信号与系统第5章 拉普拉斯变换与系统函数

合集下载

(完整word版)信号与系统练习题——第5章

(完整word版)信号与系统练习题——第5章

信号与系统练习题 第5章一、选择题1、系统函数()H s 与激励信号()f t 之间的关系是(B)A 、反比关系B 、没有关系C 、线性关系D 、不确定2、信号)()(2t e t f t ε-=的单边拉普拉斯变换=)(s F (D ) A 、2)2(1+s B 、 2)2(+s sC 、 2+s sD 、21+s3、已知某系统的框图如下,则此系统的系统函数表示为(C)A 、21()23H s s s =++ B 、2()23s H s s s =++C 、243()23s H s s s +=++ D 、241()23s H s s s +=-+4、已知某LTI 系统的系统函数()H s ,唯一决定该系统的冲激响应()h t 函数形式的是(B )A 、()H s 的零点B 、()H s 的极点C 、系统的激励D 、激励与()H s 的极点 5、2(2)()(1)(2)s s H s s s +=+-,属于其零点的是(C)A 、—1B 、2C 、-2D 、1 6、2(2)()(1)(2)s s H s s s +=+-,属于其极点的是(C )A 、0B 、—2C 、2D 、1 7、已知22()22sF s s s =++,则(0)f +=(C )8、已知2()22F s s s =++,则()f ∞=(A) A 、0 B 、—2 C 、2 D 、不确定 9、信号2(1)()()t f t e t ε--=的单边拉普拉斯变换=)(s F (A )A 、2()2e F s s =+B 、2()2s F s s =+ C 、1()2F s s =+ D 、()2s F s s =+10、信号2(1)()(1)t f t e t ε--=-的单边拉普拉斯变换=)(s F (A )A 、()2s e F s s -=+B 、2()2e F s s =+ C 、1()2F s s =+ D 、()2s F s s =+11、已知信号()cos(2)f t t =的单边拉普拉斯变换2()4s F s s =+,则()[cos(2)]dy t t dt=的单边拉普拉斯变换()Y s =(B )A 、2se s -+ B 、244s -+ C 、224s s + D 、24s s +12、已知信号()cos(2)f t t =的单边拉普拉斯变换2()4s F s s =+,则()[cos(2)()]dy t t t dtε=的单边拉普拉斯变换()Y s =(C )A 、2se s -+ B 、244s -+ C 、224s s + D 、24s s +13、已知信号()f t 的单边拉普拉斯变换为()F s ,则()[()]dy t f t dt=的单边拉普拉斯变换()Y s =(A ) A 、()(0)sF s f -- B 、()(0)sF s f -+ C 、()sF s D 、()F s s14、已知信号()f t 的单边拉普拉斯变换为()F s ,则()[()()]dy t f t t dtε=的单边拉普拉斯变换()Y s =(C )A 、()(0)sF s f --B 、()(0)sF s f -+C 、()sF sD 、()F s s15、已知223()21s F s s s +=++,则(0)f +=(C )A 、0B 、-2C 、2D 、不确定 16、已知223()21s F s s s +=++,则()f ∞=(A )A 、0B 、—2C 、2D 、不确定 17、已知1()1F s s =+,则(0)f +=(C )18、已知()1F s s =+,则()f ∞=(A ) A 、0 B 、—1 C 、3 D 、不确定 19、信号5(1)()t f t e --=的单边拉普拉斯变换=)(s F (A)A 、5()5e F s s =+B 、5()5s F s s =+ C 、1()5F s s =+ D 、()5s F s s =+二、填空题1、某LTI 连续系统的系统函数为235)(2+++=s s s s H ,描述该系统的微分方程为)(5)()(2)(3)(''''t f t f t y t y t y +=++。

信号与系统4.3拉氏变换的性质

信号与系统4.3拉氏变换的性质

T
T2
2
E(2 )
T
s2 ( 2 )2
E(2 )
[
s2
T
( 2
)2
sT
]e 2
T
T
E(2 )
T
s2 ( 2 )2
(1
sT
e2
)
T
第4章 拉普拉斯变换、连续时间系统的S域分析
例4-4 试求图4.4所示的正弦半波周期信号的拉氏变换。
f (t)
E

0
TT
2T
t
2
图4.4 例 4―4图
解: 在例4―3中我们已求得从t=0开始的单个正弦半波(亦即
0 24
t
图4.5 例4-5图
e2(t2)e4u(t 2) e2(t4)e8u(t 4)
于是
F (s) L[ f (t)] e4L[e2t ]e2s e8L[e2t ]e4s
e2(s2) e4(s2) s2
第4章 拉普拉斯变换、连续时间系统的S域分析
4、s域平移特性
若 f (t) F(s)
t)u(t) E sin[ T
(t )]u(t )
2
2
第4章 拉普拉斯变换、连续时间系统的S域分析
应用拉氏变换的时移特性,有
F (s) L[ f (t)] L[ fa (t)] L[ fb (t)]
L[E sin(2 t)u(t)] L{E sin[ 2 (t T )]u(t T )}
本题第一个周期的波形)的拉氏变换为
F1(s)
L[
f
(t)]
E(2 )
T
s2 ( 2 )2
(1
sT
e2
)
T
第4章 拉普拉斯变换、连续时间系统的S域分析

【信号与系统】03-系统函数的性质

【信号与系统】03-系统函数的性质

【信号与系统】03-系统函数的性质1. 系统函数的性质1.1 变换的对偶性 不管是傅⾥叶变换的频域还是拉普拉斯变换的s域(下⾯统称s域),都是深⼊讨论LIT系统的有⼒⼯具,有时甚⾄是必备⼯具。

s域的系统函数和时域的信号(单位冲激响应)是⼀对共⽣体,它们通过拉普拉斯变换⽣成彼此,同时也是连接两个域的纽带。

对⼀个函数解析式,经常要对它做⼀些常规的分析操作,⽐如运算、平移、缩放、微积分、卷积等。

⼀个很⾃然的问题是,在某个域的分析操作会对另⼀个域带来什么影响呢?本篇就来讨论这个问题。

在正式讨论之前,有必要再回顾⼀下拉普拉斯变换的公式。

你可能⼀开始就注意到,正反变换存在⼀定的“对称性”,⽽仅在局部有微⼩差别。

在数学上,两个概念如果通过类似的⽅法互相定义,它们就称为对偶的,从形式上不难看出,互为对偶的概念的性质也是对偶存在的,这就省去了相似论证的⿇烦。

信号x(t)和拉普拉斯变换H(s)之间不具有严格的对偶性,但这样的相似性仍然可以被使⽤。

如果记χ(ω)=eσ√2πX(σ+jω),将得到更为对称的式(1),把这个关系记作变换T,显然有式(2)成⽴。

以后变换的性质如果本⾝不是对称的,可以运⽤该式迅速得到另⼀个对称的性质,当然简单的性质直接证明会更快。

x(t)=1√2π∫∞−∞χ(ω)e jωt dω;χ(ω)=1√2π∫∞−∞x(t)e−jωt d t x(t)T↔χ(ω)⇔χ(t)T↔x(−ω)1.2 拉普拉斯变换的性质 以下按函数运算的复杂程度,罗列LT的基本性质,过于直⽩的结论不加证明。

需要注意的是,性质成⽴有它⾃⼰的ROC,并不完全受限于原LT的ROC。

还有我们知道,ROC和积分在具体的s上的收敛性是不同的,以下性质在ROC外的收敛点仍然可以是成⽴的。

⾸先是函数的线性运算,在s域也是线性的(式(3))。

然后看函数的平移,容易有式(4)左成⽴,在s域的平移还有式(4)右成⽴,这是⼀组对偶性质。

当对函数进⾏伸缩时,频谱系数也跟着反⽐例伸缩(式(5)左);特别地,a=−1时表⽰函数左右翻转(旋转180度),s域则也跟着旋转180度(式(5)右)。

《信号、系统与数字信号处理》第五章 Z变换与离散系统的频域分析

《信号、系统与数字信号处理》第五章 Z变换与离散系统的频域分析

同理
sinh0nun
1 2
e0n
e0n
un
1 z
2
z
e0
z z e0
z2
z sinh0 2z cosh0
1
z max e0 , e0
2、双边z变换的移位 n0 0
若 xn X z
RX
z
R X
则 x n n0 z n0 X z
RX
z
R X
证明: Z x n n0
n
xT t nT estdt
n
xnT esnT
n
令 z esT 引入新的复变量, 将上式写为
X s s xnT zn
n
此式是复变量 z 的函数(T 是常数),记为
X z xnzn
n
x 2z2 x 1z x0 x1z1 x2z2
Z xn 2un z2 X z z1x1 x 2
3) 若 xn 为因果序列 xnun X z
则 xn mun zm X z
m0
xn
mun
zm
X
z
m1 k 0
xk
z
k
例5-9 求周期序列的单边z变换
解: 周期序列 xn xn rN
m0
令 n 0 ~ N 1 的主值区序列为 x1 n ,
( z 1)
4、指数序列加权
若 xn X z RX z RX
则 an xn X a1z
RX a 1z RX
证:Z an xn an xnzn
n
xn a1z n X z / a
n
RX a 1z RX
a
R X
z
a
R X
利用

信号与系统教学课件第九章拉普拉斯变换

信号与系统教学课件第九章拉普拉斯变换

其他数值计算方法简介
数值逆变换方法
介绍基于数值计算的拉普拉斯逆 变换方法,如直接数值积分法、
离散化方法等。
优缺点分析
比较各种数值计算方法的优缺点, 如计算精度、计算速度、ቤተ መጻሕፍቲ ባይዱ用范围 等。
应用场景
根据实际需求,选择适合的数值计 算方法进行拉普拉斯逆变换求解, 并给出具体应用场景和实例。
04 拉普拉斯变换在信号处理 中的应用举例
频移性质
时域函数的频移对 应频域函数的相移 和幅度变化。
积分性质
时域函数的积分对 应频域函数的除法 运算。
拉普拉斯变换与傅里叶变换关系
01
02
03
04
拉普拉斯变换是傅里叶变换的 推广,可以处理不收敛的信号

傅里叶变换是拉普拉斯变换在 虚轴上的特例,即s=jω时的拉
普拉斯变换。
拉普拉斯变换提供了更广泛的 信号分析工具,适用于更复杂
信号与系统教学课件第九章拉普拉 斯变换
目录
• 拉普拉斯变换基本概念 • 拉普拉斯变换在信号与系统中的应用 • 拉普拉斯逆变换及计算方法 • 拉普拉斯变换在信号处理中的应用举

目录
• 拉普拉斯变换在控制系统稳定性分析 中的应用
• 总结回顾与拓展延伸
01 拉普拉斯变换基本概念
拉普拉斯变换定义
拉普拉斯变换是一种线性积分变 换,用于将时间域函数转换为复
上升时间与峰值时间
上升时间是指系统响应从某一低电平上升到高电平所需的时间,峰值时间是指系统响应达到最大值所需的时 间。上升时间和峰值时间是评价系统快速性的重要指标之一。
超调量与调节时间
超调量是指系统响应在达到稳态值之前出现的最大偏离量,调节时间是指系统响应从瞬态过程进入稳态过程 所需的时间。超调量和调节时间是评价系统准确性和稳定性的重要参数。

信号与系统讲义第五章1引言及无失真传输条件

信号与系统讲义第五章1引言及无失真传输条件

无失真:时域波形传输不变
e(t )
e(t)
线性网络
t
H ( j)
R( j) KE( j)e jt0 R( j) E( j)H ( j)
r (t )
t t0
r(t) K e(t t0 )
H ( j) R( j) Ke jt0 E( j)
频域无失真条件: H ( j) Ke jt0
H( j) K () t0
r(t) e(t)*h(t)
R( j) E( j)H( j) H ( j) LT[h(t)] H ( j) R( j)
E( j)
对稳定系统
H (s)
H ( j) H (s) s j
系统函数还可以通过对微分方程取傅氏变换而得到
求矩形脉冲通过低通滤波器的响应
v1 (t )
E
t
0
输入信号波形
R
傅里叶变换在现代通信系统中的应用非常多,典 型的应用就是——滤波、调制与解调、抽样
频域系统函数——系统的频率响应函数H(jw)
稳定系统:s域系统函数→频域系统函数
频域系统函数H(jw)描述了系统对信号的各频率
成份的加权
傅氏变换将信号分解为无穷多项ejwt信号的叠加
S域系统函数H(s)描述系统对复指数信号est的加
5.3 无失真传输
信号通过系统传输,由于系统对信号中各频率分 量幅度产生不同程度的衰减,使得响应中各频率 分量的相对幅度产生变化,引起幅度失真。
同样地,由于系统对输入信号各频率分量产生的 相移,信号也会出现失真,称为相位失真
频域由相于移系→统时对域信延号时各频率分量产生的相移不与频
输 输
入 出率成yx正((t相t))比对,ss位iinn使((置响11t产t )应生的s1变)in各(化s频i2,nt率()而分2t引量起在2的) 时失间真轴上的

信号与系统-矩母函数与拉普拉斯变换

信号与系统-矩母函数与拉普拉斯变换

结题报告 矩母函数与拉普拉斯变换一 实验原理1.拉普拉斯变换拉普拉斯变换是分析连续时间信号的重要手段。

对于当t ∞时信号的幅值不衰减的时间信号,即在f(t)不满足绝对可积的条件时,其傅里叶变换可能不存在,但此时可以用拉氏变换法来分析它们。

连续时间信号f(t)的单边拉普拉斯变换F(s)的定义为:0()()st F s f t e dt ∞-=⎰ 拉氏反变换的定义为: 1()()2j st j f t F s e ds j σωσωπ+-=⎰显然,上式中F(s)是复变量s 的复变函数,为了便于理解和分析F(s)随s 的变化规律,我们将F(s)写成模及相位的形式:()()()j s F s F s e ϕ=。

其中,|F(s)|为复信号F(s)的模,而()s ϕ为F(s)的相位。

由于复变量s=σ+jω,如果以σ为横坐标(实轴),jω为纵坐标(虚轴),这样,复变量s 就成为一个复平面,我们称之为s 平面。

从三维几何空间的角度来看,|()|F s 和()s ϕ分别对应着复平面上的两个曲面,如果绘出它们的三维曲面图,就可以直观地分析连续信号的拉氏变换F(s)随复变量s 的变化情况2.矩母函数一个与随机变量X 相关的矩母函数是一个参数s 的函数MX(s),定义如下:MX(s)=E[exp(sX)]更具体地,当X 是一个离散型随机变量时,相关矩母函数为M(s)=+exp(sx)pX(x)当X 是连续型时,有M(s)=+exp(sx)fX(x)dx不难发现,概率密度函数的矩母函数与概率密度函数的拉普拉斯变换是基本相同的,只是拉普拉斯变换使用exp(-sx)而非exp(sx)。

考虑一个连续型随机变量X ,根据定义M(s)=+exp(sx)fX(x)dx在M(s)定义式两边取s 的导数d/ds M(s) = d/ds + exp(sx)fX(x)dx=+d/ds exp(sx)fX(x)dx = +xexp(sx)fX(x)dx上述等式对s 任何取值都成立。

管致中《信号与线性系统》(第5版)(课后习题 连续时间系统的复频域分析)

管致中《信号与线性系统》(第5版)(课后习题 连续时间系统的复频域分析)
圣才电子书
十万种考研考证电子书、题库视频学习平


第 5 章 连续时间系统的复频域分析
5.1 标出下列信号对应于 s 平面中的复频率。
(1) e2t ;(2) te-t ;(3)cos2t;(4) e-t sin(-5t)
答:(1) e2t (t)
s
1
2
,所以
s1=2
收敛域:
5.4 用部分分式展开法求下列函数的拉普拉斯反变换。
3 / 43
圣才电子书

答:(1)部分分式展开
十万种考研考证电子书、题库视频学习平 台
拉氏逆变换,有
(2)部分分式展开
拉氏逆变换,有
(3)部分分式展开
取拉氏逆变换,有
(4)部分分式展开
取拉氏逆变换,有
(5)部分分式展开
15 / 43
圣才电子书

十万种考研考证电子书、题库视频学习平 台
所以
(3)因为 令 T=1,则 所以
(1)n (t nT )
(1)设 而
,则
由时间平移特性,可得
图 5-1
(2)
(3)因为 由时间平移特性,可得
(4)设
,因
由复频域微分特性,有
再由时间平移特性,可得
9 / 43
圣才电子书

十万种考研考证电子书、题库视频学习平 台
5.9 用拉普拉斯变换的性质求图 5-2 各波形函数的拉普拉斯变换。
答:(a)由图 5-2(a)可知
图 5-2
而 由拉式变换的时间平移与线性特性,可得
(b)由图 5-2(b)可知
而 所以
(c)由图 5-2(c)可知
10 / 43
圣才电子书
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档