分式运算常见错误示例易错点剖析

分式运算常见错误示例易错点剖析
分式运算常见错误示例易错点剖析

分式运算常见错误示例

一、概念记不准

例1 下列哪些是分式? 哪些是整式? ①2x 1-π

② 31+a ③43 错解:①,③是分式, ②是整式.①在代数式2x 1-π

中, 因为在分母中含有字母π, 所以是分式; ②在代数式31+a 中, 因为它是二项式,属于整式; 43是分式.

错解分析:分式的定义就是形如B

A , 其中A 和

B 都为整式, 分母B 中要含有字母,①2x 1-π中的分母π是常数, 而不是字母; ② 31+a 中的a 1是分式, 加3 后, 仍然属于分式; ③把分式和分数混淆了. 正解:①,③是整式, ②是分式.

二、直接将分式约分

例2 x 为何值时,分式

239x x --有意义? 错解: ()()2331333

9x x x x x x --==+-+-.要使分式有意义,必须满足x +3≠0,即x ≠-3.

错解分析: 错误的原因是将x -3约去,相当于分子、分母同除以一个可能为零的代数式,无意中扩大了字母的取值范围,当x =3时,分式无意义的条件漏掉了.

正解:要使分式有意义,必须满足2x -9≠0,解得x ≠±3.∴当x ≠±3时, 分式239

x x --有意义.

三、误以为分子为零时,分式的值就为零

例3 当x 为何值时,分式2

24x x -+的值为零?

错解: 由题意,得|x |-2=0,解得x =±2. ∴当x =±2时, 分式2

24x x -+的值为零.

错解分析: 分式值为零的条件是分子为零而分母不为零.本题当x =-2时,分母2x +4=2×(-2)+4=0,分式无意义,应舍去.

正解: 由题意,得|x |-2=0,解得x =±2. 当x =2时,分母2x +4≠0; 当x =-2时, 分母2x +4=2×(-2)+4=0,分式无意义.∴当x =2时, 分式2

24x x -+的值为零.

四、分式通分与解方程去分母混淆

例4 化简22

x x --x -2. 错解:原式=2x - x (x -2) -2(x -2) =2x -2x +2x -2x +4=4.

错解分析: 上述错误在于进行了去分母的运算,当成了解方程,而本题是分式的加减运算,必须保持分式的值不变.

正解:22x x --x -2= 22x x --(x +2)= 22x x --()()222

x x x +--=22(4)2x x x ---= 42

x -. 五、颠倒运算顺序

例5 计算a ÷b ×1b

.

错解: a ÷b ×1b = a ÷1=a .

错解分析: 乘法和除法是同级运算,应按从左到右的顺序进行.

错解颠倒了运算顺序,造成运算错误.

正解:a ÷b ×1b =a b ×1b =

2a b

. 六、化简不彻底

例6 计算221244x x ---. 错解:原式=

()()()212222x x x -+--=()()()()42222222x x x x x +-+-+- =()()()42222x x x -++-=()()

2222x x x -++-. 错解分析: 上面计算的结果,分子、分母还有公因式(x -2)可约分,应继续化简.

正解: 原式=

()()()212222x x x -+--=()()()()42222222x x x x x +-+-+- =()

()()42222x x x -++-=()()2222x x x -++-=()

122x -+. 七、忽视“分母等于零无意义”致错

1.错在只考虑了其中的一个分母

例7 x 为何值时, 分式1111

+-x 有意义?

错解:当x + 1 ≠ 0, 得x ≠ - 1. 所以当x ≠ - 1时, 原分式有意义.

错解分析:上述解法中只考虑了分式

11+x 中的分母, 没有注意整个分式的大分母1

11+-x . 正解:由x + 1 ≠ 0, 得x ≠ - 1.由111+-

x ≠ 0, 得x ≠ 0,因此, 当x ≠0 且x ≠ - 1 时, 原分式有意义.

2.错在没有把方程的两个解带到分母中去检验

例8 先化简, 再求值: 1

211222+--?+-x x x x x x , 其中x 满足x 2 - 3x + 2= 0. 错解:1211222+--?+-x x x x x x =2)

1()1)(1(1)1(--+?+-x x x x x x = x . ∵x 2- 3x + 2= 0,∴( x - 2) ( x - 1) = 0. ∴x = 1 或x = 2, 原式=1或2.

错解分析:只要把本题中的x = 1 代入到 ( x - 1) 2 中可知, 分母等于0, 所以原式无意义. 故原式只能等于2. 正解:2222

x x x 1x(x 1)(x 1)(x 1)x x 1x 2x 1x 1(x 1)----+==+-++-··, 由x 2-3x +2=0,

解得x 1=2,x 2=1,

当x =2时, x +1≠0,x 2-2x +1≠0,

当x =1时,x 2-2x +1=0,

故x 只能取2,

则原式=x =2.

3. 错在没有考虑除式也不能为零

例9 先化简1

1112-÷??????-+x x x , 再选择一个恰当的x 值代入并求值. 错解:11112-÷??

????-+x x x =x x x x x )1)(1(111-+?-+-= x + 1. ∵ x - 1 ≠0, x 2 - 1 ≠ 0, ∴x ≠± 1.

当取x = 0 时代入x +1,原式= 1.

错解分析:本题若取x = 0, 则除式x 颠倒到分母上时, 分式就变得无意义了, 显然是不正确的, 所以x ≠- 1, 0, 1. 其他值代入均可求. 正解:11112-÷??????-+x x x =x (x 1)(x 1)x 1x 1

x -+=+-·, ∵ x -1≠0, x 2-1 ≠0,

2x x 1-为除数不为0,即x ≠0, ∴x ≠±1且x ≠0,

当取x =2 时, 原式=x +1=2+1=3.

4.错在“且”与“或”的混用

例10 x 为何值时, 分式)

3)(2(1--x x 有意义? 错解:要使分式有意义, x 必须满足分母不等于零, 即( x - 2) ( x -

3) ≠0, 所以x ≠2 或x ≠3.

错解分析:“且”与“或”是两个完全不同的联结词,两件事情至少一件发生用“或”,两件事情同时发生用“且”.

正解:要使分式有意义, x 必须满足( x - 2) ( x - 3)≠0, 所以x ≠2 且x ≠3.

八、忽视分数线具有双重作用

例11 化简: 11

2

---x x x 错解: 原式= 1

121)1)(1(11122--=----=---x x x x x x x x x . 错解分析:分数线具有除号和括号的双重作用, 在添分数线时, 如果分数线前面是负号, 那么所添各项都要变号.

正解:原式= 111)1)(1(11122-=--+-=+--x x x x x x x x .

《分式》典型例题分析

《分式》典型例题分析

《分式》复习提纲 考点1. 分式的概念 1、下列各有理式 π y y x y x y x x y xy y x x x ,31),(23,,53,81,4, 23,822++-+---中,分式的个数是( ) A. 3个 B. 4个 C. 5个 D. 6个 考点2. 分式的意义 分式: B A (A ,B 都是整式,且B 中含有字母,B ≠0) ① 分式有意义? ;② 分式无意义? ;③ 分式值为零? 1、若分式 3 2 -x 有意义,则x__________ 2、 要使分式 ) 5)(32(23-+-x x x 有意义,则( ) A. x ≠2 3 - B. x ≠5 C. x ≠23-且x ≠5 D. x ≠2 3 -或x ≠5 3、 当a 为任意有理数时,下列分式一定有意义的是( ) A . 112++a a B. 12+a a C. 112++a a D. 21 a a + 4、分式 3 24 x x +-当x 时有意义;当x 时分式没有意义;当x 时分式的值为零。 5、当x 时,分式2 5 2++x x 的值是零;当x 时,分式242--x x 的值是零; 当x 时,分式 x x -+22 的值是零 考点3、最简公分母、最简分式 1、分式 ac b bc a ab c 3,2,2 --的最简公分母是 ;分式1 3x ,11x x +-,225(1)xy x -的最简公分母为________ 2、下列分式中是最简分式的是( ) A. 122+x x B. x 24 C. 1 12 --x x D. 11--x x

3、下列分式中是最简分式的是( ) A. 2 2 2) (y x y x -- B. 2x xy - C. xy x y x ++2 D. 22-+x x 考点4、分式的基本性质 1. 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。 (1)y x y x 3 22132 21-+; (2)b a b a -+2.05.03.0 2、把分式xy y x +中的分子、分母的x 、y 同时扩大2倍,那么分式的值( ) A. 扩大2倍 B. 缩小为原来的2 1 C. 不变 D. 缩小为原来的4 1 3、约分(1)4 3 22016xy y x -= ;(2)4 4422+--x x x = 4、通分(1)b a 21,2 1ab ; (2)y x -1,y x +1; (3)221y x -,xy x +21. 考点5、计算 1、(1)222222x b yz a z b xy a ÷= ;(2)49 3222--?+-x x x x = ;(3)43222)1.().()( ab a b b a --= (4) x x x x x x 36299622 2+-÷-+- (5)ab a b a a b a b a --+-2224. (6) 22212(1)441x x x x x x x -+÷+?++-

【八年级】八年级数学下册103分式的加减分式解题中常见错误归类剖析素材新版苏科版

【关键字】八年级 分式解题中常见错误归类剖析 分式是在整式运算、多项式因式分解、一元一次方程的解法基础上学习的.分式的运算与整式的运算相比,运算步骤明显增多,符号更加复杂,解法更加灵活;因而更容易出现这样或那样的错误,为帮助同学们弄清分式运算中的错误所在,本文归纳几种错误如下,供同学们学习时参考. 一、忽视隐含条件致错 【例1】当x=___________时,分式的值为0. 〖错解〗当x2-x=0,即x=0或x=1时,上述分式的值为零. 【剖析】由于x=0时,分母=0,因此分式无意义.故正确答案为:x=1. 二、轻易约分致错 【例2】为何值时,分式无意义? 〖错解〗因为,由a+3=0得a=-3,∴当a=-3时分式没有意义. 【剖析】讨论分式有无意义及分式的值是否为零,一定要对原分式进行讨论,而不能讨论化简后的分式.误解的原因是轻易的约掉分子、分母中的公因式(a+1),相当于分子、分母同除以一个可能为零的代数式,扩大了分式中字母的取值范围,即放宽了分式成立的条件.正确答案应为:a=-3或a=-1. 三、符号上的错误 【例3】化简的结果是(). A、 B、 C、 D、 〖错解〗原式=,选C 【剖析】错误的原因是由于把(2-m)变形为(m-2)时没有改变分式的符号.正解应为,故应选A. 四、通分时误去分母 【例4】计算: 〖错解〗原式= 【剖析】错解把分式的化简与解方程去分母混同一体,分式化简的每一步变形的依据都是依靠分式的基本性质,通分要保留分母,而不是去分母; 正解应为:原式=. 五、违走运算通性致错

【例5】计算: 〖错解〗原式 = = 【剖析】乘除法是同级运算,谁在前先做谁,而不应违反运算通性.正解应为:原式== 六、结果不是最简分式 【例6】计算 〖错解〗原式 【剖析】本题错在分式化简的结果不是最简分式,应在分式此文档是由网络收集并进行重新排版整理.word可编辑版本!

分式的乘除法典型例题

《分式的乘除法》典型例题 例1 下列分式中是最简分式的是() A .264a b B .b a a b --2)(2 C .y x y x ++22 D .y x y x --2 2 例2 约分 (1)36)(12)(3a b a b a ab -- (2)44422 -+-x x x (3)b b 2213432-+ 例3 计算(分式的乘除) (1)22563ab cd c b a -?- (2)42 2 643mn n m ÷- (3)2 33344222++-?+--a a a a a a (4)2 22 22222b ab a b ab b ab b ab a +-+÷-++ 例4 计算 (1))()()(432 2xy x y y x -÷-?- (2)x x x x x x x --+?+÷+--36)3(446222 例5 化简求值 22232232b ab b a b b a ab a b a b +-÷-+?-,其中3 2=a ,3-=b . 例6 约分 (1)3286b ab ; (2)2 22322xy y x y x x --

例7 判断下列分式,哪些是最简分式?不是最简分式的,化成最简分式或整式. (1)44422-+-x x x ; (2)36 ) (4)(3a b b a a --; (3)22 2y y x -; (4)882122++++x x x x 例8 通分: (1)223c a b , ab c 2-,cb a 5 (2)a 392 -, a a a 2312---,652+-a a a

参考答案 例1 分析:(用排除法)4和6有公因式2,排除A .2)(a b -与)(b a -有公因式)(b a -,排除B ,22y x -分解因式为))((y x y x -+与)(y x -有公因式)(y x -,排除D. 故选择C. 解 C 例2 分析(1)中分子、分母都是单项式可直接约分.(2)中分子、分母是多项式,应该先分解因式,再约分.(3)中应该先把分子、分母的各项系数都化为整数,把分子、分母中的最高次项系数化为正整数,再约分. 解:(1)36)(12)(3a b a b a ab --)4()(3)()(3333-?--?-=b a a b b a b a a 3)(4 1b a b --= (2)4 4422-+-x x x )2)(2()2(2-+-=x x x 22+-=x x (3)原式2123486)22 1(6)3432(b b b b -+=?-?+=312482-+-=b b b b b b 634)12)(12(3)12(4-=-++-= 例3 分析(1)可以根据分式乘法法则直接相乘,但要注意符号.(2)中的除式是整式,可以把它看成1 64 mn .然后再颠倒相乘,(3)(4)两题都需要先分解因式,再计算. 解:(1)22563ab cd c b a -?-2253)6(ab c cd b a ?--=b ad 52= (2)422643mn n m ÷-7 43286143n m mn n m -=?-= (3)原式)2)(1)(3)(1()3)(2)(2(++----+=a a a a a a a 1 22--=a a (4)原式)()()()(2b a b a b b a b b a -+÷-+=2 2 22))((b b a b b a b a -=-+= 说明:(1)运算的结果一定要化成最简分式;(2)乘除法混合运算,可将除

分式运算中的常用技巧与方法

分式运算中的常用技巧与方法1 在分式运算中,若能认真观察题目结构特征,灵活运用解题技巧,选择恰当的运算方法,常常收到事半功倍的效果。现就分式运算中的技巧与方法举例说明。 一、 整体通分法 例1.化简: 21 a a --a-1 分析 将后两项看作一个整体,则可以整体通分,简捷求解。 解: 21 a a --a-1= 21 a a --(a+1)= 21a a --(1)(1)1 a a a -+-= 22(1) 1a a a ---=11 a - 二、 逐项通分法 例2.计算 1 a b --1a b +- 22 2b a b +- 344 4b a b - 分析:注意到各分母的特征,联想乘法公式,适合采用逐项通分法 解:1a b -- 1a b +- 22 2b a b +- 344 4b a b -= 22 ()() a b a b a b +---- 22 2b a b +- 344 4b a b - =222b a b --222b a b +- 344 4b a b -= 222244 2()2() b a b b a b a b +---- 344 4b a b - = 344 4b a b -- 344 4b a b -=0 三、 先约分,后通分 例3.计算: 2262a a a a +++ 22444 a a a -++

分析:分子、分母先分解因式,约分后再通分求值计算 解: 2262a a a a +++ 22444a a a -++=(6)(2)a a a a +++2 (2)(2)(2)a a a +-+=62a a +++22a a -+=242 a a ++=2 四、 整体代入法 例4.已知1x +1y =5求2522x xy y x xy y -+++的值 解法1:∵ 1x + 1y =5∴xy ≠0,.所以 2522x xy y x xy y -+++= 225112y x y x -+++= 11 2()5112x y x y +-++=25552 ?-+=57 解法2:由1x +1y =5得,x y xy +=5, x+y=5xy ∴2522x xy y x xy y -+++=2()5()2x y xy x y xy +-++=25552xy xy xy xy ?-+=57xy xy =57 五、运用公式变形法 例5.已知a 2-5a+1=0,计算a 4+4 1a 解:由已知条件可得a ≠0,∴a+1a =5 ∴a 4+4 1a =(a 2+2 1a )2-2=[(a+1a )2-2]2-2=(52-2)2 -2=527 六、设辅助参数法 例6.已知b c a += a c b += a b c +,计算:()()() a b b c c a abc +++ 解:设b c a += a c b += a b c +=k ,则b+c=ak ;a+c=bk ;

(完整word版)分式混合运算练习题(30题)

分式精华练习题 一.解答题 1.计算: (1)(2)(﹣2m2n﹣2)2?(3m﹣1n3)﹣3 2.计算:3.化简:.4.化简:5.计算:. 6.化简?(x2﹣9)7.计算:. 8.计算:+.9.计算:(1);(2).10.. 11.计算:12.计算:﹣a﹣1. 13.计算: (1)(2)14.计算:a﹣2+15.计算:.16.化简:,并指出x的取值范围.17.17.已知ab=1,试求分式:的值.18.计算:﹣19.计算:20.化简 21.计算: 22.化简: 23.计算:(1);(2).24.化简: 25.化简:.26化简: 27.计算:28.计算:()÷.29.化简.30.计算:﹣x﹣2)

1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( ) ①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;62 1 =+x ⑥ 21 1=-+-a x a x . A.2个 B.3个 C.4个 D.5个 2. 关于x 的分式方程15 m x =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数 C .5m <-时,方程的解为负数 D .无法确定 3.方程x x x -=++-13 15112 的根是( ) A.x =1 B.x =-1 C.x =8 3 D.x =2 4.,04 412=+-x x 那么x 2的值是( ) A.2 B.1 C.-2 D.-1 5.下列分式方程去分母后所得结果正确的是( ) A. 11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B. 1255 52=-+-x x x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2 +=+--x x x x ; D. ,1 1 32-=+x x 去分母得,23)1(+=-x x ; 6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A. 21140140-+x x =14 B.21280280++x x =14 C.21 140 140++x x =14 D. 21 1010++x x =1 7.若关于x 的方程 01 11=----x x x m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-1 8.若方程 ,) 4)(3(1 243+-+=++-x x x x B x A 那么A 、B 的值为( ) A.2,1 B.1,2 C.1,1 D.-1,-1 9.如果,0,1≠≠= b b a x 那么=+-b a b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.1 1 +-x x 10.使分式442-x 与6 52 632 2+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10 二、填空题(每小题3分,共30分) 11. 满足方程 22 11-=-x x 的x 的值是___ 12. 当x =____时,分式x x ++51的值等于2 1. 13.分式方程 02 22=--x x x 的增根是 . 14. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时. 15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 . 16.已知,54=y x 则=-+2 22 2y x y x . 17.=a 时,关于x 的方程 5 3 221+-=-+a a x x 的解为零. 18.飞机从A 飞到B 的路程S ’、速度是,1v ,返回的速度是2v ,往返一次的平均速度是 . 19.当=m 时,关于x 的方程 3 1 3292 -=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 . 三、解答题(共5大题,共60分) 21. .解下列方程 (1)x x x --=+-34231 (2) 2123442+-=-++-x x x x x (3)21124 x x x -=--. 22. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天? 24.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多 5 3 倍,问她第一次在供销大厦买了几瓶酸奶?

分式运算的几种技巧

分式运算的几种技巧 分式运算的一般方法就是按分式运算法则和运算顺序进行运算。但对某些较复杂的题目,使用一般方法有时计算量太大,导致出错,有时甚至算不出来,下面列举几例介绍分式运算的几点技巧。 一、 整体通分法 例1 计算:2 11 ---a a a 【分析】本题是一个分式与整式的加减运算.如能把(-a -1)看作一个整体,并提取“-”后在通分会使运算更加简便.通常我们把整式看作分母是1的分式. 【解】2222(1)(1)(1)(1)11(1)111111 +--+---=-+=-==------a a a a a a a a a a a a a a a a 二、 先约分后通分法 例2 计算2221 2324+-++-+x x x x x x 分析:直接通分,极其繁琐,不过,各个分式并非最简分式,有化简的余地,显然,化简后再通分计算会方便许多。 解:原式=)2)(1(1+++x x x +)2)(2()2(+--x x x x =21 +x +2+x x =21++x x 三、 分组加减法 例3计算21-a +12 +a -12-a -21+a 分析:本题项数较多,分母不相同.因此,在进行加减时,可考虑分组.分组的原则是使各组运算后的结果能出现分子为常数、相同或倍数关系,这样才能使运算简便。 解:原式=(21-a -21+a )+(12 +a -12-a ) =44 2-a +142--a =)1)(4(1222--a a 四、 分离整数法 例4 计算 3 x 4x 4x 5x 2x 3x 1x 2x -----+++-++ 方法:当算式中各分式的分子次数与分母次数相同次数时,一般要先利用分裂整数法对分子降次后再通分;在解某些分式方程中,也可使用分裂整数法。 解:原式= (1)1(2)1(4)1(3)11243 ++++-----+-++--x x x x x x x x =1111(1)(1)(1)(1)1243 +-++---++--x x x x =11111243--+++--x x x x =。。。 五、 逐项通分法

分式混合运算练习题(50题)

一.解答题 1.计算: (1)(2)(﹣2m2n﹣2)2?(3m﹣1n3)﹣3 2.计算: 3.化简:. 4.(2007?双柏县)化简: 5.(2006?襄阳)计算:. 6.(2005?江西)化简?(x2﹣9) 7.(2007?北京)计算:. 8.(2005?宜昌)计算:+. 9.(2001?吉林)计算:(1);(2).10.(2001?常州). 11.计算:

12.计算:﹣a﹣1. 13.计算: (1)(2) 14.计算:a﹣2+ 15.计算:. 16.化简:,并指出x的取值范围. 17.已知ab=1,试求分式:的值. 18.计算:﹣ 19.(2010?新疆)计算: 20.(2009?太原)化简: 21.(2009?上海)计算:. 22.(2009?眉山)化简: 23.(2009?江苏)计算:(1);(2).

24.(2009?东营)化简: 25.(2008?白银)化简:. 26.(2007?南昌)化简: 27.(2007?巴中)计算: 28.(2006?宜昌)计算:()÷ . 29.(2006?十堰)化简:. 30.(2006?南充)计算:﹣x ﹣2) 31.(2015?眉山)计算: 1 121222-+÷+--x x x x x x 32.(2015?宜昌)化简:12 1 122 2++-+-x x x x 33.(2015?厦门)计算:12 1++++x x x x 34.(2015?柳州)计算:a a a 1 1+- 35.(2015?佛山)计算:4 8 222---x x

36.(2015?福州)化简:2 22222)(b a ab b a b a +-++ 37.(2015?宜宾)化简:1 )1111(222--÷---a a a a a 38.(2015?青岛)化简:n n n n n 1 )12(2-÷++ 39.(2015?重庆)化简:1 22 )1112(2 ++-÷+-+-x x x x x x 40.(2015?泸州)化简:)11 1(1 22 2+-÷++m m m m 41.(2015?扬州)化简:)11 11(12---+÷-a a a a a 42.(2015?滨州)化简:)3 1 31(96262 +--÷+--m m m m m 43.(2015?广西)化简:2 1 )12(22-÷-+a a a a 44.(2015?连云港)化简:m m m m +-÷++224 )111( 45.(2015?成都)化简:2 1 )412(2+-÷ -++a a a a a 46.(2015?重庆)计算:y y y y y y ++-÷+--2 29 6)181( 47.(2015?南京)计算:b a a a b a b a +÷---)12(222

《分式》典型例题分析

《分式》复习提纲 考点1. 分式的概念 1、下列各有理式 π y y x y x y x x y xy y x x x ,31),(23,,53,81,4,23,822++-+---中,分式的个数是( ) A. 3个 B. 4个 C. 5个 D. 6个 考点2. 分式的意义 分式:B A (A , B 都是整式,且B 中含有字母,B ≠0) ① 分式有意义? ;② 分式无意义? ;③ 分式值为零? 1、若分式3 2-x 有意义,则x__________ 2、 要使分式) 5)(32(23-+-x x x 有意义,则( ) A. x ≠23- B. x ≠5 C. x ≠23-且x ≠5 D. x ≠2 3-或x ≠5 ? 3、 当a 为任意有理数时,下列分式一定有意义的是( ) A . 112++a a B. 12+a a C. 112++a a D. 21a a + 4、分式324 x x +-当x 时有意义;当x 时分式没有意义;当x 时分式的值为零。 5、当x 时,分式2 52++x x 的值是零;当x 时,分式242--x x 的值是零; 当x 时,分式x x -+22 的值是零 考点3、最简公分母、最简分式 1、分式ac b b c a ab c 3,2,2--的最简公分母是 ;分式13x ,11x x +-,225(1)xy x -的最简公分母为________ 2、下列分式中是最简分式的是( ) A. 122+x x B. x 24 C. 1 12--x x D. 11--x x 3、下列分式中是最简分式的是( ) { A. 2 2 2)(y x y x -- B. 2x xy - C. xy x y x ++2 D. 22-+x x 考点4、分式的基本性质 1. 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。

分式的运算(含答案)解读

10、分式的运算 【知识精读】 1. 分式的乘除法法则 ; 当分子、分母是多项式时,先进行因式分解再约分。 2. 分式的加减法 (1)通分的根据是分式的基本性质,且取各分式分母的最简公分母。 求最简公分母是通分的关键,它的法则是: ①取各分母系数的最小公倍数; ②凡出现的字母(或含有字母的式子)为底的幂的因式都要取; ③相同字母(或含有字母的式子)的幂的因式取指数最高的。 (2)同分母的分式加减法法则 (3)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减。 3. 分式乘方的法则

(n为正整数) 4. 分式的运算是初中数学的重要内容之一,在分式方程,求代数式的值,函数等方面有重要应用。学习时应注意以下几个问题: (1)注意运算顺序及解题步骤,把好符号关; (2)整式与分式的运算,根据题目特点,可将整式化为分母为“1”的分式; (3)运算中及时约分、化简; (4)注意运算律的正确使用; (5)结果应为最简分式或整式。 下面我们一起来学习分式的四则运算。 【分类解析】 例1:计算的结果是() A. B. C. D. 说明:先将分子、分母分解因式,再约分。 例2:已知,求 的值。

分析:若先通分,计算就复杂了,我们可以用 替换待求式中的“1”,将三个分式化成同分母,运算就简单了。 例3:已知:,求下式的值: 分析:本题先化简,然后代入求值。化简时在每个括号内通分,除号改乘号,除式的分子、分母颠倒过来,再约分、整理。最后将条件等式变形,用一个字母的代数式来表示另一个字母,带入化简后的式子求值。这是解决条件求值问题的一般方法。 例4:已知a、b、c为实数,且 ,那么 的值是多少? 分析:已知条件是一个复杂的三元二次方程组,不容易求解,可取倒数,进行简化。 例5:化简: 说明:解法一是一般方法,但遇到的问题是通分后分式加法的结果中分子是一个四次多项式,而它的分解需要拆、添项,比较麻烦;解法二则运用了乘法分配律,避免了上述问题。因此,解题时注意审题,仔细观察善于抓住题目的特征,选择适当的方法。

人教版初一数学分式混合运算专题练习

分式的运算 例1、下列分式a bc 1215,a b b a --2 )(3,) (222b a b a ++,b a b a +-22中最简分式的个数是( ). A.1 B.2 C.3 D.4 例2.计算:3234)1(x y y x ? a a a a 2122)2(2+?-+ x y xy 2 2 63)3(÷ 41441)4(222--÷+--a a a a a 例3、 若4 32z y x ==,求222z y x zx yz xy ++++的值. 例4、计算 (1)3 3 22)(c b a - (2) 43222)()()(x y x y y x -÷-?- (3)2 33 2 )3()2(c b a b c a - ÷- (4)232222)()()(x y xy xy x y y x -?+÷- 例5计算:1 814121111842+-+-+-+--x x x x x 练习:1.计算:8 87 4432284211x a x x a x x a x x a x a --+-+-+-- 例6.计算:20 18119171531421311?+?++?+?+?Λ 练习1、()()()()()() ()() 1011001 431 321 211 +++ ++++ +++ ++x x x x x x x x Λ 例7、已知 2 1)2)(1(12++-=+-+x B x A x x x ,求A. B 的值。 计算下列各题: (1)2 222223223x y y x y x y x y x y x ----+--+ (2)11 11322+-+--+a a a a .

分式考点及典型例题分析(最全面)

分式考点及典型例题分析 1、分式的定义: 例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2-a 2、m 1、65xy x 1、21、212+x 、π xy 3、y x +3、m a 1+中分式的个数为( ) (A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 . ⑴275x x -+; ⑵ 123 x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹222xy x y +. (2)下列式子,哪些是分式? 5a -; 234x +;3y y ; 78x π+;2x xy x y +-;145 b -+. 2、分式有,无意义,总有意义: (1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解; 注意:(12 +x ≠0) 例1:当x 时,分式 51-x 有意义; 例2:分式x x -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义。 例4:当x 时,分式12+x x 有意义 例5:x ,y 满足关系 时,分式x y x y -+无意义; 例6:无论x 取什么数时,总是有意义的分式是( ) A . 122+x x B.12+x x C.133+x x D.2 5x x - 例7:使分式2+x x 有意义的x 的取值围为( )A .2≠x B .2-≠x C .2->x D .2

人教版初中数学专题复习---分式知识点和典型例习题

第十六章分式知识点和典型例习题 【知识网络】 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:()0b c b c a a a a ±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法:b d bd a c ac ?=,b c b d bd a d a c ac ÷=?= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n; am ÷ a n =am -n 6.积的乘方与幂的乘方:(ab)m = am b n , (a m ) n = a mn 7.负指数幂: a -p = 1p a a 0 =1 8.乘法公式与因式分解:平方差与完全平方式 (a+b )(a-b )= a 2 - b 2 ;(a±b )2= a 2±2a b+b2 (一)、分式定义及有关题型 题型一:考查分式的定义 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,2 2 π,是分式的有: . 题型二:考查分式有意义的条件 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x ?(2)2 32+x x (3) 1 22-x (4) 3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件

【例3】当x 取何值时,下列分式的值为0. (1)3 1+-x x (2) 4 2 ||2--x x ?(3)653 222----x x x x 题型四:考查分式的值为正、负的条件 【例4】(1)当x 为何值时,分式 x -84 为正; (2)当x 为何值时,分式2 )1(35-+-x x 为负; (3)当x 为何值时,分式 3 2 +-x x 为非负数. 练习: 1.当x 取何值时,下列分式有意义: (1) 3 ||61 -x (2) 1 )1(32++-x x ??(3) x 111+ 2.当x 为何值时,下列分式的值为零: (1)4 |1|5+--x x (2) 5 6252 2+--x x x 3.解下列不等式 (1) 01 2 ||≤+-x x (2) 03 252 >+++x x x (二)分式的基本性质及有关题型 1.分式的基本性质: M B M A M B M A B A ÷÷=??= 2.分式的变号法则: b a b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数 【例1】不改变分式的值,把分子、分母的系数化为整数. (1)y x y x 4 1313221+- (2) b a b a +-04.003.02.0 题型二:分数的系数变号 【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)y x y x --+-? (2)b a a --- ?(3)b a --- 题型三:化简求值题 【例3】已知: 511=+y x ,求 y xy x y xy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出 y x 1 1+.

分式的基本性质-经典例题及答案

讲义编号: ______________ 副校长/组长签字:签字日期: 【考纲说明】 掌握分式的基本性质,灵活运用分式的基本性质进行约分和通分,本部分在中考中通常会以选择题的形式出现,占3--4分。 【趣味链接】 甲、乙两人分别从A、B两地同时出发相向而行,3小时后相遇. 尔后两人都用原来速度继续前进,结果甲达到B地比乙达到A地早1小时21分.已知甲每小时比乙多走1千米,求甲、乙两人的速度。 【知识梳理】 分式 1.分式的概念:形如(A、B是整式,且B中含有字母,B≠0)的式子叫做分式.其中,A叫分式的分子,B叫分式的分母. 2.分式有意义的条件:因为两式相除的除式不能为零,即分式的分母不能为零,所以,分式有意义的条件是:分式的分母必须不等于零,即B≠0,分式有意义.

3.分式的值为零的条件:分子等于0,分母不等于0,二者缺一不可. 有理式 有理式的分类:有理式 分式的基本性质 分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示为:(其中M≠0) 约分和通分 1.分式的约分:把一个分式的分子与分母中的公因式约去叫约分. 2.分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分. 最简分式与最简公分母: 约分后,分式的分子与分母不再有公因式,我们称这样的分式为最简分式.取各分母所有因式的最高次幂的积作为公分母,这样的公分母称为最简公分母. 【经典例题】 【例1】不改变分式的值,使分式的各项系数化为整数,分子、分母应乘以(? ) A.10 B.9 C.45 D.90 【例2】下列等式:①=-;②=;③=-; ④=-中,成立的是() A.①② B.③④ C.①③ D.②④ 【例3】不改变分式的值,使分子、分母最高次项的系数为正数,正确的是(? ) A. B. C. D. 【例4】分式,,,中是最简分式的有() A.1个 B.2个 C.3个 D.4个

分式经典题型分类练习题

分式的运算 (一)、分式定义及有关题型 题型一:考查分式的定义 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,2 2 π,是分式的有: . 题型二:考查分式有意义的条件 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 1- 题型三:考查分式的值为0的条件 【例3】当x 取何值时,下列分式的值为0. (1)3 1 +-x x (2) 4 2||2--x x (3) 6 53222----x x x x 题型四:考查分式的值为正、负的条件 【例4】(1)当x 为何值时,分式 x -84 为正; (2)当x 为何值时,分式2 )1(35-+-x x 为负; (3)当x 为何值时,分式 3 2 +-x x 为非负数. 练习: 1.当x 取何值时,下列分式有意义: (1) 3 ||61 -x (2) 1 )1(32++-x x (3) x 111+ 2.当x 为何值时,下列分式的值为零: (1)4 | 1|5+--x x (2) 5 62522+--x x x 3.解下列不等式 (1) 01 2 ||≤+-x x (2) 03 252 >+++x x x (二)分式的基本性质及有关题型 1.分式的基本性质:M B M A M B M A B A ÷÷= ??= 2.分式的变号法则: b a b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数 【例1】不改变分式的值,把分子、分母的系数化为整数. (1)y x y x 4 1313221+- (2) b a b a +-04.003.02.0

分式运算的八种技巧

分式运算的八种技巧 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

分式运算综合题 1、先化简,再求值:(1-x x -11+x )÷1 12-x ,其中x=2 2、先化简,再求值: 2 1 +-a a ·12422 +--a a a ÷1 1 2 -a ,其中a 满足a 2-a=12。 3、计算:223y x y x -+-222y x y x -++2 232y x y x --。 4、化简: 12+x x -1422-+x x ÷1 22 2+-+x x x ,然后在不等式x ≤2的非负整数解中选择一个适当的数代入求值。 5、已知M=222y x xy -,N=2222y x y x -+,P=2 24x y xy -,用 “+”或“-”连接M ,N ,P 有多种不同的形式,如M+N-P 。请你任选一种进行计算,并化简求值,其中x :y=5:2。 6、已知abc ≠0且a+b+c=0,求a(b 1+c 1)+b(c 1+a 1)+c(a 1+b 1 )的 值。 7、已知两个式子:A= 442-x ,B=21+x +x -21 ,其中x ≠±2,则A 与B 的关系是( ) A.相等 B.互为倒数 C.互为相反数 大于B 8、已知1<x <2,则式子|2|2--x x -1|1|--x x +x x | |化简的结 果是( ) A.-1 9、已知a2+3ab+b2=0(a ≠0,b ≠0),则式子a b +b a = 。 10、已知a 1+b 21=3,则式子b a ab b ab a 634452--+-= 。 11、已知3-x m -2+x n =) 2)(3(17+-+x x x ,求m 2+n 2的值。 12、已知a,b 为实数,且ab=1,设M=1+a a +1 +b b ,N= 11+a +1 1 +b ,试确定M ,N 的大小关系。 13、先化简,再求值:(x- 13+x x )÷1 22 2++-x x x ,其中x 满足x 2+x-2=0. 14、已知A=(x-3)÷4 ) 96)(2(22-+-+x x x x -1,(1)化简A; 2x-1<x, (2)若x 满足不等式组 且x 为整数,求A 的值。 1- 3x <3 4 , 15、计算:21-x -12-x +12+x -2 1+x 。 16、计算:3 22 3223322342b b a ab a b a ab b a b a b a a ---++-+

分式的化简求值经典练习题(带答案)

分式的化简 一、比例的性质: ⑴比例的基本性质:a c ad bc b d =?=,比例的两外项之积等于两内项之积. ⑵更比性(交换比例的内项或外项): ( ) ( ) ( )a b c d a c d c b d b a d b c a ?=?? ?=?=?? ?=?? 交换内项 交换外项 同时交换内外项 ⑶反比性(把比例的前项、后项交换):a c b d b d a c =?= ⑷合比性:a c a b c d b d b d ±±=?=,推广:a c a kb c kd b d b d ±±=?=(k 为任意实数) ⑸等比性:如果....a c m b d n ===,那么......a c m a b d n b +++=+++(...0b d n +++≠) 二、基本运算 分式的乘法:a c a c b d b d ??=? 分式的除法:a c a d a d b d b c b c ?÷=?=? ( 乘方:()n n n n n a a a a a a a a b b b b b b b b ?=?=?个 个 n 个 =(n 为正整数) 整数指数幂运算性质: ⑴m n m n a a a +?=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数) ⑷m n m n a a a -÷=(0a ≠,m 、n 为整数) 负整指数幂:一般地,当n 是正整数时,1 n n a a -= (0a ≠),即n a -(0a ≠)是n a 的倒数 】 知识点睛中考要求

分式的加减法法则: 同分母分式相加减,分母不变,把分子相加减,a b a b c c c +±= 异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bc b d bd bd bd ±±=±= , 分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算. 结果以最简形式存在. 一、分式的化简求值 【例1】 先化简再求值: 2 11 1x x x ---,其中2x = 【考点】分式的化简求值 【难度】2星 【题型】解答 【关键词】2010年,湖南郴州 ) 【解析】原式()()111x x x x x =---()11 1x x x x -==- 当2x =时,原式11 2x == 【答案】1 2 【例2】 已知:22 21()111 a a a a a a a ---÷?-++,其中3a = 【考点】分式的化简求值 【难度】2星 【题型】解答 【关键词】 【解析】22 222 1(1)()4111(1)a a a a a a a a a ---+÷ ?=-=--++- 【答案】4- 【例3】 ! 【例4】 先化简,再求值: 22144 (1)1a a a a a -+-÷ --,其中1a =- 【考点】分式的化简求值 例题精讲

分式经典题型分类例题及练习题

分式的运算 (一)、分式定义及有关题型 题型一:考查分式的定义 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,2 2 π,是分式的 有: ?. 题型二:考查分式有意义的条件 【例2】当x 有何值时,下列分式有意义 (1) 4 4+-x x (2) 2 32+x x (3) 1 22-x (4) 3 ||6--x x (5) x x 11- 题型三:考查分式的值为0的条件 【例3】当x 取何值时,下列分式的值为0. (1) 3 1 +-x x ? (2) 4 2||2 --x x ?(3) 6 5322 2----x x x x 题型四:考查分式的值为正、负的条件 【例4】(1)当x 为何值时,分式 x -84 为正; (2)当x 为何值时,分式 2 )1(35-+-x x 为负; (3)当x 为何值时,分式3 2 +-x x 为非负数. 练习: 1.当x 取何值时,下列分式有意义: (1) 3 ||61 -x ?(2) 1 )1(32++-x x (3) x 111+ 2.当x 为何值时,下列分式的值为零: (1)4 | 1|5+--x x ?(2) 5 62522+--x x x 3.解下列不等式 (1)01 2 ||≤+-x x (2) 03 252 >+++x x x

(二)分式的基本性质及有关题型 1.分式的基本性质: M B M A M B M A B A ÷÷=??= 2.分式的变号法则:b a b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数 【例1】不改变分式的值,把分子、分母的系数化为整数. (1)y x y x 4 1313221+-? (2)b a b a +-04.003.02.0 题型二:分数的系数变号 【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1) y x y x --+-? (2)b a a ---??(3)b a --- 题型三:化简求值题 【例3】已知:511=+y x ,求 y xy x y xy x +++-2232的值. 【例4】已知:21=-x x ,求221 x x +的值. 【例5】若0)32(|1|2=-++-x y x ,求y x 241 -的值. 练习:

相关文档
最新文档