连续小波过程神经元网络在非线性函数逼近的应用
BP神经网络逼近非线性函数

应用BP 神经网络逼近非线性函一、实验要求1、逼近的非线性函数选取为y=sin(x 1)+cos(x 2) ,其中有两个自变量即x1,x2,一个因变量即y。
2、逼近误差<5% ,即:应用测试数据对网络进行测试时,神经网络的输出与期望值的最大误差的绝对值小于期望值的5% 。
3、学习方法为经典的BP 算法或改进形式的BP 算法,鼓励采用改进形式的BP 算法。
4、不允许采用matlab 中现有的关于神经网络建立、学习、仿真的任何函数及命令。
二、实验基本原理2.1神经网络概述BP 神经网络是一种多层前馈神经网络,该网络的主要特点是信号前向传播,误差反向传播。
在前向传递中,输入信号从输入层经隐含层逐层处理,直至输出层。
每一层的神经元状态只影响下一层神经元状态。
如果输出层得不到期望输出,则转入反向传播,根据预判误差调整网络权值和阈值,从而使BP 神经网络预测输出不断逼近期望输出。
BP 神经网络的拓扑结构如图所示。
2.2BP 神经网络训练步骤BP 神经网络预测前首先要训练网络,通过训练使网络具有联想记忆和预测能力。
BP 神经网络的训练过程包括以下几个步骤。
步骤 1 :网络初始化。
根据系统输入输出序列(X,Y) 确定网络输入层节点数n 、隐含层节点数l、输出层节点数m ,初始化输入层、隐含层和输出层神经元之间的连接权值ωij,ωjk ,初始化隐含层阈值a,输出层阈值 b ,给定学习速率和神经元激励函数。
步骤 2 :隐含层输出计算。
根据输入变量X,输入层和隐含层间连接权值ω ij 以及隐含层阈值a,计算隐含层输出H 。
2.3 附加动量法经典 BP 神经网络采用梯度修正法作为权值和阈值的学习算法, 从网络预测误差的负梯 度方向修正权值和阈值, 没有考虑以前经验的积累,学习过程收敛缓慢。
对于这个问题,可 以采用附加动量法来解决,带附加动量的算法学习公式为(k) (k 1) (k) a (k 1) (k 2)式中,ω (k),ω(k-1) ,ω(k-2)分别为 k ,k-1,k-2 时刻的权值; a 为动量学习率,一般取值 为 0.95 。
深度学习神经网络逼近非线性函数

深度学习神经网络逼近非线性函数深度研究神经网络是一种强大的机器研究模型,被广泛应用于各个领域,包括图像识别、自然语言处理等。
它通过多层神经元来建模复杂的非线性函数关系,可以实现对非线性函数的逼近。
神经网络基础神经网络由输入层、隐藏层和输出层组成。
输入层接收输入数据,隐藏层负责对输入进行加工和提取特征,输出层则生成最终的预测结果。
每个神经元在隐藏层和输出层都会进行激活函数的运算,将线性变换后的结果转化为非线性的输出。
非线性函数逼近深度研究神经网络能够逼近非线性函数的原因在于其多层结构。
每一层的神经元都可以研究到不同级别的特征表示,通过多层的组合与堆叠,神经网络能够模拟和逼近非常复杂的非线性函数。
激活函数的重要性激活函数是神经网络中非常重要的组成部分,它引入了非线性因素,使得神经网络能够处理非线性问题。
常见的激活函数有Sigmoid函数、ReLU函数等,它们可以将线性变换的结果映射到非线性的输出,增强神经网络的表达能力。
深度研究的训练深度研究神经网络的训练过程通常使用反向传播算法。
该算法通过计算实际输出与期望输出之间的误差,然后根据误差调整神经网络的权重和偏置,以逐渐提高网络的预测准确性。
通过反复迭代训练,神经网络可以逐渐优化和逼近目标非线性函数。
应用领域深度研究神经网络广泛应用于图像识别、语音识别、自然语言处理等领域。
例如,在图像识别中,神经网络可以通过研究大量图像样本来识别物体、人脸等;在自然语言处理中,神经网络可以对文本进行分类、情感分析等任务。
深度研究神经网络的强大逼近能力使得它在这些领域具有很高的应用价值。
结论深度学习神经网络通过多层神经元和非线性激活函数的组合,能够逼近非线性函数。
它是一种强大的机器学习模型,在各个领域都有广泛的应用。
随着深度学习技术的不断发展,我们相信神经网络将会在更多领域展现出强大的能力和应用前景。
函数逼近技术在小波分析中的应用

函数逼近技术在小波分析中的应用随着信息技术的不断发展和计算机技术的不断进步,信号处理领域的研究方向也在不断拓展,其中小波分析技术受到了越来越多的关注。
小波分析是一种通过分解和重构信号方法的数学工具,它具有时域和频域分析的双重优势,被广泛应用于信号处理、图像处理、声音识别、生物学分析等诸多领域。
本文将详细介绍小波分析技术中的函数逼近技术,并探讨其在小波分析中的应用。
一、小波分析介绍小波分析是一种时频分析方法,它可以将信号分解成不同频率和时间范围的波形。
在小波分析中,需要使用小波基函数对信号进行分解和重构。
小波基函数是一种具有局部化特点的函数族,可以通过波形精细调整以适应不同的信号分析需求。
与傅里叶分析采用的正弦函数和余弦函数相比,小波基函数是非平稳的,可以更好地适应信号局部特征,提高了信号处理的精度和效率。
二、函数逼近技术介绍函数逼近是用一组已知的函数来逼近另一类函数的方法。
常用的函数逼近方法有线性插值、多项式逼近和曲线拟合等。
其中多项式逼近是最基本的函数逼近方法之一。
多项式逼近的基本思想是用一次或高次多项式来逼近曲线,可以通过最小二乘法来确定多项式系数,达到较高的逼近精度。
三、小波分析中的函数逼近小波基函数具有不同的尺度和平移,可以组成小波基函数库。
在小波分析中,需要选择适当的小波基函数来完成信号的分解和重构。
常用的小波基函数有Haar小波、Daubechies小波、Symlet小波等。
但由于小波基函数具有局部性和非平稳性,采用单一小波基函数分析信号容易出现失真等问题。
函数逼近技术在小波分析中被广泛应用。
它可以通过多项式逼近或曲线拟合等方法,将小波基函数进行组合,构成更适合信号分解和重构的小波基函数组。
这些新的小波基函数组,在保证信号局部特征的基础上,具有更好的平滑性和连续性,可以提高信号分解精度和重构效果。
四、小波分析中函数逼近技术的应用实例1.图像去噪在图像去噪方面,可以采用小波分析和函数逼近相结合的技术。
小波神经网络

第 5期
四 川 兵 工 学 报
21 0 2年 5月
【 信息科学与控¥ -程】 J  ̄ r
小 波 神 经 网 络
左 东广 , 周 帅 , 张欣 豫
( 第二炮兵工程Biblioteka 学 一系 , 西安 702 ) 10 5
摘要 : 对小 波神经网络的基本结构 、 训练算法 、 结构设计及应用进行 了详 细分 析 , 通过小波神经 网络逼近一非线性 函 数 。结果表 明, 小波神经 网络具有 收敛速度快 、 仿真精度高的优点。
网络 结 构 可分 3种 形 式 : 图 2 小 波神 经 网络 紧致 型 结 构
种模仿 人脑信息处理 机制 的网络 系统 , 它具有 自组织 、 自学
习 和极 强 的 非 线 性 处 理 能 力 , 够 完 成 学 习 、 忆 、 别 和 推 能 记 识
1 )连续参数 的小波神经 网络 。这是小 波最初 被提 出采 用的一种形式 。令 图 2中基 函数为
的时频局部化性质及神经 网络的 自学 习功能的特点 , 被广泛
运用于信号 处 理、 数据 压缩 、 式识 别 和故 障诊 断等 领 域。 模 “ 紧致型” 小波神经 网络具有更好的数据处 理能力 , 是小波神 经网络的研究方 向。在 图 2中, 有输 入层 、 隐含层和输 出层 ,
输出层采用线性 输 出, 入层 有 m( 输 m=1 2 … , ) 神经 ,, 个
8 5
() 7
数修 正 , 易带来类似 B P网络参数 修正时存 在局 部极 小值 的
弱 点。
Y= ∑ (
( ) n) e
() 8
2 )由框架作 为基 函数 的小波神经 网络 。由于不考虑 正 交性 , 小波 函数 的选取有很 大 自由度 。令 图 2中的基 函数 为
非线性电路与系统

非线性电路与系统——关于神经网络的一些学习总结姓名:楼韬学号:**********班级:研2-108班导师:***典型神经网络模型及其应用摘要:随着神经网络研究的深入,神经网络在理论上有了很大突破,并在实践中发挥着越来越重要的作用。
本文介绍了径向基网络,支撑矢量机,小波神经网络,反馈神经网络这几种典型的神经网络结构模型、特点及应用。
关键词:神经网络径向基网络支撑矢量机小波神经网络反馈神经网络Abstract: With in-depth study of neural networks, neural networks have great breakthrough in theory and in practice is playing an increasingly important role. This article introduced the RBF networks, support vector machines, wavelet neural networks, feedback neural networks with their concepts, features and applications in scientific research field. Key words: neural networks, RBF networks, support vector machines ,wavelet neural networks ,feedback neural networks.1引言神经网络以其快速的并行处理能力和其强有力的学习能力而获得越来越广泛的重视,神经网络系统最主要的特征是大规模模拟并行处理、信息的分布式存储,高度的容错性和自组织、自学习及实时处理,它可以直接输入样本,信息处理分布于大量神经元的互连之中,并且具有冗余性。
随着对神经网络理论的不断深入研究,其应用目前已经渗透到各个领域。
(采用BP神经网络完成非线性函数的逼近)神经网络

控制系统仿真与模型处理设计报告(采用BP神经网络完成非线性函数的逼近)1、题目要求:(1)确定一种神经网络、网络结构参数和学习算法。
(2)选择适当的训练样本和检验样本,给出选取方法。
(3)训练网络使学习目标误差函数达到0.01,写出学习结束后的网络各参数,并绘制学习之前、第100次学习和学习结束后各期望输出曲线、实际输出曲线。
绘制网络训练过程的目标误差函数曲线。
(4)验证网络的泛化能力,给出网络的泛化误差。
绘制网络检验样本的期望输出曲线和网络输出曲线。
(5)分别改变神经网络的中间节点个数、改变网络的层数、改变学习算法进行比较实验,讨论系统的逼近情况,给出你自己的结论和看法。
2、设计方案:在MATLAB中建立M文件下输入如下命令:x=[0:0.01:1];y=2.2*power(x-0.25,2)+sin(5*pi*x);plot(x,y)xlabel('x');ylabel('y');title('非线性函数');得到如下图形,即所给的非线性函数曲线图:构造一个1-7-1的BP神经网络,第一层为输入层,节点个数为1;第二层为隐层,节点个数为7;变换函数选正切s型函数(tansig);第三层为输出层,节点个数为1,输出层神经元传递函数为purelin函数。
并且选Levenberg-Marquardt算法(trainlm)为BP网络的学习算法。
对于该初始网络,我们选用sim()函数观察网络输出。
继续在M函数中如下输入。
net=newff(minmax(x),[1,7,1],{'tansig','tansig','purelin'},'trainlm'); y1=sim(net,x);figure;plot(x,y,'b',x,y1,'r')title('期望输出与实际输出比较');xlabel('t');则得到以下所示训练的BP网络期望输出与实际输出曲线比较:应用函数train()对网络进行训练之前,需要预先设置训练参数。
RBF网络应用—逼近非线性函数 神经网络控制课件(第三版)

1
RBF网络应用—逼近非线性函数
Matlab程序
m265a.m
4
RBF网络应用—逼近非线性函数
m265a.m执行结果
构造3个高斯RBF
5
RBF网络应用—逼近非线性函数
m265a.m执行结果
构造非线性函数d=f(u)
6
RBF网络应用—逼近非线性函数
12
RBF网络应用—逼近非线性函数
m265b.m执行结果
网络输出
13
RBF网络应用—逼近非线性函数
m265b.m执行结果
非线性函数d(o) 、网络输出y(*)
14
RBF网络应用—逼近非线性函数
m265b.m执行结果
与m265a.m 执行 结果 比较: 相同
非线性函数d(o) 、网络输出y(*)
m265a.m执行结果
设计的网络输出 y逼近d=f(u)
7
RBF网络应用—逼近非线性函数
m265a.m执行结果
Command Window:
w1 = 0.7000
-1.7000
2.1000
-0.1000
2.7000
-1.4000
3.0000
b1 = 26
1. 设计的RBFNN结构。 2. RBFNN的所有参数。 由m265b.m程序,仿真N1,7,1 逼近非线性函数d=f(u)的过程。
10
RBF网络应用—逼近非线性函数
m265b.m执行结果
7个隐层节点的输出
11
RBF网络应用—逼近非线性函数
m265b.m执行结果
7个隐层节点输出的加权、网络输出
15
RBF网络应用—逼近非线性函数
小波变换与神经网络的结合在图像分析中的应用

小波变换与神经网络的结合在图像分析中的应用随着科技的不断发展,数字化技术在图像处理中的应用越来越广泛。
在图像分析领域中,小波变换和神经网络是两个重要的工具,它们可以互相结合,最终帮助人们更好地进行图像分析。
本文将探讨小波变换和神经网络的结合在图像分析中的应用。
一、小波变换的介绍小波变换是一种基于时间和频率分析的变换方法,它可以将信号分解为不同频率成分和时域特征。
相比于傅里叶变换,小波变换更适合处理非稳态信号,可以提取出更为准确的信息。
在图像分析中,小波变换可以用于图像压缩、去噪、边缘检测等方面。
通过分解和重构,小波变换可以将图像压缩到更小的尺寸,同时保留图像的主要信息。
此外,小波变换可以减少噪声在图像中的影响,提高图像的质量。
在边缘检测方面,小波变换可以定位图像中的边缘,并将其突出显示。
二、神经网络的介绍神经网络是一种基于生物神经系统的模拟技术,它通过多个节点(神经元)之间的连接,来实现信息的处理。
神经网络可以设置多个隐藏层,根据数据集不断进行学习,提高其对目标的识别准确性。
在图像分析中,神经网络可以用于图像识别、物体检测等方面。
通过对大量数据的学习,神经网络可以判断图像中是否存在目标物体,并将其与其他物体区分开来。
此外,神经网络还可以对图像进行分类,例如将不同的动物、车辆等分类出来。
三、小波变换与神经网络的结合小波变换和神经网络在图像分析中都有重要的作用,它们的结合可以更全面地分析图像。
以下是小波变换与神经网络结合的一些应用。
1. 基于小波变换的图像预处理在使用神经网络进行图像分析之前,需要对图像进行预处理。
由于神经网络对噪声、模糊等干扰比较敏感,因此需要使用小波变换来对图像进行去噪、边缘检测等处理,以提高神经网络的准确性。
2. 基于小波变换的神经网络训练方法神经网络的识别准确性与其所学习的数据集的质量有关。
在训练神经网络时,可以采用小波变换来对数据集进行压缩,从而减少神经网络的训练时间和计算量,提高训练效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非 线 性函数 ,仿 真结 果表 明 ,小 波 网络逼 近精 度 明显 优 于 B P网耋 } } ‘
文章 编 :17 9 7 (0 0 7 { 4 一) 62- 8 0 2 1 )0 一) 1 1 , 】) 2
关键 词 :小波 变换 :过程 神 经元 网 络 ;函数逼 近
巾 闺分类 号 :T l3 P 8 文献 标 识码 :A
=: === = … = . ’.____ 一 一 =: … 一 ‘ …
\L 3 NO , ) 3 l ; Se .2 0 p 0i
连 续小波过程神经元 网络在非线性 函数逼近 的应用
刘金 月 ,祝宝玲
(, 石油大学 1 东北 计 算机 与信息技 术学 院 ,大庆 13 1 2 63g . 油m公司天然 气地而 T稚建 设项 绎 部 ,松 原 吉林 l80 ) 300
第3 卷 第3 3 期
2 119 001  ̄
。 一 一 一 一 = 一 … = .= 一 ,一 :学版 )
J u a e’ h n  ̄ u n es y r cec n th oo y Na rl o n  ̄ dt n o r l l a g h nU i ri ine dT ̄ n l ( t a S i  ̄ E io ) n C v tu S a o g u  ̄ i
摘
要 :建立舔 于 B P叫络 的连 续小 波过 程神 经 元恻络 模 , 分析 I络抒 扑 构 。给 …学 ) 】 c i j 4 J
。模 根据 _络 逼 刈
近 函数特 性 ,选取 Mol 函数 作 为隐层 结 点激励 两数 ,利用 L 算 法 训练 M络 权位 、八 度 r = ¨; J,输 出 rt e MS j、 ㈧ ¨ 层采 用线 性 函数 ,使 网 络兼 具过 程 神经 元网络 和 小波 变欹优 点。分 州 连续 小波过 冲经 / ; ; Jl 引: 】 ㈨
Ab U a t T ep p re tb i e e c ni u u v lt r c s t x l ewo k d l a e n RP t t r , a ay e s ’c : h a e sa l h d t o t o s s h n wa ee o e sr u a t r smo e b s d o c wo [ n lz d p e n l <
LI Jn ue , U iy ZHU o i g Ba ln
( . m p t ra n o m a: aT ̄ l olg lg No t e s tolum vest Da n 3 8 : 1Co u e ndI f r tc m o yCol e, rh a t r e e Pe Uni ri y, qig l 3l 6
tp og sr cu e o ew o k a d ga e r n l rt . c r ng t pp o m aig fmoto ha a trsiso’h o ol y tu tr ft n t r x lanig ago i he n c hm Ac o di o a r xi t n i i n c rce it te c J h , o k, t eyr heM o l t a ltuncinw a m poy da ci t nf ncin i heh d e o re w vee f to se l e sa t i u to nt va o i d nn de, newo kweghs, s aefc t r i t c l a— tra s l c m e tf co ee tan d i S ago i m 。 l a u t n 、a d ptd i heoupu a e s I o nddip a e n a trw r r ie byusngLM l rt h i rf nci ne o V sa o e t t tly o Lc n r , 1 c tn ou v lt r e sn u a t ok a etrc a a tr o bnigw i 、ee a sor n url t o k on iu swa ee oc s e r l w rsh db te h r cesc m i n t wa ,l tr n f nl dne a w r Th p ne h t a ne e c n iu swa e e r e sne r n t oksa dBP t o kwe eu e p r xiat gt  ̄ieno l a a-un tol c p  ̄ o tn ou v lt oc s u  ̄ ew r n new r r s di a p o n ai heS l n h e tf ci irs c 。 p n n l
2 trl a ufc n i eig rj aae et pr n o l i e o ay Sn y a 30 ) . uaG s r e gn r o ̄t n gm nDeamet finO l lC mpn ・o gun18 0 Na S a E e nP M t Ji f d i
Co i o sⅥ , ntnu u
ItPr c s e a t r si he e o e sN ur l Ne wo k n t
Ap l a i n o p o i tn n i e rF n to s p i to f c Ap r x ma i g No l a u c i n n