数学建模常用算法

合集下载

数学建模常用算法

数学建模常用算法
function f=curvefun(x,tdata) f=x(1)+x(2)*exp(-0.02*x(3)*tdata); %x(1)=a,x(2)=b,x(3)=k
数据的可视化
解决地形地貌问题的关键是要将未测量地点的高度用数据插 值的方法求出来,然后就可以用Matlab 绘图方法画出来。 [x,y]=meshgrid(1:10) ; %构造测量网络 h=rand(10,10); %测量数据点 (此时为随机产生的数据) [xi,yi]=meshgrid(1:0.1:10) ; %构造插值网络 hi=interp2(x,y,h',xi,yi,'spline'); %二维插值命令 surf(hi); %画出地貌图 xlabel('x'),ylabel('y'),zlabel('h');
f ( x) a1r( x) a2r( x) amrm ( x)
的函数,
其中是事先选定好的一组线性无关
ak yi , i 1,2,, n, f ( xi ) 是待定系数,拟合的准则是使 与 的距离的平方和最 n n 2 2 小,即为最小二乘准则。记 J (a1 ,, am ) i [ f ( xi ) yi ]
for t=1:30 x(t)=exp(-t); y(t)=1/Y(t); end % 计算,并输出回归系数 B c=zeros(30,1)+1; X=[c,x']; B=inv(X'*X)*X'*y'
for i=1:30
%计算回归拟合值 z(i)=B(1,1)+B(2,1)*x(i); %计算离差 s(i)=y(i)-sum(y)/30; %计算误差 w(i)=z(i)-y(i); end %计算离差平方和S S=s*s'; %回归误差平方和Q Q=w*w'; %计算回归平方和U U=S-Q; %计算 输出F检验值 F=28*U/Q %计算 非线性回归模型的拟合值 for j=1:30 Y(j)=1/(B(1,1)+B(2,1)*exp(-j)); end plot(T,Y)

数学建模十大经典算法( 数学建模必备资料)

数学建模十大经典算法(  数学建模必备资料)

建模十大经典算法1、蒙特卡罗算法。

该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时通过模拟可以来检验自己模型的正确性。

2、数据拟合、参数估计、插值等数据处理算法。

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。

3、线性规划、整数规划、多元规划、二次规划等规划类问题。

建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo、MATLAB软件实现。

4、图论算法。

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。

这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。

6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法。

这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7、网格算法和穷举法。

网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8、一些连续离散化方法。

很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9、数值分析算法。

如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10、图象处理算法。

赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。

历年全国数学建模试题及解法赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A 出版资源配置06B 艾滋病疗法的评价及疗效的预测 07A 中国人口增长预测 07B 乘公交,看奥运 多目标规划 数据处理 图论 08A 数码相机定位 08B 高等教育学费标准探讨09A 制动器试验台的控制方法分析 09B 眼科病床的合理安排 动态规划 10A 10B赛题发展的特点:1.对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B ,某些问题需要使用计算机软件,01A 。

数学模型-贪心算法及实例PPT课件

数学模型-贪心算法及实例PPT课件
9
活动安排问题
设有n个活动的集合E={1,2,…,n},其中每个活动都要求 使用同一资源,如演讲会场等,而在同一时间内只有一个 活动能使用这一资源。每个活动i都有一个要求使用该资源 的起始时间si和一个结束时间fi,且si <fi 。如果选择了活动 i,则它在半开时间区间[si, fi)内占用资源。若区间[si, fi)与 区间[sj, fj)不相交,则称活动i与活动j是相容的。也就是说, 当si≥fj或sj≥fi时,活动i与活动j相容。
3
9. 数值分析算法。如果在比赛中采用高级语言进行编 程的话,那些数值分析中常用的算法比如方程组 求解、矩阵运算、函数积分等算法就需要额外编写库 函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关, 即使问题与图形无关,论文中也会需要图片来说明 问题,这些图形如何展示以及如何处理就是需要解决 的问题,通常使用MATLAB 进行处理。
贪心算法并不总能求得问题的整体最优解。但对 于活动安排问题,贪心算法greedySelector却总能求 得的整体最优解,即它最终所确定的相容活动集合A 的规模最大。这个结论可以用数学归纳法证明。
13
背包问题
给定n种物品和一个背包。物品i的重量是Wi, 其价值为Vi,背包的容量为C。应如何选择装 入背包的物品,使得装入背包中物品的总价值 最大?(假定物品可以分割成更小部分,亦即 物品可以部分装入)
具体算法可描述如下页:
17
float knapsack(float c,float w[], float v[],float x[]) { int n=v.length; for (int i = 0; i < n; i++) d[i] = (w[i],v[i],i); MergeSort.mergeSort(d); int i; float opt=0; for (i=0;i<n;i++) x[i]=0; for (i=0;i<n;i++) { if (d[i].w>c) break; x[d[i].i]=1; opt+=d[i].v; c-=d[i].w; } if (i<n){ x[d[i].i]=c/d[i].w; opt+=x[d[i].i]*d[i].v; } return opt; }

数学建模中常见的十大模型

数学建模中常见的十大模型

数学建模中常见的十大模型集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#数学建模常用的十大算法==转(2011-07-24 16:13:14)1. 蒙特卡罗算法。

该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。

2. 数据拟合、参数估计、插值等数据处理算法。

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。

3. 线性规划、整数规划、多元规划、二次规划等规划类算法。

建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。

4. 图论算法。

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。

这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。

6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。

这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7. 网格算法和穷举法。

两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。

很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9. 数值分析算法。

如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10. 图象处理算法。

赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。

数学建模十大算法

数学建模十大算法

、此数学建模十大算法依据网上的一份榜单而写,本文对此十大算法作一一简单介绍。

这只是一份榜单而已,数学建模中还有很多的算法,未一一囊括。

欢迎读者提供更多的好的算法。

2、在具体阐述每一算法的应用时,除了列出常见的应用之外,同时,还会具体结合数学建模竞赛一一阐述。

毕竟,此十大算法,在数学建模竞赛中有着无比广泛而重要的应用。

且,凡是标着“某某年某国某题”,即是那一年某个国家的数学建模竞赛原题。

3、此十大算法,在一些经典的算法设计书籍上,无过多阐述。

若要具体细致的深入研究,还得请参考国内或国际上关于此十大算法的优秀论文。

谢谢。

一、蒙特卡罗算法1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam和Nick Metropolis共同发明了,蒙特卡罗方法。

此算法被评为20世纪最伟大的十大算法之一,详情,请参见我的博文:/v_JULY_v/archive/2011/01/10/6127953.aspx蒙特卡罗方法(Monte Carlo method),又称随机抽样或统计模拟方法,是一种以概率统计理论为指导的一类非常重要的数值计算方法。

此方法使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。

由于传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。

蒙特卡罗方法的基本原理及思想如下:当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。

有一个例子可以使你比较直观地了解蒙特卡洛方法:假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。

蒙特卡洛方法是怎么计算的呢?假想你有一袋豆子,把豆子均匀地朝这个图形上撒,然后数这个图形之中有多少颗豆子,这个豆子的数目就是图形的面积。

数学建模常用算法模型

数学建模常用算法模型

数学建模常用算法模型数学建模是将实际问题抽象为数学模型,并利用数学方法求解问题的过程。

在数学建模中,算法模型是解决问题的关键。

下面介绍一些常用的数学建模算法模型。

1.线性规划模型:线性规划是一种用于求解线性约束下的最优化问题的数学方法。

线性规划模型的目标函数和约束条件均为线性函数。

线性规划广泛应用于供需平衡、生产调度、资源配置等领域。

2.非线性规划模型:非线性规划是一种用于求解非线性目标函数和约束条件的最优化问题的方法。

非线性规划模型在能源优化调度、金融风险管理、工程设计等方面有广泛应用。

3.整数规划模型:整数规划是一种在决策变量取离散值时求解最优化问题的方法。

整数规划模型在网络设计、物流调度、制造安排等领域有广泛应用。

4.动态规划模型:动态规划是一种通过将问题分解为多个阶段来求解最优化问题的方法。

动态规划模型在资源分配、投资决策、路径规划等方面有广泛应用。

5.随机规划模型:随机规划是一种在目标函数和约束条件存在不确定性时求解最优化问题的方法。

随机规划模型在风险管理、投资决策、资源调度等方面有广泛应用。

6.进化算法模型:进化算法是一种通过模拟生物进化过程来求解最优化问题的方法。

进化算法模型包括遗传算法、粒子群算法、蚁群算法等,被广泛应用于参数优化、数据挖掘、机器学习等领域。

7.神经网络模型:神经网络是一种模仿人脑神经元连接和传递信息过程的数学模型。

神经网络模型在模式识别、数据分类、信号处理等领域有广泛应用。

8.模糊数学模型:模糊数学是一种用于处理不确定性和模糊信息的数学模型。

模糊数学模型在风险评估、决策分析、控制系统等方面有广泛应用。

除了以上常用的数学建模算法模型,还有许多其他的算法模型,如图论模型、动力系统模型、马尔科夫链模型等。

不同的问题需要选择合适的算法模型进行建模和求解。

数学建模算法模型的选择和应用需要根据具体的问题和要求进行。

数学建模的主要建模方法

数学建模的主要建模方法

数学建模的主要建模方法数学建模是一种用数学语言描述实际问题,并通过数学方法求解问题的过程。

它是数学与实际问题相结合的一种技术,具有广泛的应用领域,如物理、工程、经济、生物等。

数学建模的主要建模方法可以分为经典建模方法和现代建模方法。

经典建模方法是数学建模的基础,主要包括数理统计、微积分、线性代数等数学工具。

经典建模方法的特点是基于简化和线性的假设,并通过解析或数值方法来求解问题。

1.数理统计:统计学是数学建模的重要工具之一,它的主要任务是通过对样本数据的分析,推断出总体的特征。

数理统计中常用的方法有概率论、抽样理论、假设检验等。

2.微积分:微积分是数学建模中常用的工具,它研究变化率和积分问题。

微积分的应用范围广泛,常用于描述物体的运动,求解最优化问题等。

3.线性代数:线性代数是研究向量空间与线性变换的数学学科。

在数学建模中,线性代数经常出现在模型的描述和求解过程中,如矩阵运算、线性回归等。

现代建模方法是近年来发展起来的一种新的建模方法,主要基于现代数学工具和计算机技术。

现代建模方法的特点是模型更为复杂,计算更加精确,模拟和实验相结合。

1.数值模拟:数值模拟是一种基于计算机技术的建模方法,通过离散和近似的数学模型,利用数值计算方法求解模型。

数值模拟常用于模拟和预测实际问题的复杂现象,如天气预报、电路仿真等。

2.优化理论:优化理论是数学建模中的一种重要工具,它研究如何找到最优解或最优化方案。

优化问题常用于求解资源分配、生产排程等实际问题。

3.系统动力学:系统动力学是一种研究系统结构和行为的数学方法,它通过建立动态模型,分析系统的变化趋势和稳定性。

系统动力学常用于研究生态系统、经济系统等复杂系统。

4.随机过程:随机过程是描述随机事件随时间变化的数学模型。

它在数学建模中常用于分析随机现象的特征和规律,如金融市场变动、人口增长等。

总体而言,数学建模的方法多种多样,建模方法的选择取决于问题的性质、可用数据和计算资源等因素。

数学建模常用模型方法总结

数学建模常用模型方法总结

数学建模常用模型方法总结数学建模是指用数学方法对实际问题进行抽象和描述,进而建立数学模型来解决实际问题的方法。

数学建模是现代科学技术的重要手段之一,它在实际应用中起着重要的作用。

下面将介绍一些常用的数学建模方法。

一、线性规划线性规划是在约束条件下求解线性目标函数的问题,广泛应用于经济、工程等领域。

它的数学模型可以表示为:$$\begin{align*}\text{maximize}\quad & \mathbf{C}^T\mathbf{X} \\\text{subject to}\quad & \mathbf{A}\mathbf{X} \leq \mathbf{b} \\& \mathbf{X} \geq \mathbf{0}\end{align*}$$其中,$\mathbf{C}$是一个列向量,$\mathbf{X}$是要优化的目标变量,$\mathbf{A}$是一个矩阵,$\mathbf{b}$是一个列向量。

二、非线性规划非线性规划是在约束条件下求解非线性目标函数的问题。

非线性规划模型往往在现实问题中具有更广泛的适用性。

非线性规划的数学模型可以表示为:$$\begin{align*}\text{maximize}\quad & f(\mathbf{X}) \\\text{subject to}\quad & \mathbf{g}(\mathbf{X}) \leq\mathbf{0} \\& \mathbf{h}(\mathbf{X}) = \mathbf{0}\end{align*}$$其中,$f(\mathbf{X})$是一个目标函数,$\mathbf{g}(\mathbf{X})$是不等式约束条件,$\mathbf{h}(\mathbf{X})$是等式约束条件。

三、动态规划动态规划是一种通过将问题分解成子问题的方式来求解复杂问题的方法。

它通常适用于具有最优子结构性质的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模常用算法
数学建模是指将实际问题转化为数学模型,并通过数学方法进行求解
的过程。

在数学建模中,常用的算法有很多种,下面将介绍一些常见的数
学建模算法。

1.最优化算法:
-线性规划算法:如单纯形法、内点法等,用于求解线性规划问题。

-非线性规划算法:如最速下降法、牛顿法等,用于求解非线性规划问题。

-整数规划算法:如分支定界法、割平面法等,用于求解整数规划问题。

2.概率统计算法:
-蒙特卡洛模拟:通过模拟随机事件的方式,得出问题的概率分布。

-贝叶斯统计:利用先验概率和条件概率,通过数据更新后验概率。

-马尔可夫链蒙特卡洛:用马尔可夫链的方法求解复杂的概率问题。

3.图论算法:
-最短路径算法:如迪杰斯特拉算法、弗洛伊德算法等,用于求解两点
之间的最短路径。

-最小生成树算法:如普里姆算法、克鲁斯卡尔算法等,用于求解图中
的最小生成树。

- 最大流最小割算法: 如Edmonds-Karp算法、Dinic算法等,用于
求解网络流问题。

4.插值和拟合算法:
-多项式插值:如拉格朗日插值、牛顿插值等,用于通过已知数据点拟合出多项式模型。

-最小二乘法拟合:通过最小化实际数据与拟合模型之间的差异来确定模型参数。

-样条插值:通过使用多段低次多项式逼近实际数据,构造连续的插值函数。

5.遗传算法和模拟退火算法:
-遗传算法:通过模拟自然选择、遗传变异和交叉等过程,优化问题的解。

-模拟退火算法:模拟固体退火过程,通过随机策略进行,逐步靠近全局最优解。

6.数据挖掘算法:
- 聚类算法: 如K-means算法、DBSCAN算法等,用于将数据分为不同的类别。

-分类算法:如朴素贝叶斯算法、决策树算法等,用于通过已知数据的类别预测新数据的类别。

- 关联分析算法: 如Apriori算法、FP-growth算法等,用于发现数据集中的关联规则。

以上只是数学建模中常用的一些算法,实际上还有很多其他算法也可以应用于数学建模中,具体使用哪种算法取决于问题的性质和要求。

为了
对问题进行求解,研究者和工程师们会结合具体情况选择合适的算法,并将其适当进行组合和改进,以获得更好的建模和求解结果。

相关文档
最新文档