河北衡水中学2021届高三调研试题 数学 Word版含答案

合集下载

2021届河北省衡水中学高三上学期新高考四调考试数学(理)试题及答案

2021届河北省衡水中学高三上学期新高考四调考试数学(理)试题及答案

绝密★启用前衡水中学2020-2021学年度高三年级上学期四调考试数学试卷注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2og 1{|l }A x x =<,集合{|B y y ==,则A B ⋃=( )A .()0,+∞B .[)0,2C .()0,2D .[)0,+∞2.已知圆22:240C x y x y +-+=关于直线32110x ay --=对称,则圆C 中,22a a ⎛⎫- ⎪⎝⎭为中点的弦长为( )A .1B .2C .3D .43.若双曲线()2210mx ny m +=>,则mn=( ) A .14B .14-C .4D .-44.攒尖是古代中国建筑中屋顶的一种结构形式.依其平面有圆形攒尖、三角攒尖、四角攒尖、八角攒尖.也有单檐和重檐之分.多见于亭阁式建筑,园林建筑.以腾龙阁为例,它属重檐四角攒尖,它的上层轮廓可近似看作一个正四棱锥,若此正四棱锥的侧面积是底面积的3倍,则此正四棱锥的内切球半径与底面边长比为( )A .3B .4C .2D5.17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36︒的等腰三角形(另一种是顶角为108︒的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC △中,BC AC =.根据这些信息,可得sin1674︒=( )A B .C .D .6.已知定义在R 上的函数()2xf x x =⋅,(log a f =,31log 2b f ⎛⎫=- ⎪⎝⎭,()ln3c f =,则a ,b ,c 的大小关系为( )A .c b a >>B .b c a >>C .a b c >>D .c a b >>7.已知1F 、2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共交点,且123F PF π∠=,则椭圆和双曲线的离心率倒数之和的最大值为( )A B C .2D .8.已知()f x 是可导的函数,且()()f x f x '<,对于x R ∈恒成立,则下列不等关系正确的是( ) A .()()10f ef >,()20202020f e < B .()()10f ef >,()()211f e f >-C .()()10f ef <,()()211f e f <-D .()()10f ef >,()()202020200f e f >二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知椭圆C :22148x y +=内一点()1,2M ,直线l 与椭圆C 交于A ,B 两点,且M 为线段AB 的中点,则下列结论正确的是( )A .椭圆的焦点坐标为()2,0、()2,0-B .椭圆C 的长轴长为C .直线l 的方程为30x y +-=D .||AB =10.设0a >,0b >,且24a b +=,则下列结论正确的是( )A .11a b+ B .21a b+的最小值为2 C .12a b +的最小值为94D .111b a a b +≥++ 11.已知函数()sin cos |sin cos |f x x x x x =++-,下列结论不正确的是( )A .函数图像关于4x π=对称B .函数在,44ππ⎡⎤-⎢⎥⎣⎦上单调递增C .若()()124f x f x +=,则122()2x x k k Z ππ+=+∈D .函数()f x 的最小值为-212.已知正方体1111ABCD A B C D -棱长为2,如图,M 为1CC 上的动点,AM ⊥平面α、下面说法正确的是( )A .直线AB 与平面α所成角的正弦值范围为⎣⎦B .点M 与点1C 重合时,平面α截正方体所得的截面,其面积越大,周长就越大C .点M 为1CC ;的中点时,若平面α经过点B ,则平面α截正方体所得截面图形是等腰梯形D .已知N 为1DD 中点,当AM MN +的和最小时,M 为1CC 的中点三、填空题:本题共4小题,每小题5分,共20分13.设,a b 为单位向量,且|1rra b -=,则|2|a b -=__________.14.已知数列{}n a 满足21,1log (3),2,*n n n a n n n N +=⎧=⎨+≥∈⎩,定义使123)(*a a a k N ⋅⋅∈为整数的k 叫做“幸福数”,则区间[]1,2020内所有“幸福数”的和为__________. 15.关于x 的方程ln 1xkx x--=在(]0,e 上有两个不相等的实根,则实数k 的取值范围__________. 16.设双曲线222116x y b -=的左右两个焦点分别为1F 、2F ,P 是双曲线上任意一点,过1F 的直线与12F PF ∠的平分线垂直,垂足为Q ,则点Q 的轨迹曲线E 的方程__________;M 在曲线E 上,点()8,0A ,()5,6B ,则1||||2AM BM +的最小值__________. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知数列{}n a 的前n 项和为n S ,4n n a S +=,设2log n n b a =(1)判断数列{}n b 是否为等差数列,并说明理由. (2)求数列21211n n b b -+⎧⎫⎨⎬⋅⎩⎭的前n 项和n T .18.在①sin sin 4sin sin b A a B c A B +=,②2cos222CC -+=③()sin sin sin a A B c C -+=,这三个条件中任选一个,补充到下面的问题中,并解决该问题.已知ABC △中,a ,b ,c 分别为内角A ,B ,C的对边,sin sin A B =,2c =,__________,求角C 及ABC △的面积S .19.如图,在四棱锥P ABCD -中,平面PAD ⊥底面ABCD ,其中底面ABCD 为等腰梯形,//AD BC ,PA AB BC CD ===,PA PD ⊥,60PAD ∠=︒,Q 为PD 的中点.(1)证明://CQ 平面PAB ; (2)求二面角P AQ C --的余弦值.20.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点(F ,椭圆的两顶点分别为(),0A a -,(),0B a ,M 为椭圆上除A ,B 之外的任意一点,直线MA ,BM 的斜率之积为14-.(1)求椭圆C 的标准方程;(2)若P 为椭圆C 短轴的上顶点,斜率为k 的直线不经过P 点且与椭圆C 交于E ,F 两点,设直线PE ,PF 的斜率分别为1k ,2k ,且121k k +=-,试问直线l 是否过定点,若是,求出这定点;若不存在,请说明理由.21.已知抛物线()2:20C y px p =>的焦点F 到准线的距离为2,且过点F 的直线l 被抛物线C 所截得的弦长MN 为8. (1)求直线l 的方程;(2)当直线l 的斜率大于零时,求过点M ,N 且与抛物线C 的准线相切的圆的方程.22.已知函数()ln x f x ae x =,(其中 2.71828e =…是自然对数的底数),()2ln g x x x a =+,0a >.(1)讨论函数()f x 的单调性(2)设函数()()()h x g x f x =-,若()0h x >对任意的()0,1x ∈恒成立,求实数a 的取值范围.答案详解1.D解:∵{}2log 1A x x =<{}02x x =<<,{B y y =={}0y y =≥,∴[0,)AB =+∞,故选:D .2.D依题意可知直线过圆心(1,2)-,即34110a +-=,2a =.故(),1,122a a ⎛⎫-=-⎪⎝⎭. 圆方程配方得22(1)(2)5x y -++=,(1,1)-与圆心距离为1,故弦长为4=.故选D .本题考查直线与圆的位置关系,利用中点弦三角形解弦长,属于基础题。

河北省衡水中学2021届高三上学期调研考试数学

河北省衡水中学2021届高三上学期调研考试数学

河北省衡水中学2021届高三上学期调研考试数学注意事项:1.答题前,考生在答题卡上务必将自己的姓名、准考证号涂写清楚.2.第Ⅰ卷,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.第Ⅰ卷(非选择题共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求1.已知集合{}|2,0xA y y x -==<,12|B x y x ⎧⎫==⎨⎬⎩⎭,则A B =A .[)1,+∞ B.()1,+∞ C.()0,+∞ D.[)0,+∞2.设()()()2i 3i 35i x y +-=++(i 为虚数单位),其中x ,y 是实数,则i x y +等于A .5B C .D .23.已知a,b 都是正数,则“3log 3log b a <”是“333>>ba”的A.充分不必要条件B.必要不充分条件C.充分必要条件D 既不充分也不必要条件4.甲、乙、丙三位同学获得某项竞赛活动的前三名,但具体名次未知.3人作出如下预测:甲说:我不是第三名;乙说:我是第三名;丙说:我不是第一名.若甲、乙、丙3人的预测结果有且只有一个正确,由此判断获得第三名的是A.甲B.乙C.丙D.无法预测5.《九章算术》是我国算术名著,其中有这样一个问题:今有碗田,下周三十步,径十六步,问为田几何?意思是说现有扇形田,弧长三十步,直径十六步,问面积多少?书中给出计算方法,以径乘周,四而一,即扇形的面积等于直径乘以弧长再除以4,在此问题中,扇形的圆心角的弧度数是A.154 B.415 C.815 D.1206.若nxx )(22-的展开式中只有第六项的二项式系数最大,则展开式中的常数项是A.210B.180C.160D.1757.泉城广场上矗立着的“泉标”,成为泉城济南的标志和象征.为了测量“泉标”高度,某同学在“泉标”的正西方向的点A 处测得“泉标”顶端的仰角为45o ,沿点A 向北偏东30o 前进100m 到达点B ,在点B 处测得“泉标”顶端的仰角为30o ,则“泉标”的高度为A.50m B.100m C.120m D.150m8.已知函数)(x f 满足213)(,6)2()-2(--==++x x x g x f x f ,且)()(x g x f 与的图象交点为),,(),,(),,(882211y x y x y x 则128128x x x y y y +++++++L L 的值为A.20B.24C.36D.40二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.某颗人造地球卫星的运行轨道是以地球的中心F 为一个焦点的椭圆,如图所示,已知它的近地点A (离地面最近的点)距地面m 千米,远地点B (离地面最远的点)距地面n 千米,并且F 、A 、B 三点在同一直线上,地球半径约为R 千米,设椭圆的长轴长、短轴长、焦距分别为2a 、2b 、2c ,则A.a -c =m +R B.a+c=n+R C.2a=m+nD.b=)(m R n R ++)(10.甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱中,分别以321,,A A A 表示由甲箱中取出的是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱中取出的球是红球的事件,则下列结论正确的是A.P(B)=52B.P 115A |B 1=)(C.事件B 与事件1A 相互独立 D.1A 、2A 、3A 两两互斥11.已知点P 是双曲线1916E 22=-y x :的右支上一点,21,F F 为双曲线E 的左、右焦点,21F PF ∆的面积为20,则下列说法正确的是A.点P 的横坐标为320 B.21F PF ∆的周长为380C.321π小于PF F ∠ D.21F PF ∆的内切圆半径为4312.已知正四棱柱ABCD-A 1B 1C 1D 1的底面边长为2,侧棱AA 1=1,P 为上底面A 1B 1C 1D 1上的动点,给出下列四个结论中正确结论为A.若PD=3,则满足条件的P 点有且只有一个B.若PD=3,则点P 的轨迹是一段圆弧C.若PD//平面ACB 1,则PD 长的最小值为2D.若PD//平面ACB 1,且PD=3,则平面BDP 截正四棱柱ABCD-A 1B 1C 1D 1的外接球所得平面图形的面积为49π第Ⅱ卷(非选择题共90分)三、填空题:本题共4小题,每小题5分,共20分.13.已知向量a =(1,x +1),b =(x ,2),若满足a //b ,且方向相同,则x =.14.已知m 是2与8的等比中项,则圆锥曲线1x 22=-my 的离心率是_____________.15.对于函数f(x),若在定义域内存在实数0x 满足)()(f 00x f x -=-,则称函数f(x)为“倒戈函数”,设)0,(123)(f ≠∈-+=m R m m x x是定义在[-1,1]上的“倒戈函数”,则实数m 的取值范围是16.已知函数()2,()20,,,f x x g x x A B C ωωω==>,其中是这两个函数图象的交点,且不共线.①1ABC ω=∆当时,面积的最小值为;②若存在ABC ∆是等腰直角三角形,则ω的最小值为.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(10分)数列).13(21}{321-=++++nn n a a a a a 满足:(1)求}{n a 的通项公式;(2)若数列.T }{,3}{n 项和的前求满足:n b a b n b a n n nn =18.(12分)在锐角ABC ∆中,内角A B C ,,所对的边分别为,,a b c .已知sin b A sin()3a B π=+.(1)求角B 的大小;(2)求ac的取值范围.19.(12分)如图,三棱柱中,,,平面平面.(1)求证:;(2)若,直线与平面所成角为,为的中点,求二面角的余弦值.20.(12分)为提高城市居民生活幸福感,某城市公交公司大力确保公交车的准点率,减少居民乘车候车时间.为此,该公司对某站台乘客的候车时间进行统计.乘客候车时间受公交车准点率、交通拥堵情况、节假日人流量增大等情况影响.在公交车准点率正常、交通拥堵情况正常、非节假日的情况下,乘客候车时间随机变量X 满足正态分布·在公交车准点率正常、交通拥堵情况正常、非节假日的情况下,调查了大量乘客的候车时间,经过统计得到如图频率分布直方图.(1)在直方图各组中,以该组区间的中点值代表该组中的各个值,试估计μ,的值;(2)在统计学中,发生概率低于千分之三的事件叫小概率事件,一般认为,在正常情况下,一次试验中,小概率事件是不能发生的.在交通拥堵情况正常、非节假日的某天,随机调查了该站的10名乘客的候车时间,发现其中有3名乘客候车时间超过15分钟,试判断该天公交车准点率是否正常,说明理由.(参考数据:≈4.38,≈4.63,≈5.16,0.84137≈0.2898,0.84136≈0.3546,0.15873≈0.0040,0.15874≈0.0006,(+)0.6826P X μδμδ-<<=,(2+2)0.9544P X μδμδ-<<=,(3+3)0.9973P X μδμδ-<<=)21.(12分)已知抛物线F p px y C 点),0(2:2>=为抛物线的焦点,焦点F 到直线0343=+-y x 的距离为1d ,焦点F 到抛物线1223.5,d d C d =的准线的距离为且(1)抛物线C 的标准方程;(2)若在x 轴上存在点M ,过点M 的直线l 与抛物线C 相交于P ,Q 两点,且2211|PM|||QM +为定值,求点M 的坐标.22.(12分)已知函数).0(ln )(2≥+--=a x ax x x f (1)讨论函数)(x f 的极值点的个数;(2)若函数)(x f 有两个极值点.2ln 23)()(,,2121->+x f x f x x 证明:。

2021 2021学年河北省衡水中学高三(上)一调数学试卷(理科)(解析版

2021 2021学年河北省衡水中学高三(上)一调数学试卷(理科)(解析版

2021 2021学年河北省衡水中学高三(上)一调数学试卷(理科)(解析版2021-2021学年河北省衡水中学高三(上)一调数学试卷(理科)(解析版2021-2021学年河北省衡水中学高三(上)一调数学试卷(理科)一、选择题:本大题共12个小题,每小题5分后,共60分后.在每小题得出的四个选项中,只有一项就是合乎题目建议的.21.(5分后)子集a={x|lnx≥0},b={x|x<16},则a∩b=()a.(1,4)b.[1,4)c.[1,+∞)d.[e,4)0.92.(5分后)设a=log0.80.9,b=log1.10.9,c=1.1,则a,b,c的大小关系就是c ()a.a<b<cb.a<c<bc.b<a<cd.c<a<b3.(5分后)未知a>1,a.0<x<1b.1<x<0,则f(x)<1成立的一个充分不必要条件是()c.2<x<0d.2<x<14.(5分)已知函数22,则f(f(f(1)))的值等同于()a.π1b.π+1c.πd.0与x轴所围站图形的面积为()5.(5分)曲线a.4b.2c.1d.36.(5分)函数y=sin(2x)的图象与函数y=cos(x)的图象()a.存有相同的对称轴但并无相同的对称中心b.存有相同的对称中心但并无相同的对称轴c.既有相同的对称轴也存有相同的对称中心d.既并无相同的对称中心也并无相同的对称轴7.(5分后)未知函数f(x)的图象如图所示,则f(x)的解析式可能将就是()a.f(x)=x3b.f(x)=+xc.f(x)=3xd.f(x)=3+x38.(5分后)设f(x)就是奇函数,对任一的实数x、y,存有f(x+y)=f(x)+f (y),当x>0时,f(x)<0,则f(x)在区间[a,b]上()a.有最大值f(a)b.有最小值f(a)c.有最大值d.存有最小值9.(5分)已知函教f(x)=asin(ωx+φ)(a>0,ω>0)的图象与直线y=b(0<b<a)的三个相邻交点的横坐标分别是2,4,8,则f(x)的单调递增区间是()a.[6kπ,6kπ+3],k∈zb.[6k3,6k],k∈zc.[6k,6k+3],k∈zd.[6kπ3,6kπ],k∈z1页10.(5分)若不等式lg≥(x1)lg3对任意x∈(∞,1)恒成立,则a的取值范围就是()a.(∞,0]b.[1,+∞)c.[0,+∞)d.(∞,1]11.(5分后)设f(x)就是定义在r上的函数,其Auron函数为f′(x),若f(x)+f′(x)>1,f(0)=2021,则xx不等式ef(x)>e+2021(其中e为自然对数的底数)的边值问题为()a.(2021,+∞)b.(∞,0)∪(2021,+∞)c.(∞,0)∪(0,+∞)d.(0,+∞)12.(5分后)设立函数f(x)=sin,若存有f(x)的极值点x0满足用户x0+[f(x0)]<m,则m的值域222范围就是()a.(∞,6)∪(6,+∞)b.(∞,4)∪(4,+∞)c.(∞,2)∪(2,+∞)d.(∞,1)∪(1,+∞)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分后)若非零向量,满足用户|+|=||=2||,则向量与+的夹角为.14.(5分后)设立函数y=f(x)在r上加定义,对于任一取值的正数p,定义函数2,则称函数fp(x)为f(x)的“p界函数”,若给定函数f(x)=x2x1,p=2,则下列结论不成立的是:.①fp[f(0)]=f[fp(0)];②fp[f(1)]=f[fp(1)];③fp[fp (2)]=f[f(2)];④fp[fp(3)]=f[f(3)].15.(5分后)未知f(x)就是定义在r上且周期为3的函数,当x∈[0,3)时,f (x)=|x2x+|,若函数y=f(x)a在区间[3,4]上加10个零点(互不相同),则实数a的值域范围就是.16.(5分后)未知a,b,c分别为△abc的三个内角a,b,c的对边,a=2且(2+b)(sinasinb)=(cb)sinc,则△abc面积的最大值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)2217.(10分)已知a∈r,命题p:“?x∈[1,2],xa≥0”,命题q:“?x∈r,x+2ax+2a=0”.(1)若命题p为真命题,求实数a的取值范围;(2)若命题“p∨q”为真命题,命题“p∧q”为假命题,谋实数a的值域范围.18.(12分后)在△abc中,内角a,b,c面元的边分别为a,b,c,未知sinc+sin (ba)=sin2a,a≠.2(ⅰ)求角a的取值范围;(ⅱ)若a=1,△abc的面积s=x,c为钝角,求角a的大小.19.(12分后)未知函数f(x)=e+ax1(e为自然对数的底数).(ⅰ)当a=1时,谋过点(1,f(1))处的切线与坐标轴围起的三角形的面积;2(ⅱ)若f(x)≥x在(0,1)上恒设立,谋实数a的值域范围.20.(12分)已知函数f(x)满足2f(x+2)f(x)=0,当x∈(0,2)时,f(x)=lnx+ax当x∈(4,2)时,f(x)的最大值为4.(ⅰ)求实数a的值;2页,(ⅱ)设b≠0,函数,x∈(1,2).若对任意的x1∈(1,2),总存在x2∈(1,2),并使f(x1)g(x2)=0,谋实数b的值域范围.21.(12分后)未知函数f(x)=x+3+ax+b,g(x)=x+3+lnx+b,(a,b为常数).(ⅰ)若g(x)在x=1处的切线过点(0,5),求b的值;(ⅱ)设立函数f(x)的导函数为f′(x),若关于x的方程f(x)x=xf′(x)存有唯一求解,谋实数b的值域范围;(ⅲ)令f(x)=f(x)g(x),若函数f(x)存在极值,且所有极值之和大于5+ln2,求实数a的取值范围.22.(12分后)未知函数,(ⅰ)求函数f(x)的单调区间,并推论与否存有极值;(ⅱ)若对任意的x>1,恒有ln(x1)+k+1≤kx成立,求k的取值范围;(ⅲ)证明:(n∈n+,n≥2).3页2021-2021学年河北省衡水中学高三(上)一调数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分后,共60分后.在每小题得出的四个选项中,只有一项就是合乎题目建议的.21.(5分后)(2021?重庆三模)子集a={x|lnx≥0},b={x|x<16},则a∩b=()a.(1,4)b.[1,4)c.[1,+∞)d.[e,4)【分析】求出a与b中不等式的解集确定出a与b,找出两集合的交集即可.【解答】解:由a中lnx≥0=ln1,得到x≥1,即a=[1,+∞);由b中的不等式解得:4<x<4,即b=(4,4),则a∩b=[1,4).故选:b.【评测】此题考查了关连及其运算,熟练掌握关连的定义就是求解本题的关键.2.(5分)(2021?东城区二模)设a=log0.80.9,b=log1.10.9,c=1.1,则a,b,c 的大小关系是c()a.a<b<cb.a<c<bc.b<a<cd.c<a<b【分析】利用指数与对数函数的单调性即可得出.0.9【解答】解:∵0<a=log0.80.9<1,b=log1.10.9<0,c=1.1>1,∴b<a<c.故选:c.【评测】本题考查了指数与对数函数的单调性,属基础题.3.(5分)(2021?南昌校级二模)已知a>1,,则f(x)<1设立的一个充份不必要条件就是0.9()a.0<x<1b.1<x<0c.2<x<0d.2<x<1【分析】谋出来不等式的边值问题即为不等式设立的充要条件;据当子集a?子集b且b?a时,a就是b的充份不必要条件.【解答】解:f(x)<1成立的充要条件是∵a>12∴x+2x<0∴2<x<0∴f(x)<1成立的一个充分不必要条件是1<x<0故选项为b【评测】本题考查不等式的边值问题就是不等式的充要条件;据子集之间的关系推论条件关系.4.(5分)(2021春?玉溪校级期末)已知函数22,则f(f(f(1)))的值等同于()a.π1b.π+1c.πd.0【分析】根据分段函数的定义域,算出f(1)的值,再根据分段函数的定义域展开代入解;4页【答疑】求解:函数2,f(1)=π+1>0,∴f(f(1))=0,可得f(0)=π,∴f(f(f(1)))=π,故选c;【评测】此题主要考查函数值的解,就是一道基础题;5.(5分)(2021春?进贤县校级月考)曲线a.4b.2c.1d.3上的积分可求出答案.上的积分,与x轴所围站图形的面积为()【分析】根据面积等于cosx的绝对值在0≤x≤【解答】解:面积等于cosx的绝对值在0≤x≤即s==3=3=3,故选:d.【评测】本题主要考查余弦函数的图象和用定分数谋面积的问题.属于基础题6.(5分)(2021?开封模拟)函数y=sin(2x)的图象与函数y=cos(x)的图象()a.存有相同的对称轴但并无相同的对称中心b.存有相同的对称中心但并无相同的对称轴c.既有相同的对称轴也存有相同的对称中心d.既并无相同的对称中心也并无相同的对称轴【分析】分别求出2函数的对称轴和对称中心即可得解.【解答】解:由2xz.由x=kπ,k∈z,解得函数y=cos(x)的对称轴为:x=kπ,k∈z.=k,k∈z,解得函数y=sin(2x)的对称轴为:x=+,k∈k=0时,二者存有相同的对称轴.由2x由x=kπ,k∈z,可解得函数y=sin(2x=k)的对称中心为:()的对称中心为:(kπ+,0),k∈z.,0),k∈z.,k∈z,可解得函数y=cos(x故2函数没相同的对称中心.故选:a.【评测】本题主要考查了三角函数的图象和性质,属基本知识的考查.7.(5分后)(2021?厦门演示)未知函数f(x)的图象如图所示,则f(x)的解析式可能将就是()5页。

河北省衡水市2021届新高考数学教学质量调研试卷含解析

河北省衡水市2021届新高考数学教学质量调研试卷含解析

河北省衡水市 2021 届新高考数学教学质量调研试卷、选择题:本题共 12 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是符合题目 要求的。

1.如图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形 ABC 的斜边 BC ,直角边 AB,AC .已知以直角边 AC, AB 为直径的半圆的面积之比为 1 , 4 记 ABC ,则 sin2 ( )详解】 5曲线 C 有相同的焦点 .设 P 为抛物线与双曲线 C 的一个交点, 且cos PF 1F 2 75,则双曲线 C 的离心率为253 C .54 D .5答案】 D 解析】 分析】由半圆面积之比,可求出两个直角边 AB, AC 的长度之比,从而可知 tanAC AB 121,结合同角三角函数的基本关系,即可求出sin ,cos,由二倍角公式即可求出 sin2 .解:由题意知0,2,以 AB 为直径的半圆面积S 12AB 2 ,2以 AC 为直径的半圆面积S 2AC 22,则S S 21AC 2 AB2,即 tanAC AB2sin2cos 1 sin 由tansin 1 ,得cos2cos故选 :D.【点睛】sin22sin cos考查了二倍角公式.本题的关键是由面积比求出角的正切值2 x 2.已知双曲线C: 2a 22b y 22 1 a2 0,b 0 的左、右焦点分别为 F 1、 F 2 ,抛物线 y 22pxp 0 与双25本题考查了同角三角函数的基本关系,5 5 ,所以 25 5A . 2或 3B . 2 或3C. 2或 3 D .2或3【答案】 D 【解析】 【分析】55设 PF1 m , PF2 n ,根据 cos PF 1F 2 7 和抛物线性质得出 PF 2 7 m ,再根据双曲线性质得出 m 7a ,n 5a ,最后根据余弦定理列方程得出 a 、 c 间的关系,从而可得出离心率. 【详解】故选: D.点睛】 本题考查了双曲线离心率的求解,涉及双曲线和抛物线的简单性质,考查运算求解能力,属于中档题.3.某几何体的三视图如图所示 (单位: cm ),则该几何体的体积等于( ) cm 3过 P 分别向 x 轴和抛物线的准线作垂线,垂足分别为M 、 N , 不妨设 PF 1m , PF 2 n ,则 MF 1 PN PF 2 PF 1 cos PF 1F 25m 7QP 为双曲线上的点,则 PF 1又 F 1F 2 2c ,在 PF 1F 2 中,整理得 c 2 5ac 6a 2 0 ,即PF 2 2a ,即由余弦定理可得2e 5e 6 0 ,Qe 5m7 49a 2 2a , 4c 2 得 m 7a , 25a 2 ,2 7a 2c1,解得 e 2或 e 3.n 5a ,2 3 2 3 A .4B .4C . 6D .63 2 3 2 【答案】 D【解析】解:根据几何体的三视图知,该几何体是三棱柱与半圆柱体的组合体,V=V 三棱柱 +V 半圆柱 = ×2×2×1+ ?π ?2×11=( 6+1.5 π)cm 1.2故答案为 6+1.5 π. 点睛:根据几何体的三视图知该几何体是三棱柱与半圆柱体的组合体,结合图中数据计算它的体积即可. 4.新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出口产品供给, 实现了行业的良性发展 .下面是 2012 年至 2016 年我国新闻出版业和数字出版业营收增长情况,则下列说 法错误的是( )A . 2012 年至 2016 年我国新闻出版业和数字出版业营收均逐年增加B . 2016年我国数字出版业营收超过 2012 年我国数字出版业营收的 2倍C . 2016年我国新闻出版业营收超过 2012 年我国新闻出版业营收的 1.5倍D . 2016 年我国数字出版营收占新闻出版营收的比例未超过三分之一【答案】 C 【解析】【分析】 通过图表所给数据,逐个选项验证 .【详解】 根据图示数据可知选项 A 正确;对于选项 B : 1935.5 2 3871 5720.9,正确;对于选项 C:116635.3 1.5 23595.8,故 C 不正确;对于选项 D : 23595.87865 5720.9 ,正确 .选 C.3【点睛】本题主要考查柱状图是识别和数据分析,题目较为简单 .5.一个袋中放有大小、形状均相同的小球,其中红球1 个、黑球2 个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为1 ;当无放回依次取出两个小球时,记取出的红球数为2,则( )A . E 1 E 2 , D 1 D 2B . E 1 E 2 , D 1 D 2C . E 1 E 2 ,D 1 D 2 D .E 1 E 2 , D 1 D 2【答案】 B 【解析】 【分析】分别求出两个随机变量的分布列后求出它们的期望和方差可得它们的大小关系 【详解】1可能的取值为 0,1,2 ; 2可能的取值为 0,1,4 1 4 1 4 P 10 ,P 12,P 1 11999 9 922 4 2 1 2 44 4故E 1,D 1 02221239999 9.2 1 1,2 122, P 2P 2 13 2 33 2 322 1 2 2 4 2故E 2,D 2 0212333 9 9故E 1E 2, D 1 D 2. 故选 B .【点睛】离散型随机变量的分布列的计算, 应先确定随机变量所有可能的取值, 再利用排列组合知识求出随机变量 每一种取值情况的概率, 然后利用公式计算期望和方差, 注意在取球模型中摸出的球有放回与无放回的区 别.上,且 AB//CD ,若正方体的六个面所在的平 B . m n 2C . m nD . m n 86.如图,正方体的底面与正四面体的底面在同一平面则下列结论正确的是(A . m n【答案】A【解析】【分析】根据题意,画出几何位置图形,由图形的位置关系分别求得m,n 的值,即可比较各选项【详解】如下图所示,CE 平面ABPQ ,从而CE//平面A1B1P1Q1 ,∴ m 4,∵ EF / /平面BPP1B1 ,EF / /平面AQQ1A1,且EF 与正方体的其余四个面所在平面均相交,∴ n 4,∴结合四个选项可知,只有m n 正确.故选:A.【点睛】本题考查了空间几何体中直线与平面位置关系的判断与综合应用,对空间想象能力要求较高,属于中档题7.已知VABC 的垂心为H ,且AB 6,BC 8,M 是AC 的中点,则uuuuruuur( )A.14【答案】A【解析】【分析】B.12 C .10 D.8uuur uuur uuuur uuu ruuuuruuuruuuuruuur1 uuuruuuruuuruuur由垂心的性质,得到BH AC 0 ,可转化HM AC BM AC,又BM AC 2 (BA BC) (BC BA) 即得解.【详解】因为H 为VABC 的垂心,所以BH AC ,uuur 所以BH uuuruuuur0,而HMuuuruuuurBM ,uuu uuu uuur uuuu uuu uuuuuuu 所以HM AC (HB BM) AC BM AC 因为M 是AC 的中点,uuuur uuur 1 uuur uuur uuur uuur 所以 BM AC (BA BC) (BC BA)1uuur 2 uuur 2 1(BC BA ) (64 36) 14 .故选: A【点睛】 本题考查了利用向量的线性运算和向量的数量积的运算率,考查了学生综合分析,转化划归,数学运算的 能力,属于中档题 .8.如图是正方体截去一个四棱锥后的得到的几何体的三视图,则该几何体的体积是(1 A .2【答案】 C 【解析】【分析】 根据三视图作出几何体的直观图,结合三视图的数据可求得几何体的体积 【详解】根据三视图还原几何体的直观图如下图所示:1的正方体 ABCD A 1B 1C 1D 1 中截去四棱锥 B 1 ABCD 所形成的几何体,31 2 2 该几何体的体积为 V 13 12 1 .33 故选: C.点睛】25 C .D .36由图可知, 该几何体是在棱长为1 B .3本题考查利用三视图计算几何体的体积,考查空间想象能力与计算能力,属于基础题详解】1i∵ i(3 z) 1 i ,∴ 3 z 1 i1 i ,i∴ z 2 i ,∴复数z 的虚部为1. 故选:C.【点睛】本题考查复数的四则运算、虚部概念,考查运算求解能力,属于基础题A .4 【答案】B 【解析】分析】uuu uuu uu uuu uuu uuuv可画出图形,根据条件可得2AC BC 3AO AC 2AO BOuuu uuu uu,从而可解出uuuv uuuv uuuv ,然后根据OA2BC AC 3BO BC 2BO AOuuu uuur uuur uuur uuu uuurAB 2 进行数量积的运算即可求出AC BC 2AO BO 2BO AO 8.【详解】如图:9.已知复数z 满足i(3 z) 1 i ,则z 的虚部为(B.C.–1 D.1答案】C解析】分析】利用复数的四则运算可得,即可得答案.10.点O 为ABC的三条中线的交点,且OAuuur uuurOB,AB 2,则AC BC的值为(B.8 C .6 D.12点 O 为 ABC 的三条中线的交点uuur 1 uuur uuur 1 uuur AO (AB AC) (2AC 33 uuuv uuuv uuuv 2AC BC 3AO由 uuuv uuuv uuuv 可得: 2BC AC 3BO又因 OA OB , AB 2,uuur uuur u uur uuur uuur uuur uuur 2 uuur 2 uuur 2 AC BC (2 AO BO) (2BO AO) 2AO 2BO 2AB 8.故选: B 【点睛】本题考查三角形重心的定义及性质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向 量的数乘运算及向量的数量积的运算,考查运算求解能力,属于中档题答案】 D 解析】 分析】解得 x 1 ,1 (1,10) .10故选: Duuu uuu 1 uuur uuu BC) , BO (BA 3 BC) uuu uuu uuuv AC 2AO BO uuu v uuuv 2BOu A u O uv ,由题得函数的定义域为( ,0) U(0,).因为 f ( x) f (x) ,所以 f (x) 为 (,0) U(0,) 上的偶函数,因为函数 y |1x| 1,y123 都是在 x|x 2所以函数 f (x) 在 (0, ) 上单调递减 . 因为 f (1) 3, f (lg x) 3f (1) ,所以 1 lg x1,且 lg x 0,详解】(0, ) 上单调递减 .11.已知函数 f (x) log 2 |x|x 123 ,则不等式 f (lg x) 3 的解集为(A . 1 ,1010B .1 10(10,1C . (1,10)D . 110,1(1,10)先判断函数的奇偶性和单调性, 得到 1 lg x 1 ,且 lg x 0 ,解不等式得解 .1 uuur uuur13(2u B u C urA C )考查函数的奇偶性和单调性的应用, 意在考查学生对这些知识的理解掌握水平答案】 C 解析】 分析】果. 【详解】tancos2 2cos 2sin 1 tan tan41 sin222 cos sin2sin cos1 tan所以 ,即 .44 故选 :C.【点睛】本题考查三角恒等变换中二倍角公式的应用和弦化切化简三角函数 ,难度较易 .、填空题:本题共 4 小题,每小题 5 分,共 20分。

河北省衡水中学2021届高三数学第一次教学质量检测试题 理(含解析).doc

河北省衡水中学2021届高三数学第一次教学质量检测试题 理(含解析).doc

河北省衡水中学2021届高三数学第一次教学质量检测试题 理(含解析)(考试时间:120分钟满分:150分)注意事项1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚,必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草纸上答题无效.第Ⅰ卷(满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只一项是符合题目要求的.1.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B = ( ) A. {}1,3- B. {}1,0 C. {}1,3 D. {}1,5【答案】C 【解析】∵ 集合{}124A ,,=,{}2|40B x x x m =-+=,{}1A B =∴1x =是方程240x x m -+=解,即140m -+=∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C 2.z 是z 的共轭复数,若()2,2(z z z z i i +=-=为虚数单位) ,则z =( ) A. 1i + B. 1i -- C. 1i -+ D. 1i -【答案】D 【解析】【详解】试题分析:设,,,z a bi z a bi a b R =+=-∈,依题意有22,22a b =-=,故1,1,1a b z i ==-=-. 考点:复数概念及运算.【易错点晴】在复数的四则运算上,经常由于疏忽而导致计算结果出错.除了加减乘除运算外,有时要结合共轭复数的特征性质和复数模的相关知识,综合起来加以分析.在复数的四则运算中,只对加法和乘法法则给出规定,而把减法、除法定义为加法、乘法的逆运算.复数代数形式的运算类似多项式的运算,加法类似合并同类项;复数的加法满足交换律和结合律,复数代数形式的乘法类似多项式乘以多项式,除法类似分母有理化;用类比的思想学习复数中的运算问题.3.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48) A. 1033 B. 1053 C. 1073D. 1093【答案】D 【解析】 试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即M N 最接近9310,故选D.【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log n a a M n M =.4.已知奇函数()f x 在R 上是增函数,()()g x xf x =.若0.82(log 5.1),(2),(3)a g b g c g =-==,则,,a b c 的大小关系为( )A. a b c <<B. c b a <<C. b a c <<D.b c a <<【答案】C 【解析】 【分析】根据奇函数()f x 在R 上是增函数可得()g x 为偶函数且在[)0,+∞上为增函数,从而可判断,,a b c 的大小.【详解】()g x 的定义域为R .()()()()()g x xf x x f x xf x g x -=--=--==⎡⎤⎣⎦,故()g x 为偶函数.因为()f x 为R 上的奇函数,故()00f =,当0x >时,因为()f x 为R 上的增函数,故()()00f x f >=.设任意的120x x ≤<,则()()120f x f x ≤<,故()()1122x f x x f x <, 故()()12g x g x <,故()g x 为[)0,+∞上的增函数,所以 ()()22log 5.1log 5.1a g g =-=,而0.82223log 8log 5.1log 422=>>=>,故()()()0.823log 5.12g g g >>,所以c a b >>.故选C.【点睛】本题考查函数的奇函数、单调性以及指对数的大小比较,注意奇函数与奇函数的乘积、偶函数与偶函数的乘积都是偶函数,指数对数的大小比较应利用中间数和对应函数的单调性来考虑.5.如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x ≥+的解集是( )A. {}|10x x -<≤B. {}|11x x -≤≤C. {}|11x x -<≤D. {}|12x x -<≤【答案】C 【解析】试题分析:如下图所示,画出2()log (1)g x x =+的函数图象,从而可知交点(1,1)D ,∴不等式()()f x g x ≥的解集为(1,1]-,故选C .考点:1.对数函数的图象;2.函数与不等式;3.数形结合的数学思想.6.设直线l 1,l 2分别是函数f(x)=ln ,01,{ln ,1,x x x x -<<>图象上点P 1,P­2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 A. (0,1) B. (0,2)C. (0,+∞)D. (1,+∞)【答案】A 【解析】试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A x B x -++又1l 与2l 的交点为221111112222111121211,ln .1,1,0111211PAB A B P PAB x x x x P x x S y y x S x x x x ∆∆⎛⎫-++>∴=-⋅=<=∴<< ⎪++++⎝⎭,故选A .考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围.7.(2021新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A. π B.3π4 C.π2D. π4【答案】B 【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2AC AB ==, 结合勾股定理,底面半径221312r ⎛⎫=-= ⎪⎝⎭, 由圆柱的体积公式,可得圆柱的体积是2233ππ1π4V r h ⎛⎫==⨯⨯= ⎪ ⎪⎝⎭,故选B.【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.8.(2021新课标全国I 理科)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A. 1 B. 2 C 4 D. 8【答案】C 【解析】 设公差为d,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C. 点睛:求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.9.设,m n 为非零向量,则“存在负数λ,使得λ=m n ”是“0m n ⋅<”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】 【分析】通过非零向量,m n 的夹角为钝角,满足0m n ⋅<,而λ=m n 不成立,可判断出结论. 【详解】解:,m n 为非零向量,存在负数λ,使得λ=m n ,则向量,m n 共线且方向相反,可得0m n ⋅<.反之不成立,非零向量,m n 的夹角为钝角,满足0m n ⋅<,而λ=m n 不成立.∴,m n 为非零向量,则“存在负数λ,使得λ=m n ”是0m n ⋅<”的充分不必要条件.【点睛】本题考查了向量共线定理、向量夹角公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.10.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩则z =2x +y 的最小值是( )A. -15B. -9C. 1D. 9【答案】A 【解析】 【分析】作出不等式组表示的可行域,平移直线z =2x +y ,当直线经过B (-6,-3)时,取得最小值.【详解】作出不等式组表示的可行域,结合目标函数的几何意义得函数在点B (-6,-3)处取得最小值z min =-12-3=-15.故选:A【点睛】此题考查二元一次不等式组表示平面区域,解决线性规划问题,通过平移目标函数表示的直线求得最值.11.已知椭圆()2212:11x C y m m +=>与双曲线()2222:10x C y n n-=>的焦点重合,1e 、2e 分别为1C 、2C 的离心率,则( ) A. m n >且121e e > B. m n >且111e e < C. m n <且121e e > D. m n <且121e e <【答案】A【分析】根据椭圆1C 和双曲线2C 的焦点重合得出222m n -=,可得出m 、n 的大小,再由离心率公式可得出12e e 与1的大小关系,进而可得出结论.【详解】由于椭圆1C 和双曲线2C 的焦点重合,则2211m n -=+,则2220m n -=>,1m >,0n >,m n ∴>.211m e m -==2e n ==,121e e ∴====>, 故选:A.【点睛】本题考查利用椭圆和双曲线的焦点求参数的大小关系,同时也考查了两曲线的离心率之积的问题,考查计算能力,属于中等题. 12.若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ).A. 1-B. 32e --C. 35e -D. 1【答案】A 【解析】由题可得()()()()121212121x x x f x x a ex ax e x a x a e ---⎡⎤=+++-=+++-⎣⎦', 因为()20f '-=,所以1a =-,()()211x f x x x e-=--,故()()212x f x x x e--'=+,令()0f x '>,解得2x <-或1x >,所以()f x 在()(),2,1,-∞-+∞上单调递增,在()2,1-上单调递减, 所以()f x 的极小值为()()1111111f e-=--=-,故选A .【名师点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同;(2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.第Ⅱ卷(非选择题共90分)本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题、第(23)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.第16题第一空2分,第二空3分.把答案填在答题卡上的相应位置.13.定义在区间[0,3π]上的函数y=sin2x 的图象与y=cosx 的图象的交点个数是 . 【答案】7 【解析】 由1sin 2cos cos 0sin 2x x x x =⇒==或,因为[0,3]x π∈,所以3551317,,,,,,,2226666x πππππππ=共7个 考点:三角函数图像14.如图,三棱锥A BCD -中, 3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是________.【答案】78【解析】如下图,连结DN ,取DN 中点P ,连结PM ,PC ,则可知即为异面直线,所成角(或其补角)易得,,,∴,即异面直线,所成角的余弦值为.考点:异面直线的夹角.15.在平面直角坐标系xoy 中,若曲线2by ax x=+(,a b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b += . 【答案】3- 【解析】 曲线2b y ax x=+过点(2,5)P -,则452b a +=-①,又2'2b y ax x =-,所以7442b a -=-②,由①②解得1,{2,a b =-=-所以3a b +=-.【考点】导数与切线斜率.16.如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (在的上方),且2AB =.(Ⅰ)圆C 的标准方程为 ;(Ⅱ)过点A 任作一条直线与圆22:1O x y +=相交于,M N 两点,下列三个结论:①NA MA NBMB=; ②2NB MA NAMB-=; ③2NB MA NAMB+=其中正确结论的序号是 .(写出所有正确结论的序号)【答案】(Ⅰ)22(1)(2)2x y -+-=;(Ⅱ)①②③ 【解析】 (Ⅰ)依题意,设(为圆的半径),因为,所以,所以圆心,故圆的标准方程为.(Ⅱ)联立方程组,解得或,因为在的上方, 所以,, 令直线的方程为,此时,,所以,,,因为,,所以NAMA NBMB=.所以2221(21)22222NB MA NA MB -==-=-+, 222121222222NB MA NAMB+==+=-+ 正确结论的序号是①②③.考点:圆的标准方程,直线与圆的位置关系.三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤. 17.某同学用“五点法”画函数π()sin()(0,)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数()f x 的解析式; (Ⅱ)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象.若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值. 【答案】(Ⅰ)π()5sin(2)6f x x =-;(Ⅱ)π6.【解析】(Ⅰ)根据表中已知数据,解得π5,2,A ωϕ===-.数据补全如下表:且函数表达式为π()5sin(2)6f x x =-.(Ⅱ)由(Ⅰ)知π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-. 因为sin y x =的对称中心为(π,0)k ,k Z ∈.令π22π6x k θ+-=,解得ππ212k x θ=+-,k Z ∈. 由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=,解得ππ23k θ=-,k Z ∈.由0θ>可知,当1k =时,θ取得最小值π6. 考点:“五点法”画函数π()sin()(0,)2f x A x ωϕωϕ=+><在某一个周期内的图象,三角函数的平移变换,三角函数的性质.18. 某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求分数在[50,60)的频率及全班人数;(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高. 【答案】(1)25;(2)0.016. 【解析】 试题分析:解题思路:(1)通过茎叶图得出数据即可求解;(2)观察频率直方图中的各个矩形的高与面积即可.规律总结:以图表给出的统计题目一般难度不大,主要考查频率直方图、茎叶图、频率分布表给出.试题解析:(1)分数在[50,60)的频率为0.00810=0.08,由茎叶图知:分数在 [50,60)之间的频数为2, 所以全班人数为20.08=25.(2)分数在[80,90)之间的频数为25-2-7-10-2=4,频率分布直方图中 [80,90)间的矩形的高为425÷10=0.016. .考点:1.茎叶图;2.频率直方图.19.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是DF的中点.(1)设P是CE上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.【答案】(1)30;(2)60【解析】试题分析: (1)第(1)问,直接证明BE⊥平面ABP得到BE⊥BP,从而求出∠CBP的大小. (2)第(2)问,可以利用几何法求,也可以利用向量法求解.试题解析:(1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP.又BP⊂平面ABP,所以BE⊥BP.又∠EBC=120°,所以∠CBP=30°.(2)方法一:如图,取EC的中点H,连接EH,GH,CH.因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC223213+=取AG 的中点M ,连接EM ,CM ,EC , 则EM⊥AG,CM⊥AG,所以∠EMC 为所求二面角的平面角. 又AM =1,所以EM =CM =13123-=. 在△BEC 中,由于∠EBC=120°,由余弦定理得EC 2=22+22-2×2×2×cos 120°=12, 所以EC =23,所以△EMC 为等边三角形, 故所求的角为60°. 方法二:以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系B -xyz.由题意得A(0,0,3),E(2,0,0),G(133),C(-13,0), 故AE =(2,0,-3),AG =(13,0),CG =(2,0,3). 设m =(x 1,y 1,z 1)是平面AEG 的一个法向量,由00m AE m AG ⎧⋅=⎨⋅=⎩可得111123030x z x y -=⎧⎪⎨+=⎪⎩取z 1=2,可得平面AEG 的一个法向量m =(332). 设n =(x 2,y 2,z 2)是平面ACG 的一个法向量.由00n AG n CG ⎧⋅=⎨⋅=⎩可得222230230x y x z ⎧=⎪⎨+=⎪⎩取z 2=-2,可得平面ACG 的一个法向量n =(332).所以cos 〈,m n 〉=||||m n m n ⋅=12.故所求的角为60°.点睛:本题的难点主要是计算,由于空间向量的运算,所以大家在计算时,务必仔细认真.20.已知椭圆()2222:10x y E a b a b+=>>以抛物线28y x =的焦点为顶点,且离心率为12.(1)求椭圆E 的方程;(2)若直线:l y kx m =+与椭圆E 相交于A 、B 两点,与直线4x =-相交于Q 点,P 是椭圆E 上一点且满足OP OA OB =+(其中O 为坐标原点),试问在x 轴上是否存在一点T ,使得OP TQ ⋅为定值?若存在,求出点T 的坐标及OP TQ ⋅的值;若不存在,请说明理由.【答案】(1)22143x y +=;(2)存在,且定点T 的坐标为()1,0-. 【解析】 【分析】(1)求出抛物线的焦点坐标可得出a 的值,由椭圆E 的离心率可得c 的值,进而可得出b 的值,由此可求得椭圆E 的方程;(2)设点()11,A x y 、()22,B x y ,将直线l 的方程与椭圆E 的方程联立,列出韦达定理,求出点P 的坐标,由点P 在椭圆E 上得出22443m k =+,并求出点Q 的坐标,设点(),0T t ,计算出OP TQ ⋅,由OP TQ ⋅为定值求出t ,由此可求得定点T 的坐标. 【详解】(1)抛物线28y x =的焦点坐标为()2,0,由题意可知2a =,且12c e a ==,1c ∴=,则b == 因此,椭圆E 的方程为22143x y +=;(2)设点()11,A x y 、()22,B x y ,联立22143y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 并整理得()2224384120k x kmx m +++-=,由韦达定理得122843kmx x k +=-+,则()121226243m y y k x x m k +=++=+,()12122286,,4343km m OP OA OB x x y y k k ⎛⎫=+=++=- ⎪++⎝⎭,即点2286,4343kmm P k k ⎛⎫- ⎪++⎝⎭, 由于点P 在椭圆E 上,则222281611434433km m k k ⎛⎫⎛⎫-⋅+⋅= ⎪ ⎪++⎝⎭⎝⎭,化简得22443m k =+,联立4y kx m x =+⎧⎨=-⎩,得44x y m k =-⎧⎨=-⎩,则点()4,4Q m k --,设在x 轴上是否存在一点(),0T t ,使得OP TQ ⋅为定值,()4,4TQ t m k =---,()()()22284642188634342km t m m k k t ktm km m OP TQ k m m ++-+++⋅===++为定值, 则10t +=,得1t =-,因此,在x 轴上存在定点()1,0T -,使得OP TQ ⋅为定值.【点睛】本题考查椭圆方程的求解,同时也考查了椭圆中存在定点满足某条件问题的求解,考查计算能力,属于中等题.21.已知函数()2ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<.【答案】(1)a=1;(2)见解析. 【解析】 【分析】(1)通过分析可知f (x )≥0等价于h (x )=ax ﹣a ﹣lnx ≥0,进而利用h ′(x )=a 1x-可得h (x )min =h (1a),从而可得结论; (2)通过(1)可知f (x )=x 2﹣x ﹣xlnx ,记t (x )=f ′(x )=2x ﹣2﹣lnx ,解不等式可知t (x )min =t (12)=ln 2﹣1<0,从而可知f ′(x )=0存在两根x 0,x 2,利用f (x )必存在唯一极大值点x 0及x 012<可知f (x 0)14<,另一方面可知f (x 0)>f (1e)21e=. 【详解】(1)解:因为f (x )=ax 2﹣ax ﹣xlnx =x (ax ﹣a ﹣lnx )(x >0),则f (x )≥0等价于h (x )=ax ﹣a ﹣lnx ≥0,求导可知h ′(x )=a 1x-. 则当a ≤0时h ′(x )<0,即y =h (x )在(0,+∞)上单调递减, 所以当x 0>1时,h (x 0)<h (1)=0,矛盾,故a >0.因为当0<x 1a <时h ′(x )<0、当x 1a>时h ′(x )>0, 所以h (x )min =h (1a),又因为h (1)=a ﹣a ﹣ln 1=0, 所以1a=1,解得a =1; 另解:因为f (1)=0,所以f (x )≥0等价于f (x )在x >0时的最小值为f (1), 所以等价于f (x )在x =1处是极小值, 所以解得a =1;(2)证明:由(1)可知f (x )=x 2﹣x ﹣xlnx ,f ′(x )=2x ﹣2﹣lnx ,令f ′(x )=0,可得2x ﹣2﹣lnx =0,记t (x )=2x ﹣2﹣lnx ,则t ′(x )=21x-, 令t ′(x )=0,解得:x 12=, 所以t (x )在区间(0,12)上单调递减,在(12,+∞)上单调递增, 所以t (x )min =t (12)=ln 2﹣1<0,从而t (x )=0有解,即f ′(x )=0存在两根x 0,x 2,且不妨设f ′(x )在(0,x 0)上为正、在(x 0,x 2)上为负、在(x 2,+∞)上为正, 所以f (x )必存在唯一极大值点x 0,且2x 0﹣2﹣lnx 0=0,所以f (x 0)20x =-x 0﹣x 0lnx 020x =-x 0+2x 0﹣220x =x 020x -,由x 012<可知f (x 0)<(x 020x -)max 2111224=-+=; 由f ′(1e )<0可知x 0112e <<, 所以f (x )在(0,x 0)上单调递增,在(x 0,1e)上单调递减, 所以f (x 0)>f (1e )21e=; 综上所述,f (x )存在唯一的极大值点x 0,且e ﹣2<f (x 0)<2﹣2.【点睛】本题考查利用导数研究函数的极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.请考生在第22、23题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B 铅笔在答题卡上,将所选题号对应的方框涂黑. 22.在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于,A B 两点,||AB =,求l 的斜率.【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅱ)3±. 【解析】试题分析:(Ⅰ)利用cos x ρθ=,sin y ρθ=化简即可求解;(Ⅱ)先将直线l 化成极坐标方程,将l 的极坐标方程代入C 的极坐标方程得212cos 110ρρα++=,再利用根与系数的关系和弦长公式进行求解.试题解析:(Ⅰ)化圆的一般方程可化为2212110x y x +++=.由cos x ρθ=,sin y ρθ=可得圆C 的极坐标方程212cos 110ρρθ++=.(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈. 设A ,B 所对应的极径分别为1ρ,2ρ,将l 的极坐标方程代入C 的极坐标方程得212cos 110ρρα++=.于是1212cos ρρα+=-,1211ρρ=.12AB ρρ=-==由AB 23cos 8α=,tan α=.所以l 的斜率为3或3-.23.已知函数()123f xx x =+--. (I )在答题卡图中画出()y f x =的图像; (II )求不等式()1f x >的解集.【答案】(I )见解析(II )()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,【解析】试题分析:(Ⅰ)化为分段函数作图;(Ⅱ)用零点分区间法求解 试题解析:(Ⅰ)如图所示:(Ⅱ)()413{3212342x x f x x x x x -≤-=--<<-≥,,,()1f x >优质资料\word 可编辑- 21 - / 21- 21 - 当1x ≤-,41x ->,解得5x >或3x <1x ∴≤- 当312x -<<,321x ->,解得1x >或13x <113x ∴-<<或312x << 当32x ≥,41x ->,解得5x >或3x <332x ∴≤<或5x > 综上,13x <或13x <<或5x >()1f x ∴>,解集()()11353⎛⎫-∞⋃⋃+∞ ⎪⎝⎭,,,考点:分段函数的图像,绝对值不等式的解法。

河北省衡水中学2021届高三数学下学期一调考试试题 文(含解析)

河北省衡水中学2021届高三数学下学期一调考试试题 文(含解析)

河北省衡水中学2021届高三数学下学期一调考试试题 文(含解析)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题意,请将正确答案的序号填涂到答题卡上) 1.已知复数3a iz a i+=+-(其中a R ∈,i 为虚数单位),若复数z 的共轭复数的虚部为12-,则复数z 在复平面内对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】A 【解析】【详解】分析:先化简复数z ,根据z 的共轭复数的虚部为12-求出复数z ,再根据复数的几何意义确定复数在复平面内对应的点的位置. 详解:由题意得()(3)131(3)3(3)(3)1010a i a i i a a iz a a i i i +++-+=+=+=+--+, ∴ 131(3)1010a a iz -+=-, 又复数z 的共轭复数的虚部为12-, ∴31102a +-=-,解得2a =. ∴5122z i =+,∴复数z 在复平面内对应的点位于第一象限. 故选A .点睛:本题以复数的运算为基础,考查复数的基本概念和复数的几何意义,解题的关键是根据复数z 的共轭复数的虚部为12-求得实数2a =,由此得到复数z ,然后再根据复数对应的点的坐标确定其所在的象限.2.已知全集{}2,340,{|22}U R A x x x B x x ==--=-≤≤ ,则如图所示的阴影部分所表示的集合为( )A. 4{|}2x x -≤<B. {|2x x ≤或4}x ≥C. {|21}x x -≤≤-D.{|12}x x -≤≤【答案】D 【解析】{}2|340U C A x x x =--≤=[1,4]- ,所以阴影部分所表示的集合为()[1,4][2,2][1,2]U C A B ⋂=-⋂-=- ,选D.3.已知 a b c R ∈、、,则“240b ac -<”是“函数2()f x ax bx c =++的图象恒在x 轴上方”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件 【答案】D 【解析】 【分析】分别研究由“240b ac -<”推出“函数2()f x ax bx c =++的图象恒在x 轴上方”和由“函数2()f x ax bx c =++的图象恒在x 轴上方”推出“240b ac -<”,得到答案.【详解】当240b ac -<时,函数2()f x ax bx c =++图象与x 轴没有交点,当0a <时,()f x 图像恒在x 轴下方,所以是不充分条件; 当函数2()f x ax bx c =++的图象恒在x 轴上方,取0,0a b c ==>,满足要求,此时240b ac -=, 因此不一定能得到240b ac -<,所以是不必要条件;故选D 项.【点睛】本题考查充分条件和必要条件的判断,二次函数的图像问题,属于简单题. 4.明朝数学家程大位将“孙子定理”(也称“中国剩余定理”)编成易于上口的《孙子歌诀》:三人同行七十稀,五树梅花廿一支,七子团圆正半月,除百零五便得知.已知正整数n 被3除余2,被5除余3,被7除余4,求n 的最小值.按此歌诀得算法如图,则输出n 的结果为( )A. 53B. 54C. 158D. 263【答案】A 【解析】按程序框图知n 的初值为263,代入循环结构,第一次循环158n =,第二次循环53,53105n =<,推出循环,n 的输出值为53 ,故选A.5.斗拱是中国古典建筑最富装饰性的构件之一,并为中国所特有,图一图二是斗拱实物图,图三是斗拱构件之一的“斗”的几何体,本图中的斗是由棱台与长方体形凹槽(长方体去掉一个小长方体)组成.若棱台两底面面积分别是2400cm ,2900cm ,高为9cm ,长方体形凹槽的体积为34300cm ,斗的密度是30.70/g cm .那么这个斗的质量是( )注:台体体积公式是()13V S S S S h ''=.A. 3990gB. 3010gC. 7000gD. 6300g【答案】C 【解析】 【分析】根据台体的体积公式求得台体体积,再加上长方体形凹槽的体积得这个斗的体积,然后乘以这个斗的密度可得这个斗的质量.【详解】根据棱台的体积公式可得棱台的体积为1(400400900900)957003⨯⨯=3cm , 所以这个斗的质量为5700430010000+=3cm , 所以这个斗的质量为100000.707000⨯=g . 故选:C.【点睛】本题考查了棱台的体积公式,属于基础题.6.在ABC ∆中,22223sin a b c ab C ++=,则ABC ∆的形状是 ( ) A. 锐角三角形 B. 直角三角形C. 钝角三角形D. 等边三角形 【答案】D 【解析】 【分析】由余弦定理可知2222cos a b c ab C +-=,与已知条件相加,得到cos 3C π⎛⎫-⎪⎝⎭的表达式,利用基本不等式得到范围,结合其本身范围,得到cos 13C π⎛⎫-= ⎪⎝⎭,从而得到C 的大小,判断出ABC ∆的形状,得到答案.【详解】由余弦定理可知2222cos a b c ab C +-=,222sin a b c C ++=两式相加,得到()22cos 2cos 3a b ab C C ab C π⎛⎫+=+=-⎪⎝⎭所以222cos 1322a b ab C ab ab π+⎛⎫-== ⎪⎝⎭≥,当且仅当a b =时,等号成立, 而[]cos 1,13C π⎛⎫-∈- ⎪⎝⎭所以cos 13C π⎛⎫-= ⎪⎝⎭, 因为()0,C π∈,所以2,333C πππ⎛⎫-∈- ⎪⎝⎭所以03C π-=,即3C π=,又a b =,所以ABC ∆是等边三角形, 故选D 项.【点睛】本题考查余弦定理解三角形,基本不等式,余弦型函数的性质,判断三角形的形状,属于中档题.7.已知双曲线22221(0,0)x y a b a b-=>>的左、右顶点分别为A ,B ,P 为双曲线左支上一点,ABP ∆,则该双曲线的离心率为( )【答案】C 【解析】【详解】由题意知等腰ABP ∆中,||2AB AP a ==,设ABP APB θ∠=∠=,则12F AP θ∠=,其中θ必为锐角.∵ABP ∆,∴2sin aθ=,∴sin 5θ=,cos 5θ=∴243sin 22,cos 22155θθ===⨯-=. 设点P 的坐标为(,)x y ,则118(cos 2),sin 255a ax a AP y AP θθ=-+=-==, 故点P 的坐标为118(,)55a a-. 由点P 在双曲线上得2222118()()551a a a b -=,整理得2223b a =,∴3c e a ===.选C . 点睛:本题将解三角形和双曲线的性质结合在一起考查,综合性较强,解题时要抓住问题的关键和要点,从所要求的离心率出发,寻找双曲线中,a c 之间的数量关系,其中通过解三角形得到点P 的坐标是解题的突破口.在得到点P 的坐标后根据点在椭圆上可得,a b 间的关系,最后根据离心率的定义可得所求.8.已知1a >,设函数()2xf x a x =+-的零点为m ,()log 2a g x x x =+-的零点为n ,则11m n+的取值范围是( ) A. (2,)+∞B. 7,2⎛⎫+∞⎪⎝⎭C. (4,)+∞D.9,2⎛⎫+∞ ⎪⎝⎭【答案】A 【解析】 【分析】把函数零点转化为两个函数交点的横坐标,根据指数函数与对数函数互为反函数,得到两个函数之间的关系求出m ,n 之间的关系,根据两者之和是定值,利用均值不等式即得解. 【详解】函数()2xf x a x =+-的零点为函数xy a =与2y x =-图像的交点A 的横坐标,函数()log 2a g x x x =+-的零点为函数log a y x =与2y x =-图像的交点B 的横坐标10,0a m n >∴>>由于指数函数与对数函数互为反函数, 其图像关于y x =对称, 直线2y x =-与y x =垂直故两直线的交点(1,1)即是A ,B 的中点,2,0,0m n m n ∴+=>>111111()()(2)(22222m n n m m n m n m n +∴+=+=++≥+= 当且仅当:1m n ==时等号成立 而m n ≠,故112m n+> 故选:A【点睛】本题考查了函数零点与均值不等式综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题.9.已知函数()31sin f x x x x =+++,若()()2122f a f a-+≤,则实数a 的取值范围是( ) A. 3[1,]2- B. 3[,1]2-C. 1[1]2-, D. 1[,1]2-【答案】C 【解析】 【分析】构造函数()()1g x f x =-,证明()g x 是奇函数,单调递增,再将所求的不等式转化成关于函数()g x 相关形式,利用()g x 的性质,解出不等式,得到答案. 【详解】因为()31sin f x x x x =+++设()()31sin g x f x x x x =-=++,定义域x ∈R()()3sin g x x x x g x -=---=-,所以()g x 为奇函数, ()231cos 0g x x x '=++≥,所以()g x 单调递增, 不等式()()2122f a f a-+≤()()21121f a f a ⎡⎤--≤--⎣⎦()()212g g a a ≤-- ()()212g g a a ≤--2a 12a -≤-解得112x ≤≤- 故选C 项.【点睛】本题考查构造函数解不等式,函数的性质的应用,属于中档题.10.在ABC 中,AD AB ⊥,3,BC BD =||1AD =,则AC AD ⋅的值为( ) A. 1 B. 2C. 3D. 4【答案】C 【解析】 【分析】由题意转化(3)AC AD AB BD AD ⋅=+⋅,利用数量积的分配律即得解. 【详解】AD AB ⊥,3,BC BD =||1AD =,()(3)AC AD AB BC AD AB BD AD ∴⋅=+⋅=+⋅ 2333AB AD BD AD AD =⋅+⋅==故选:C【点睛】本题考查了平面向量基本定理和向量数量积综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题.11.在三棱锥P ABC -中,PA 、PB 、PC 两两垂直,112PA PB ==,Q 是棱BC 上一个动点,若直线AQ 与平面PBC 所成角的正切的最大值为5,则该三棱锥外接球的表面积为( ) A. 6π B. 7πC. 8πD. 9π【答案】A 【解析】 【分析】由已知得PA ⊥平面PBC ,因此当PQ BC ⊥时,直线AQ 与平面PBC 所成角最大,此时可求得PQ ,从而求得PC ,又以,,PA PB PC 为棱的长方体的对角线就是三棱锥P ABC -外接球直径,从而可求得其表面积.【详解】∵PA 与PB 、PC 垂直,∴PA ⊥平面PBC ,∴PQ 是AQ 在平面PBC 内的射影,AQP ∠就是直线PA 与平面PBC 所成的角, 由PA ⊥平面PBC 得PA PQ ⊥,tan PAAQP PQ∠=,要使tan AQP ∠最大,则PQ 最小, 显然当PQ BC ⊥时,PQ 最小,此时5tan AQP ∠=, 又1PA =,∴5PQ =,而2PB =,∴5BQ =, 由PB PC ⊥,得25PB BC BQ==,从而1PC =,如图,以,,PA PB PC 为棱作出长方体,此长方体的外接球就是三棱锥P ABC -的外接球,2222221216PA PB PC ++=++= ∴球表面积为22644(6S R πππ==⨯=. 故选:A .【点睛】本题考查求球表面积,解题关键是要求出球的半径.由于,,PA PB PC 两两垂直,因此以它们为棱作出长方体,此长方体的外接球就是三棱锥P ABC -的外接球,长方体的对角线就是球的直径.由此可得解.12.已知关于x 的方程2[()]()10f x kf x -+=恰有四个不同的实数根,则当函数2()xf x x e =时,实数k 的取值范围是( ) A. (,2)(2,)-∞-+∞B. 224,4e e ⎛⎫++∞ ⎪⎝⎭C. 28,2e ⎛⎫⎪⎝⎭D. 2242,4e e⎛⎫+ ⎪⎝⎭【答案】B 【解析】 【分析】利用导数判断()f x 的单调性和极值,得出方程()f x t =的根分布情况,从而得出方程()()2f x kf x 1=0-+恰有四个不同的实数根等价于关于t 的方程210t kt -+=在240,e ⎛⎫ ⎪⎝⎭上有一个解,在{}24,0e ⎛⎫+∞⎪⎝⎭上有一个解,利用二次函数的性质列不等式可求出k 的范围.【详解】()()2'22x x x f x xe x e x x e =+=+,令()'0f x =,解得0x =或2x =-,∴当2x <-或0x >时,()'0f x >;当20x -<<时,()'0f x <,()f x ∴在(),2-∞-上单调递增,在()2,0-上单调递减,在()0,∞+上单调递增,∴当2x =-时,函数()f x 取得极大值()242f e -=,当0x =时,函数()f x 取得极小值()00f =, 作出()f x 的大致函数图象如图所示, 令()f x t =,则当0t =或24t e>时,关于x 的方程()f x t =只有一个解; 当24t e=时,关于x 的方程()f x t =有两个解; 当240t e<<时,关于x 的方程()f x t =有三个解,()()()21g x f x kf x =-+恰有四个零点,∴关于t 的方程()210h t t kt =-+=在240,e⎛⎫⎪⎝⎭上有一个解, 在{}24,0e ⎛⎫+∞⎪⎝⎭上有一个解,显然0t =不是方程210t kt -+=的解,∴关于t 的方程210t kt -+=在240,e ⎛⎫ ⎪⎝⎭和24,e ⎛⎫+∞ ⎪⎝⎭上各有一个解,242416410k h e ee ⎛⎫∴=-+< ⎪⎝⎭,解得2244e k e >+,即实数k 的取值范围是224e e 4⎛⎫++∞ ⎪⎝⎭,,故选B. 【点睛】已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题 .二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置.) 13.()f x 是定义域为R 的偶函数,对x R ∀∈,都有()()4f x f x +=-,当02x ≤≤时,()221,01,log 1,12x x f x x x ⎧-≤<=⎨+≤≤⎩,则()9212f f ⎛⎫-+= ⎪⎝⎭________.【解析】 【分析】先由已知等式和偶函数推出周期为4,再根据偶函数性质和周期可求得答案.【详解】因为()f x 是定义域为R 的偶函数,所以()()4f x f x +=-()f x = ,所以周期4T =,所以129911()()(4)()2112222f f f f -==+==-=,2(21)(451)(1)log 111f f f =⨯+==+=,所以()9212f f ⎛⎫-+= ⎪⎝⎭11+=.故答案为.【点睛】本题考查了函数的奇偶性,周期性,利用周期将自变量转化为已知范围后,利用分段函数解析式求值是解题关键,本题属于中档题.14.若正实数a ,b 满足1a b +=,则下列说法正确的是( ) A. ab 有最小值14C.11a b+有最小值4 D. 22a b +有最小值2【答案】C 【解析】 【分析】可结合基本不等式性质对四个选项一一证明;对A 应是积有最大值;对B 变形为2a b +=++C ,先通分,再结合基本不等式求值;对D ,可变形为222()2a b a b ab +=+-,再结合基本不等式求值 【详解】0a >,0b >,且1a b +=;1a b ∴=+≥14ab ∴≤;ab ∴有最大值14,∴选项A 错误;2112a b =++=+≤+=,,∴B 项错误1114a b a b ab ab ++==≥,11a b∴+有最小值4,∴C 正确;22211()2121242a b a b ab ab +=+-=-≥-⨯=,22a b∴+ 的最小值是12,,∴D 错误. 故选C【点睛】本题考查基本不等式的应用,熟练掌握基本不等式及其相关变形式,以及等式成立的条件,是正确解题的关键,属于中档题15.在ABC ∆中,D 为AB 的中点,ACD ∠与CBD ∠互为余角,2AD =,3AC =,则sin A 的值为__________.【解析】 设ACD ∠=,BCD αβ∠=,则由ACD∠+90CBD ∠=︒可知,90,B A αβ=︒-+=()18090,90,B A αβ︒-+=︒∴=︒- D 为AB 的中点,11,?sin ?sin ,sin sin 22ACD BCD S S AC CD BC CD AC BC αβαβ∆∆∴=∴=∴=,即cos cos AC B BC A =,由正弦定理得sin cos sin cos ,sin 2sin 2,B B A A A B A B=∴=∴=或90A B +=︒,当A=B 时,AC=BC, ,sin 33CD CD AB A AC ∴⊥∴===,当90A B +=︒时,90,2C AD BD DC =︒∴===,在△ACD中,2223cos ,sin 2?4AC AD CD A A AC AD +-==∴==,综上可得, sin A 的值为3或7. 16.如图,曲线2(0)y x y =≥上的点1P 与x 轴的正半轴上的点i Q 及原点O 构成一系列正三角形,11OPQ △,122Q P Q △,1n n n Q P Q -,△设正三角形1n n n Q P Q -的边长为,*n a n N ∈(记0Q 为O ),(),0n n Q S .数列{}n a 的通项公式n a =______.【答案】23n【解析】 【分析】先得出直线1OP 的方程为3y x =,与曲线的方程联立得出1P 的坐标,可得出11a OP =, 并设(),0n n Q S ,根据题中条件找出数列{}n a 的递推关系式,结合递推关系式选择作差法求出数列{}n a 的通项公式,即利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列{}n a 的通项公式.【详解】设数列{}n a 的前n 项和为n S ,则点n Q 的坐标为(),0n S ,易知直线1OP 的方程为3y x =, 与曲线的方程联立()230y x y x y ⎧=⎪⎨=≥⎪⎩,解得133x y ⎧=⎪⎪⎨⎪=⎪⎩221132333a ⎛⎫⎛⎫∴=+= ⎪ ⎪ ⎪⎝⎭⎝⎭; 当n *∈N 时,点(),0n n Q S 、()11,0n n Q S ++,所以,点1122n n n n n S S S S P ++⎛++ ⎝, 直线n n P Q 3111122322n n n n n n n n nS S S S S ++++++==-11322nn n S S a +++=,等式两边平方并整理得211322n n n a S S ++=+,可得21322n n n a S S -=+,以上两式相减得()2211332n n n n a a a a ++-=+,即()()()11132n n n n n n a a a a a a ++++-=+,易知0n a >,所以()132n n a a +-=,即123n n a a +-=, 所以,数列{}n a 是等差数列,且首项为23,公差也为23,因此,()2221333n na n =+-=.故答案为23n.【点睛】本题考查数列通项的求解,根据已知条件找出数列的递推关系是解题的关键,在求通项公式时需结合递推公式的结构选择合适的方法求解数列的通项公式,考查分析问题的能力,属于难题.三、解答题:(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤.) (一)必考题17.设}{n a 是等差数列,公差为d ,前n 项和为n S . (1)设140a =,638a =,求n S 的最大值.(2)设11a =,*2()na nb n N =∈,数列}{n b 的前n 项和为n T ,且对任意的*n N ∈,都有20n T ≤,求d 的取值范围.【答案】(1)2021(2)29-,log 10⎛⎤∞ ⎥⎝⎦【解析】 【分析】(1)运用等差数列的通项公式可得公差d ,再由等差数列的求和公式,结合配方法和二次函数的最值求法,可得最大值;(2)由题意可得数列{b n }为首项为2,公比为2d的等比数列,讨论d =0,d >0,d <0,判断数列{b n }的单调性和求和公式,及范围,结合不等式恒成立问题解法,解不等式可得所求范围. 【详解】(1)a 1=40,a 6=38,可得d 61255a a -==-, 可得S n =40n 12-n (n ﹣1)2155=-(n 2012-)2220120+,由n 为正整数,可得n =100或101时,S n 取得最大值2021;(2)设()*112na n ab n N ==∈,,数列{b n}的前n 项和为T n,可得a n=1+(n﹣1)d,数列{b n}为首项为2,公比为2d的等比数列,若d=0,可得b n=2;d>0,可得{b n}为递增数列,无最大值;当d<0时,T n()21221212dnd d-=--<,对任意的n∈N*,都有T n≤20,可得20212d≥-,且d<0,解得d≤29log10.【点睛】本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列不等式恒成立问题解法,注意运用转化思想,考查化简运算能力,属于中档题.18.如图,三棱柱111ABC A B C-的所有棱长都是2,1AA⊥面ABC,D,E分别是AC,1CC 的中点.(1)求证:AE⊥平面1A BD;(2)求三棱锥1B ABE-的体积.【答案】(1)详见解析;(2)33.【解析】【分析】(1)推导出BD AC⊥,从而平面11AA C C⊥平面ABC,进而BD⊥平面11AAC C,BD AE⊥,再求出1A D AE⊥,由此能证明AE⊥平面1A BD.(2)本问方法较多,可用割补法,转换顶点法,构造法等,其中割补法较为方便,将1B ABEV-转化为111111ABC A B C B ACE B AEC AV V V-----,即可求解.【详解】解:(1)∵AB BC CA==,D是AC的中点,∴BD AC⊥,∵三棱柱111ABC A B C -中1AA ⊥平面ABC , ∴平面11AA C C ⊥平面ABC ,且平面11AAC C 平面ABC AC =,∴BD ⊥平面11AAC C , ∵AE ⊂平面11AAC C , ∴BD AE ⊥又∵在正方形11AAC C 中,D ,E 分别是AC ,1CC 的中点, ∴1A D AE ⊥, 又1A D BD D ⋂=, ∴AE ⊥平面1A BD .(2)解法一(割补法):1111111B ABE ABC A B C B ACE B AEC A V V V V ----=--11113ABC ACC A S AA S BD ∆=⨯-⨯⨯正方形112323222323=⨯⨯⨯-⨯⨯⨯=.解法二(利用平行顶点轮换):∵11//BB CC , ∴11BB E BB C S S ∆∆=,∴1111B ABE A BB E A BB C B ABC V V V V ----===113ABC S BB ∆=⨯⨯1122323=⨯⨯=. 解法三(利用对称顶点轮换): 连结1AB ,交1A B 于点O , ∵O 为1A B 的中点,∴点B 到平面1AB E 的距离等于点1A 到平面1AB E 的距离. ∴1111111B ABE B AB E A AB E B AA E B AA E V V V V V -----====111122332AA E S BD ∆=⨯⨯=⨯⨯⨯=. 解法四(构造法):连结1AB ,交1A B 于点O ,则O 为1AB 的中点,再连结EO .由题意知在1AB E ∆中,1AE B E =1AB =,所以1EO AB ⊥,且EO =,又BO =BE =222BE BO EO =+,所以EO BO ⊥,又1AB BO O =,∴EO ⊥面1ABB ,∴11113B ABE E ABB ABB V V S EO --∆==⨯⨯1122323=⨯⨯⨯=. 【点睛】本题考查线面垂直的证明,考查三棱锥的体积,考查空间中线线、线面、面面间的位置关系,考查运算求解能力,是中档题.19.已知某地区某种昆虫产卵数和温度有关.现收集了一只该品种昆虫的产卵数y (个)和温度x (C )的7组观测数据,其散点图如所示:根据散点图,结合函数知识,可以发现产卵数y 和温度x 可用方程bx a y e +=来拟合,令ln z y =,结合样本数据可知z 与温度x 可用线性回归方程来拟合.根据收集到的数据,计算得到如下值:xyz ()721ii x x =-∑()721ii zz =-∑()()71iii x x zz =--∑27 74 3.53718211.9 46.418表中ln i i z y =,7117i i z z ==∑.(1)求z 和温度x 的回归方程(回归系数结果精确到0.001);(2)求产卵数y 关于温度x 的回归方程;若该地区一段时间内的气温在26~36C C 之间(包括26C 与36C ),估计该品种一只昆虫的产卵数的范围.(参考数据:3.28227e ≈,3.79244e ≈,5.832341e ≈, 6.087440e ≈, 6.342568e ≈.) 附:对于一组数据()11,v ω,()22,v ω,…,(),n n v ω,其回归直线ˆˆˆvαβω=+的斜率和截距的最小二乘估计分别为()()()121ˆniii nii v v ωωβωω==--=-∑∑.【答案】(1)ˆ0.255 3.348z x =-;(2)0.255 3.348x y e-=,[]27.341.【解析】 【分析】(1)根据公式计算出ˆb和ˆa ,可得ˆ0.255 3.348z x =-;(2)根据ln z y =可得ln 0.255 3.348y x =-,再根据函数0.255 3.348x y e -=为增函数可得答案.【详解】(1)因为z 与温度x 可以用线性回归方程来拟合,设ˆˆˆz abx =+. ()()()7172146.418ˆ0.255182iii i i x x zz bx x ==--===-∑∑, 所以ˆˆ 3.5370.25527 3.348a z bx=-=-⨯=-, 故z 关于x 的线性回归方程为ˆ0.255 3.348zx =-. (2)由(1)可得ln 0.255 3.348y x =-, 于是产卵数y 关于温度x 的回归方程为0.255 3.348x y e -=,当26x =时,0.25526 3.3483.28227y ee ⨯-==≈; 当36x =时,0.25536 3.3485.832341y e e ⨯-==≈;因为函数0.255 3.348x y e-=为增函数,所以,气温在26~36C C 之间时,一只该品种昆虫的产卵数的估计范围是[]27.341内的正整数.【点睛】本题考查了求线性回归方程,考查了利用线性回归方程对变量进行分析,属于中档题.20.设椭圆22:182x y C +=,过点()21A ,的直线,AP AQ 分别交C 于相异的两点,P Q ,直线PQ 恒过点()4,0B .(1)证明:直线,AP AQ 的斜率之和为1-;(2)设直线,AP AQ 分别与x 轴交于,M N 两点,点()3,0G ,求GM GN ⋅. 【答案】(1)证明见解析;(2)1 【解析】 【分析】(1)设直线PQ 为()4y k x =-,与椭圆方程联立可得()222214326480k xk x k +-+-=,利用韦达定理得到12,x x 关系,由斜率公式可得()()12121212124141112222k x k x y y k k x x x x ------+=+=+----()()()1212121226116424kx x k x x k x x x x -++++=-++,将21223214k x x k +=+,212264814k x x k-=+代入,进而即可得证;(2)设直线AP 为()112y k x -=-,令0y =,可求得112,0M k ⎛⎫- ⎪⎝⎭,同理212,0N k ⎛⎫- ⎪⎝⎭,进而求解即可【详解】(1)证明:设直线PQ 为()4y k x =-,联立()224182y k x x y ⎧=-⎪⎨+=⎪⎩,得()222214326480k x k x k +-+-=,且>0∆,可得;214k <, 设()()1122,,,P x y Q x y ,由韦达定理可得21223214k x x k +=+,212264814k x x k-=+, 设直线AP 、AQ 的斜率分别为12,k k ,所以()()12121212124141112222k x k x y y k k x x x x ------+=+=+----()()()1212121226116424kx x k x x k x x x x -++++=-++()2222222222648322611641641414164832164241414k k k k k k k k k k k k k -⋅-+⋅++-+++===----⋅+++, 所以直线,AP AQ 的斜率之和为1- (2)设()()34,0,,0M x N x ,因为直线AP 为()112y k x -=-,令0y =,得3112x k =-,即112,0M k ⎛⎫- ⎪⎝⎭, 同理4212x k =-,即212,0N k ⎛⎫- ⎪⎝⎭, 因为()3,0G ,所以1212121111132321GM GN k k k k k k ⎛⎫⎛⎫⋅=--⋅--=+++ ⎪ ⎪⎝⎭⎝⎭ 12121211k k k k k k +=++12121111k k k k -==++= 【点睛】本题考查直线与椭圆的位置关系的应用,考查斜率公式的应用,考查椭圆中的定值问题21.已知函数()()()211e ,2xf x x ag x x ax =+-=+,其中a 为常数. (1)若2a =时,求函数()f x 在点()()0,0f 处的切线方程;(2)若对任意[)0,x ∈+∞,不等式()()f x g x ≥恒成立,求实数a 的取值范围. 【答案】(1)2x-y+1=0;(2)1a ≥. 【解析】【详解】试题分析:(1)求导得斜率,进而由点斜式得直线方程;(2)令()()()h x f x g x =-,由题得()min 0h x ≥在[)0,x ∈+∞恒成立,求导根据导数判断单调性求最值即可. 试题解析:(1)()()2,1xa f x x e ==+则,()()2xf x x e ∴=+',()02f ∴'=,又因为切点(0,1)所以切线为2x-y+1=0(2) 令()()()h x f x g x =-,由题得()min 0h x ≥在[)0,x ∈+∞恒成立,()()2112x h x x a e x ax =+---,所以()()()1x h x x a e =+-'①若0a ≥,则[)0,x ∈+∞时()0h x '≥,所以函数()h x 在[)0,+∞上递增,所以()()min 01h x h a ==- 则10a -≥,得1a ≥②若0a <,则当[]0,x a ∈-时()0h x '≤,当[,+x a ∈-∞)时()0h x '≥,所以函数()h x 在[]0,a -上递减,在[,+a -∞)上递增,所以()()min h x h a =-,又因为()()010h a h a -=-<<,所以不合题意.综合得1a ≥.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题; (2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为min ()0f x > ,若()0f x <恒成立max ()0f x ⇔<;(3)若()()f xg x > 恒成立,可转化为min max()()f x g x > .(二)选考题:请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目的题号涂黑. 22.选修4-4:坐标系与参数方程已知曲线C 的参数方程为()2cos 3x y θθθ=⎧⎪⎨=⎪⎩为参数,在同一平面直角坐标系中,将曲线C 上的点按坐标变换123x x y y ⎧=⎪⎪⎨=''⎪⎪⎩得到曲线C ',以原点为极点,x 轴的正半轴为极轴,建立极坐标系.(Ⅰ)求曲线C '的极坐标方程;(Ⅱ)若过点3(,)2A π(极坐标)且倾斜角为6π的直线l 与曲线C '交于,M N 两点,弦MN 的中点为P ,求||||||AP AM AN ⋅的值.【答案】(1)曲线C '的极坐标方程为:1C ρ'=(2)5AP AM AN=⋅ 【解析】【详解】试题分析:(I )曲线C的参数方程为()2x cos y θθθ=⎧⎪⎨=⎪⎩为参数,利用平方关系即可化为普通方程.利用变换公式代入即可得出曲线C'的直角坐标方程,利用互化公式可得极坐标方程.(II )点A 的直角坐标是3,02A ⎛⎫- ⎪⎝⎭,将l 的参数方程3266x tcos y tsinππ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数)代入曲线C'的直角坐标方程可得2450t -+=,利用根与系数的关系即可得出. 试题解析:(Ⅰ)222::143x cos x y C C y θθ=⎧⎪⇒+=⎨=⎪⎩,将122x x x x y y y ⎧=⎪=⎧⎪⎪⇒⎨⎨=⎪⎩⎪''⎪'=⎩',代入C 的普通方程可得221x y ''+=, 即22:1C x y +=',所以曲线C '的极坐标方程为:1C ρ'=(Ⅱ)点A 的直角坐标是3,02A ⎛⎫- ⎪⎝⎭,将l 的参数方程3266x tcos y tsin ππ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数)代入221x y +=,可得2450t -+=, ∴t 1+t2=,t 1•t 254=,所以12122t t AP AM AN t t +==⋅23.设函数()2 1.f x k x x =--(1)当1k =时,求不等式()0f x >的解集;(2)当(0,)x ∈+∞时,()0f x b +>恒成立,求k b +的最小值. 【答案】(1)1(,1)3(2)最小值为3【解析】 【分析】(1)利用零点分段讨论法即可解出绝对值不等式得解集;(2)当(0,)x ∈+∞时,()0,f x b +>恒成立,即21k x b x +>-恒成立,数形结合求解. 【详解】解(1)当1k =时,不等式化为210,x x -->0210x x x ≤⎧⎨-+->⎩,或102210x x x ⎧<<⎪⎨⎪+->⎩,或12210x x x ⎧≥⎪⎨⎪--+>⎩ 综上,原不等式的解集为1{1}3xx << (2)(0,)x ∈+∞时,()0,21f x b k x b x +>+>- 作21y x =-与y k x b =+的图像,可知2,1,y k b =≥≥3,k b k b ∴+≥+的最小值为3(这时2,1k b ==)【点睛】零点分段法求解绝对值不等式,注意分段求解;求解集,注意书写形式;不等式恒成立转化成两个函数比较大小,数形结合可以事半功倍.。

河北省衡水中学2021-2022届高三上学期调研考试数学试题(含答案解析)

河北省衡水中学2021-2022届高三上学期调研考试数学试题(含答案解析)
【详解】
由题意,取 的中点 ,连接 ,则 ,
所以异面直线 与 所成角就是直线 与 所成角,
设正三棱柱的各棱长为 ,则 ,
设直线 与 所成角为 ,
在 中,由余弦定理可得 ,
即异面直线 与 所成角的余弦值为 ,故选D.
【点睛】
本题主要考查了异面直线所成角的求解,其中解答中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.
A.当焦点在 轴时,其标准方程为
B.若双曲线的弦 的中点为 ,则
C. 成等比数列
D.双曲线的右顶点 ,上顶点 和左焦点 构成的 是直角三角形
12.函数 (k为常数)的图象可能 Nhomakorabea()A. B.
C. D.
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
三、填空题
13.若正实数 满足 ,则 的最小值是___.
A. B. C. D.
8.已知双曲线 的右顶点、右焦点分别为A, ,过点A的直线 与 的一条渐近线交于点 ,直线 与 的一个交点为B,若 ,且 ,则 的离心率为( )
A.2B. C. D.
评卷人
得分
二、多选题
9.设公差不为0的等差数列 的前n项和为 ,若 ,则下列各式的值为0的是()
A. B. C. D.
14.如图,在 中, ,点 在边 上, , ,则 的长为___________.
15.某班上午有五节课,分别安排语文、数学、英语、物理、化学各一节课,要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课法的种数是___________.
评卷人
得分
四、双空题
16.将两个一模一样的正三棱锥共底面倒扣在一起,已知正三棱锥的侧棱长为2,若该组合体有外接球,则正三棱锥的底面边长为_________,该组合体的外接球的体积为_______.

优质解析:河北省衡水中学2021届高三上学期四调考试数学(文)试题(解析版)

优质解析:河北省衡水中学2021届高三上学期四调考试数学(文)试题(解析版)

第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1. 已知复数32iz i i-=-+,则复数z 的共轭复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】B 【解析】试题分析:3223115iz i i i i i-=-+=---=--,所以15z i =-+对应的点在第二象限,故选B. 考点:1.复数的运算;2.复数相关的概念.2. 设 A B ,是全集{}1 2 3 4I =,,,的子集,{}1 2A =,,则满足A B ⊆的B 的个数是( ) A .5 B .4 C .3 D .2 【答案】B考点:集合的表示及集合间的关系. 3. 抛物线23y x =的焦点坐标是( )A .3 04⎛⎫ ⎪⎝⎭,B .30 4⎛⎫ ⎪⎝⎭,C .10 12⎛⎫ ⎪⎝⎭,D .1 012⎛⎫⎪⎝⎭, 【答案】C 【解析】试题分析:抛物线23y x =的标准方程为213x y =,所以其焦点坐标为10 12⎛⎫⎪⎝⎭,,故选C.考点:抛物线的标准方程及几何性质.4. 设向量()()1 2 1m =-=a b ,,,,若向量2+a b 与2-a b 平行,则m =( ) A .72- B .12- C.32 D .52【答案】B考点:向量的坐标运算与向量平行的条件.5. 圆221x y +=与直线3y kx =-有公共点的充分不必要条件是( )A .22k ≤-或22k ≥B .22k ≤- C.2k ≥ D .22k ≤-或2k > 【答案】B 【解析】试题分析:圆221x y +=与直线3y kx =-有公共点211k ⇔≤⇔+22k ≤-或22k ≥,所以“22k ≤-”是“圆221x y +=与直线3y kx =-有公共点的充分不必要条件”,故选B. 考点:1.直线与圆的位置关系;2.充分条件与必要条件.6. 设等比数列{}n a 的前n 项和为n S ,若33a =,且201620170a a +=,则101S 等于( ) A .3 B .303 C.3- D .303- 【答案】A 【解析】试题分析:由201620172016(1)0a a a q +=+=得1q =-,所以10113S a ==,故选A. 考点:等比数列的性质与求和.7. 阅读下列程序框图,运行相应程序,则输出的S 值为( )A .18-B .18 C.116 D .132【答案】A考点:1.程序框图;2.二倍角公式与诱导公式. 8. 函数()2xf x x a=+的图象可能是( )A .(1)(3)B .(1)(2)(4) C.(2)(3)(4) D .(1)(2)(3)(4) 【答案】C 【解析】试题分析:当0x =时,1()f x x=为第中个图象;当0a >时,函数的定义域为R ,对应图象为第二个,当0x <时,2()x f x x a=+的定义域为{}|x x a ≠±-,对应图象为第三个,因此函数()2xf x x a =+的图象可能是(2)(3)(4),故选C.看完 考点:函数的定义域与函数的图象.9. 在四棱锥P ABCD -中,底面ABCD 是正方形,PA ⊥底面ABCD ,4PA AB ==,E ,F ,H 分别是棱PB ,BC ,PD 的中点,则过E ,F ,H 的平面截四棱锥P ABCD -所得截面面积为( )A .26.656.2346 【答案】C 【解析】试题分析:如下图所示,取DC 的中点M ,则过E ,F ,H 的平面截四棱锥P ABCD -所得截面为五边形EFMHN ,其中1222MF BD ==,222114442322HM PC ==++= 334HR PC HM =-=由题意可得BD ⊥平面PAC ,所以MF EF ⊥,那么五边形EFMHN 的面积12223223532S =⨯= C.NRMHFEC DABP考点:1.平面的性质;2.线面垂直的判定与性质.10. 设1F ,2F 是椭圆E 的两个焦点,P 为椭圆E 上的点,以1PF 为直径的圆经过2F ,若1225tan 15PF F ∠=,则椭圆E 的离心率为( ) A .5 B .5 C.5 D .5 【答案】D考点:1.圆的性质;2.椭圆的标准方程及几何性质.【名师点睛】本题考查圆的性质、椭圆的标准方程及几何性质,属中档题;椭圆的几何性质是高考的热点内容,求离心率或取值范围就是利用代数方法或平面几何知识寻找椭圆中基本量,,a b c 满足的等量关系或不等量关系,以确定ca的取值范围.11. 四棱锥P ABCD-的三视图如下图所示,四棱锥P ABCD-的五个顶点都在一个球面上,E、F分别是棱AB、CD的中点,直线EF被球面所截得的线段长为22,则该球表面积为()A.12π B.24π C.36π D.48π【答案】A考点:1.三视图;2.球的切接问题;3.球的表面积与体积.【名师点睛】本题考查三视图、球的切接问题、球的表面积与体积,意在考查考生的识图能力、空间想象能力以及计算能力,属中档题;;根据三视图判断几何体的结构特征,画出几何体的直观图,根据几何体的特征,进行计算得出结果,是高考常考题型.12. 已知抛物线2:4C y x =的焦点为F ,定点()0 2A ,,若射线FA 与抛物线C 交于点M ,与抛物线C 的准线交于点N ,则:MN FN 的值是( ) A .()52:5- B .2:5 C.()5:15+ D .1:25【答案】C考点:1.抛物线的标准方程与几何性质;2.直线与抛物线的位置关系.【名师点睛】本题考查抛物线的标准方程与几何性质、直线与抛物线的位置关系,属中档题;在解抛物线有关问题时,首先应该画出图形,数形结合求解,凡涉及抛物线上的点到焦点的距离时,一般要运用定义转化为到准线的距离处理;抛物线的焦点弦一直是高考的热点,对于焦点弦的性质应牢固掌握.第Ⅱ卷(非选择题 共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知直线()1:12220l m x y m +++-=,()2:2220l x m y +-+=,若直线12l l ∥,则m =. 【答案】2-【解析】试题分析:直线1l 的斜率112l m k +=-,直线2l 的斜率222l k m =--,由1222m m +-=--得2m =-或3m =,当2m =-时,直线1:260l x y -+-=与直线2:2420l x y -+=平行,符合题意;当3m =时,直线1:4240l x y ++=与直线2:220l x y ++=重合,不符合题意;所以2m =-. 考点:两条直线的位置关系.14. 在ABC △中,角A 、B 、C 所对的边分别为 a b c ,,,且3 6A C c ==,,()2cos cos 0a c B b C --=,则ABC △的面积是. 【答案】183考点:1.正弦定理;2.三角恒等变换与诱导公式.15. 若不等式组1026x y x y x y a≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩表示的平面区域是一个四边形,则实数a 的取值范围是.【答案】(3,5) 【解析】试题分析:在坐标平面内作出不等式组所表示的平面区域,由图可知,当直线x y a +=位于图中虚线1:3l x y +=与2:5l x y +=之问题是,该平面区域为四边形,所以实数a 的取值范围是(3,5)考点:线性规划.【名师点睛】本题考查线性规划,属中档题;本题是含参数的线性规划问题,解决的基本方法就是先画出不含参的二元一次不等式所表示的区域,再由侌参的直线在直角坐标平面内平移或旋转,数形结合,由图形凑数符合题意的条件,求出参数的范围即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前
河北衡水中学2021届高三调研试题
数学
全卷满分150分,考试时间120分钟。

★祝考试顺利★
注意事项:
1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题作答用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试卷和草稿纸上无效。

3.非选择题作答用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。

答在试卷和草稿纸上无效。

考生必须保持答题卡的整洁。

考试结束后,只需上交答题卡一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x|x2-4x-12≤0},B={x|4x-4>0},则A∩B=
A.{x|1<x≤2}
B.{x|x≥-2}
C.{x|1<x≤6}
D.{x|x≥-6}
2.已知复数z=
1i
i
,则z=
A.1
2

1
2
i B.
1
2

1
2
i C.-
1
2

1
2
i D.-
1
2

1
2
i
3.某年1月25日至2月12日某旅游景区A及其里面的特色景点a累计参观人次的折线图如图所示,则下列判断正确的是
A.1月29日景区A累计参观人次中特色景点a占比超过了1 3
B.2月4日至2月10日特色景点a 累计参观人次增加了9700人次
C.2月6日至2月8日景区A 累计参观人次的增长率大于特色景点a 累计参观人次的增长率
D.2月8日至2月10日景区A 累计参观人次的增长率小于2月6日到2月8日的增长率
4.“3sin 2α-sin αcos α-2=0”是“tan α=2”的
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
5.函数()2
2sin x 1f x x -=的部分图象是
6.在平行四边形ABCD 中,E ,F 分别为CD ,BC 的中点,则AE =
A.31AD AF 42+
B.11AD AF 22+
C.13AD AF 24+
D.1AD AF 2
+ 7.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”下图是在“赵爽弦图”的基础上创作出的一个“数学风车”,其中正方形ABCD 内部为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成的.我们将图中阴影所在的四个三角形称为“风叶”,若从该“数学风车”的八个顶点中任取两点,则该两点取自同一片“风叶”的概率为
A.37
B.47
C.314
D.1114
8.已知双曲线C :22
221(0,0)x y a b a b
-=>>的右焦点为F ,P 为双曲线右支上一点,O 为坐标原点,若△OPF 为等边三角形,则双曲线C 的离心率为
3 3 C.312
3+1
二、选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,有选错的得0分,部分选对的得3分。

9.下列不等式不一定成立的是
A.若a>b ,则a 2>b 2
B.若a>b>0,则b b m a a m
+<+ C.若ab =4,则a +b ≥4 D.若ac 2>bc 2,则a>b
10.已知M ,N 是函数f(x)=2cos(ωx +
4π)
ω>0)的图象与x 轴的两个不同的交点。

若|MN|的最小值是4
π,则 A.ω=2 B.f(x)在[-
58π,0]上单调递增 C.f(x)的图象关于直线x =-8
π对称 D.f(x)在[0,3π]上有6个零点 11.在四棱锥P -ABCD 中,侧面PAD ⊥平面ABCD ,PD =AB ,四边形ABCD 是正方形,点E 是棱PB 的中点,则
A.PD ⊥平面ABCD
B.PD//平面ACE
C.PB =2AE
D.PC ⊥AE
12.若直线l 与曲线C 满足下列两个条件:(1)直线l 在点P(x 0,y 0)处与曲线C 相切;(2)曲线C 在点P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C 。

下列结论正确的是
A.直线l :y =x 在点P(0,0)处“切过”曲线C :y =sinx
B.直线l :y =-3x +3在点P(1,0)处“切过”曲线C :y =x 3-3x 2+2
C.直线l :y =x 在点P(0,0)处“切过”曲线C :y =xe x
D.直线l :y =332122x e e +在点P(32e ,32
32e )处“切过”曲线C :y =ln x x 三、填空题:本大题共4小题,每小题5分,共20分。

把答案填在答题卡的相应位置。

13.若抛物线C :y 2=2px(p>0)的焦点在直线l :x +2y -3=0上,则p = 。

14.若(1+2x)2020=a 0+a 1x +a 2x 2+…+a 2020x 2020,则3202012232020
a a a a 2222-+-+⋅⋅⋅+= 。

15.已知函数f(x)是定义在R 上的奇函数,且当x>0时,f(x)=log 3(x +1)+x 2。

若|f(m)|≥5,则m 的取值范围是 。

16.已知长方体ABCD -A 1B 1C 1D 1的体积为144,点P 是正方形A 1B 1C 1D 1的中心,点P ,A ,B ,C ,D 都在球O 的球面上,其中球心O 在长方体ABCD -A 1B 1C 1D 1的内部。

已知球O 的半径为R ,球心O 到底面ABCD 的距离为2
R ,则R = 。

过AB 的中点E 作球O 的
截面,则所得截面圆面积的最小值是 。

(第一空3分,第二空2分)
四、解答题:本题共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。

17.(10分)
在①a 1=-8,a 2=-7,a n +1=ka n +l(n ∈N +,k ∈R);②若{a n }为等差数列,且a 3=-6,a 7=-2;③设数列{a n }的前n 项和为S n ,且S n =
12n 2-172n(n ∈N +)这三个条件中任选一个,补充在下面问题中,并作答。

在数列{a n }中, 。

记T n =|a 1|+|a 2|+|a 3|+…+|a n |,求T 20。

注:如果选择多个条件分别解答,按第一个解答计分。

18.(12分)
在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2cos 2
2
B +3sinB =3。

(1)求角B ;
(2)若D 是AC 的中点,且b =27,BD =19,求△ABC 的周长。

19.(12分)
如图,在三棱锥P -ABC 中,△ABC 是等边三角形,PA =PB 。

(1)证明:AB ⊥PC 。

(2)若PA =PC 7,AB =3A -PC -B 的正弦值。

20.(12分)
已知函数f(x)=ax(lnx -a -1)(a ≠0)。

(1)讨论f(x)的单调性;
(2)当x>e 2时,f(x)>ae 2(1-a)恒成立,求a 的取值范围。

21.(12分)
生活垃圾分类工作是一项复杂的系统工程,必须坚持“政府推动、部门联运、全面发动、全民参与”原则。

某小学班主任为了让本班学生能够分清干垃圾和湿垃圾,展开了“垃圾分类我最行”的有奖竞答活动。

班主任将本班学生分为A ,B 两组,规定每组抢到答题权且答对一
题得1分,未抢到答题权或抢到答题权且答错得0分,将每组得分分别逐次累加,当其中一组得分比另一组得分多3分或六道题目全部答完时,有奖竞答活动结束,得分多的一组的每一位学生都将获得奖品一份。

设每组每一道题答对的概率均为4,A 组学生抢到答题权的概率为12。

(1)在答完三题后,求A 组得3分的概率;
(2)设活动结束时总共答了X 道题,求X 的分布列及其数学期望EX 。

22.(12分)
已知椭圆C :22221(0)x y a b a b +=>>的离心率是12
,且椭圆C 经过点2)。

过椭圆C 的左焦点F 的直线l 与椭圆C 交于M ,N 两点。

(1)求椭圆C 的标准方程。

(2)若过点F 的直线l 1与直线l 垂直,且交椭圆C 于P ,Q 两点。

是否存在直线l ,使得四边形MPNQ 的面积最小?若存在,求出直线l 的方程;若不存在,说明理由。

第11 页共11 页。

相关文档
最新文档