f(2)=3-4a.(3)当1<a≤2时,由图③可知,f(x)min=f(a)=-1-a2,f(x)max=f(0)=-1.(4)当a>2时,由图④可知,f(x)min=f(2)=3-4a,f(x)max=f(0)=-1.综上,当a<0时,f(x)min=-1,f(x)max=3-4a;当0≤a<1时,f(x)min=-1-a2,f(x)max=3-4a;当1<a≤2时,f(x)min=-1-a2,f(x)max=-1;当a>2时,f(x)min=3-4a,f(x)max=-1.14.已知f(x)=(x≠a).(1)若a=-2,试证明f(x)在(-∞,-2)内单调递增;(2)若a>0且f(x)在(1,+∞)上单调递减,求a的取值范围.(1)证明:任取x1<x2<-2,则f(x1)-f(x2)=-=.因为(x1+2)(x2+2)>0,x1-x2<0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以f(x)在(-∞,-2)上单调递增.(2)解:任取1<x1<x2,则f(x1)-f(x2)=-=.因为a>0,x2-x1>0,所以要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0在(1,+∞)上恒成立,所以a≤1.综上所述,a的取值范围是(0,1].15.函数y=f(x)的定义域为R,若存在常数M>0,使得|f(x)|≥M|x|对一切实数x均成立,则称f(x)为“圆锥托底型”函数.(1)判断函数f(x)=2x,g(x)=x3是否为“圆锥托底型”函数?并说明理由.(2)若f(x)=x2+1是“圆锥托底型”函数,求出M的最大值.解:(1)对于函数f(x)=2x,因为|2x|=2|x|≥2|x|,即对于一切实数x使得|f(x)|≥2|x|成立,所以函数f(x)=2x是“圆锥托底型”函数.对于g(x)=x3,如果存在M>0满足|x3|≥M|x|,而当x=时,由||3≥M||,所以≥M,得M≤0,矛盾,所以g(x)=x3不是“圆锥托底型”函数.(2)因为f(x)=x2+1是“圆锥托底型”函数,故存在M>0,使得|f(x)|=|x2+1|≥M|x|对于任意实数恒成立.所以x≠0时,M≤|x+|=|x|+,此时当x=±1时,|x|+取得最小值2,所以M≤2.而当x=0时,也成立.所以M的最大值等于2.第5节函数的奇偶性与周期性一、选择题1.在函数y=xcos x,y=e x+x2,y=lg,y=xsin x中,偶函数的个数是( B )(A)3 (B)2 (C)1 (D)0解析:y=xcos x是奇函数,y=lg和y=xsin x是偶函数,y=e x+x2是非奇非偶函数,所以偶函数的个数是2.2.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( B )(A)y=cos 2x,x∈R(B)y=log2|x|,x∈R且x≠0(C)y=,x∈R(D)y=x3+1,x∈R解析:选项A中函数y=cos 2x在区间(0,)上单调递减,不满足题意;选项C中的函数为奇函数;选项D中的函数为非奇非偶函数.3.设f(x)=x+sin x(x∈R),则下列说法错误的是( D )(A)f(x)是奇函数(B)f(x)在R上单调递增(C)f(x)的值域为R(D)f(x)是周期函数解析:因为f(-x)=-x+sin(-x)=-(x+sin x)=-f(x),所以f(x)为奇函数,故A正确;因为f′(x)=1+cos x≥0,所以函数f(x)在R上单调递增,故B正确;f(x)的值域为R,故C正确;f(x)不是周期函数,D错误. 4.已知定义域为{x|x≠0}的函数f(x)为偶函数,且f(x)在区间(-∞,0)上是增函数,若f(-3)=0,则<0的解集为( D )(A)(-3,0)∪(0,3) (B)(-∞,-3)∪(0,3)(C)(-∞,-3)∪(3,+∞) (D)(-3,0)∪(3,+∞)解析:由已知条件,可得函数f(x)的图象大致如图,故<0的解集为(-3,0)∪(3,+∞).5.设函数f(x)(x∈R)满足f(x+π)=f(x)+sin x.当0≤x<π时,f(x)=0,则f()等于( A )(A) (B) (C)0 (D)-解析:因为f(x+2π)=f(x+π)+sin(x+π)=f(x)+sin x-sin x=f(x),所以f(x)的周期T=2π,又因为当0≤x<π时,f(x)=0,所以f()=f(-+π)=f(-)+sin(-)=0,所以f(-)=,所以f()=f(4π-)=f(-)=.6.已知定义在R上的奇函数f(x)在x>0时满足f(x)=x4,且f(x+t)≤4f(x)在x∈[1,16]时恒成立,则实数t的最大值是( A )(A)-1 (B)16(-1)(C)+1 (D)16(+1)解析:因为f(x)在x>0时满足f(x)=x4,所以f(x)在(0,+∞)上单调递增,又f(x)在R上为奇函数,所以f(x)在R上单调递增,而f(x+t)≤4f(x)(x∈[1,16])等价于f(x+t)≤f(x)(x∈[1,16]),即当x∈[1,16]时,x+t≤x恒成立,即t≤(-1)x,x∈[1,16],所以只需t≤-1,故t的最大值为-1.二、填空题7.设函数f(x)=x(e x+a)(x∈R)是偶函数,则实数a的值为.解析:因为f(x)是偶函数,所以恒有f(-x)=f(x),即-x(e-x+ae x)=x(e x+ae-x),化简得x(e-x+e x)(a+1)=0.因为上式对任意实数x都成立,所以a=-1.答案:-18.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)= .解析:因为f(x)是定义在R上的奇函数,因此f(-x)+f(x)=0.当x=0时,可得f(0)=0,可得b=-1,此时f(x)=2x+2x-1,因此f(1)=3.又f(-1)=-f(1),所以f(-1)=-3.答案:-39.奇函数f(x)的周期为4,且x∈[0,2],f(x)=2x-x2,则f(2 018)+f(2 019)+f(2 020)的值为.解析:函数f(x)是奇函数,则f(0)=0,由f(x)=2x-x2,x∈[0,2]知f(1)=1,f(2)=0,又f(x)的周期为4,所以f(2 018)+f(2 019)+f(2 020)=f(2)+f(3)+f(0)=f(3)=f(-1)=-f(1)=-1.答案:-110.设函数f(x)是定义在R上的奇函数,若f(x)满足f(x+3)=f(x),且f(1)≥1,f(2)=,则m的取值范围是.解析:因为f(x+3)=f(x),所以f(2)=f(-1+3)=f(-1).因为f(x)为奇函数,且f(1)≥1,所以f(-1)=-f(1)≤-1,所以≤-1.解得-1<m≤.答案:(-1,]11.已知函数f(x)满足:f(1)=,4f(x)f(y)=f(x+y)+f(x-y)(x,y∈R),则f(2 018)= .解析:法一令x=1,y=0时,4f(1)·f(0)=f(1)+f(1),解得f(0)=,令x=1,y=1时,4f(1)·f(1)=f(2)+f(0),解得f(2)=-,令x=2,y=1时,4f(2)·f(1)=f(3)+f(1),解得f(3)=-,依次求得f(4)=-,f(5)=,f(6)=,f(7)=,f(8)=-,f(9)=-,…可知f(x)是以6为周期的函数,所以f(2 018)=f(336×6+2)=f(2)=-.法二因为f(1)=,4f(x)·f(y)=f(x+y)+f(x-y),所以构造符合题意的函数f(x)=cos x,所以f(2 018)=cos(×2 018)=-.答案:-12.已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为.解析:易知f(x)在R上为单调递增函数,且f(x)为奇函数,由f(mx-2)+ f(x)<0,得f(mx-2)<-f(x)=f(-x),所以mx-2<-x,即mx+x-2<0对所有m∈[-2,2]恒成立,令h(m)=mx+x-2,此时,只需解得x∈(-2,).答案:(-2,)三、解答题13.已知函数f(x)=是奇函数.(1)求实数m的值;(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围. 解:(1)设x<0,则-x>0,所以f(-x)=-(-x)2+2(-x)=-x2-2x.又f(x)为奇函数,所以f(-x)=-f(x),于是x<0时,f(x)=x2+2x=x2+mx,所以m=2.(2)由(1)及已知,f(x)在(-∞,-1]上是减函数,在[-1,1]上是增函数,在[1,+∞)上是减函数,要使f(x)在[-1,a-2]上单调递增,必需且只需所以1<a≤3,故实数a的取值范围是(1,3].14.已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]上递减,求满足f(1-m)+f(1-m2)<0的实数m的取值范围.解:因为f(x)的定义域为[-2,2],所以解得-1≤m≤. ①又f(x)为奇函数,且在[-2,0]上递减,所以f(x)在[-2,2]上递减,所以f(1-m)<-f(1-m2)=f(m2-1),即1-m>m2-1,解得-2<m<1. ②综合①②可知,-1≤m<1.即实数m的取值范围是[-1,1).第6节函数单调性、奇偶性与周期性综合运用一、选择题1.已知f(x)是定义在R上的偶函数,且满足f(x+2)=-,当1≤x≤2时,f(x)=x-2,则f(6.5)等于( D )(A)4.5 (B)-4.5 (C)0.5 (D)-0.5解析:由f(x+2)=-,得f(x+4)=-=f(x),所以f(x)的周期是4,得f(6.5)=f(2.5).因为f(x)是偶函数,则f(2.5)=f(-2.5)=f(1.5).而1≤x≤2时,f(x)=x-2,所以f(1.5)=-0.5.由上知f(6.5)=-0.5.2.设函数f(x)满足:①y=f(x+1)是偶函数;②在[1,+∞)上为增函数,则f(-1)与f(2)的大小关系是( A )(A)f(-1)>f(2) (B)f(-1)<f(2)(C)f(-1)=f(2) (D)无法确定解析:由y=f(x+1)是偶函数,得到y=f(x)的图象关于直线x=1对称,所以f(-1)=f(3).又f(x)在[1,+∞)上为单调增函数,所以f(3)>f(2),即f(-1)>f(2).3.已知函数f(x)的定义域为R,当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>时,f(x+)=f(x-).则f(6)等于( D ) (A)-2 (B)-1 (C)0 (D)2解析:因为当x>时,f(x+)=f(x-),所以x>1时,f(x)=f(x-1),即f(6)=f(1).因为当-1≤x≤1时,f(-x)=-f(x),所以f(1)=-f(-1).因为当x<0时,f(x)=x3-1,所以f(6)=f(1)=-f(-1)=-[(-1)3-1]=2.4.定义在R上的函数f(x)既是奇函数,又是周期函数,T是它的一个正周期.若将方程f(x)=0在闭区间[-T,T]上的根的个数记为n,则n可能为( D )(A)0 (B)1 (C)3 (D)5解析:因为f(x)是R上的奇函数,所以f(0)=0.又因为T是函数f(x)的一个正周期,所以f(T)=f(-T)=f(0)=0,又f(-)=f(T-)=f(),且f(-)=-f(),所以f()=0,于是可得f(-)=f()=0.所以方程f(x)=0在闭区间[-T,T]上的根的个数可能为5.5.已知f(x)是奇函数并且是R上的单调函数,若函数y=f(2x2+1)+ f(λ-x)只有一个零点,则实数λ的值是( C )(A)(B)(C)- (D)-解析:令y=f(2x2+1)+f(λ-x)=0,且f(x)是奇函数,则f(2x2+1)=-f(λ-x)=f(x-λ),又因为f(x)是R上的单调函数,所以2x2+1=x-λ只有一个根,即2x2-x+1+λ=0只有一个根,则Δ=1-8(1+λ)=0,解得λ=-.6.记max{x,y}=若f(x),g(x)均是定义在实数集R上的函数,定义函数h(x)=max{f(x),g(x)},则下列命题正确的是( C )(A)若f(x),g(x)都是单调函数,则h(x)也是单调函数(B)若f(x),g(x)都是奇函数,则h(x)也是奇函数(C)若f(x),g(x)都是偶函数,则h(x)也是偶函数(D)若f(x)是奇函数,g(x)是偶函数,则h(x)既不是奇函数,也不是偶函数解析:对于A,如f(x)=x,g(x)=-2x都是R上的单调函数,而h(x)=不是定义域R上的单调函数,故A错误;对于B,如f(x)=x,g(x)=-2x都是R上的奇函数,而h(x)=不是定义域R上的奇函数,故B错误;对于C,当f(x),g(x)都是定义域R上的偶函数时,h(x)=max{f(x),g(x)}也是定义域R上的偶函数,故C正确;对于D,如f(x)=sin x是定义域R上的奇函数,g(x)=x2+2是定义域R 上的偶函数,而h(x)=g(x)=x2+2是定义域R上的偶函数,故D错误.二、填空题7.定义在R上的函数f(x)满足f(x)=f(-x),且f(x)=f(x+6),当x∈[0,3]时,f(x)单调递增,则f(x)在[4,5]上单调.(递增,递减)解析:由已知,f(x)在[-3,0]上单调递减,又周期为6,所以f(x)在[3,6]上单调递减,在[4,5]上单调递减.答案:递减8.已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若f(2)=2,则f(2 018)的值为.解析:由g(x)=f(x-1),得g(-x)=f(-x-1),又g(x)为R上的奇函数,所以g(-x)=-g(x),所以f(-x-1)=-f(x-1),即f(x-1)=-f(-x-1),用x+1替换x,得f(x)=-f(-x-2).又f(x)是R上的偶函数,所以f(x)=-f(x+2).所以f(x)=f(x+4),即f(x)的周期为4.所以f(2 018)=f(4×504+2)=f(2)=2.答案:29.若函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)= 4x,则f(-)+f(2)= .解析:因为f(x)是周期为2的函数,所以f(x)=f(x+2).又f(x)是奇函数,所以f(x)=-f(-x),f(0)=0.所以f(-)=f(-)=-f()=-4×=-2,f(2)=f(0)=0,所以f(-)+f(2)=-2.答案:-210.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,若方程f(x)=m(m>0),在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4= .解析:因为定义在R上的奇函数f(x)满足f(x-4)=-f(x),所以f(4-x)=f(x).因此,函数图象关于直线x=2对称且f(0)=0,由f(x-4)=-f(x)知f(x-8)=f(x),所以函数是以8为周期的周期函数.又因为f(x)在区间[0,2]上是增函数,所以f(x)在区间[-2,0]上也是增函数,如图所示,方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,不妨设x1<x2<x3<x4.由对称性知x1+x4=-4,x2+x3=-4.所以x1+x2+x3+x4=-8.答案:-811.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=(),则①2是函数f(x)的周期;②函数f(x)在(1,2)上递减,在(2,3)上递增;③函数f(x)的最大值是1,最小值是0;④当x∈(3,4)时,f(x)=()x-3.其中所有正确命题的序号是.解析:由已知条件:f(x+1)=f(x-1)得f(x+2)=f(x),则y=f(x)是以2为周期的周期函数,①正确;当-1≤x≤0时0≤-x≤1,f(x)=f(-x)=()1+x,函数y=f(x)的图象如图所示,当3<x<4时,-1<x-4<0,f(x)=f(x-4)=()x-3,因此②④正确.③不正确. 答案:①②④三、解答题12.已知函数f(x)=x2+(x≠0).(1)判断f(x)的奇偶性,并说明理由;(2)若f(1)=2,试判断f(x)在[2,+∞)上的单调性.解:(1)当a=0时,f(x)=x2,f(-x)=f(x),函数是偶函数.当a≠0时,f(x)=x2+(x≠0),取x=±1,得f(-1)+f(1)=2≠0;f(-1)-f(1)=-2a≠0,所以f(-1)≠-f(1),f(-1)≠f(1).所以函数f(x)既不是奇函数也不是偶函数.(2)若f(1)=2,即1+a=2,解得a=1,此时f(x)=x2+.任取x1,x2∈[2,+∞),且x1<x2,则f(x1)-f(x2)=(+)-(+)=(x1+x2)(x1-x2)+=(x1-x2)(x1+x2-).由于x1≥2,x2≥2,且x1<x2,所以x1-x2<0,x1+x2>,所以f(x1)<f(x2),故f(x)在[2,+∞)上是增函数.13.函数f(x)的定义域为D={x|x≠0},且满足对任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.解:(1)因为对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2),所以令x1=x2=1,得f(1)=2f(1),所以f(1)=0.(2)f(x)为偶函数.证明如下:令x1=x2=-1,有f(1)=f(-1)+f(-1),所以f(-1)=f(1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),所以f(-x)=f(x),所以f(x)为偶函数.(3)依题设有f(4×4)=f(4)+f(4)=2,由(2)知,f(x)是偶函数,所以f(x-1)<2⇔f(|x-1|)<f(16).又f(x)在(0,+∞)上是增函数.所以0<|x-1|<16,解得-15<x<17且x≠1.所以x的取值范围是(-15,1)∪(1,17).14.已知函数f(x)在R上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0.(1)试判断函数y=f(x)的奇偶性;(2)试求方程f(x)=0在闭区间[-2 018,2 018]上根的个数,并证明你的结论.解:(1)若y=f(x)为偶函数,则f(-x)=f[2-(x+2)]=f[2+(x+2)]=f(4+x)=f(x),所以f(7)=f(3)=0,这与f(x)在闭区间[0,7]上,只有f(1)=f(3)=0 矛盾;因此f(x)不是偶函数.若y=f(x)为奇函数,则f(0)=f(-0)=-f(0),所以f(0)=0,这与f(x)在闭区间[0,7]上,只有f(1)=f(3)=0矛盾;因此f(x)不是奇函数.综上可知:函数f(x)既不是奇函数也不是偶函数.(2)因为f(x)=f[2+(x-2)]=f[2-(x-2)]=f(4-x),f(x)=f[7+(x-7)]=f[7-(x-7)]=f(14-x),所以f(14-x)=f(4-x),即f[10+(4-x)]=f(4-x),所以f(x+10)=f(x),即函数f(x)的周期为10.对于区间[7,10],令7+x∈[7,10],则x∈[0,3],7-x∈[4,7],又f(7-x)=f(7+x),f(x)在[4,7]内无零点,所以f(x)在[7,10]内无零点.又因为f(1)=f(3)=0,所以f(1)=f(1+10n)=0(n∈Z),f(3)=f(3+10n)=0(n∈Z),即只有x=1+10n和x=3+10n(n∈Z)是方程f(x)=0的根.由-2 018≤1+10n≤2 018及n∈Z可得n=0,±1,±2,±3,…,±201,共403个;由-2 018≤3+10n≤2 018及n∈Z可得n=0,±1,±2,±3,…,±201,-202,共404个;所以方程f(x)=0在闭区间[-2 018,2 018]上的根共有807个.第7节函数的图象一、选择题1.函数f(x)=的图象大致为( A )解析:因为f(x)=,所以f(0)=0,排除选项C,D;当0<x<π时,sin x>0,所以当0<x<π时,f(x)>0,排除选项B.2.(2016·浙江卷)函数y=sin x2的图象是( D )解析:因为y=sin x2为偶函数,所以它的图象关于y轴对称,排除A,C 选项;当x=时,y=sin ≠1,排除B选项,故选D.3.函数y=的图象大致是( C )解析:由题意得,x≠0,排除A;当x<0时,x3<0,3x-1<0,所以>0,排除B;又因为x→+∞时,→0,所以排除D.4.函数f(x)=的图象如图所示,则下列结论成立的是( C )(A)a>0,b>0,c<0(B)a<0,b>0,c>0(C)a<0,b>0,c<0(D)a<0,b<0,c<0解析:函数定义域为{x|x≠-c},结合图象知-c>0,所以c<0.令x=0,得f(0)=,又由图象知f(0)>0,所以b>0.令f(x)=0,得x=-,结合图象知->0,所以a<0.5.已知函数y=f(x)及y=g(x)的图象分别如图所示,方程f(g(x))=0和g(f(x))=0的实根个数分别为a和b,则ab等于( A )(A)24 (B)15 (C)6 (D)4解析:由图象知,f(x)=0有3个根,分别为0,±m(m>0),其中1<m<2, g(x)=0有2个根n,p,-2<n<-1,0<p<1,由f(g(x))=0,得g(x)=0或±m,由图象可知当g(x)所对应的值为0,±m时,其都有2个根,因而a=6;由g(f(x))=0,知f(x)=n或p,由图象可以看出当f(x)=n时,有1个根,而当f(x)=p时,有3个根,即b=1+3=4.所以ab=24.6.如图所示,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,点P以1 cm/s 的速度沿A→B→C的路径向C移动,点Q以2 cm/s的速度沿B→C→A 的路径向A移动,当点Q到达A点时,P,Q两点同时停止移动.记△PCQ的面积关于移动时间t的函数为S=f(t),则f(t)的图象大致为( A )解析:当0≤t≤4时,点P在AB上,点Q在BC上,此时PB=6-t,QC=8-2t,则S=f(t)=QC×BP=(8-2t)×(6-t)=t2-10t+24;当4≤t≤6时,点P 在AB上,点Q在CA上,此时AP=t,P到AC的距离为t,QC=2t-8,则S=f(t)=QC×t=(2t-8)×t=(t2-4t);当6≤t≤9时,点P在BC上,点Q在CA上,此时CP=14-t,QC=2t-8,则S=f(t)=QC×CPsin ∠ACB= (2t-8)·(14-t)×=(t-4)·(14-t).综上,函数f(t)对应的图象是三段抛物线,依据开口方向得图象是A.二、填空题7.若函数y=f(x)的图象过点(1,1),则函数y=f(4-x)的图象一定经过点.解析:由于函数y=f(4-x)的图象可以看作y=f(x)的图象先关于y轴对称,再向右平移4个单位长度得到.点(1,1)关于y轴对称的点为(-1,1),再将此点向右平移4个单位长度,可推出函数y=f(4-x)的图象过定点(3,1).答案:(3,1)8.函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0), (1,2),(3,1),则f()= .解析:由已知f(3)=1,所以=1.所以f()=f(1)=2.答案:29.给定min{a,b}=已知函数f(x)=min{x,x2-4x+4}+4,若动直线y=m与函数y=f(x)的图象有3个交点,则实数m的取值范围为.解析:设g(x)=min{x,x2-4x+4},则f(x)=g(x)+4,故把g(x)的图象向上平移4个单位长度,可得f(x)的图象,函数f(x)=min{x,x2-4x+4}+4的图象如图所示,由于直线y=m与函数y=f(x)的图象有3个交点,数形结合可得m的取值范围为(4,5).答案:(4,5)10.函数f(x)是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式<0的解集为.解析:在[0,)上y=cos x>0,在(,4]上y=cos x<0.由f(x)的图象知在(1,)上<0,因为f(x)为偶函数,y=cos x也是偶函数,所以y=为偶函数,所以<0的解集为(-,-1)∪(1,).答案:(-,-1)∪(1,)11.如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集为.解析:令g(x)=log2(x+1),作出函数g(x)的图象如图.由得所以结合图象知不等式f(x)≥log2(x+1)的解集为{x|-1≤x≤1}.答案:{x|-1≤x≤1}12.若当x∈(1,2)时,函数y=(x-1)2的图象始终在函数y=log a x的图象的下方,则实数a的取值范围是.解析:如图,在同一平面直角坐标系中画出函数y=(x-1)2和y=log a x的图象.由于当x∈(1,2)时,函数y=(x-1)2的图象恒在函数y=log a x的图象的下方,则解得1<a≤2.答案:(1,2]三、解答题13.讨论方程|1-x|=kx的实数根的个数.解:可以利用函数图象确定方程实数根的个数.设y1=|1-x|,y2=kx,则方程的实根的个数就是函数y1=|1-x|的图象与y2=kx的图象交点的个数.由图象可知:当-1≤k<0时,方程没有实数根;当k=0或k<-1或k≥1时,方程只有一个实数根;当0<k<1时,方程有两个不相等的实数根.14.已知函数f(x)=x|m-x|(x∈R),且f(4)=0.(1)求实数m的值;(2)作出函数f(x)的图象;(3)根据图象指出f(x)的单调递减区间;(4)若方程f(x)=a只有一个实数根,求a的取值范围.解:(1)因为f(4)=0,所以4|m-4|=0,即m=4.(2)f(x)=x|x-4|=f(x)的图象如图所示.(3)f(x)的单调递减区间是[2,4].(4)从f(x)的图象可知,当a<0或a>4时,f(x)的图象与直线y=a只有一个交点,即方程f(x)=a只有一个实数根,所以a的取值范围是(-∞,0)∪(4,+∞).15.设函数f(x)=x+的图象为C1,C1关于点A(2,1)的对称图象为C2,C2对应的函数为g(x).(1)求函数g(x)的解析式;(2)若直线y=b与C2有且仅有一个公共点,求b的值,并求出交点的坐标.解:(1)设曲线C2上的任意一点为P(x,y),则P关于A(2,1)的对称点P′(4-x,2-y)在C1上,所以2-y=4-x+,即y=x-2+=,。

2012届高考一轮数学单元测试一(函数与导数)

2012届高考一轮数学单元测试一(函数与导数)一、选择题:(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,恰有一项是符合题目要求的)1.若0log 2<a ,121>⎪⎭⎫⎝⎛b,则( )A .1>a ,0>bB .1>a ,0<bC .10<<a ,0>bD .10<<a ,0<b 2.若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =-的值域是( ) A .10[2,]3 B .38[,]23- C .8[2,]3D .10[2,]3- 3.若函数))(12()(a x x xx f -+=为奇函数,则a = ( )A .21 B .32 C .43D .1 4.设函数⎩⎨⎧>-≤=-1,log 11,2)(21x x x x f x ,则满足2)(≤x f 的x 的取值范围是( )A .1[-,2]B .[0,2]C .[)1,+∞D .[)0,+∞5.曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A .12-B .12 C.2- D.26.已知函数()x f 的最小正周期是8,且()()x f x f -=+44对一切实数x 成立,则()x f ( )A .是偶函数不是奇函数B .是奇函数不是偶函数C .既是奇函数又是偶函数D .不是奇函数,也不是偶函数7.设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为( ) A .1 B .12 CD8.已知偶函数()f x 在区间()0,+∞单调递增,则满足()f f x <的x 取值范围是( )A.(2,)+∞B.(,1)-∞-C.[2,1)(2,)--+∞ D.(1,2)-9.已知函数1()lg ()2xf x x =-有两个零点21,x x ,则有( )A .1201x x <<B .121x x =C .121x x >D .120x x <10.给出定义:若1122m x m -<≤+(其中m 为整数),则m 叫做离实数x 最近的整数,记作{x },即{}.x m =在此基础上给出下列关于函数(){}f x x x =-的四个命题:①11()22f -=;②(3.4)0.4f =-;③11()()44f f -<;④()y f x =的定义域是R ,值域是11[,]22-.则其中真命题的序号是 ( )A .①②B .①③C .②④D .③④二、填空题:(本大题共5小题,每小题5分,共25分。

2012届高考数学第一轮复习精品试题:函数-学生版

2012届高考数学第一轮复习精品试题:函数§2.1.1 函数的概念和图象经典例题:设函数f (x )的定义域为[0,1],求下列函数的定义域: (1)H (x )=f (x2+1);(2)G (x )=f (x+m )+f (x -m )(m >0).当堂练习:1. 下列四组函数中,表示同一函数的是( ) A.(),()f x x g x ==B.2(),()f x x g x ==C .21(),()11x f x g x x x -==+- D.()()f x g x ==2函数()y f x =的图象与直线x a =交点的个数为( )A .必有一个B .1个或2个C .至多一个D .可能2个以上3.已知函数1()1f x x =+,则函数[()]f f x 的定义域是( )A .{}1x x ≠ B .{}2x x ≠- C .{}1,2xx ≠-- D .{}1,2x x ≠-4.函数1()1(1)f x x x =--的值域是( )A .5[,)4+∞B .5(,]4-∞C . 4[,)3+∞D .4(,3-∞ 5.对某种产品市场产销量情况如图所示,其中:1l 表示产品各年年产量的变化规律;2l 表示产品各年的销售情况.下列叙述: ( )(1)产品产量、销售量均以直线上升,仍可按原生产计划进行下去;(2)产品已经出现了供大于求的情况,价格将趋跌;(3)产品的库存积压将越来越严重,应压缩产量或扩大销售量;(4)产品的产、销情况均以一定的年增长率递增.你认为较合理的是( ) A .(1),(2),(3) B .(1),(3),(4) C .(2),(4) D .(2),(3)6.在对应法则,,,x y y x b x R y R→=+∈∈中,若25→,则2-→ , →6.7.函数()f x 对任何x R +∈恒有1212()()()f x x f x f x ⋅=+,已知(8)3f =,则f = .8.规定记号“∆”表示一种运算,即a b a b a b R+∆++∈,、. 若13k ∆=,则函数()fx k x=∆的值域是___________.9.已知二次函数f(x)同时满足条件: (1) 对称轴是x=1; (2) f(x)的最大值为15;(3) f(x)的两根立方和等于17.则f(x)的解析式是 .10.函数2522y x x =-+的值域是 .11. 求下列函数的定义域 : (1)()121x f x x =-- (2)(1)()x f x x x+=-12.求函数y x =13.已知f(x)=x2+4x+3,求f(x)在区间[t,t+1]上的最小值g(t)和最大值h(t).14.在边长为2的正方形ABCD 的边上有动点M ,从点B 开始,沿折线BCDA 向A 点运动,设M 点运动的距离为x ,△ABM 的面积为S . (1)求函数S=的解析式、定义域和值域; (2)求f[f(3)]的值.§2.1.2 函数的简单性质经典例题:定义在区间(-∞,+∞)上的奇函数f (x )为增函数,偶函数g (x )在[0,+∞ )上图象与f (x )的图象重合.设a >b >0,给出下列不等式,其中成立的是 f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b )③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) A .①④ B .②③ C .①③ D .②④ 当堂练习:1.已知函数f(x)=2x2-mx+3,当()2,x ∈-+∞时是增函数,当(),2x ∈-∞-时是减函数,则f(1)等于 ( )A .-3B .13C .7D .含有m 的变量2.函数1()x f x -=是( )A . 非奇非偶函数B .既不是奇函数,又不是偶函数奇函数C . 偶函数D . 奇函数3.已知函数(1)()11f x x x =++-,(2)()f x =2()33f x x x =+(4)0()()1()R x Q f x x C Q ∈=∈⎧⎨⎩,其中是偶函数的有( )个 A .1 B .2 C .3 D .44.奇函数y=f (x )(x ≠0),当x ∈(0,+∞)时,f (x )=x -1,则函数f (x -1)的图象为( )5.已知映射f:A →B,其中集合A={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中元素在映射f 下的象,且对任意的A a ∈,在B 中和它对应的元素是a,则集合B 中元素的个数是( )A .4B .5C .6D .76.函数2()24f x x tx t =-++在区间[0, 1]上的最大值g(t)是 .7. 已知函数f(x)在区间(0,)+∞上是减函数,则2(1)f x x ++与()34f 的大小关系是 .8.已知f(x)是定义域为R 的偶函数,当x<0时, f(x)是增函数,若x1<0,x2>0,且12x x <,则1()f x 和2()f x 的大小关系是 .9.如果函数y=f(x+1)是偶函数,那么函数y=f(x)的图象关于_________对称.10.点(x,y)在映射f作用下的对应点是(,)22y x +-,若点A 在f 作用下的对应点是B(2,0),则点A 坐标是 .13. 已知函数2122()x x f x x++=,其中[1,)x ∈+∞,(1)试判断它的单调性;(2)试求它的最小值.14.已知函数2211()a f x aa x+=-,常数0>a 。

高三数学一轮复习《函数》练习题(含答案)

高三数学一轮复习《函数》练习题(含答案)第I 卷(选择题)一、单选题1.已知函数()22,0,()2,0x x x f x g x x x e x >⎧==-+⎨≤⎩(其中e 是自然对数的底数),若关于x 的方程(())0g f x m -=恰有三个不等实根123,,x x x ,且123x x x <<,则21322x x x --的最小值为( ) A .ln33- B .3ln 22- C .ln 23- D .1-2.已知3log 2a =,143b =,2ln 3c =,则a ,b ,c 的大小关系为( ) A .a b c >> B .b a c >> C .c b a >> D .c a b >> 3.已知()f x 为偶函数,当0x ≤时,1()e x f x x --=-,则曲线()y f x =在点(1,2)处的切线斜率是( )A .1B .2C .eD .2e 1--- 4.直线1y =,y x =,1x =及幂函数1y x -=将直角坐标系第一象限分为8个部分(如图所示),那么幂函数13y x -=的图像在第一象限中经过( )A .③⑦B .③⑧C .④⑦D .①⑤5.已知函数()22x a x f x -=+的图象关于直线1x =对称,若()log ,04,6,46a x x g x x x ⎧<≤=⎨-<≤⎩且123x x x <<,()()()123g x g x g x ==,则123x x x 的取值范围为( )A .()0,2B .()0,4C .()4,6D .(]4,66.已知函数()(32lg 1f x x x x =++,若当0,2πθ⎡⎤∈⎢⎥⎣⎦时,()()2sin 4sin 0f t f t θθ+->恒成立,则实数t 的取值范围是( )A .10,4⎛⎫ ⎪⎝⎭B .1,5⎛⎫-∞ ⎪⎝⎭C .1,4⎛⎫+∞ ⎪⎝⎭D .1,5⎛⎫+∞ ⎪⎝⎭7.已知函数()22,,x ax x a f x x a x a ⎧-+≥⎪=⎨+<⎪⎩,若对于任意正数k ,关于x 的方程()f x k =都恰有两个不相等的实数根,则满足条件的实数a 的个数为( )A .0B .1C .2D .无数8.已知奇函数()f x ,且()()g x xf x =在[)0,+∞上是增函数.若(2)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( )A .a b c <<B .c b a <<C .b a c <<D .b c a <<9.若()24f x x bx =++的零点个数为1,求b 的值( )A .4B .4-C .4±D .5-或310.已知集合2{|230}A x x x =--≥,{}2B x y x ==-,则A B ⋃=( )A .[)3,+∞B .[)2,+∞C .(][),10,-∞-⋃+∞D .(][),12,-∞-⋃+∞ 11.函数()f x 对任意x ∈R ,都有()()()12,1f x f x y f x =+=-的图形关于()1,0对称,且()71f =- 则()2021f =( )A .-1B .1C .0D .2 12.函数1()()21x x f x x -=+的部分图象大致是( ) A . B . C . D .第II 卷(非选择题)二、填空题13.已知函数()f x ,给出下列四个结论:①函数2yx 是偶函数;②函数1y x x=-是增函数;③函数()f x 定义域为I ,区间D I ⊆,若任意12,x x D ∈,都有1212()()0f x f x x x ->-,则()f x 在区间D 上单调递增; ④()f x 定义域为I , “对于任意x I ∈,总有()f x M ≥ (M 为常数)”是“函数()f x 在区间I 上的最小值为M ”的必要不充分条件.其中正确结论的序号是___________.14.若函数()f x 在其定义域上单增,且零点为2,则满足条件的一个()f x 可能是____________.(写出满足条件的一个()f x 即可)15.新能源汽车是战略性新兴行业之一,发展新能源汽车是中国从汽车大国迈向汽车强国的必由之路,某汽车企业为了适应市场需求引进了新能源汽车生产设备,2019年该企业新能源汽车的销售量逐月平稳增长,1,2,3月份的销售量分别为1.2千台,1.4千台,1.8千台,为估计以后每个月的销售量,以这三个月的销售量为依据,用一个函数模拟汽车的月销售量y (单位:千台)和月份x 之间的函数关系,有以下两个函数模型可供选择:①2()(0)f x ax bx c a =++≠;②()(0,1)x g x pq r q q ≠,如果4月份的销售量为2.3千台,选择一个效果较好的函数进行模拟,则估计5月份的销售量为________千台.16.已知函数16()log f x x =,58,2()33,2x x x g x x --≤⎧=⎨->⎩,若(())10f g x +≥,则x 的取值范围为 ______.三、解答题17.做出()223,13,1x x x f x x ⎧+-≤=⎨>⎩的图象并求出其值域18.函数()f x 定义在区间()0,+∞,y R ∈,都有()()y f x yf x =,且()f x 不恒为零.()1求()1f 的值;()2若1a b c >>>且2b ac =,求证:()()()2[]f a f c f b <;()3若102f ⎛⎫< ⎪⎝⎭,求证:()f x 在()0,+∞上是增函数.19.解下列方程与不等式(1)2lg(426)lg(3)1x x x +---=(2)222log log (3)x x x <-20.已知224x y +=,求22234x y x +++的最值,并求取得最值时的x 的值.21.(1)求函数2y x =(2)求函数311x y x -=+的值域.22.已知函数3211()-32m f x x x +=,1()3g x mx =-,m 是实数. (1)若()f x 在区间(2,+∞)为增函数,求m 的取值范围;(2)在(1)的条件下,函数()()()h x f x g x =-有三个零点,求m 的取值范围.23.已知函数221y ax x a =-+-,其中0a ≥,a ∈R .(1)若1a =,作出函数221y ax x a =-+-的图象;(2)设221y ax x a =-+-在区间[]1,2上的最小值为t ,求t 关于a 的表达式.24.为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人 滑雪时间都不会超过3小时.求甲、乙两人所付滑雪费用相同的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学单元练习题:函数(Ⅰ)一、填空题:本大题共14小题,每小题5分,共70分。

不需要写出解答过程,请把答案直接填空在答题卷相应位置上。

1、函数)34(log 1)(22-+-=x x x f 的定义域为 ▲ 。

2、设f(x)=2|1|2,||1,1, ||11x x x x --≤⎧⎪⎨>⎪+⎩,则f[f(21)]= ▲ 。

3、已知)2(x f 的定义域为]2,0[,则)(log 2x f 的定义域为 ▲ 。

4、若0.52a =,πlog 3b =,22πlog sin5c =,则a 、b 、c 从大到小的顺序是 ▲ 。

5、若函数()()(2)f x x a bx a =++(常数a b ∈R ,)是偶函数,且它的值域为(]4-∞,,则该函数的解析式()f x = ▲ 。

6、若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为 ▲ 。

7、定义运算法则如下:1112322181,lg lg ,2,,412525a b a b a b a b M N -⊕=+⊗=-=⊕=则M +N = ▲ 。

8、设10<<a ,函数2()log (22)xx a f x aa =--,则使()0f x <的x 取值范围是 ▲ 。

9、设定义域为R 的函数⎩⎨⎧=≠-=1,01||,1|lg |)(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同实数解的充要条件是 ▲ 。

10、设方程2ln 72x x =-的解为0x ,则关于x 的不等式02x x -<的最大整数解为 ▲ 。

11、若关于x 的不等式22x x t <--至少有一个负数解,则实数t 的取值范围是 ▲ 。

12、设(32()log f x x x =+,则对任意实数,a b ,0a b +≥是()()0f a f b +≥的▲ 条件。

13、已知函数()y xf x '=的图象如左图所示(其中'()f x 是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是 ▲ 。

14、a 是实数,函数2()22f x a x =+.如果函数()y f x =在区间[-1,1]上有零点,则a 的取值范围是 ▲ 。

二、解答题:本大题共6小题,共90分。

请在指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。

15、已知二次函数f(x)=ax2+bx ,(a ,b 为常数,且a ≠0)满足条件f(-x +5) =f(x -3),且方程f(x)=x 有两个相等的实根。

(1)求f(x)的解析式;(2)是否存在实数m,n(m <n),使f(x)的定义域和值域分别为[m ,n]与[3m ,3n],若存在,求出m,n 的值,若不存在,请说明理由。

16、某投资公司计划投资A 、B 两种金融产品,根据市场调查与预测,A 产品的利润与投资量成正比例,其关系如图1,B 产品的利润与投资量的算术平方根成正比例,其关系如图2,(注:利润与投资量单位:万元)(1) 分别将A 、B 两产品的利润表示为投资量的函数关系式; (2) 该公司已有10万元资金,并全部投入A 、B 两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?17、设函数22()21(0)f x tx t x t x t =++-∈>R ,. (1)求()f x 的最小值()h t ;(2)若()2h t t m <-+对(02)t ∈,恒成立,求实数m 的取值范围. 18、已知函数()2.2xxa f x =-(1) 若()f x 为奇函数,求a 的值.(2) 将()y f x =的图象向右平移两个单位,得到()y g x =的图象.求函数()y g x =的解析式; (3) 若函数()y h x =与函数()y g x =的图象关于直线1y =对称,求函数()y h x =的解析式; (4) 设()y h x =的最大值是m,且2m >求实数a 的取值范围.图219、设1x 、2x )(21x x ≠是函数)0()(223>-+=a x a bx ax x f 的两个极值点. (1)若2,121=-=x x ,求函数)(x f 的解析式; (2)若22||||21=+x x ,求b 的最大值;(3)设函数)()(')(1x x a x f x g --=,12(,)x x x ∈,当a x =2时,求证: 21()(32)12g x a a +≤。

20、已知函数()f x 的定义域为[0,1],且同时满足:①(1)3f =;②()2f x ≥恒成立;③若12120,0,1x x x x ≥≥+≤,则有1212()()()2f x x f x f x +≥+-。

(1)试求函数()f x 的最大值和最小值; (2)试比较1()2n f 与122n +的大小(n ∈N ); (3)某人发现:当x =12n (n ∈N)时,有f(x)<2x +2.由此他提出猜想:对一切x ∈(0,1],都有()22f x x <+,请你判断此猜想是否正确,并说明理由。

参考答案一、填空题: 1、函数)34(log 1)(22-+-=x x x f 的定义域为 ▲ 。

(1,3)2、设f(x)=2|1|2,||1,1, ||11x x x x --≤⎧⎪⎨>⎪+⎩,则f[f(21)]= ▲ 。

4133、已知)2(x f 的定义域为]2,0[,则)(log 2x f 的定义域为 ▲ 。

]16,2[4、若0.52a =,πlog 3b =,22πlog sin5c =,则a 、b 、c 从大到小的顺序是 ▲ 。

a>b>c 5、若函数()()(2)f x x a bx a =++(常数a b ∈R ,)是偶函数,且它的值域为(]4-∞,,则该函数的解析式()f x = 224x -+ . ▲ 条件。

6、若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为 ▲ 。

(5,7)7、定义运算法则如下:1112322181,lg lg ,2,,412525a b a b a b a b M N -⊕=+⊗=-=⊕=则M +N= ▲ 。

8、设10<<a ,函数2()log (22)xx a f x aa =--,则使()0f x <的x 取值范围是 ▲ 。

)3log ,(a -∞ 解析:因为10<<a ,由0)22(log 2<--x x a a a 得:1222>--x x a a ,即:0)1)(3(>+-x x a a ,所以3>x a ,故3log a x <,故选C . ▲ 。

9、设定义域为R 的函数⎩⎨⎧=≠-=1,01||,1|lg |)(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同实数解的充要条件是 ▲ 。

(A )0<b 且0>c (B )0>b 且0<c (C )0<b 且0=c (D )0≥b 且0=c解析:由)(x f 图象知要使方程有7解,应有0)(=x f 有3解,0)(≠x f 有4解.则0,0<=b c ,选C .10、已知函数()y xf x '=的图象如左图所示(其中'()f x 是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是 ▲ 。

C11、设方程2ln 72x x=-的解为0x ,则关于x 的不等式02x x -<的最大整数解为___▲___。

412、若关于x 的不等式22x x t <--至少有一个负数解,则实数t 的取值范围是____▲____。

9,24⎛⎫- ⎪⎝⎭13、设(32()log f x x x =+,则对任意实数,a b ,0a b +≥是()()0f a f b +≥的 ▲ 条件。

充要14、a 是实数,函数2()223f x ax x a =+--.如果函数()y f x =在区间[-1,1]上有零点,则a的取值范围是 ▲ 。

1([,)2-∞+∞ 二、解答题:15、已知函数y k x =与22(0)y x x =+≥的图象相交于11()A x y ,,22()B x y ,,1l ,2l 分别是22(0)y x x =+≥的图象在A B ,两点的切线,M N ,分别是1l ,2l 与x 轴的交点.(I )求k 的取值范围;(II )设t 为点M 的横坐标,当12x x <时,写出t 以1x 为自变量的函数式,并求其定义域和值域; (III的大小,并说明理由(O 是坐标原点).解:(I )由方程22y kx y x =⎧⎨=+⎩,消y 得220x kx -+=. ① 依题意,该方程有两个正实根,故212800k x x k ⎧∆=->⎨+=>⎩,,解得 (II )由()2f x x '=,求得切线1l 的方程为1112()y x x x y =-+,由2112y x =+,并令0y =,得1x ,2x 是方程①的两实根,且12x x <,故1x 是关于k 的减函数,所以1x 的取值范围是t 是关于1x 的增函数,定义域为,所以值域为()-∞,0,(III )当12x x <时,由(II由①可知122x x =.当21x x <时,有相同的结果已知二次函数f(x)=x2+bx ,(a ,b 为常数,且a ≠0)满足条件f(-x +5) =f(x -3),且方程f(x)=x 有两个相等的实根。

(Ⅰ)求f(x)的解析式;(Ⅱ)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m ,n]与[3m ,3n]?16、知:函数)1(2)(2<<++=b c c bx x x f ,0)1(=f ,且方程01)(=+x f 有实根。

(1)求证:31c -<≤-且0b ≥;(2)若m 是方程01)(=+x f 的一个实根,判断)4(-m f 的正负并加以证明。

【解析】:(1 又c <b <1方程f (x )+1=0有实根,即0122=+++c bx x 有实根,故△=0)1(442≥+-c b 即30)1(4)1(2≥⇒≥+-+c c c 或1-≤c 又c <b <1,得-3<c≤-1知0≥b . (2))1)(()1(2)(22--=++-=++=x c x c x c x c bx x x f ,01)(<-=m f , ∴ c <m <1 ∴ c m c <-<-<-344,∴ 0)14)(4()4(>----=-m c m m f , ∴ )4(-m f 的符号为正。

相关文档
最新文档