重庆一中八年级下期末数学试卷北师大版
最新北师大版八年级下册数学期末测试试卷以及答案(5套题)

八年级下册数学期末测试试卷一、选择题。
(共12道选择题,每道选择题只有一个正确答案)1、下列图形中,既是中心对称又是轴对称的是( )2、若a<0,则下列不等式不成立的是( )A 、a+5<a+7B 、5a >7aC 、5-a <7-aD 、7a 5a > 3、下列四个命题 ①小于平角的角是钝角;②平角是一条直线; ③等角的余角相等;④凡直角都相等。
其中真命题的个数的是( )个。
A 、1B 、2C 、3D 、44、下列从左到右的变形是因式分解的是( )A. B. C.D.A 、(x+1)(x -1)=x 2-1B 、ab -a -b+1=(a -1)(b -1)C 、(a -b)(m -n)=(b -a)(n -m)D 、m 2-2m -3=m (m 32m --)5、方程1x 3x 2+=的解是( )A 、1B 、﹣1C 、2D 、﹣26、完成下列任务,宜采用抽样调查方式的是() A 、调查你班同学的年龄情况B 、考察一批炮弹的杀伤半径C 、了解你所在学校男、女生人数D 、奥运会上对参赛运动员进行的尿样检查7、如图,AB ∥CD,AC ⊥BC,则图中与∠BAC 互余的角(不添加字母)共有( )个A、1B、2C、3D、48、某中学共有100教师,将他们的年龄分成11个组,其中41~45岁这一组内有14名教师。
那么,这个小组的频率为()A、0.14B、0.20C、0.36D、0.289、不等式3(2x+5)>2(4x+3)的解集为()A、x>4.5B、x<4.5C、x>9D、x=4.510、图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n 为正整数)圆点的个数,则下列函数关系中正确的是()A 、44y n -=B 、n 4y =C 、44y n +=D 、2n y =11、如图,一次图数y =﹣x+3与一次函数y =2x+m 图象交于点(2,n ),则关于x 的不等式组的解集为()A 、x >﹣2B 、x <3C、0<x<3D、﹣2<x<312、如图,在△ABC中,∠A=90°,AB=AC,∠ABC的角平分线交AC于D,BD=34,过点C作CE⊥BD交BD的延长线于E,则CE的长为()7A、2B、32C、33D、62二、填空题。
北师大版数学八年级下册期末考试试卷附答案

北师大版数学八年级下册期末考试试题一.选择题(每小题3分,共36分)1.若x<y,则下列式子不成立的是()A.x﹣1<y﹣1B.﹣2x<﹣2y C.x+3<y+3D.2.下列各式从左到右的变形中,是因式分解的为()A.a(x+y)=ax+ayB.y2﹣4y+4=(y﹣2)2C.t2﹣16+3t=(t+4)(t﹣4)+3tD.6x3y2=2x2y•3xy3.若分式有意义,则x的取值应该该满足()A.x=B.x=C.x≠D.x≠4.如图,在△ABC中,点D,E分别是边AB,AC的中点,已知DE=3,则BC的长为()A.3B.4C.6D.55.下列条件中,不能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=CD,AD=BCC.AB∥CD,∠B=∠D D.AB∥CD,AD=BC6.剪纸是中国古老的汉族传统民间艺术之一.下面是制作剪纸的简单流程,展开后的剪纸图案从对称性来判断()A.是轴对称图形但不是中心对称图形B.是中心对称图形但不是轴对称图形C.既是轴对称图形也是中心对称图形D.既不是轴对称图形也不是中心对称图形7.如果一个等腰三角形的两边长为4、9,则它的周长为()A.17B.22C.17或22D.无法计算8.如图,四边形ABCD是边长为5cm的菱形,其中对角线BD与AC交于点O,BD=6cm,则对角线AC的长度是()A.8cm B.4cm C.3cm D.6cm9.关于x的方程=有增根,则k的值是()A.2B.3C.0D.﹣310.如图,在△ABC中,AB=AC,∠BAC=130°,AB的垂直平分线交AB于点E,交BC 于点F,连接AF,则∠FAB的度数()A.50°B.35°C.30°D.25°11.如图,已知正方形ABCD与正方形AEFG的边长分别为4cm、1cm,若将正方形AEFG 绕点A旋转,则在旋转过程中,点C、F之间的最小距离为()cm.A.3B.2C.4﹣1D.312.如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD面积为()A.4B.4C.8D.8二.填空题(共6小题)13.分式的值为0,那么x的值为.14.在△ABC中,已知∠A=∠B=45°,BC=3,则AB=.15.正十边形的每个外角都等于度.16.如图,已知一次函数和y=ax﹣2的图象交于点P(﹣1,2),则根据图象可得不等式>ax﹣2的解集是.17.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=2,CE=6,H是AF的中点,那么CH的长是.18.把一副三角板如图1放置,其中∠ACB=∠DEC=90°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转使CD边恰好过AB的中点O,得到△D1C1E1,如图2,则线段AD1的长度为.三.解答题19.将下列各式因式分解:(1)m3n﹣9mn(2)a3+a﹣2a220.解不等式组:,并把解集在数轴上表示出来.21.先化简(1﹣)÷,再从0,1,2中选择一个合适的x值代入求值.22.阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.23.已知(如图),在四边形ABCD中AB=CD,过A作AE⊥BD交BD于点E,过C作CF⊥BD交BD于F,且AE=CF.求证:四边形ABCD是平行四边形.24.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1)、B(1,﹣2)、C(3,﹣3).(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于原点的中心对称的△A2B2C2;(3)请写出A1、A2的坐标.25.某体育用品商店用4000元购进一批足球,全部售完后,又用3600元再次购进同样的足球,但这次每个足球的进价是第一次进价的1.2倍,且数量比第一次少了10个.求第一次每个足球的进价是多少元?26.如图1,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB 上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当B'C'经过点D时,求△BCD平移的距离及点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.27.如图,四边形ABCD、BEFG均为正方形,(1)如图1,连接AG、CE,试判断AG和CE的数量关系和位置关系并证明;(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB的度数;若发生变化,请说明理由.(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM 与BN的数量关系:.参考答案与试题解析一.选择题(共12小题)1.若x<y,则下列式子不成立的是()A.x﹣1<y﹣1B.﹣2x<﹣2y C.x+3<y+3D.【分析】各项利用不等式的基本性质判断即可得到结果.【解答】解:由x<y,可得:x﹣1<y﹣1,﹣2x>﹣2y,x+3<y+3,,故选:B.2.下列各式从左到右的变形中,是因式分解的为()A.a(x+y)=ax+ayB.y2﹣4y+4=(y﹣2)2C.t2﹣16+3t=(t+4)(t﹣4)+3tD.6x3y2=2x2y•3xy【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:y2﹣4y+4=(y﹣2)2,故B正确,故选:B.3.若分式有意义,则x的取值应该该满足()A.x=B.x=C.x≠D.x≠【分析】根据分式有意义的条件是分母不等于零列出不等式,解不等式得到答案.【解答】解:分式有意义,则2x﹣3≠0,解得,x≠,故选:C.4.如图,在△ABC中,点D,E分别是边AB,AC的中点,已知DE=3,则BC的长为()A.3B.4C.6D.5【分析】根据三角形的中位线定理“三角形的中位线等于第三边的一半”,有DE=BC,从而求出BC.【解答】解:∵D、E分别是AB、AC的中点.∴DE是△ABC的中位线,∴BC=2DE,∵DE=3,∴BC=2×3=6.故选:C.5.下列条件中,不能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=CD,AD=BCC.AB∥CD,∠B=∠D D.AB∥CD,AD=BC【分析】根据平行四边形的判定定理分别进行分析即可.【解答】解:A、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,故此选项不合题意;B、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故此选项不合题意;C、∵AB∥CD,∠B=∠D,∴四边形ABCD是平行四边形,故此选项不合题意;D、∵AB∥CD,AD=BC,不能得出四边形ABCD是平行四边形,故此选项符合题意;故选:D.6.剪纸是中国古老的汉族传统民间艺术之一.下面是制作剪纸的简单流程,展开后的剪纸图案从对称性来判断()A.是轴对称图形但不是中心对称图形B.是中心对称图形但不是轴对称图形C.既是轴对称图形也是中心对称图形D.既不是轴对称图形也不是中心对称图形【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:既是轴对称图形也是中心对称图形,故选:C.7.如果一个等腰三角形的两边长为4、9,则它的周长为()A.17B.22C.17或22D.无法计算【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若4为腰长,9为底边长,由于4+4<9,则三角形不存在;(2)若9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22.故选:B.8.如图,四边形ABCD是边长为5cm的菱形,其中对角线BD与AC交于点O,BD=6cm,则对角线AC的长度是()A.8cm B.4cm C.3cm D.6cm【分析】首先根据菱形的性质可得BO=DO,AC⊥DB,AO=CO,然后再根据勾股定理计算出AO长,进而得到答案.【解答】解:∵四边形ABCD是菱形,∴BO=DO,AC⊥DB,AO=CO,∵BD=6cm,∴BO=3cm,∵AB=5cm,∴AO==4(cm),∴AC=8cm.故选:A.9.关于x的方程=有增根,则k的值是()A.2B.3C.0D.﹣3【分析】依据分式方程有增根可求得x=3,将x=3代入去分母后的整式方程从而可求得k的值.【解答】解:∵方程有增根,∴x﹣3=0.解得:x=3.方程=两边同时乘以(x﹣3)得:x﹣1=k,将x=3代入得:k=3﹣1=2.故选:A.10.如图,在△ABC中,AB=AC,∠BAC=130°,AB的垂直平分线交AB于点E,交BC 于点F,连接AF,则∠FAB的度数()A.50°B.35°C.30°D.25°【分析】先由等腰三角形的性质求出∠B的度数,再由垂直平分线的性质可得出∠BAF =∠B,进而可得出结论.【解答】解:∵AB=AC,∠BAC=130°,∴∠B=(180°﹣130°)÷2=25°,∵EF垂直平分AB,∴BF=AF,∴∠BAF=∠B=25°,故选:D.11.如图,已知正方形ABCD与正方形AEFG的边长分别为4cm、1cm,若将正方形AEFG 绕点A旋转,则在旋转过程中,点C、F之间的最小距离为()cm.A.3B.2C.4﹣1D.3【分析】如图,连接AF,CF,AC.利用勾股定理求出AF,AC即可解决问题.【解答】解:如图,连接AF,CF,AC.∵正方形ABCD与正方形AEFG的边长分别为4cm、1cm,∴∠B=∠G=90°,AB=BC=4cm,AG=GF=1cm,∴AF===,AC===4,∵CF≥AC﹣AF,∴CF≥3,∴CF的最小值为3,故选:D.12.如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴.直线y=﹣x 从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD面积为()A.4B.4C.8D.8【分析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.利用三角函数即可求得DM即平行四边形的高,然后利用平行四边形的面积公式即可求解.【解答】解:根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,如图1,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.∵y=﹣x与x轴形成的角是45°,又∵AB∥x轴,∴∠DNM=45°,∴DM=DN•sin45°=2×=2,则平行四边形的面积是:AB•DM=4×2=8.故选:C.二.填空题(共6小题)13.分式的值为0,那么x的值为3.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得:x2﹣9=0且x+3≠0,解得x=3.故答案为:3.14.在△ABC中,已知∠A=∠B=45°,BC=3,则AB=3.【分析】利用勾股定理求解即可.【解答】解:∵∠A=∠B=45°,∴AC=BC=3,∠C=90°,∴AB===3,故答案为3.15.正十边形的每个外角都等于36度.【分析】直接用360°除以10即可求出外角的度数.【解答】解:360°÷10=36°.故答案为:36.16.如图,已知一次函数和y=ax﹣2的图象交于点P(﹣1,2),则根据图象可得不等式>ax﹣2的解集是x>﹣1.【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【解答】解:∵一次函数和y=ax﹣2的图象交于点P(﹣1,2),∴不等式>ax﹣2的解集是x>﹣1,故答案为:x>﹣1.17.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=2,CE=6,H是AF的中点,那么CH的长是2.【分析】连接AC、CF,根据正方形的性质求出AC、CF,并判断出△ACF是直角三角形,再利用勾股定理列式求出AF,然后根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:如图,连接AC、CF,在正方形ABCD和正方形CEFG中,AC=BC=2,CF=CE=6,∠ACD=∠GCF=45°,所以,∠ACF=45°+45°=90°,所以,△ACF是直角三角形,由勾股定理得,AF===4,∵H是AF的中点,∴CH=AF=×4=2.故答案为:2.18.把一副三角板如图1放置,其中∠ACB=∠DEC=90°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转使CD边恰好过AB的中点O,得到△D1C1E1,如图2,则线段AD1的长度为5.【分析】如图2中,作D1H⊥CA交CA的延长线于H.在Rt△AHD1中,求出AH,HD1利用勾股定理即可解决问题.【解答】解:如图2中,作D1H⊥CA交CA的延长线于H.∵CA=CB,∠ACB=90°,AO=OB,∴OC⊥AB,OC=OA=OB=3,∴AC=3,∵D1H⊥CH,∴∠HCD1=90°,∵∠HCD1=∠ACB=45°,CD1=7,∴CH=HD1=,∴AH=CH﹣AC=,在Rt△AHD1中,AD1===5,故答案为5.三.解答题19.将下列各式因式分解:(1)m3n﹣9mn(2)a3+a﹣2a2【考点】55:提公因式法与公式法的综合运用.【专题】44:因式分解;66:运算能力.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=mn(m2﹣9)=mn(m+3)(m﹣3);(2)原式=a(a2﹣2a+1)=a(a﹣1)2.20.解不等式组:,并把解集在数轴上表示出来.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【专题】524:一元一次不等式(组)及应用.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,解不等式①,得x>﹣1,解不等式②,得x≤3,所以,原不等式组的解集为﹣1<x≤3,在数轴上表示为:.21.先化简(1﹣)÷,再从0,1,2中选择一个合适的x值代入求值.【考点】6D:分式的化简求值.【专题】513:分式;66:运算能力.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=,当x=0时,原式=.22.阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:C;(2)错误的原因为:没有考虑a=b的情况;(3)本题正确的结论为:△ABC是等腰三角形或直角三角形或等腰直角三角形.【考点】59:因式分解的应用;KS:勾股定理的逆定理.【专题】1:常规题型.【分析】(1)根据题目中的书写步骤可以解答本题;(2)根据题目中B到C可知没有考虑a=b的情况;(3)根据题意可以写出正确的结论.【解答】解:(1)由题目中的解答步骤可得,错误步骤的代号为:C,故答案为:C;(2)错误的原因为:没有考虑a=b的情况,故答案为:没有考虑a=b的情况;(3)本题正确的结论为:△ABC是等腰三角形或直角三角形或等腰直角三角形,故答案为:△ABC是等腰三角形或直角三角形或等腰直角三角形.23.已知(如图),在四边形ABCD中AB=CD,过A作AE⊥BD交BD于点E,过C作CF⊥BD交BD于F,且AE=CF.求证:四边形ABCD是平行四边形.【考点】KD:全等三角形的判定与性质;L6:平行四边形的判定.【专题】555:多边形与平行四边形.【分析】只要证明AB∥CD即可解决问题.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形.24.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1)、B(1,﹣2)、C(3,﹣3).(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于原点的中心对称的△A2B2C2;(3)请写出A1、A2的坐标.【考点】Q4:作图﹣平移变换;R8:作图﹣旋转变换.【专题】558:平移、旋转与对称;69:应用意识.【分析】(1)利用点平移的坐标变换规律写出A1、B1、C1的坐标,然后描点即可;(2)利用关于原点对称的点的坐标特征写出A2、B2、C2的坐标,然后描点即可;(3)由(1)、(2)得到A1、A2的坐标.【解答】解:(1)如图,△A1B1C1;为所作;(2)如图,△A2B2C2为所作;(3)A1的坐标为(2,3),A2的坐标(﹣2,1).25.某体育用品商店用4000元购进一批足球,全部售完后,又用3600元再次购进同样的足球,但这次每个足球的进价是第一次进价的1.2倍,且数量比第一次少了10个.求第一次每个足球的进价是多少元?【考点】B7:分式方程的应用.【专题】513:分式.【分析】设第一次每个足球的进价是x元,则第二次每个足球的进价是1.2x元,根据数量关系:第一次购进足球的数量﹣10个=第二次购进足球的数量,可得分式方程,然后求解即可.【解答】解:设第一次每个足球的进价是x元,则第二次每个足球的进价是1.2x元,根据题意得,﹣=10,解得:x=100,经检验:x=100是原方程的根,答:第一次每个足球的进价是100元.26.如图1,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB 上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当B'C'经过点D时,求△BCD平移的距离及点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.【考点】FI:一次函数综合题.【专题】537:函数的综合应用.【分析】(1)利用同角的余角相等可得出∠OBC=∠ECD,由旋转的性质可得出BC=CD,结合∠BOC=∠CED=90°即可证出△BOC≌△CED(AAS);(2)利用一次函数图象上点的坐标特征可求出点B的坐标,设OC=m,则点D的坐标为(m+3,m),利用一次函数图象上点的坐标特征可求出m值,进而可得出点C,D的坐标,由点B,C的坐标,利用待定系数法可求出直线BC的解析式,结合B′C′∥BC及点D在直线B′C′上可求出直线B′C′的解析式,再利用一次函数图象上点的坐标特征可求出点C′的坐标,结合点C的坐标即可得出△BCD平移的距离;(3)设点P的坐标为(0,m),点Q的坐标为(n,﹣n+3),分CD为边及CD为对角线两种情况考虑,利用平行四边形的对角线互相平分,即可得出关于m,n的二元一次方程组,解之即可得出点P的坐标.【解答】(1)证明:∵∠BOC=∠BCD=∠CED=90°,∴∠OCB+∠OBC=90°,∠OCB+∠ECD=90°,∴∠OBC=∠ECD.∵将线段CB绕着点C顺时针旋转90°得到CD,∴BC=CD.在△BOC和△CED中,,∴△BOC≌△CED(AAS).(2)解:∵直线y=﹣x+3与x轴、y轴相交于A、B两点,∴点B的坐标为(0,3),点A的坐标为(6,0).设OC=m,∵△BOC≌△CED,∴OC=ED=m,BO=CE=3,∴点D的坐标为(m+3,m).∵点D在直线y=﹣x+3上,∴m=﹣(m+3)+3,解得:m=1,∴点D的坐标为(4,1),点C的坐标为(1,0).∵点B的坐标为(0,3),点C的坐标为(1,0),∴直线BC的解析式为y=﹣3x+3.设直线B′C′的解析式为y=﹣3x+b,将D(4,1)代入y=﹣3x+b,得:1=﹣3×4+b,解得:b=13,∴直线B′C′的解析式为y=﹣3x+13,∴点C′的坐标为(,0),∴CC′=﹣1=,∴△BCD平移的距离为.(3)解:设点P的坐标为(0,m),点Q的坐标为(n,﹣n+3).分两种情况考虑,如图3所示:①若CD为边,当四边形CDQP为平行四边形时,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P1的坐标为(0,);当四边形CDPQ为平行四边形时,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P2的坐标为(0,);②若CD为对角线,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P的坐标为(0,).综上所述:存在,点P的坐标为(0,)或(0,).27.如图,四边形ABCD、BEFG均为正方形,(1)如图1,连接AG、CE,试判断AG和CE的数量关系和位置关系并证明;(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB的度数;若发生变化,请说明理由.(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM 与BN的数量关系:CM=BN.【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【专题】15:综合题.【分析】(1)AG=EC,AG⊥EC,理由为:由正方形BEFG与正方形ABCD,利用正方形的性质得到两对边相等,一对直角相等,利用SAS得出三角形ABG与三角形CBE全等,利用全等三角形的对应边相等,对应角相等得到CE=AG,∠BCE=∠BAG,再利用同角的余角相等即可得证;(2)∠EMB的度数为45°,理由为:过B作BP⊥EC,BH⊥AM,利用SAS得出三角形ABG与三角形BEC全等,由全等三角形的面积相等得到两三角形面积相等,而AG=EC,可得出BP=BH,利用到角两边距离相等的点在角的平分线上得到BM为角平分线,再由∠BAG=∠BCE,及一对对顶角相等,得到∠AMC为直角,即∠AME为直角,利用角平分线定义即可得证;(3)CM=BN,在AN上截取NQ=NB,可得出三角形BNQ为等腰直角三角形,利用等腰直角三角形的性质得到BQ=BN,接下来证明BQ=CM,即要证明三角形ABQ 与三角形BCM全等,利用同角的余角相等得到一对角相等,再由三角形ANM为等腰直角三角形得到NA=NM,利用等式的性质得到AQ=BM,利用SAS可得出全等,根据全等三角形的对应边相等即可得证.【解答】解:(1)AG=EC,AG⊥EC,理由为:∵正方形BEFG,正方形ABCD,∴GB=BE,∠ABG=90°,AB=BC,∠ABC=90°,在△ABG和△BEC中,,∴△ABG≌△BEC(SAS),∴CE=AG,∠BCE=∠BAG,延长CE交AG于点M,∴∠BEC=∠AEM,∴∠ABC=∠AME=90°,∴AG=EC,AG⊥EC;(2)∠EMB的度数不发生变化,∠EMB的度数为45°理由为:过B作BP⊥EC,BH⊥AM,在△ABG和△CEB中,,∴△ABG≌△CEB(SAS),=S△EBC,AG=EC,∴S△ABG∴EC•BP=AG•BH,∴BP=BH,∴MB为∠EMG的平分线,∵∠AMC=∠ABC=90°,∴∠EMB=∠EMG=×90°=45°;(3)CM=BN,理由为:在NA上截取NQ=NB,连接BQ,∴△BNQ为等腰直角三角形,即BQ=BN,∵∠AMN=45°,∠N=90°,∴△AMN为等腰直角三角形,即AN=MN,∴MN﹣BN=AN﹣NQ,即AQ=BM,∵∠MBC+∠ABN=90°,∠BAN+∠ABN=90°,∴∠MBC=∠BAN,在△ABQ和△BCM中,,∴△ABQ≌△BCM(SAS),∴CM=BQ,则CM=BN.故答案为:CM=BN。
北师大版初中数学八下期末测试试题试卷含答案1

期末测试一、选择题(本大题共10小题,每小题3分,共30分) 1.下列图案中是中心对称图形的是( )A .B .C .D .2.有意义,那么x 的取值范围是( ) A .2x ≠B .1x −≥C .1x ≠−D .1x −≥且2x ≠3.下列多项式中,能因式分解的是( ) A .2mn +B .21mm −+C .2mn −D .221mm −+4.如图1,ABC △的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,AFG △的面积是( ) A .4.5B .5C .5.5D .6图15.如图2,经过点B (2−,0)的直线y kx b =+与直线42y x =+相交于点A (1−,2−),则420x kx b ++<<的解集为( )图2A .2x −<B .21x −−<<C .1x −<D .1x −>6.如图3,OP 是AOB ∠的平分线,点C ,D 分别在角的两边OA ,OB 上,添加下列条件,不能判定POC POD △≌△的选项是( )A .PC OA ⊥,PD OB ⊥ B .OC OD = C .OPC OPD ∠=∠D .PC PD =图37.如图4,在锐角三角形ABC 中,直线l 为BC 的垂直平分线,射线m 为ABC ∠的平分线,l 与m 交于点P 。
若60A ∠=︒,24ACP ∠=︒,则ABP ∠的度数为( )图4A .24°B .30°C .32°D .36°8.化简2242442x x x x x ⎛⎫−−+ ⎪−++⎝⎭÷2xx −,其结果是( ) A .82x −− B .82x − C .82x −+ D .82x + 9.若关于x 的方程233x kx x =+−−无解,则k 的值为( ) A .1 B .2 C .3 D .410.若关于x 的不等式组361312x m x m −=⎧⎪⎨=+⎪⎩的解集是1x >,则m ( )A .3−B .3−或16−C .16−D .3二、填空题(每小题4分,共32分) 11.多项式24axa −与多项式244x x −+的公因式是________。
2022-2023学年北师大新版八年级下册数学期末复习试卷(含解析)

2022-2023学年北师大新版八年级下册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.下列图形:①等边三角形;②正方形;③平行四边形;④圆,既是中心对称图形又是轴对称图形的有( )个A.1B.2C.3D.42.下列因式分解变形正确的是( )A.2a2﹣4a=2(a2﹣2a)B.a2﹣2a+1=(a﹣1)2C.﹣a2+4=(a+2)(a﹣2)D.a2﹣5a﹣6=(a﹣2)(a﹣3)3.已知等腰三角形的两边长为x、y,且满足|x﹣4|+(x﹣y+4)2=0,则三角形的周长为( )A.12B.16C.20D.16或204.下面说法正确的个数有( )①如果三角形三个内角的比是1:2:3,那么这个三角形是直角三角形;②三条线段组成的图形叫三角形;③对顶角相等;④面积相等的两个三角形全等;⑤两个角和其中一角的对边对应相等的两个三角形全等;⑥两直线平行,同旁内角互补.A.3个B.4个C.5个D.6个5.下列命题不正确的是( )A.等腰三角形的两底角相等B.平行四边形的对角线互相平分C.角平分线上的点到角两边的距离相等D.三个角分别对应相等的两个三角形全等6.如图所示,一次函数y=ax+b与y=cx+d的图象如图所示,下列说法:①对于函数y=﹣ax,y随x的增大而减小;②函数y=ax﹣d不经过第四象限;③不等式ax﹣d≥cx﹣b 的解集是x≥4.其中正确的是( )A.①②③B.①③C.②③D.①②7.如图,对于分式中的四个符号,任意改变其中的两个,分式的值不变的是( )A.①②B.②③C.①③D.②④8.某种商品的进价为160元,出售时标价240元,由于春节临近商场准备打折销售,但要保持利润不低于20%,那么至多打( )A.6折B.7折C.8折D.9折9.如图,在Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点A逆时针旋转60°,得到△ADE,连接BE,则BE的长是( )A.2+2B.3+2C.2+2D.3+210.在平行四边形ABCD中,AD=8,AF平分∠BAD交直线BC于点F,DF平分∠ADC 交直线BC于点F,且EF=2,则AB的长为( )A.3B.5C.2或3D.3或5二.填空题(共5小题,满分15分,每小题3分)11.一副常用的三角板,如图所示拼在一起,F、A、C、D四点共线,点B在边AE上,那么图中∠ABF= .12.因式分解:2a2(a﹣b)﹣8(b﹣a)= .13.关于x的分式方程的解为正整数,则满足条件的整数a的值为 .14.如下图△ABC中,AB、AC的垂直平分线分别交BC于D、E,BC=11cm,△ADE周长是 .15.等边三角形的边长为4,则其面积为 .三.解答题(共7小题,满分75分)16.(1)解方程:+=4.(2)解不等式组:.17.先化简再求值:÷(+m+3),其中1<m<5,且m是整数.18.如图,在平面直角坐标系中,点A的坐标是(1,4),点B的坐标是(3,0),点C 的坐标是(5,5).(1)请在如图中作出△ABC关于x轴对称的△A1B1C1;(2)在(1)的基础上,作出△A1B1C1水平向左平移7个单位长度所得的△A2B2C2,并直接写出A2,B2,C2的坐标;(3)点P是y轴上的一个动点,且A,B,C三点不在同一条直线上,求△ABP的周长最小时点P的坐标.19.如图,平行四边形ABCD,对角线AC、BD交于点O,点E在AO上,点F在CO上,DE∥BF.(1)求证:四边形DEBF是平行四边形;(2)若AD⊥BD,AD=3,AB=5.求AC的长.20.2020年春节期间,武汉爆发了新型冠状肺炎病毒感染,全国人民“万众一心,众志成城”.为了支援武汉抗击疫情,某企业用18万元购进了甲、乙两种原材料40吨加班加点生产医疗物资,购进甲种原材料的费用是购进乙种原材料费用的两倍,且甲种原材料的单价是乙种原材料单价的1.2倍.(1)求甲、乙两种原材料的单价各是多少?(2)为了扩大生产,企业计划再购进甲乙两种原材料共60吨,购进单价不变,且甲种原材料不少于乙种原材料的2倍,则企业最少筹集多少资金.21.如图,直线y=kx+b经过点A(﹣3,2),B(﹣1,4).(1)求直线AB的表达式;(2)在直角坐标系中画出y=﹣2x﹣4的图象,并求出该图象与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b≤﹣2x﹣4的解集.22.如图,已知CD是线段AB的垂直平分线,垂足为D,C在D点上方,∠BAC=30°,P是直线CD上一动点,E是射线AC上除A点外的一点,PB=PE,连BE.(1)如图1,若点P与点C重合,求∠ABE的度数;(2)如图2,若P在C点上方,求证:PD+AC=CE;(3)若AC=6,CE=2,则PD的值为 (直接写出结果).参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:①等边三角形,是轴对称图形,不是中心对称图形,不合题意;②正方形既是中心对称图形又是轴对称图形,符合题意;③平行四边形是中心对称图形不是轴对称图形,不合题意;④圆既是中心对称图形又是轴对称图形,符合题意.故选:B.2.解:∵选项A提取公因式不彻底,2a2﹣4a=2a(a﹣2),故A错误;a2﹣2a+1=(a﹣1)2,故选项B正确;﹣a2+4=﹣(a2﹣4)=﹣(a+2)(a﹣2)≠(a+2)(a﹣2),故选项C错误;a2﹣5a﹣6=(a﹣6)(a+1)≠(a﹣2)(a﹣3),故选项D错误.故选:B.3.解:根据题意得x﹣4=0,x﹣y+4=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形;②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20.所以三角形的周长为20.故选:C.4.解:①如果三角形三个内角的比是1:2:3,那么这个三角形是直角三角形;正确.②三条线段组成的图形叫三角形;错误,应该是由3条线段首尾顺次连接组成的图形叫三角形.③对顶角相等;正确.④面积相等的两个三角形全等;错误,形状不一定相同.⑤两个角和其中一角的对边对应相等的两个三角形全等;正确.⑥两直线平行,同旁内角互补;正确,故选:B.5.解:A、等腰三角形的两底角相等,正确,不符合题意;B、平行四边形的对角线互相平分,正确,不符合题意;C、角平分线上的点到角两边的距离相等,正确,不符合题意;D、三个角分别对应相等的两个三角形相似但不一定全等,故错误,符合题意,故选:D.6.解:由图象可得,a>0,则﹣a<0,对于函数y=﹣ax来说,y随x的增大而减小,故①正确;d>0,则﹣d<0,则函数y=ax﹣d经过第一、三、四象限,不经过第二象限,故②错误;由ax﹣d≥cx﹣b可得ax+b≥cx+d,故不等式ax﹣d≥cx﹣b的解集是x≥4,故③正确;故选:B.7.解:因为分式本身的符号,分子的符号,分母的符号,改变其中的两个符号,分式本身的值不变,所以同时改变①(分式本身的符号)和②(分母的符号),分式的值不变,故选:A.8.解:设打x折销售,依题意得:240×﹣160≥160×20%,解得:x≥8.故选:C.9.解:连接CE,设BE与AC相交于点F,如下图所示,∵Rt△ABC中,AB=BC,∠ABC=90°,∴∠BCA=∠BAC=45°,∵Rt△ABC绕点A逆时针旋转60°与Rt△ADE重合,∴∠BAC=∠DAE=45°,AC=AE,又∵旋转角为60°,∴∠BAD=∠CAE=60°,∴△ACE是等边三角形,∴AC=CE=AE=4,在△ABE与△CBE中,,∴△ABE≌△CBE(SSS),∴∠ABE=∠CBE=45°,∠CEB=∠AEB=30°,∴在△ABF中,∠BFA=180°﹣45°﹣45°=90°,∴∠AFB=∠AFE=90°,在Rt△ABF中,由勾股定理得,BF=AF=AB=2,又在Rt△AFE中,∠AEF=30°,∠AFE=90°,FE=AF=2,∴BE=BF+FE=2+2,故选:C.10.解:①如图1,在▱ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,∴∠BAE=∠DAE,∠ADF=∠CDF,∴∠BAE=∠AEB,∠CFD=∠CDF,∴AB=BE,CF=CD,∵EF=2,∴BC=BE+CF﹣EF=2AB﹣EF=8,∴AB=5;②如图2:在▱ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,∴∠BAE=∠DAE,∠ADF=∠CDF,∴∠BAE=∠AEB,∠CFD=∠CDF,∴AB=BE,CF=CD,∵EF=2,∴BC=BE+CF=2AB+EF=8,∴AB=3;综上所述:AB的长为3或5,故选:D.二.填空题(共5小题,满分15分,每小题3分)11.解:根据题意得:∠ABC=180°﹣(∠BAC+∠BCA)=180°﹣(45°+60°)=75°,∴∠ABF=∠FBC﹣∠ABC=90°﹣75°=15°.故答案为:15°.12.解:2a2(a﹣b)﹣8(b﹣a)=2(a﹣b)(a2+4).故答案为:2(a﹣b)(a2+4).13.解:分式方程的解为:x=,∵分式方程有可能产生增根1,又∵关于x的分式方程的解为正整数,∴x=≠1,∴满足条件的所有整数a的值为:﹣3,∴a的值为:﹣3,故答案为:﹣3.14.解:在△ABC中,边AB、AC的垂直平分线分别交BC于D、E,∴AD=BD,AE=EC,∵BC=8,∴△ADE周长=AD+DE+AE=BD+DE+CE=BC=11(cm),故答案为:11cm.15.解:∵等边三角形中中线与高线重合,∴D为BC的中点,故BD=BC=2,在Rt△ABD中,AB=4,BD=2,则AD==2,∴等边△ABC的面积为BC•AD=4×=4.故答案为4.三.解答题(共7小题,满分75分)16.解:(1)去分母,得:x﹣5=4(2x﹣3),解得:x=1,检验:当x=1时,2x﹣3≠0,∴x=1是原分式方程的解;(2),解不等式①,得:x≤4,解不等式②,得:x>1,∴不等式组的解集为1<x≤4.17.解:原式====,∵m(m﹣2)(m﹣3)≠0,且1<m<5,m是整数,∴m可以取4,当m=4时,原式=.18.解:(1)如图所示:(2)如图所示:A2(﹣6,﹣4),B2(﹣4,0),C2(﹣2,﹣5);(3)如图所示:点P即为所求,P(0,3).19.(1)证明:∵四边形ABCD是平行四边形,∴OB=OD,∵DE∥BF,∴∠ODE=∠OBF,在△DOE和△BOF中,,∴△DOE≌△BOF(ASA),∴OE=OF,又∵OB=OD,∴四边形DEBF是平行四边形;(2)解:∵AD⊥BD,∴∠ADB=90°,∵AD=3,AB=5,∴BD===4,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD=2,在Rt△AOD中,由勾股定理得:OA===,∴AC=2OA=2,即AC的长为2.20.解:(1)设乙种原材料的单价为x元,则甲种原材料的单价为12x元,由题意得:+=40,解得:x=4000,经检验,x=4000是原方程的解,且符合题意,则1.2x=1.2×4000=4800,答:甲种原材料的单价为4800元,乙种原材料的单价为4000元;(2)设购进甲种原材料m吨,则购进乙种原材料(60﹣m)吨,由题意得:m≥2(60﹣m),解得:m≥40,∴40≤m≤60,设购进费用为y元,则y=4800m+4000(60﹣m)=800m+240000,∵800>0,∴y随m的增大而增大,∴当m=40时,费用最小,y的最小值=800×40+240000=272000(元),答:企业最少筹集272000元资金.21.解:(1)将A(﹣3,2),B(﹣1,4)代入y=kx+b得,解得,∴y=x+5.(2)设直线AB与y轴交于点E,直线y=﹣2x﹣4与y轴交于点F,将x=0代入y=x+5得y=5,∴点E坐标为(0,5),将x=0代入y=﹣2x﹣4得y=﹣4,∴点F坐标为(0,﹣4),令x+5=﹣2x﹣4,解得x=﹣3,∴直线y=x+5与直线y=﹣2x﹣4交于点A,如图,∴S△AEF=EF•|x A|=[5﹣(﹣4)]×3=.(3)由图象可得不等式kx+b≤﹣2x﹣4的解集为x≤﹣3.22.(1)解:如图1,∵点P与点C重合,CD是线段AB的垂直平分线,∴PA=PB,∴∠PAB=∠PBA=30°,∴∠BPE=∠PAB+∠PBA=60°,∵PB=PE,∴△BPE为等边三角形,∴∠CBE=60°,∴∠ABE=90°;(2)如图2,过P作PH⊥AE于H,连BC,作PG⊥BC交BC的延长线于G,∵CD垂直平分AB,∴CA=CB.∵∠BAC=30°,∴∠ACD=∠BCD=60°.∴∠GCP=∠HCP=∠BCE=∠ACD=∠BCD=60°.∴PG=PH,CG=CH=CP,CD=AC.在Rt△PGB和Rt△PHE中,.∴Rt△PGB≌Rt△PHE(HL).∴BG=EH,即CB+CG=CE﹣CH.∴CB+CP=CE﹣CP,即CB+CP=CE.又∵CB=AC,∴CP=PD﹣CD=PD﹣AC.∴PD+AC=CE;(3)如图3,过P作PH⊥AE于H,连BC,作PG⊥BC交BC于G,此时Rt△PGB≌Rt△PHE(HL).∴BG=EH,即CB﹣CG=CE+CH.∴CB﹣CP=CE+CP,即CP=CB﹣CE=6﹣2=4.又∵CB=AC,∴PD=CP﹣CD=4﹣3=1.如图4,同理,PC=EC+BC=8,PD=PC﹣CD=8﹣3=5.故答案是:1或5.。
最新北师大版数学八年级下册期末考试真题附答案解析

北师大版数学八年级下册期末考试真题姓名:得分:一、选择题1.若分式有意义,则x应满足的条件是()A.x≠0 B.x≥3 C.x≠3 D.x≤32.下列多项式的分解因式,正确的是()A.12xyz﹣9x2y2=3xyz(4﹣3xyz) B.3a2y﹣3ay+6y=3y(a2﹣a+2)C.﹣x2+xy﹣xz=﹣x(x2+y﹣z)D.a2b+5ab﹣b=b(a2+5a)3.如图,▱ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.3cm B.6cm C.9cm D.12cm4.如图,不等式组的解集在数轴上表示正确的是()A.B.C.D.5.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则下列方程正确的是()A.B.C.D.6.如果x>y,那么下列各式中正确的是()A.x﹣2<y﹣2 B.<C.﹣2x<﹣2y D.﹣x>﹣y7.不等式组的解集在数轴上表示正确的是()A.B.C.D.8.两个等腰三角形全等的条件是()A.有两条边对应相等B.有两个角对应相等C.有一腰和一底角对应相等D.有一腰和一角对应相等9.如图,△ABC沿BC边所在的直线向左平移得到△DEF,下列错误的是()A.AC=DF B.EB=FC C.DE∥AB D.∠D=∠DEF10.下列各式从左到右的变形中,是因式分解的为()A.x(a+2b)=ax+2bx B.x2﹣1+4y2=(x﹣1)(x+1)+4y2C.x2﹣4y2=(x+2y)(x﹣2y)D.ax+bx﹣c=x(a+b)﹣c二、填空题11.已知一等腰三角形两边为2,4,则它的周长.12.x与3的和不小于6,用不等式表示为.13.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.14.若x2+px+q=(x+2)(x﹣4),则p=,q=.15.若9x2+(m﹣1)x+4是完全平方式,那么m=.三、解答题16.解不等式组,并把解集在数轴上表示出来..17.计算().18.已知x=156,y=144,求代数式的值.19.A、B两地相距80千米,一辆公共汽车从A地出发开往B地,2小时后,又从A地开来一辆小汽车,小汽车的速度是公共汽车的3倍.结果小汽车比公共汽车早40分钟到达B地.求两种车的速度.20.如图,A、B、C三点表示三个村庄,为了解决村民子女就近入学问题,计划新建一所小学,要使学校到三个村庄的距离相等,请你在图中用尺规确定学校的位置.21.如图,平行四边形ABCD中,AE⊥BD于点E,CF⊥BD于点F.(1)写出图中每一对你认为全等的三角形;(2)选择(1)中的任意一对进行证明.22.如图,已知:在△ABC中,AB=AC,∠BAC=120°,P为BC边的中点,PD⊥AC.求证:CD=3AD.23.有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下9个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?24.如图所示,在梯形ABCD中,AB∥CD,AB=7cm,BC=4cm,CD=2cm,DA=3cm.将线段AD向右平移2cm至CE.试判断△BCE的形状.25.已知△ABC中,AB=10,AC=7,AD是角平分线,CM⊥AD于M,且N是BC 的中点.求MN的长.答案与解析1.若分式有意义,则x应满足的条件是()A.x≠0 B.x≥3 C.x≠3 D.x≤3【考点】62:分式有意义的条件.【专题】选择题【分析】本题主要考查分式有意义的条件:分母≠0.【解答】解:∵x﹣3≠0,∴x≠3,故选C.【点评】本题考查的是分式有意义的条件.当分母不为0时,分式有意义.2.下列多项式的分解因式,正确的是()A.12xyz﹣9x2y2=3xyz(4﹣3xyz)B.3a2y﹣3ay+6y=3y(a2﹣a+2)C.﹣x2+xy﹣xz=﹣x(x2+y﹣z)D.a2b+5ab﹣b=b(a2+5a)【考点】53:因式分解﹣提公因式法.【专题】选择题【分析】A选项中提取公因式3xy;B选项提公因式3y;C选项提公因式﹣x,注意符号的变化;D提公因式b.【解答】解:A、12xyz﹣9x2y2=3xy(4z﹣3xy),故此选项错误;B、3a2y﹣3ay+6y=3y(a2﹣a+2),故此选项正确;C、﹣x2+xy﹣xz=﹣x(x﹣y+z),故此选项错误;D、a2b+5ab﹣b=b(a2+5a﹣1),故此选项错误;故选:B.【点评】此题主要考查了提公因式法分解因式,关键是正确找出公因式.符号的变化是学生容易出错的地方,要克服.3.如图,▱ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.3cm B.6cm C.9cm D.12cm【考点】L5:平行四边形的性质;KX:三角形中位线定理.【专题】选择题【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,可得OA=OC,又由点E是BC的中点,易得OE是△ABC的中位线,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,∵点E是BC的中点,OE=3cm,∴AB=2OC=6cm.故选B.【点评】此题考查了平行四边形的性质以及三角形中位线的性质.注意平行四边形的对角线互相平分.4.如图,不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【专题】选择题【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:由①,得x<3;由②,得x≥﹣3;故不等式组的解集是:﹣3≤x<3;表示在数轴上如图所示:故选A.【点评】本题考查了在数轴上表示不等式的解集、解一元一次不等式组.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则下列方程正确的是()A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【专题】选择题【分析】等量关系为:小明打120个字所用的时间=小张打180个字所用的时间,把相关数值代入即可.【解答】解:小明打120个字所用的时间为,小张打180个字所用的时间为,所以列的方程为:,故选C.【点评】考查列分式方程;得到两个人所用时间的等量关系是解决本题的关键;得到两个人的工作效率是解决本题的易错点.6.如果x>y,那么下列各式中正确的是()A.x﹣2<y﹣2 B.<C.﹣2x<﹣2y D.﹣x>﹣y【考点】C2:不等式的性质.【专题】选择题【分析】根据等式两边同加上(或减去)一个数,不等号方向不变可对A进行判断;根据不等式两边同乘以(或除以)一个正数,不等号方向不变可对B进行判断;根据不等式两边同乘以(或除以)一个负数,不等号方向改变可对C、D进行判断.【解答】解:A、若x>y,则x﹣2>y﹣2,故A选项错误;B、若x>y,则x>y,故B选项错误;C、若x>y,则﹣2x<﹣2y,故C选正确;D、若x>y,则﹣x<﹣y,故D选项错误.故选:C.【点评】本题考查了不等式的性质:不等式两边同加上(或减去)一个数,不等号方向不变;不等式两边同乘以(或除以)一个正数,不等号方向不变;不等式两边同乘以(或除以)一个负数,不等号方向改变.7.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【专题】选择题【分析】本题应该先求出各个不等式的解集,然后在数轴上分别表示出这些解集,它们的公共部分就是不等式组的解集.【解答】解:不等式组可化为:所以不等式组的解集在数轴上可表示为:故选:C.【点评】本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.两个等腰三角形全等的条件是()A.有两条边对应相等B.有两个角对应相等C.有一腰和一底角对应相等D.有一腰和一角对应相等【考点】KB:全等三角形的判定;KH:等腰三角形的性质.【专题】选择题【分析】根据全等三角形的判定定理即可解答.【解答】解:A、两条边对应相等,对应相等的边可能是两腰,而底边可能不相等,故不能判定全等,故A选项错误;B、有两个角对应相等,则三个角对应相等,但边长不一定相等,故B选项错误;C、根据AAS即可判定全等,故C选项正确;D、中若不是对应的顶角相等,也不成立,故D选项错误;故选:C.【点评】本题考查了全等三角形的判定与性质及等腰三角形的性质;要熟练掌握等腰三角形的性质及判定定理.9.如图,△ABC沿BC边所在的直线向左平移得到△DEF,下列错误的是()A.AC=DF B.EB=FC C.DE∥AB D.∠D=∠DEF【考点】Q2:平移的性质.【专题】选择题【分析】直接根据图形平移的性质进行解答即可.【解答】解:∵△DEF由△ABC平移而成,∴AC=DF,BE=CF,DE∥AB,∠D=∠A,∴A、B、C正确,D错误.故选:D.【点评】本题考查的是平移的性质,熟知图形平移后所得图形与原图形全等是解答此题的关键.10.下列各式从左到右的变形中,是因式分解的为()A.x(a+2b)=ax+2bx B.x2﹣1+4y2=(x﹣1)(x+1)+4y2C.x2﹣4y2=(x+2y)(x﹣2y)D.ax+bx﹣c=x(a+b)﹣c【考点】51:因式分解的意义.【专题】选择题【分析】利用因式分解的定义判断即可.【解答】解:根据题意得:下列各式从左到右的变形中,是因式分解的为x2﹣4y2=(x+2y)(x﹣2y).故选:C.【点评】此题考查了因式分解的定义,熟练掌握因式分解的定义是解本题的关键.11.已知一等腰三角形两边为2,4,则它的周长.【考点】KH:等腰三角形的性质.【专题】填空题【分析】由于已知的两边,腰长和底边没有明确,因此需要分两种情况讨论.【解答】解:①当腰长为2,底边为4时,三边为2、2、4,2+2=4,不能构成三角形,此种情况不成立;②当底边为2,腰长为4时,三边为2、4、4,能构成三角形,此时三角形的周长=4+4+2=10;故等腰三角形的周长为10,故答案为:10.【点评】本题考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.12.x与3的和不小于6,用不等式表示为.【考点】C8:由实际问题抽象出一元一次不等式.【专题】填空题【分析】x与3的和表示为:x+3,“不小于”用数学符号表示为“≥”,由此可得不等式x+3≥6,【解答】解:x与3的和表示为:x+3,由题意可列不等式为:x+3≥6,故答案为:x+3≥6.【点评】此题主要考查了由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.13.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.【考点】KQ:勾股定理.【专题】填空题【分析】首先根据勾股定理求得AB的长,再根据勾股定理求得AD的长.【解答】解:在直角三角形ABC中,AC=4,BC=3,根据勾股定理,得AB=5.在直角三角形ABD中,BD=12,根据勾股定理,得AD=13.【点评】熟练运用勾股定理进行计算.14.若x2+px+q=(x+2)(x﹣4),则p=,q=.【考点】57:因式分解﹣十字相乘法等.【专题】填空题【分析】首先利用多项式乘法去括号,进而得出p,q的值.【解答】解:∵x2+px+q=(x+2)(x﹣4),∴(x+2)(x﹣4)=x2﹣2x﹣8,则p=﹣2,q=﹣8,故答案为:﹣2,﹣8.【点评】此题主要考查了多项式乘以多项式的应用,正确多项式乘法运算是解题关键.15.若9x2+(m﹣1)x+4是完全平方式,那么m=.【考点】4E:完全平方式.【专题】填空题【分析】利用完全平方公式的结构特征判断即可得到m的值.【解答】解:∵9x2+(m﹣1)x+4是完全平方式,∴m﹣1=±12,解得:m=13或﹣11,故答案为:13或﹣11.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.解不等式组,并把解集在数轴上表示出来..【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【专题】解答题【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<﹣1,解②得:x≥﹣9,则不等式组的解集是:﹣9≤x<﹣1,数轴表示为:.【点评】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.17.计算().【考点】6C:分式的混合运算.【专题】解答题【分析】分式的四则运算是整式四则运算的进一步发展,在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.【解答】解:原式=.故答案为:.【点评】本题主要考查分式的化简求值,难度一般,熟练掌握通分、因式分解和约分的知识点.18.已知x=156,y=144,求代数式的值.【考点】55:提公因式法与公式法的综合运用.【专题】解答题【分析】根据=(x2+2xy+y2)=(x+y)2,把x,y代入即可求值.【解答】解:=(x2+2xy+y2)=(x+y)2,当x=156,y=144时,原式=(156+144)2=45000【点评】本题主要考查了代数式的值,正确对所求式子进行分解因式是解决本题的关键.19.A、B两地相距80千米,一辆公共汽车从A地出发开往B地,2小时后,又从A地开来一辆小汽车,小汽车的速度是公共汽车的3倍.结果小汽车比公共汽车早40分钟到达B地.求两种车的速度.【考点】B7:分式方程的应用.【专题】解答题【分析】根据题意可得到:从A到B地,小汽车用的时间=公共汽车用的时间﹣2小时﹣40分钟,由此可得出方程.【解答】解:设公共汽车的速度为x千米/时,则小汽车的速度为3x千米/时,由题意可列方程为,解得x=20.经检验,x=20是原方程的解,故3x=60;答:公共汽车的速度为20千米/时,小汽车的速度为60千米/时.【点评】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.找到关键描述语,找到等量关系是解决问题的关键.此题涉及的公式是:路程=速度×时间.20.如图,A、B、C三点表示三个村庄,为了解决村民子女就近入学问题,计划新建一所小学,要使学校到三个村庄的距离相等,请你在图中用尺规确定学校的位置.【考点】N4:作图—应用与设计作图.【专题】解答题【分析】根据中垂线的性质:中垂线上的点到线段两端的距离相等知,作出AB,BC的中垂线相交于点P,则点P是所求的点.【解答】解:如图,作出AB和BC的中垂线,相交于点P,则点P是所求的到三村距离相等的点.【点评】本题利用了中垂线的性质求解,解题的关键在于理解中垂线的性质:中垂线上的点到线段两端的距离相等.21.如图,平行四边形ABCD中,AE⊥BD于点E,CF⊥BD于点F.(1)写出图中每一对你认为全等的三角形;(2)选择(1)中的任意一对进行证明.【考点】L5:平行四边形的性质;KB:全等三角形的判定.【专题】解答题【分析】(1)由四边形ABCD是平行四边形,易得AD∥BC,AB∥CD,AD=BC,AB=CD,继而利用SSS证得△ABD≌△CDB,又由AE⊥BD于点E,CF⊥BD于点F,即可利用AAS判定△ABE≌△CDF,△ADE≌△CBF.(2)由(1)选择一对,进行证明即可.【解答】(1)解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC,AB=CD,∴∠ABE=∠CDF,∠ADE=∠CBF,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),同理:△ADE≌△CBF.∴全等的三角形有:△ABD≌△CDB,△ABE≌△CDF,△ADE≌△CBF.(2)选择:△ABD≌△CDB.证明:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS).【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.22.如图,已知:在△ABC中,AB=AC,∠BAC=120°,P为BC边的中点,PD⊥AC.求证:CD=3AD.【考点】KO:含30度角的直角三角形.【专题】解答题【分析】连接AP,根据等腰三角形三线合一的性质可得AP⊥BC,根据等腰三角形两底角相等求出∠C=30°,再求出∠APD=∠C=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得AP=2AD,AC=2AP,整理即可得证.【解答】证明:如图,连接AP,∵AB=AC,P为BC边的中点,∴AP⊥BC,∵∠BAC=120°,∴∠C=(180°﹣∠BAC)=(180°﹣120°)=30°,∵PD⊥AC,∴∠CPD+∠C=90°,又∵∠APD+∠CPD=90°,∴∠APD=∠C=30°,∴AP=2AD,AC=2AP,∴AC=4AD,∴CD=AC﹣AD=4AD﹣AD=3AD,即CD=3AD.【点评】本题考查了直角三角形°角所对的直角边等于斜边的一半的性质,等腰三角形三线合一的性质,熟记各性质并作出辅助线是解题的关键.23.有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下9个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?【考点】CE:一元一次不等式组的应用.【专题】解答题【分析】设有x只猴子,则有桃子(3x+9)个,根据题意的不相等关系都分得桃子,但有一个猴子分得的桃子不够5个建立不等式组,求出其解即可.【解答】解:设有x只猴子,则有桃子(3x+9)个,由题意,得0<3x+9﹣5(x﹣1)<5,解得:4.5<x<7∵x为整数,∴x=5,6,当x=5是,桃子的个数是:3×5+9=24个.当x=6时,桃子的个数是:3×6+9=27个.答:当猴子5个时,桃子24个;当猴子6个时,桃子27个.【点评】本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,解答时根据条件的不等量关系建立不等式组是关键.24.如图所示,在梯形ABCD中,AB∥CD,AB=7cm,BC=4cm,CD=2cm,DA=3cm.将线段AD向右平移2cm至CE.试判断△BCE的形状.【考点】Q2:平移的性质;LH:梯形.【专题】解答题【分析】由题意易求得CE,BE的长,然后由勾股定理的逆定理证得△BCE是直角三角形.【解答】解:∵将线段AD向右平移2cm至CE,∴AE=CD=2cm,CE=DA=3cm,∴BE=AB﹣AE=7﹣2=5(cm),∵BC=4cm,∴CE2+BC2=BE2,∴∠BCE=90°,即△BCE是直角三角形.【点评】此题考查了平移的性质以及勾股定理的逆定理.此题难度不大,注意掌握平移的对应关系,注意掌握数形结合思想的应用.25.已知△ABC中,AB=10,AC=7,AD是角平分线,CM⊥AD于M,且N是BC 的中点.求MN的长.【考点】KX:三角形中位线定理;KJ:等腰三角形的判定与性质.【专题】解答题【分析】延长CM交AB于E,根据ASA证,推出CM=ME,AE=AC=7,根据三角形的中位线定理求出MN=BE,代入求出即可.【解答】解:延长CM交AB于E,∵AM⊥CM,AD是∠BAC的角平分线,∴∠AME=∠AMC=90°,∠EAM=∠CAM,在△EAM与△CAM中,,∴△EAM≌△CAM(ASA),∴CM=ME,AE=AC=7,∵N是BC的中点,∴MN=BE=(AB﹣AE)=×(10﹣7)=1.5,即:MN的长度是:1.5.【点评】本题主要考查对三角形的中位线定理,全等三角形的性质和判定等知识点的理解和掌握,能求出MN是△CEB的中位线是解此题的关键.。
【最新】北师大版八年级下册数学《期末考试题》(附答案)

二、填空题(本题共4小题,每小题3分,共12分)
11.不等式2x﹣2≤7的正整数解分别是_____.
【答案】1,2,3,4
【解析】
2x﹣2≤7
2x≤9
x≤4.5
所以不等式的正整数解是1,2,3,4.
故答案是:1,2,3,4.
∴可供选择的地址有4处.
故选:D
【点睛】考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意边形ABCD中,AB=3,BC=5,AC的垂直平分线交AD于E,则△CDE的周长是( )
A. 6B. 8C. 9D. 10
【答案】B
【解析】
试题分析:根据线段垂直平分线的性质和平行四边形的性质可知,△CDE的周长=CD+DE+CE=CD+DE+AE=CD+AD=AB+BC=3+5=8.
A.2个B.3个C.4个D.5个
【答案】B
【解析】
【分析】
根据分式的定义进行判断;
【详解】 , , , , 中分式有: , , 共计3个.
故选B.
【点睛】考查了分式 定义,解题关键抓住分式中分母含有字母.
2.因式分解正确的是( )
A.m3+m2+m=m(m2+m)B.x3﹣x=x(x2﹣1)
C.(a+b)(a﹣b)=a2﹣b2D.﹣4a2+9b2=(﹣2a+3b)(2a+3b)
∵△ABC和△ADE是等腰直角三角形,
∴∠CAB=45°,
即△ABC绕点A逆时针旋转45°可到△ADE;
如图,
∵△ABC和△ADE是等腰直角三角形,
北师大版八年级下册数学期末考试试题含答案
北师大版八年级下册数学期末考试试卷一、单选题1.下列四个图形中,可以由图1通过平移得到的是( )A .B .C .D . 2.多项式32328124a b a bc a b +-中,各项的公因式是( )A .2a bB .224a b -C .24a bD .2a b -3.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A B . C .6,7,8 D .2,3,4 4.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A . B . C . D . 5.已知点A (a ,1)与点A′(5,b )关于坐标原点对称,则实数a 、b 的值是( ) A .5,1a b == B .5,1a b =-= C .5,1a b ==- D .5,1a b =-=- 6.如果m >n ,那么下列结论错误的是( )A .m +2>n +2B .﹣2m >﹣2nC .2m >2nD .m ﹣2>n ﹣27.已知不等式组2010x x -⎧⎨+≥⎩<,其解集在数轴上表示正确的是( ) A . B .C .D .8.如图所示,将一个含30°角的直角三角板ABC 绕点A 旋转,使得点B ,A ,C′在同一直线上,则三角板ABC 旋转的度数是( ).A .60°B .90°C .120°D .150°9.如图,若一次函数y =﹣2x+b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式﹣2x+b >0的解集为( )A .x >32B .x <32C .x >3D .x <3 10.如图,在ABCD 中,将ADC ∆沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若=60B ︒∠,=3AB ,则ADE ∆的周长为( )A .12B .15C .18D .21二、填空题11.分解因式:333x x -=______.12.若分式211x x --的值为0,则x 的值为_____________. 13.如果等腰三角形的有一个角是80°,那么顶角是________度.14.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC=CD=DE,点D 、E 可在槽中滑动.若∠BDE=75°,则∠CDE 的度数是__________15.如图,小明从A 点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A 点时,一共走的路程是________ 米.16.如图,四边形ABCD 中,∠A =90°,AB =8,AD =6,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为_____.三、解答题17.解分式方程:241244x x x x -=--+.18.先化简:22144111x x x x -+⎛⎫-÷ ⎪--⎝⎭,再从12x -≤≤的范围内选取一个合适的整数作为x 的值代入求值.19.解不等式组:3(1)1922x x x x +>-⎧⎪⎨+>⎪⎩,并写出它的所有非负整数解.20.如下图所示,方格纸中每个小正方形的边长都是1个单位长度,Rt∠ABC 的三个顶点A(-2,2), B(0,5), C(0,2) .(1)将∠ABC 以点C 为旋转中心旋转180°,得到∠A 1B 1C ,请画出∠A 1B 1C 的图形.(2)平移∠ABC ,使点A 的对应点A2坐标为(-2,-6),请画出平移后对应的∠A 2B 2C 2的图形.(3)若将∠A 1B 1C 绕某一点旋转可得到∠A 2B 2C 2,请直接写出旋转中心的坐标.21.如图:已知AD 是∠ABC 中BC 边上的高,E 是AD 上一点,EB=EC ,∠ABE=∠ACE .求证:∠BAE=∠CAE .证明:在∠ABC 和∠AEC 中,EB EC ABE ACE AE AE =⎧⎪∠=∠⎨⎪=⎩∠∠ABC∠∠AEC (第一步),∠∠BAE=∠CAE (第二步)阅读了此题及证明,上面的过程是否正确?若正确,请写出第一步的推理依据;若不正确,请指出错在哪一步,并写出正确的证明过程.22.如图,等边∠ABC 的边长是2,D 、E 分别为AB 、AC 的中点,延长BC 至点F ,使12CF BC =,连接CD 和EF .(1)求证:DE=CF;(2)求EF的长.23.为落实“美丽法库”的工作部署,县政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造480米的道路比乙队改造同样长的道路少用4天.(1)求甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?24.如图,平行四边形ABCD中,CG∠AB于点G,∠ABF=45°,点F在CD上,BF交CG 于点E,连接AE,AE∠AD.(1)若BG=1,BC EF的长度;(2)求证:∠BCG∠∠EAG;(3)直接写出三条线段CD,CE,BE之间的数量关系.25.如图,直线y=﹣x+4,与x轴、y轴分别交于A,B两点,点C与点B关于原点对称.(1)直接写出点A,B,C的坐标;(2)在线段OA的延长线上任取一点P,作PQ∠BP,交直线AC于Q.求证:PQ=PB;(3)在(2)的条件下,过点P作PM∠AC于点M,直接写出MQ ABPM的值.参考答案1.D【详解】考查图像的平移,平移前后的图像的大小、形状、方向是不变的,故选D.2.C【详解】解:由题意可得:系数的公因式为4,字母a的公因式为2a,字母b的公因式为b,, 字母c无公因式,所以各项的公因式是24a b.故选:C.3.B【详解】解:A.2+)2≠2,故该选项错误;B.12+2=2,故该选项正确;C.62+72≠82,故该选项错误;D.22+32≠42,故该选项错误.故选B.4.B【详解】解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.【点睛】本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.5.D【解析】【详解】试题分析:已知点A(a,1)与点A′(5,b)关于坐标原点对称,根据关于原点对称的点的横坐标与纵坐标互为相反数可得a=-5,b=-1,故答案选D.考点:关于原点对称的点的坐标.6.B【解析】【分析】根据不等式的性质(∠不等式的两边都加上或减去同一个数或整式,不等号的方向不发生改变;∠不等式的两边都乘以或除以同一个负数,不等号的方向发生改变;∠不等式的两边都乘以或除以同一个正数,不等号的方向不发生改变)判断即可.【详解】解:A.∠m>n,∠m+2>n+2,故本选项不合题意;B.∠m>n,∠﹣2m<﹣2n,故本选项符合题意;C .∠m >n ,∠2m >2n ,故本选项不合题意;D .∠m >n ,∠m ﹣2>n ﹣2,故本选项不合题意;故选:B .【点睛】此题主要考查不等式的性质,解题的关键是熟知不等式的性质的运用.7.D【解析】【分析】分别解不等式组中的每一个不等式,确定出各不等式解集的公共部分,进而在数轴上表示出来即可.【详解】2010x x -⎧⎨+≥⎩<①②, 解∠得:x<2,解∠得:x≥-1,故不等式组的解集为:-1≤x<2,故解集在数轴上表示为:.故选D.【点睛】本题考查了解一元一次不等式组,正确掌握解题方法以及解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.8.D【解析】【分析】根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.【详解】解:旋转角是∠CAC′=180°﹣30°=150°.故选D.【点睛】考点:旋转的性质.9.B【解析】【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∠一次函数y=﹣2x+b的图象交y轴于点A(0,3),∠b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∠点B(32,0).观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∠不等式﹣2x+b>0的解集为x<32.故选B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.10.C【解析】【分析】依据平行四边形的性质以及折叠的性质,即可得到=2BC ,=6AB ,=6AD ,再根据ADE ∆是等边三角形,即可得到ADE ∆的周长为6318⨯=.【详解】由折叠可得,90ACD ACE ︒∠=∠=,90BAC ︒∴∠=,又60B ︒∠=,30ACB ︒∴∠=,26BC AB ∴==,6AD ∴=,由折叠可得,60E D B ︒∠=∠=∠=,60DAE ︒∴∠=,ADE ∴∆是等边三角形,ADE ∴∆的周长为6318⨯=,故选C .【点睛】本题考查了平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题时注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.3(1)(1)x x x +-【解析】【分析】先提取公因式3x ,再用平方差公式分解.【详解】解:333x x -=23(1)x x -=3(1)(1)x x x +-.故答案为:3(1)(1)x x x +-.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:∠提公因式法;∠公式法;∠十字相乘法;∠分组分解法. 因式分解必须分解到每个因式都不能再分解为止.12.1-【解析】【详解】x≠,根据分式的值为零的条件得到210x-=且1x=-.解得1故答案为:1-.【点睛】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.13.20或80【解析】【分析】由于等腰三角形的顶角不能确定,故应分80°是等腰三角形的顶角或底角两种情况进行讨论.【详解】解:当80°是等腰三角形的顶角时,顶角为80°;当80°是等腰三角形的底角时,顶角=180°﹣80°×2=20°.故答案为:20或80.【点睛】本题考查了等腰三角形的性质和三角形的内角和定理,对已知角的准确分类是解答本题的概念.14.80°【解析】【分析】根据OC=CD=DE,可得∠O=∠ODC,∠DCE=∠DEC,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC据三角形的外角性质即可求出∠ODC数,进而求出∠CDE的度数.【详解】∠OC CD DE==,∠O ODC∠=∠,∠=∠,DCE DEC∠=∠=,设O ODC x∠2∠=∠=,DCE DEC x∠180CDE DCE DEC ∠=︒-∠-∠1804x =︒-,∠75BDE ∠=︒,∠180ODC CDE BDE ∠+∠+∠=︒,即180475180x x +-+=︒︒︒,解得:25x =︒,180480CDE x ︒∠=-=︒.【点睛】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.15.100【解析】【分析】根据题意,小明走过的路程是正多边形,先用360°除以36°求出边数,然后再乘以10m 即可.【详解】解:∠每次小明都是沿直线前进10米后向左转36°,∠他走过的图形是正多边形,边数n=360°÷36°=10,∠他第一次回到出发点A 时,一共走了10×10=100米.故答案为:100.【点睛】本题考查了正多边形的边数的求法,根据题意判断出小亮走过的图形是正多边形是解题的关键.16.5【解析】【分析】连接DN ,根据三角形中位线定理得到12EF DN =,根据题意得到当点N 与点B 重合时,DN 最大,根据勾股定理计算,得到答案.【详解】解:连接DN ,∠点E ,F 分别为DM ,MN 的中点,∠EF 是∠MND 的中位线, ∠12EF DN =, ∠点M ,N 分别为线段BC ,AB 上的动点,∠当点N 与点B 重合时,DN 最大,此时10DN ==∠EF 长度的最大值为:11052⨯=, 故答案为:5.【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.x=4【解析】【分析】先将分式方程去分母转化为整式方程,求出整式方程的解,得到x 的值,经检验即可得到分式方程的解.【详解】 解:241244x x x x -=--+, 方程两边乘2(2)x -得:2(2)(2)4x x x ---=,解得:x=4,检验:当x=4时,220x ≠(﹣).所以原方程的解为x=4.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.12-. 【解析】【分析】首先将原分式化简,然后根据分式有意义的条件,求得x 的取值范围,再取值求解即可.【详解】 解:原式22(1)(1)11(2)2x x x x x x x -+-+=⋅=---, 12x -≤≤ x 的取值有1012-、、、20x -≠且10x -≠且10x +≠1x ∴≠±且2x ≠∴当0x =时,原式12=-. 【点睛】本题考查分式的化简求值,做题时应注意在给定的范围内取值,难度中等.19.﹣2<x <3,非负整数解有0、1、2【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,然后求出其整数解即可.【详解】 解:3(1)1922x x x x +>-⎧⎪⎨+>⎪⎩①② 由∠得,x >﹣2,由∠得,x <3,∠不等式组的解集为﹣2<x <3.∠非负整数解有:0、1、2.【点睛】本题主要考查了解一元一次不等式组,并根据不等式的解集求其非负整数解,解题的关键在于能够准确地求出不等式的解集.20.(1)作图见解析;(2)作图见解析;(3)(0,-2)【解析】【分析】(1)利用旋转的性质得出对应点坐标进而得出答案;(2)利用平移规律得出对应点位置,进而得出答案;(3)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.【详解】解:(1)如图所示:∠A1B1C即为所求;(2)如图所示:∠A2B2C2即为所求;(3)旋转中心坐标(0,﹣2).【点睛】作图-旋转变换;作图-平移变换.21.有误,见解析【解析】【分析】上面的过程有误,出错在第一步,原因是利用了SSA,三角形不一定全等,正确的过程应为:过E作EF垂直于AB,EG垂直于AC,可得出一对直角相等,再由已知的一对角相等及一对边相等,利用AAS可得出三角形BEF与三角形CEG全等,由全等三角形的对应边相等可得出EF=EG,再由EF垂直于AB,EG垂直于AC,利用角平分线的逆定理可得出AE 为∠BAC 的平分线,即可得证.【详解】解:上面的过程错误,出错在第一步,正确的过程应为:证明:过E 作EF∠AB 于F 点,EG∠AC 于G 点,如图所示:在∠BEF 和∠CEG 中,90EFB EGC ABE ACF BE CE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∠∠BEF∠∠CEG (AAS ),∠EF=EG ,又EF∠AB ,EG∠AC ,∠AE 为∠BAC 的平分线,则∠BAE=∠CAE .【点睛】本题考查了全等三角形的判定与性质,以及角平分线定理的逆定理,熟练掌握三角形全等的几种判定方法,作出辅助线是解答本题的关键.22.(1)见解析;(2【解析】【分析】(1)直接利用三角形中位线定理得出12DE BC =,∥DE BC ,进而得出DE=FC ; (2)利用平行四边形的判定与性质得出DC=EF ,进而利用等边三角形的性质以及勾股定理得出EF 的长【详解】(1)证明:∠D 、E 分别为AB 、AC 的中点, ∠12DE BC =,∥DE BC ,∠延长BC 至点F ,使12CF BC =, ∠DE FC =,DE FC ∥; (2)解:∠DE FC =,DE FC ∥,∠四边形DEFC 是平行四边形,∠DC=EF ,∠D 为AB 的中点,等边∠ABC 的边长是2,∠AD=BD=1,CD∠AB ,BC=2,∠DC EF =【点睛】考点:三角形中位线定理;等边三角形的性质;平行四边形的判定与性质23.(1)40米;(2)10天【解析】【分析】(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为32x 米,利用工作时间=工作总量÷工作效率,结合甲队改造480米的道路比乙队改造同样长的道路少用4天,即可得出关于x 的分式方程,解之经检验后即可得出乙工程队每天能改造道路的长度,再将其代入32x 中可求出甲工程队每天能改造道路的长度; (2)设安排甲队工作m 天,则安排乙队工作(30﹣32m )天,利用改造总费用=甲队工作一天所需费用×甲队工作时间+乙队工作一天所需费用×乙队工作时间,结合改造总费用不超过145万元,即可得出关于m 的一元一次不等式,解之取其中的最小值即可得出至少安排甲队工作时间.【详解】解:(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为32x 米,依题意得:480480432x x-=,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∠32x=32×40=60.答:甲工程队每天能改造道路的长度为60米,乙工程队每天能改造道路的长度为40米.(2)设安排甲队工作m天,则安排乙队工作12006040m-=(30﹣32m)天,依题意得:7m+5(30﹣32m)≤145,解得:m≥10.答:至少安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.24.(1(2)见解析;(3)CD-.【解析】【分析】(1)根据勾股定理得出CG,进而利用平行四边形的性质解答即可;(2)延长AE交BC于H,根据平行四边形的性质得到BC∠AD,根据平行线的性质得到∠AHB=∠HAD,推出∠GAE=∠GCB,则可证明∠BCG∠∠EAG;(3)根据全等三角形的性质得到AG=CG,于是得到结论.【详解】解:(1)∠CG∠AB,∠∠AGC=∠BGC=90°,∠BG=1,,∠∠ABF=45°,∠BG=EG=1,∠EC=1,∠四边形ABCD 是平行四边形,∠AB∠CD ,∠∠GCD=∠BGC=90°,∠EFC=∠GBE=45°,∠CF=CE=1,(2)如图,延长AE 交BC 于H ,∠四边形ABCD 是平行四边形,∠BC∠AD ,AB=CD ,∠AE∠AD ,∠∠AHB=∠HAD=90°,∠∠BAH+∠ABH=∠BCG+∠CBG=90°,∠∠GAE=∠GCB ,在∠BCG 与∠EAG 中,90AGE CGB GAE GCB GE BG∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∠∠BCG∠∠EAG (AAS ),(3)CD -,理由如下:∠∠BCG∠∠EAG ,∠BG=GE ,CG=AG ,∠∠BGC=90°,,∠AB=BG+AG=CE+EG+BG ,,BE=AB=CD.即CD-.【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,证明∠BCG∠∠EAG是解题的关键.25.(1)A(4,0),B(0,4),C(0,﹣4);(2)见解析;(3)1【解析】【分析】(1)分别计算当y=0,x=0时对应的x值和y值,即可得点A,B的坐标,再根据原点对称即可得点C坐标;(2)过点Q作QE∠x轴于点E,在EQ上截取EF=EP,利用ASA证明∠BAP∠∠PFQ即可得PQ=PB;(3)过点P作PM∠AC于点M,过点F作FN∠QC于点N,证得四边形PMNF是矩形,可得PF=MN,PM=NF,对所求式子进行变化即可得其值.【详解】解:(1)当y=0时,0=﹣x+4,解得x=4,∠点A(4,0),当x=0时,y=4,∠点B(0,4),∠点C与点B关于原点对称,∠点C(0,﹣4);(2)证明:过点Q作QE∠x轴于点E,在EQ上截取EF=EP,∠∠EFP=∠EPF=45°,∠∠PFQ=135°,由(1)知OA=OB=OC,∠∠OAB=∠OAC=45°,∠∠PAB=135°,∠QAE=∠AQE=45°,∠∠PAB=∠PFQ,AE=QE,∠AP=FQ,∠PQ∠BP,∠∠APB+∠EPQ=90°,∠∠EQP+∠EPQ=90°,∠∠APB=∠EQP,∠∠BAP∠∠PFQ(ASA),∠PQ=PB;(3)过点P作PM∠AC于点M,过点F作FN∠QC于点N,则∠MPA=45°,∠∠EPF=45°,∠∠MPF=90°,∠四边形PMNF是矩形,∠PF=MN,PM=NF,∠∠AQE=45°,∠∠NFQ=45°,∠∠BAP∠∠PFQ,∠AB=PF=MN,∠MQ ABPM-=MQ MNNF-=NQNF=1.【点睛】本题主要考查一次函数图像上点的坐标特征和全等三角形的判定与性质,解题的关键是作出辅助线构造全等三角形.。
北师大版八年级数学下册期末试卷及答案【完整版】
北师大版八年级数学下册期末试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为( )A .12B .C .12或D .以上都不对2.(2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或73.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( )A .122y y >>B .212y y >>C .122y y >>D .212y y >>4.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩ 5.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A .平均数B .中位数C .众数D .方差6.如果a ,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.若aba 和b 互为( )A .倒数B .相反数C .负倒数D .有理化因式8.关于▱ABCD 的叙述,正确的是( )A .若AB ⊥BC ,则▱ABCD 是菱形 B .若AC ⊥BD ,则▱ABCD 是正方形C .若AC=BD ,则▱ABCD 是矩形 D .若AB=AD ,则▱ABCD 是正方形9.如图,由四个全等的直角三角形拼成的图形,设CE a =,HG b =,则斜边BD 的长是( )A .+a bB .⋅a b C.222a b +D .222a b - 10.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=________.2.不等式组34012412x x +≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________. 3.计算:()()201820195-252+的结果是________.4.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到△A ’B ’C ,A ’B ’交AC 于点D ,若∠A ’DC=90°,则∠A= °.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2(1)30x +-= (2)4(2)3(2)x x x +=+2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.5.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、A4、B5、D6、C7、D8、C9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、0324、55.5、706、6三、解答题(本大题共6小题,共72分)1、(1)11x =,21x =;(2)12x =-,243x =.2、-3.3、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.4、略.5、(1)略;(2)MB =MC .理由略;(3)MB =MC 还成立,略.6、(1)120件;(2)150元.。
北师大版八年级下册数学期末考试试卷含答案
北师大版八年级下册数学期末考试试题一、单选题1.下列垃圾分类标识中,是中心对称图形的是()A .B .C .D .2.如果x y <,那么下列不等式正确的是()A .22x y<B .22x y-<-C .11x y ->-D .11x y +>+3.若分式242x x -+的值为0,则x 的值为()A .-2B .0C .2D .±24.如图,在平行四边形ABCD 中,∠A =40°,则∠C 大小为()A .40°B .80°C .140°D .180°5.下列各式从左到右的变形一定正确的是()A .n m=11n m ++B .22x y x y--=x ﹣yC .b a =22b aD .b a=2a b a 6.下列多项式能直接用完全平方公式进行因式分解的是()A .x 2+2x ﹣1B .x 2﹣x +14C .x 2+xy +y 2D .9+x 2﹣3x7.下列命题不正确的是()A .等腰三角形的两底角相等B .平行四边形的对角线互相平分C .角平分线上的点到角两边的距离相等D .三个角分别对应相等的两个三角形全等8.下列条件不能判定四边形ABCD 是平行四边形的是()A .,AD BC AB CD ==B .,AC BD ∠=∠∠=∠C .//,AB CD BC AD=D .//,AD BC B D∠=∠9.如图,一次函数1y kx b =+的图象与直线2y m =相交于点P (-1,3),则关于x 的不等式0kx b m +->的解集为()A .3x >B .1x <-C .1x >-D .3x <10.如图,已知∠ABC ,小彬借助一把没有刻度且等宽的直尺,按如图的方法画出了∠ABC 的平分线BP .他这样做的依据是()A .在一个角的内部,且到角两边的距离相等的点在这个角的平分线上B .角平分线上的点到这个角两边的距离相等C .三角形三条角平分线的交点到三条边的距离相等D .测量垂直平分线上的点到这条线段的距离相等二、填空题11.若一个多边形的每一个外角都等于30°,则这个多边形的边数为_________.12.如图,在△ABC 中,BC =8cm ,D 是BC 的中点,将△ABC 沿BC 向右平移得△A′DC′,则点A 平移的距离AA′=___cm .13.计算:223211a a a +-=--______________.14.实验初中初二(1)班同学参加社会实践活动,几名同学打算包租一辆车前往,该车的租价为180元,出发时,又增加了两名同学,结果每名同学比原来少分摊了3元车费.设参加实践活动的学生原有x 人,则可列方程为_______.15.如图,四边形ABCD 中,∠B +∠D =180°,AC 平分∠DAB ,CM ⊥AB 于点M ,若AM =4cm ,BC =2.5cm ,则四边形ABCD 的周长为_____cm.16.如图,▱ABCD 中,∠ABC =45°,EF 是BC 的垂直平分线,EB =AB ,若BD =6,则AB =_______.三、解答题17.分解因式:(1)2242x x -+(2)22()9()a x yb y x -+-18.利用数轴求出不等式组的解集.3212125x x x x <+⎧⎪++⎨>⎪⎩.19.先化简:(7211a a a +--+)÷2231a aa +-,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a 的值代入求值.20.解分式方程:21133x xx x -=++21.如图所示,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (﹣3,5),B (﹣2,1),C (﹣1,3).(1)若△ABC 经过平移后得到△A 1B 1C 1,已知点C 1的坐标为(4,0),画出△A 1B 1C 1;(2)将△ABC 绕着点O 按顺时针方向旋转90°得到△A 2B 2C 2,则点A 2的坐标为,点C 2的坐标为.(3)点D是平面直角坐标系内一点,若以A、B、C、D为顶点的四边形为平行四边形,直接写出满足条件的D点坐标.22.如图,在▱ABCD中,对角线AC、BD相交于点O,E、F为直线BD上的两个动点(点E、F始终在▱ABCD的外面),且DE=12OD,BF=12OB,连接AE、CE、CF、AF.(1)求证:四边形AFCE为平行四边形.(2)若AC=6,EF=10,AF=4,则平行四边形AFCE的周长为.23.某网店预测一种时尚T恤衫能畅销,用4800元购进这种T恤衫,很快售完,接着又用6600元购进第二批这种T恤衫,第二批T恤衫数量是第一批T恤衫数量的1.5倍,且每件T恤衫的进价第二批比第一批的少5元.(1)求第一批T恤衫每件的进价是多少元?(2)若第一批T恤衫的售价是80元/件,老板想让这两批T恤衫售完后的总利润不低于4060元,则第二批T恤衫每件至少要售多少元?(T恤衫的售价为整数元)24.如图,在四边形ABCD中,∠B=60°,AB=DC=4,AD=BC=8,延长BC到E,使CE =4,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 运动的时间为t 秒(t >0).(1)当t =3时,BP =;(2)当t =时,点P 运动到∠B 的角平分线上;(3)当0<t <6时,请用含t 的代数式表示△ABP 的面积S ;(4)当0<t <6时,直接写出点P 到四边形ABED 相邻两边距离相等时t 的值.25.如图,四边形ABCD 中,45ABC ADC ∠=∠=︒,将BCD ∆绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE ∆.(1)请求出旋转角的度数;(2)请判断AE 与BD 的位置关系,并说明理由;(3)若2AD =,3CD =,试求出四边形ABCD 的对角线BD 的长.26.思维启迪(1)如图,△ABC 中,AB =4,AC =2,点在AB 上,AD =AC ,AE ⊥CD 垂足为E ,点F 是BC 中点,则EF 的长度为.思维探索(2)如图2,等边三角形ABC 的边长为4,AD ⊥BC 垂足为D ,点E 是AC 的中点,点M 是AD 的中点,点N 是BE 的中点,求MN 的长.(3)将(2)中的△CDE 绕C 点旋转,其他条件不变,当点D 落在直线AC 上时,画出图形,并直接写出MN长.参考答案1.B【分析】利用中心对称图形的定义进行解答即可.【详解】解:A.不是中心对称图形,故此选项不合题意;B.是中心对称图形,故此选项符合题意;C.不是中心对称图形,故此选项不合题意;D.不是中心对称图形,故此选项不合题意;故选:B.【点睛】此题主要考查了中心对称图形,关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.2.A【解析】【分析】根据不等式的性质对各选项分析判断后利用排除法求解.【详解】解:A 、由x <y 可得:22x y <,故选项成立;B 、由x <y 可得:22x y ->-,故选项不成立;C 、由x <y 可得:11x y -<-,故选项不成立;D 、由x <y 可得:11x y +<+,故选项不成立;故选A.【点睛】本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.C 【解析】【详解】由题意可知:24020x x =⎧-⎨+≠⎩,解得:x=2,故选C.4.A 【解析】【分析】由平行四边形的性质:对角相等,得出∠C=∠A .【详解】解:∵四边形ABCD 是平行四边形,∴∠C=∠A=40°,故选A .【点睛】本题考查了平行四边形的性质,解答本题的关键是掌握平行四边形的对角相等.5.D 【解析】【分析】根据分式的基本性质(分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变)逐个判断即可.【详解】解:A.11n m m n ++≠,故本选项不符合题意;B.22x y x y--=()()x y x y x y +--=x +y ,故本选项不符合题意;C.当b =﹣2,a =1时,22bb a a ≠,故本选项不符合题意;D.2b ab a a =,故本选项符合题意;故选:D .【点睛】本题考查了分式的基本性质,解题的关键是正确理解并运用分式的基本性质.6.B 【解析】【分析】根据能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍进行分析即可.【详解】解:A 、x 2+2x ﹣1不能直接用完全平方公式进行因式分解,故此选项不合题意;B 、x 2﹣x +14=(x ﹣12)2,能直接用完全平方公式进行因式分解,故此选项符合题意;C 、x 2+xy +y 2不能直接用完全平方公式进行因式分解,故此选项不合题意;D 、9+x 2﹣3x 不能直接用完全平方公式进行因式分解,故此选项不合题意;故选:B .【点睛】本题考查了公式法分解因式,解题的关键是掌握完全平方公式:()2222a ab b a b ±+=±.7.D 【解析】【分析】利用等腰三角形的性、平行四边形的性质、角平分线的性质及全等三角形的判定分别判断后即可确定正确的选项.【详解】解:A、等腰三角形的两底角相等,正确,不符合题意;B、平行四边形的对角线互相平分,正确,不符合题意;C、角平分线上的点到角两边的距离相等,正确,不符合题意;D、三个角分别对应相等的两个三角形不一定全等,故错误,符合题意,故选:D.【点睛】本题考查了判断命题的正误,等腰三角形的性、平行四边形的性质、角平分线的性质及全等三角形的判定,掌握相关的性质定理是解题的关键.8.C【解析】【分析】根据平行四边形的判定逐一判断即可.【详解】解:A.由AD=BC,AB=CD可根据两组对边分别相等的四边形是平行四边形知四边形ABCD 是平行四边形,此选项不符合题意;B.由∠A=∠C,∠B=∠D可根据两组对角分别相等的四边形是平行四边形知四边形ABCD 是平行四边形,此选项不符合题意;C.由AB∥CD,BC=AD不能判定四边形ABCD是平行四边形,此选项符合题意;D.由AD∥BC知∠A+∠B=180°,结合∠B=∠D知∠A+∠D=180°,所以AB∥CD,此时可根据两组对边分别平行的四边形是平行四边形知四边形ABCD是平行四边形,此选项不符合题意;故选:C.【点睛】本题主要考查平行四边形的判定,解题的关键是掌握两组对边分别平行的四边形是平行四边形、两组对边分别相等的四边形是平行四边形、一组对边平行且相等的四边形是平行四边形.9.B【解析】【分析】把点P (-1,3)与点(0,1)求出一次函数1y kx b =+与2y m =的解析式,然后利用解不等式的方法求解即可;也可以通过观察图象,比较函数值大小来确定x 的的取值范围.【详解】解法一:依据题意有点P (-1,3)与点(0,1)在一次函数1y kx b =+的图象上,∴13b x b=⎧⎨=-+⎩,解得12b k =⎧⎨=-⎩,点P (-1,3)在直线2y m =的图象上,∴m=3,∴0kx b m +->即为220x -->,解得1x <-.解法二:∵0kx b m +->,∴kx b m +>,∵1y kx b =+,2y m =,∴12y y >,即一次函数1y kx b =+的图象在直线2y m =的上面部分,观察图象,这部分图象对应的x 的取值范围是:1x <-.故选:B .【点睛】本题主要考查了一次函数与一元一次不等式,数形结合是解题关键.10.A 【解析】【分析】根据角平分线判定得出BP 平分∠DPE ,根据平行线的性质推出∠DBP =∠EBP ,即可得出答案.【详解】解:∵∠M =∠N =90°,BM =BN ,∴BP 平分∠DPE ,∴∠DPB =∠EPB ,∵DP∥BC,PE∥BD,∴∠DPB=∠PBE,∠EPB=∠DBP,∴∠DBP=∠EBC,即在一个角的内部,到角的两边距离相等的点在角的平分线上,故选:A.【点睛】本题主要考查了角平分线的判定,平行线的性质的应用,注意:角的内部到角的两边距离相等得点在角的平分线上.11.12【解析】【分析】多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【详解】解:∵360°÷30°=12,∴这个多边形为十二边形,故答案为:12.【点睛】本题考查了多边形的外角,关键是明确多边形的外角和为360°.12.4【解析】【分析】利用平移的性质(平移前后两图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点;连接各组对应点的线段平行且相等)解决问题即可.【详解】解:∵D 是BC 的中点,∴BD =12BC =4(cm),由平移的性质可知,AA′∥BD ,AA′=BD ,∴AA′=4(cm),故答案为:4.【点睛】本题考查了平移的性质,解题的关键是熟练掌握平移的性质.13.11a a -+【解析】【分析】先通分,再进行分式的加减即可得到答案.【详解】解:223211a a a +---=()()()()()22131111a a a a a a ++-+-+-=()()232211a a a a +--+-=()()()2111a a a -+-=11a a -+故答案为:11a a -+.【点睛】此题考查的是分式的加减运算,掌握其运算法则是解决此题关键.14.18018032x x -=+【解析】【分析】设原参加游览的同学共x人,则原有的几名同学每人分担的车费为:180x元,出发时每名同学分担的车费为:180x2+,根据每个同学比原来少摊了3元钱车费即可得到等量关系.【详解】解:设原参加游览的同学共x人,根据题意得:1801803 x x2-=+,故答案为:1801803 x x2-=+.【点睛】本题主要考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;易错点是得到出发前后的人数.15.13【解析】【分析】过C作CE⊥AD的延长线于点E,由条件可证△AEC≌△AMC,得到AE=AM.证明△ECD≌△MBC,由全等的性质可得DE=MB,BC=CD,则问题可得解.【详解】解:如图,过C作CE⊥AD的延长线于点E,∵AC平分∠BAD,∴∠EAC=∠MAC,∵CE⊥AD,CM⊥AB,∴∠AEC=∠AMC=90°,CE=CM,在Rt△AEC和Rt△AMC中,AC=AC,CE=CM,∴Rt△AEC≌Rt△AMC(HL),∴AE=AM=4cm,∵∠ADC +∠B =180°,∠ADC +∠EDC =180°,∴∠EDC =∠MBC ,在△EDC 和△MBC 中,DEC CMB EDC MBC CE CM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EDC ≌△MBC (AAS ),∴ED =BM ,BC =CD =2.5cm ,∴四边形ABCD 的周长为AB +AD +BC +CD =AM +BM +AE ﹣DE +2BC =2AM +2BC =8+5=13(cm ),故答案为:13.【点睛】本题考查全等三角形的判定与性质,掌握常用的判定方法是解题的关键.16.3【解析】【分析】连接CE ,过C 作CG ⊥DE 于G ,由线段垂直平分线的性质得EB =EC ,则∠EBC =∠ECB ,再证EC =CD ,则∠CED =∠CDE ,设∠EBC =∠ECB =α,则∠CDE =∠CED =∠EBC +∠ECB =2α,然后由三角形内角和定理求出α=15°,则∠CDE =∠CED =30°,设AB =EB =EC =CD =x ,则DE =BD ﹣EB =6﹣x ,最后由含30°角的直角三角形的性质和等腰三角形的性质得EG,EG =12DE =12(6﹣x ),则2x =12(6﹣x ),解方程即可.【详解】解:连接CE ,过C 作CG ⊥DE 于G,如图所示:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠ABC +∠BCD =180°,∴∠BCD =180°﹣45°=135°,∵EF 是BC 的垂直平分线,∴EB =EC ,∴∠EBC =∠ECB ,∵EB =AB ,∴EC =CD ,∴∠CED =∠CDE ,设∠EBC =∠ECB =α,则∠CDE =∠CED =∠EBC +∠ECB =2α,在△BCD 中,∠DBC +∠CDB =180°﹣135°=45°,即α+2α=45°,解得:α=15°,∴∠CDE =∠CED =30°,设AB =EB =EC =CD =x ,则DE =BD ﹣EB =6﹣x ,∵CG ⊥DE ,∴CG =12EC =12x ,EG ,又∵EC =DC ,CG ⊥DE ,∴EG =DG =12DE =12(6﹣x ),=12(6﹣x ),解得:x =3,即AB =3,故答案为: 3.【点睛】此题主要考查了平行四边形、直角三角形以及等腰三角形的有关性质,熟练掌握相关基础知识是解题的关键.17.(1)22(1)x -;(2)()(3)(3)x y a b a b -+-【解析】【分析】(1)先提公因式,再由完全平方公式进行因式分解,即可得到答案;(2)先整理,然后提公因式,再由平方差公式进行分解因式,即可得到答案.解:(1)2242x x -+=22(21)x x -+=22(1)x -;(2)22()9()a x yb y x -+-=22()9()a x yb x y ---=22()(9)x y a b --=()(3)(3)x y a b a b -+-.【点睛】本题考查了因式分解的方法,解题的关键是熟练掌握分解因式的方法进行解题.18.﹣3<x <1【解析】【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【详解】解:3212125x x x x <+⎧⎪⎨++>⎪⎩①②,解不等式①得:x <1,解不等式②得:x >﹣3,在数轴上表示不等式①、②的解集,得:,∴不等式组的解集是:﹣3<x <1.【点睛】本题主要考查了解一元一次不等式组,解题的关键是要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.19.3a a+;12-.【解析】先把括号内的两项通分后利用同分母分式的加减法法则进行计算,同时把除法转化为乘法,最后约分化成最简分式,根据分式有意义的条件选择一个a 值代入求值即可.【详解】解:22723111a a aa a a ++⎛⎫-÷ ⎪-+-⎝⎭=()()()()()()()()712111113a a a a a a a a a ++--+-⋅-++=()2693a a a a +++=()()233a a a ++=3a a+当a=-3、-1、1、0时,原式没有意义,舍去,当a=-2时,原式=23122-+=--.【点睛】本题考查分式的化简求值,熟练掌握分式的基本性质及分式有意义的条件是解题关键.20.32x =-【解析】【分析】先将分式方程化为整式方程,然后解整式方程并验根即可.【详解】解:方程两边都乘以()31x +,得:()3312x x x -+=,解得:32x =-,经检验,32x =-是原方程的解.【点睛】此题考查的是解分式方程,掌握分式方程的解法是解题关键.21.(1)见解析;(2)(5,3),(3,1);(3)(﹣4,3),(﹣2,7),(0,1).【解析】【分析】(1)利用平移变换的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)利用旋转变换的性质分别作出A ,B ,C 的对应点A 2,B 2,C 2即可.(3)根据平行四边形的判定画出图形,可得结论.【详解】解:(1)∵C (﹣1,3),C 1的坐标为(4,0)∴△ABC 向右平移了五个单位,向下平移了三个单位,∴A 1(2,2),B 1(3,-2),C 1(4,0)如图,△A 1B 1C 1即为所求.(2)如图,△A 2B 2C 2即为所求,点A 2的坐标为(5,3),点C 2的坐标为(3,1).故答案为:(5,3),(3,1).(3)分别过、、A B C 作BC AC AB 、、的平行线,分别相交于点D D D '''、、,如上图所示,∵A (﹣3,5),C (﹣1,3)∴点B 向左移动两个单位,向上移动两个单位,可得点D又∵B (﹣2,1),∴D 点坐标为(﹣4,3),同理可以求得1)(0D ',,27)(D ''﹣,满足条件的D 点坐标(﹣4,3),(﹣2,7),(0,1).故答案为:(﹣4,3),(﹣2,7),(0,1).【点睛】此题主要考查了图形的变换,涉及了平移变换、旋转变换以及平行四边形的性质,熟练掌握相关基础知识是解题的关键.22.(1)见解析;(2)8+.【解析】【分析】(1)由平行四边形的性质得OA =OC ,OB =OD .再证OE =OF ,即可得出结论;(2)由勾股定理的逆定理证明△AOF 是直角三角形,∠OAF =90°,再由勾股定理得CF =【详解】(1)证明:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵DE =12OD ,BF =12OB ,∴DE =BF ,∴OD +DE =OB +BF ,即OE =OF ,∴四边形AFCE 为平行四边形;(2)解:如图所示:由(1)得:OA =OC =12AC =3,OE =OF =12EF =5,∵AF =4,∴OA 2+AF 2=OF 2,∴△AOF是直角三角形,∠OAF=90°,∴CF∵四边形AFCE是平行四边形,∴CE=AF=4,AE=CF=∴平行四边形AFCE的周长=2(AF+CF)=8+故答案为:8+【点睛】本题主要考查了平行四边形的判定和性质、勾股定理和勾股定理逆定理的应用;熟练掌握平行四边形的判定和性质及勾股定理及逆定理是解题的关键.23.(1)60元;(2)76元【解析】【分析】(1)已知金额设出进价,表示出数量,根据数量关系列出方程;(2)在(1)的基础上,根据求出的两次进价求出两次进货数量,列出关于总利润的不等式.【详解】解:(1)设第一批T恤衫每件的进价为x元,根据题意得:480066001.55 x x⨯=-,解得x=60,经检验,x=60是原方程的解,答:第一批T恤衫的进价为60元.(2)设第二批T恤衫的售价为y元,根据题意,得。
北师大版八年级数学下册《期末测试卷》(附答案)
一、选择题(本题有12 小题,每小题3 分,共36 分)1.如图,在∆ABC 中,∠C = 90︒ ,点E 是斜边AB 的中点,ED ⊥ AB 且∠CAD : ∠BAD = 5 : 2 ,则A.60︒B.70︒C.80︒D.90︒∠BAC =()第1 题图第2 题图2.如图,将Rt ∆ABC 绕点A 按顺时针旋转一定角度得到Rt ∆ADE ,点B 的对应点D 恰好落在BC 边上.若AC = 3 ,∠B = 60︒ ,则CD 的长为()A.0.5 B.1.5 C. 2 D.13.一种运算,规则是x * y = 1-1,根据此规则化简(m +1) * (m -1) 的结果为()x yA.2mm2 -1B.- 2mm2 -1C.- 2m2 -1D.2m2 -14.如图,四边形ABCD 和四边形AEFC 是两个矩形,点B 在EF 边上,若矩形ABCD 和矩形AEFC 的面积分别是S ,S ,则S ,S 的大小关系是()1 2A.S1 > S2C.S1 < S21 2B.S1= S2D.3S1= 2S25.将分式a + b中的a 与b 的值都扩大为原来的2 倍,则这个分式的值将()4a2A.扩大为原来的2 倍B.分式的值不变C.缩小为原来的12 D.缩小为原来的146.如图,菱形ABCD 中,AB = 2 ,∠BAD = 60︒ ,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE + PB 的最小值是()A.1B.2C.2D.37.如图,矩形纸片ABCD 中,AD = 4 ,CD = 3 ,折叠纸片使AB 边与对角线AC 重合,折痕为AE ,记与点B 重合的点为F ,则∆CEF 的面积与矩形纸片ABCD 的面积的比为()A.1 6学校姓名班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……C.19B.18 D.1128.关于x 的分式方程mx - 5= 1,下列说法正确的是()A.m < -5 时,方程的解为负数B.方程的解x = m + 5 C.m > -5 时,方程的解是正数D.无法确定⎨ 9.如图,在矩形 ABCD 中, AD = 2AB ,点 M , N 分别在边 AD 、BC 上,连接 BM ,DN ,若四边形 MBND 是菱形,则 AM等于( )MDA . 3 8 C . 3 5B . 23 D . 45第 9 题图第 10 题图10.如图所示,在正方形 ABCD 中, E 为 CD 上一点,延长 BC 至 F ,使 CF = CE ,连接 DF , BE 与 DF 相 交于点 G ,则下面结论错误的是( )A . BE = DFB . BG ⊥ DFC . ∠F + ∠CEB = 90︒D . ∠FDC + ∠ABG = 90︒11.若解分式方程 x -1 = x + 4 m x + 4产生增根,则 m = ()A .1B .0C .-4D .-5⎧2x < 3(x - 3) + 1 12.关于 x 的不等式组 ⎪3x + 2 ⎪ > x + a 有四个整数解,则 a 的取值范围是( ) ⎩ 4A . - 11 ≤ a < - 5 4 2B .- 11 < a ≤ - 5 4 2C . - 11 ≤ a ≤ - 5 4 2D . - 11 < a < - 54 2二、填空题(本题有 4 小题,每小题 3 分,共 12 分) 13.分解因式: x 2 y - 2xy + y =.14.如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕远点 O 旋转180︒ 到乙位置,再将它向下平移 2 个单位长度到丙位置,则小花顶点 A 在丙位置中的对应点 A ' 的坐标为 .第 15 题图15.如图,在矩形 ABCD 中, AB = 4 , BC = 6 ,若点 P 在 AD 边上,连接 BP 、 PC , ∆BPC 是以 PB 为腰的 等腰三角形,则 PB 的长为.16.如图,点 E 在正方形ABCD 的对角线 AC 上,且 EC = 3AE , 直角三角形 FEG 的两直角边 EF 、EG 分别交 BC 、 DC 于点 M 、 N .若正方形 ABCD 的边长为 a ,则重叠部分四边形EMCN 的面积为 .第 16 题图三、解答题17.计算⑴解不等式,并把解集在数轴上表示出来,1 - 3x≥ 1 - 2x ;⑵分解因式:a3 - 4a .220.从广州到某市,可乘坐普通列车或高铁.已知高铁的行驶路程是400 千米,普通列车的行驶路程是高铁的行驶路程的1.3 倍.⑴求普通列车的行驶路程;⑵若高铁的平均速度(千米/时)是普通列车平局速度(千米/时)的2.5 倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3 小时.求高铁的平均速度.21.某汽车专卖店销售A ,B 两种型号的新能源汽车.上周售出1 辆A 型车和3 辆B 型车,销售额为96 万元;本周已售出2 辆A 型车和1 辆B 型车,销售额为62 万元.⑴求每辆A 型车和B 型车的售价各为多少元?⑵甲公司拟向该店购买A ,B 两种型号的新能源汽车共6 辆,购车费不少于130 万元,且不超过140 万元.则有哪几种购车方案?0 1 2 n - 1 022.如图, M 是 ∆ABC 的边 BC 的中点, AN 平分 ∠BAC , BN ⊥ AN 于点 N ,延长 BN 交 AC 于点 D ,已知AB = 10 , BC = 15 , MN = 3 . ⑴求证 BN = DN ;⑵求 ∆ABC 的周长.23.课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题.实验与论证:设旋转角 ∠A 1 A 0 B 1 = α (α < ∠A 1 A 0 A 2 ) ,θ3 ,θ4 ,θ5 ,θ6 所表示的角如图所示.⑴用含α 的式子表示:θ3 = ,θ 4 = ,θ5 = ,θ6 = ; ⑵图 1 中,连接 A 0 H 时,在不添加其他辅助线的情况下,直线 A 0 H 是否垂直平分线段 A 2 B 1 ? 答: ;请说明你的理由; 归纳与猜想:设正 n 边形 A 0 A 1A 2...A n - 1与正 n 边形 A 0 B 1B 2...B n - 1重合(其中, A 1 与 B 1 重合),现将正 n 边形A B B ...B 绕顶点 A 逆时针旋转 α ⎛ 0︒ < α < 180︒ ⎫⎪ ⎝ n ⎭⑶设θn 与上述“θ3 ,θ4 ,…”的意义一样,请直接写出θn 的度数.⎨2015—2016 学年度百合外国语学校八年级下学期期末试卷参考答案一、 选择题1、B2、D3、C4、B5、C6、D7、B8、A9、C10、C11、D12、A二、 填空题13、 y ( x -1)2三、解答题14、 A '(3, -1)15、5 或 616、 9a 21617、(1)解: 1 - 3x ≥ 1 - 2x图略218、解:1 + 4x =21 - 3x ≥2 - 4xx + 2 x - 4 x - 2 x ≥ 1(2)解: a 3 - 4a= a (a 2 - 4)= a (a + 2)(a - 2)( x - 2) + 4x = 2( x + 2)x - 2 + 4x = 2x + 43x = 6 x = 2经检验:x=2 为原方程的增根,原方程无解.20、(1)解: 400 ⨯1.3=520 千米(2)解:设普通列车平均速度是 x 千米/时,则高铁平均速度是 2.5x 千米/时,根据题意得: 520 - 400 = 3 ,解得:x=120, 经检验 x=120 是原方程的解, x 2.5x则高铁的平均速度是 120×2.5=300(千米/时), 答:高铁的平均速度是 300 千米/时.⎧ x + 3y = 9621、解:(1)每辆 A 型车和 B 型车的售价分别是 x 万元、y 万元.则 ⎨⎩2x + y = 62 , 解得 ⎧ x = 18 ⎨ . ⎩ y = 26答:每辆 A 型车的售价为 18 万元,每辆 B 型车的售价为 26 万元; (2)设购买 A 型车 a 辆,则购买 B 型车(6﹣a )辆,则依题意得⎧⎪18a + 26(6 - a ) ≥ 130 , ⎪⎩18a + 26(6 - a ) ≤ 140 解得 2≤a ≤3.a 是正整数, a=2 或a=3. ∴ 共有两种方案: 方案一:购买 2 辆 A 型车和 4 辆 B 型车; 方案二:购买 3 辆 A 型车和 3 辆 B 型车.23、解:(1)60°﹣α,α,36°﹣α.α;(2)是 图 1 中直线 A 0H 垂直平分 A 2B 1,证明如下: 证明: ∆A A A 与 ∆B B B 是全等的等边三角形,0 1 20 1 2∴ A 0 A 2 = A 0 B 1 , ∴∠A 0 A 2 B 1 = ∠A 0 B 1 A 2 .又 ∆A 0 A 1 A 2与∆A 0 B 1B 2 是等边三角形,∴∠A 0 A 2 H = ∠A 0 B 1H = 60︒ . ∴∠HA 2 B 1 = ∠HB 1 A 2 .∴ A 2 H = B 1H .∴ 点 H 在线段 A 2B 1 的垂直平分线上. 又 A A = A B ,0 20 1∴ 点 A 0 在线段 A 2B 1 的垂直平分线上. ∴ 直线 A 0H 垂直平分 A 2B 1. (3)当 n 为奇数时,θ n = 180︒ - α ;n当 n 为偶数时,θn =α.考试注意事项1、准备充分,忙中有序考试前的准备是否充分对临场的情绪状态和水平的发挥有重要的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 重庆一中初2010级08—09学年下期期末考试 数学试卷
一、选择题:(每小题4分,共40分)在每小题给出的四个选项中,只有一项符合题目要求,请将正确答案的代号填在下列方格内. 题号 1 2 3 4 5 6 7 8 9 10
答案
1.方程24xx的解是 ( ) A. 4x B. 2x C. 4x或0x D. 0x 2.下列调查,适合普查的调查方式是 ( ) A.某工厂质检员检测某批灯泡的使用寿命 B.了解某班学生某次数学测验成绩 C.检测某城市的空气质量 D.了解夏季冷饮市场上一种饮料的质量情况 3.“站得离,看得远”指的是一种什么现象 ( ) A.盲区减小,视野范围增大 B.盲区增大,视野范围减小 C.盲区增大,视野范围增大 D.盲区减小,视野范围减小 4.下面四幅图是同一标杆不同时刻在太阳光下的影子.按照时间先后顺序正确的是 ( )
A.(1)(2)(3)(4) B.(2)(3)(1)(4) C.(1)(4)(2)(3) D.(4)(1)(3)(2)
5.已知:如图,ABC中,AD2DE//BC,,AB3则ADE与ABC的面积比为 ( ) A. 2:3 B. 2:5 C. 4:9 D. 4 :25 6.若函数=kyx的图象经过点(3,-4),则它的图象一定还经过点 ( )
A. (3, 4) . (2, 6)B C. (12, 1) . (3, 4)D 7.一个家庭有两个孩子,两个孩子均为女孩的概率为 ( ) A. 1 1B. 2 1C. 3 1D. 4
8.一元二次方程2410xx配方后正确的是 ( ) 2A. (2)1x 2B. (2)5x 2C. (4)1x 2D. (4)5x
9.甲、乙两人各打靶5次,甲所中的环数是8,7,9,7,9;乙所中环数的平均数为8x乙,方差为20.5S乙.比较甲、乙的成绩,则 ( ) 2
A.甲的成绩较稳定 B.乙的成绩较稳定 C.甲、乙的成绩一样稳定 D.甲、乙的成绩无法比较
10.如图,梯形ABCD中,AB//CD, ABa, BDb, CDc,
ADBC,判断关于x的一元二次方程220axbxc的根的情况是 ( )
A.有两个相等的实数根 B.有两个不相等的实数根 C.有两个实数根 D.没有实数根
二、填空题:(每小题4分,共24分)请将正确答案填在下面对应的表格中. 题号 1l 12 13 14 15 16 答案
11.若a2ab, b3ab . 12.一组数据3,-2,2,0,-2,-4的中位数是 . 13.在函数6yx的图象上有三个点的坐标分别为1231(3,)(1,)(,),2yyy、函数值123yyy、、的大小关系是 . 14.若等腰三角形的底和腰的长是方程2320xx的 两根,则这个三角形的周长为 .
15.已知:如图,矩形DEFG内接于ABC, AHBC 于H,若AH=4cm,BC=12cm, ED:EF=1:2,则EF . 16.如图,直线=yx与反比例函数的图象(0)kykx 相交于点A,点C是反比例函数图象上位于点A右侧的点, BC//OA交x轴子点E(2,0),交y轴于点B,且点C的
纵坐标为1. 则四边形AOEC的面积为 .
三、解答题(17~20小题每小题6分,21~25小题每小题10分,26小题12分,共86分) 17.(6分)解下列方程:
(1)210xx (2)244170xx
18.(6分)左面是一几何体,右面是三视图,请补全右面不完整韵图形,并在括号内填上它属于哪种视图. 3
19.(6分)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为周一至周四,评委会把同学们上交作品的件数按一天一组分组统计,绘制了扇形统计图和频数分布直方图(如图).根据图中信息填空. (1)本次活动该班共收到 件产品. (2)图中a = ,b = .
20.(6分)已知:如图RtABCRtBDC~,若AB=3,AC=4. (1)求BD、CD的长. (2)过B作BEDC于E,求BE的长.
21.(10分)制作一种产品,需先将材料加热达到60(℃),再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(min).据了解,该材料加热时,温度y与时间x成一次函数关系, 4
停止加热进行操作时,温度y与时间x成反比例函数关系(如图).已知该材料在操作加工前的温度为15℃,加热 5min 后温度达到60℃. (1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式. (2)根据工艺要求,当材料的温度低于15℃时,须停止操作. 那么从开始加热到停止操作,共经历了多少时间?
22.(10分)如图是两个可以自由转动的转盘,甲转盘被等分成4份,分别标有0,-1,-2,-3四个数字,乙转盘被等分成3份,分别标有1,2,3三个数字.自由转动两个转盘,转盘停止后,计算两个转盘指针所指区域内的数字之和.如果指针恰好指在分界线上,那么重转一次,直到指针指向一个数字为止. (1)请你用画树状图或列表的方法,求出这两数之和为0的概率. (2)小明和小亮想用以上两个转盘做游戏,若两数之和为+1,则小明赢;若两数之和为-1, 则小亮赢.你认为游戏公平吗?请说明理由.
23.(10分)如图,马路MN上有一路灯O,小明沿着马路MN散步,当他在距路灯灯柱6米远的B处时,他在地面上的影长是3米,问当他在距路灯灯柱10米远的D处时,他的影长DF是多少米?
24.(10分)已知:如图,一次函数的图象1yx与反比例函数=kyx的图象相交于点A、B, 5
过A作ACx轴于C,且AOCS1,连结BC. 求:(1)点A和点B的坐标. (2)根据图象写出使反比例函数的值大于一次函数的值的x的取值范围. (3)求ABC的面积.
25.(10分)随着人们生活水平的提高,对水果的需求量越来越大.某农户决定栽植果树,2005年该农户承包荒山若干亩,投资1万元种果树2000棵,其成活率为90%. 在2008年夏季全部结果时,随意摘下10棵果树的水果,称得重量如下(单位:千克): 8、 9、 12、 13、 8、 9、 10、 11、 12、 8. (1)根据样本平均数估计该农户2008年水果的总产量是多少千克? (2)若此水果运到市场出售每千克10元,在果园直接出售每千克8元. 该农户用农用车将水果拉到市场出售,到售完为止,需付出各种费用2万元,若两种出售方式都在相同的时间内售完全部水果,选择哪种出售方式划算?为什么?除去投资成本,2008年该农户纯收入最多可以是多少元? (3)该农户加强果园管理,力争2008年、2009年、2010年三年合计纯收入达546000元,则2009年、2010年平均每年的增长率是多少?
26. (12分)如图,已知点A(2,4)在反比例函数(0)kyxx的图象S1上,将双曲线S1沿y轴翻折 6
后得到的是反比例函数kyx的图象S2,直线AB交y轴于点B(0,3),交x轴于点C,P为线段BC上的一个动点(点P与B、C不重合),过P作x轴的垂线与双曲线S2在第二象限相交于点E. (1)求双曲线S2和直线AB的解析式. (2)设点P的横坐标为m,线段PE的长为h,求h与m之间的函数关系,并写出自变量m的取值范围. (3)在线段BC上是否存在点P,使得P、E、A为顶点的三角形与BOC相似? 若存在,请求出点P的坐标;若不存在,请说明理由.
参考答案 7
(满分150分,时间120分钟) 一、选择题:(每小题4分,共40分)住每小题给出的四个选项中,只有一项符合题目要求, 请将正确答案的代号填在下列方格内. 题号 1 2 3 4 5 6 7 8 9 10
答案 C B A D C C D B B A
二、填空题:(每小题4分,共24分)请将正确答案填在下面对应的表格中. 题号 11 12 13 14 15 16
答案 -5 -1 213yyy 5 4.8cm 31
三、解答题(l7~20小题每小题6分,21~25小题每小题10分,26小题12分,共86分) 17.解下列方程: (1)解:这里a=1, b=-1, c=-1
22b4ac=(1)41(1)
14 5 „„„„„„„„„„1分
(1)515=22x „„„„„„„„„„2分
121515, =22xx „„„„„„„„„„3分
(2)解:2441171xx 18)12(2x „„„„„„„„„„1分
2132x „„„„„„„„„„2分
12132132, 22xx „„„„„„„„„„3分
18.补全下列图形,并在括号内填上它属于哪种视图. 8 9 10 11