质数合数分解质因数

合集下载

分解质因数的技巧

分解质因数的技巧

分解质因数的技巧分解质因数是数学中常见的一个基本操作,也是解决数学问题中常用的方法之一。

在学习数学的过程中,掌握好分解质因数的技巧对于提高解题效率和准确性非常重要。

下面将介绍一些分解质因数的技巧,希望能够帮助大家更好地理解和运用这一方法。

一、质数与合数的概念在分解质因数之前,首先需要了解质数和合数的概念。

质数是指除了1和本身之外没有其他因数的自然数,例如2、3、5、7等;而合数是指除了1和本身之外还有其他因数的自然数,例如4、6、8、9等。

在分解质因数的过程中,我们通常将一个合数分解为若干个质数的乘积。

二、分解质因数的基本步骤1. 从最小的质数开始除:将给定的数用最小的质数(2开始)进行除法运算,如果能整除,则继续用商继续除以最小的质数,直到商为1为止。

2. 逐步增大除数:如果商不能再被最小的质数整除,就逐步增大除数,直到商为1为止。

3. 将所有的除数相乘:将每一步得到的除数相乘,即可得到原数的质因数分解。

三、分解质因数的技巧1. 从小到大:在分解质因数时,应该从小到大依次尝试质数,这样可以更快地找到所有的质因数。

2. 重复因数:如果一个质数是一个合数的因数,那么它一定会重复出现在这个合数的质因数分解中。

3. 重复除法:在进行除法运算时,如果能够整除就要一直除下去,直到商为1为止,这样可以确保找到所有的质因数。

4. 记录过程:在分解质因数的过程中,可以适当记录每一步的除数和商,以免遗漏或重复计算。

四、实例演练例如,对于数100的质因数分解:1. 100 ÷ 2 = 502. 50 ÷ 2 = 253. 25 ÷ 5 = 54. 5 ÷ 5 = 1因此,100的质因数分解为2 × 2 × 5 × 5。

再如,对于数72的质因数分解:1. 72 ÷ 2 = 362. 36 ÷ 2 = 183. 18 ÷ 2 = 94. 9 ÷ 3 = 35. 3 ÷ 3 = 1因此,72的质因数分解为2 × 2 × 2 × 3 × 3。

六同第四讲 质数、合数和分解质因数

六同第四讲 质数、合数和分解质因数

第四讲质数、合数和分解质因数教学课题:质数、合数和分解质因数教学课时:两课时教学目标:1、进一步理解自然数、整数、整除、除尽、约数、倍数、奇数、偶数、素数、合数、质因数、分解质因数的概念,掌握能被2、5、3整除数的特征2、能对以上概念作正确判断,能熟练地把合数分解质因数。

3、培养学生判断、推理的能力。

教学重难点:掌握质因数及分解质因数。

教具准备:本周通知:教学过程:一、故事导入1643年,来自欧洲的殖民者在美洲大陆田纳西地区经历了一场恐怖:大量的蝉达到每公顷百万只,仿佛一夜之间从地底冒出,几个星期之后,又销声匿迹,事隔17年,这一现象再次出现,直到1991年,共出现22次,周期非常准确科学家发现蝉的生命周期大都为质数,比如在北美洲北部地区周期为17年,而在北美洲南部地区周期为13年,为什么是17和13,而不是其他数字那,科学家解释说,蝉进化的过程中选择质数为生命的周期,可以大大降低与天敌遭遇的概率。

比如它的生命周期是12年,则与那些生命周期为1年、2年、3年4年、6年、12年的天敌都可能遭遇,而使得种群生存受威胁。

这是一个我们将要研究的内容:引出课题——质数、合数及分解质因数。

二、新课学习师:质数、合数我们之前学过,那么同学们是否还记50以内的质数有哪些?(请了一位同学到黑板上写出50以内的质数,其他同学下面写,老师巡视。

)师:我们接下来看下例3该如何来求解。

例3、三个质数的和是32,这三个质数的积最大是多少?【思路点拨】:32是个偶数,除了2以外的质数都是奇数,三个奇数相加和会是否是偶数。

那么其中一定是有2,另外两个是其他的质数,则两个质数的和是30,从上面写的50以内的质数中找找那两个质数的和是30,然而要使这三个质数的积最大,则这两个质数的差必须最小,从而找到是13、17。

【答案】:2╳13╳17=442【小结】:2是唯一的偶质数。

两个不同质数的和是奇数则其中一定有2,三个不同的质数的和是偶数则其中一定有2。

分解质因数的方法

分解质因数的方法

分解质因数的方法分解质因数是数学中常见的一个概念,它是指将一个数分解成若干个质数的乘积的过程。

分解质因数在数学运算中有着重要的作用,它不仅可以帮助我们简化计算,还可以帮助我们更好地理解数的性质。

接下来,我们将介绍分解质因数的方法,希望能够对大家有所帮助。

首先,我们来看一下如何分解一个合数的质因数。

合数是指除了1和它本身以外还有其他因数的数,而质数是指只有1和它本身两个因数的数。

分解质因数的方法可以通过不断地进行试除来实现。

具体步骤如下:1. 首先,我们找出这个数的最小质因数,然后用这个质因数去除这个数,得到的商再进行同样的操作,直到商为1为止。

2. 将每一步得到的质因数按照从小到大的顺序写出来,这样就得到了这个数的质因数分解式。

举个例子来说明一下,比如我们要分解质因数的数是60,那么我们可以按照上述的步骤来进行操作。

首先,60可以被2整除,得到30;30又可以被2整除,得到15;15可以被3整除,得到5;最后,5是一个质数,所以分解质因数的结果就是2235。

除了上述的方法外,我们还可以利用因数分解树来进行分解质因数。

因数分解树是一种图形化的表示方法,可以帮助我们更清晰地了解一个数的质因数分解式。

具体步骤如下:1. 首先,我们将要分解的数写在树的顶端。

2. 然后,我们找出这个数的一个质因数,并将它写在树的下方。

3. 接着,我们用这个质因数去除原数,得到的商写在质因数的下方。

4. 重复以上的步骤,直到无法再分解为止。

通过因数分解树,我们可以清晰地看到一个数的质因数分解式,而且可以避免遗漏或重复因数的情况。

在实际应用中,分解质因数的方法可以帮助我们解决一些数学问题,比如求最大公约数、最小公倍数等。

而且,分解质因数还可以帮助我们简化分数、化简根式等。

因此,掌握好分解质因数的方法对于我们的数学学习和实际应用都是非常重要的。

总的来说,分解质因数是数学中的一个重要概念,它可以帮助我们更好地理解数的性质,简化计算,解决一些数学问题。

四年级下册数学试题培优专题:第 2 讲 质数、合数与分解质因数

四年级下册数学试题培优专题:第 2 讲 质数、合数与分解质因数

第2讲 质数、合数与分解质因数一、质数与合数一个数除了1和它本身,没有其他的约数,这样的数叫做质数(也叫做素数). 一个数除了1和它本身,还有其他的约数,这样的数叫做合数. 注意:0和1既不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;2是唯一的偶质数. 除了2和5,多位质数的个位数字只能是1、3、7、9.二、质因数与分解质因数质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数. 分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数. (通常相同质因数要写成乘方的形式)三、部分特殊数的分解293=101是质数 201551331=××299311=× 100171113=×× 522016237=×× 3999337=× 1000173137=×2017是质数 10101371337=×××201821009=×1111141271=×20193673=×2202025101××(2000后,年份为质数的有2003、2011、2017、2027)四、判断一个数是否为质数找一个大于且接近这个数的完全平方数2k ,若小于k 的所有质数都不是这个数的约数,可判定此数为质数. 例如:判断113是否为质数,找大于113的完全平方数,214412=,试小于12的质数:2、3、5、7、11,它们都不是113的约数,所以113是质数.【例题1】 (1)a b c 、、都是质数,且25a b +=,54b c +=,求a 与c 的乘积. (2)a b 、都是质数,且3531a b +=,求a 与b 的和.【例题2】 用1、2、3、4、5、6、7、8、9这个9个数字组成质数,要求每个数字都要用到并且只能用一次,那么最多能组成多少个质数?≠,且ab、ba都是质数,【例题3】小蘑菇搬新家了,发现新家的门牌号是形如abba的四位数,其中a b具有这种形式的四位数有多少个?【例题4】小蘑菇通过2、0、1、9这四个数字构成了一个数列(不断地将2、0、1、9这四个数字按照这个顺序加在数后面):2、20、201、2019、20192、201920、2019201、20192019、201920192、……、这个数列中,质数有多少个?【例题5】请将下面各数中的合数分解质因数:72、133、252、264、1428【例题6】四个小朋友的年龄恰好是四个连续的自然数,他们的年龄之积是5040.这四个小朋友的年龄分别是多少岁?【例题7】 已知201920242029+=+=+迎新年,且6384××=迎新年, 那么迎×新+新×年=_________.【例题8】 (1)两个正整数的乘积为100,这两个正整数都不含有数字0,则这两个正整数之和是多少?(2)四个互不相同的正整数的乘积是231,则这四个数的和是多少?×××计算结果的末尾有多少个连续的0?【例题9】(1)算式9758672380(2)302!的计算结果的末尾有多少个连续的0?【例题10】如果一个整数具备以下性质:①这个数与1的差为质数;②这个数除以2所得的商也是质数;③这个数除以9的余数为5.则称这个整数为幸运数,那么在两位数中,最大的幸运数是多少?【例题11】桌子上有0~9这十张数字卡片,甲、乙、丙三人每人各取了其中的三张,并将自己拿到的三张数字卡片组成的所有不同的三位数求和,结果甲、乙、丙的答案分别是1554,1688,4662,剩下的那张数字卡片是多少?(注:卡片不能颠倒)【例题12】一个三位数各位数字的乘积是18,满足条件的所有三位数的总和是多少?第2讲 质数、合数与分解质因数【例题1】【分析】 (1)62;(2)7或9【例题2】 【分析】 6【例题3】 【分析】 8【例题4】 【分析】 1【例题5】【分析】 327223=×,133719=×,22252237=××,32642311××,2142823717×××【例题6】【分析】 7、8、9、10【例题7】 【分析】 722【例题8】【分析】 (1)29;(2)22【例题9】【分析】 (1)3;(2)74【例题10】 【分析】 14【例题11】 【分析】 9。

分解质因数顺口溜

分解质因数顺口溜

分解质因数顺口溜分解质因数是小学数学中的重要知识点之一,通过对数字的质因数分解可以计算它的最大公约数、最小公倍数等问题。

为了帮助同学们更好地掌握分解质因数,以下是一篇关于分解质因数顺口溜的文章。

一、什么是质数和合数?在分解质因数之前,我们需要先知道什么是质数和合数。

1. 质数:只能被1和它本身整除的数,例如2、3、5、7、11、13等。

2. 合数:除了1和它本身外,还有其他因数的数,例如4、6、8、9、10、12等。

二、分解质因数的基本步骤分解质因数的基本步骤是:先将数字分解成质数的乘积,再将这些质数按从小到大的顺序排列。

以12为例,它可以分解为2*2*3。

这里我们先找到它的质因数2,由于12可以被2整除,因此我们将12除以2得到6。

接着,我们再将6继续除以2,得到3。

此时,3是一个质数,同时也是12的因数。

因此,12可以表示为2*2*3。

三、分解质因数的顺口溜接下来,我们来说说分解质因数的顺口溜:质数是生成数,合数可分解。

先看能否被2,再看能否被3,再看5或7,或11或13,到最后若不能分,则那就是个质啦!意思是说,分解质因数时,先判断所分解的数字是否是质数或合数。

如果是质数,则它就是一个质因数。

如果是合数,则尝试把它分解成两个因数,再对这两个因数分别进行质因数分解。

首先,我们尝试用2除以这个数,看是否能够整除。

如果可以,就把这个数除以2,保留商作为新的数,并继续尝试用2除以这个数。

如果这个数不能被2整除,就尝试用3除以这个数,以此类推。

当最后得到的数已经是一个质数时,就把这个质数加入到分解结果中即可。

四、总结分解质因数是小学数学的重要知识点之一,通过掌握这一技巧,我们可以更好地解决一些数论问题。

希望本篇文章中提供的顺口溜可以帮助同学们更好地记忆分解质因数的方法,从而更好地掌握这一知识点。

质数和合数 分解质因数_典型例题六

质数和合数 分解质因数_典型例题六

典型例题
例.将14、30、33、35、39、75、143、169这八个数平均分成两组,使每组得四个数得乘积相等.
分析:把这八个数分成两组,要使两组得四个数得乘积相等,那么把这两组数中得每个数分解质因数后,两组中所含得质因数应该相同,并且相同质因数得个数也应该一样.为此我们可将八个数分别分解质因数,再按上述原则对这八个数进行搭配,即可满足题目得要求.
14=2×7 30=2×3×5 33=3×11
35=5×7 39=3×13 75=3×5×5
143=11×13 169=13×13
这八个数得全体质因数中有两个2,四个3,两个7,两个11,四个5,四个13.
所以在平均分成得两组数中,每组中都要含一个2,两个3,一个7,一个11,两个5,两个13.
解:符合条件得一共有两组:
(14、33、75、169)和(30、35、39、143)
(30、33、35、169)和(39、14、75、143)。

第二讲质数、合数和质因数

第二讲质数、合数和质因数一、概念1、质数与合数一个数除了1和它本身,不再有别的因数,这个数叫做质数(也叫素数)。

一个数除了1和它本身,还有别的因数,这个数叫做合数。

特别记住:1不是质数,也不是合数。

100以内的质数有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,在100内共有25个质数。

2、质因数与分解质因数如果一个质数是某个数的因数,那么就说这个质数是这个数的质因数。

把一个合数写成几个质数相乘的形式表示出来,叫做分解质因数。

例如:把30分解质因数。

解:30=2×3×5其中2、3、5叫做30的质因数。

又如12=2×2×3=22×3,其中2、3叫做12的质因数。

分解质因数的方法:短除法。

分解质因数的方法是先用一个合数的最小质因数去除这个合数,得出的数若是一个质数,就写成这个合数相乘形式;若是一个合数就继续按原来的方法,直至最后是一个质数。

塔形分解法。

二、练习1、三个连续自然数的乘积是210,求这三个数。

2、两个质数的和是40,求这两个质数的乘积的最大值是多少?3、自然数123456789是质数,还是合数?为什么?三、提高。

提高一:甲、乙、丙三个数的乘积是26250.甲数比乙数大5,乙数比丙数大5.求甲、乙、丙各是多少。

练一练:1、甲数比乙数大11,乙数比丙数大11.甲、乙、丙三个数的成绩是7986.求甲、乙、丙各是多少。

2、有四个连续奇数的乘积是326025,这四个数的和是多少?提高二:把5、6、7、14、15这五个数分成两组,使每组数的乘积相等。

练一练:1、把14、30、33、35、39、75、143、169这八个数平均分成两组,使每组里四个数的乘积相等,求这两组数。

2、把20、26、33、35、39、42、44、55、91这九个数分成三组,使每组数中几个数的乘积相等,应该怎么分?提高三:有3个自然数a、b、c。

质数合数分解质因数

1 质数合数分解质因数 课本知识回顾: 在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____. 最小的质数与最接近100的质数的乘积是_____. 两个自然数的和与差的积是41,那么这两个自然数的积是_____.

1. 质数与合数 一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数. 要特别记住:0和1不是质数,也不是合数. 常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个; 除了2其余的质数都是奇数; 除了2和5,其余的质数个位数字只能是1,3,7或9. 考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点. ⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.

2. 质因数与分解质因数 质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数. 互质数:公约数只有1的两个自然数,叫做互质数. 分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数. 例如:30235.其中2、3、5叫做30的质因数.又如21222323

,2、3都叫做

12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.

3. 部分特殊数的分解 111337;100171113;1111141271;1000173137;199535719;1998233337;200733223;2008222251;10101371337.

小学数学精讲(5)约数倍数、质数合数、分解质因数

小学数学精讲(5)约数倍数、质数合数、分解质因数一、知识地图二、基础知识(一)1.质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。

一个数除了1和它本身,还有别的约数,这个数叫做合数。

要特别记住:0和1不是质数,也不是合数。

显然,在自然数范围内,最小的质数是2,2也是惟一的偶质数。

最小的合数是4。

我们可以按照一个数约数的个数,把自然数分成三类:0和1,质数和合数。

因此,除0和1以外的自然数,不是质数就是合数。

自然数的个数是无限的。

早在2000多年前古希腊数学家欧几里德就证明了质数有无限多个。

2. 质因数与分解质因数如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例如,12=2×2×3。

常用的是100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;其中2是唯一的偶数,5是唯一的个位为5的质数,这也是多年考试的一个重点。

分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征。

同学们必须熟练掌握100以内以及其他常用合数的分解质因数。

部分特殊数的分解:111=3×37;1001=7×11×13;11111=41×271;10001=73×137;1995=3×5×7×19;1998=2×3×3×3×37;2007=3×3×223;2008=2×2×2×251;2007+2008=4015=5×11×73;10101=3×7×13×37。

注意:从小学奥数要求看,我们对一个数分解质因数,一般根据唯一分解定理,把相同质因子写成指数形式,这对求这个数的约数个数或者所有约数的和来说,很重要。

五年级数学下册课件2 质数、合数、分解质因数 苏教版16页

江苏版-五年级-下
第3单元
第1课时 质数和合数
9=( 3 )×( 3 ) 15=( 3 )×( 5 ) 26=( 2 )×( 13 ) 33=( 3 )×( 11 ) 18=( 2 )×( 9 )
36=( 6 )×( 6 ) 【提示】 答案不唯一。
知识点:质数和合数的含义 1.(1)12的因数共有( 6 )个,其中( 2,3 )是质 数,( 4,6,12 )是合数,( 1 )既不是质数也不是合数。 (2)20以内的质数有( 8 )个。 (3)用最小的质数,最小的合数和0,组成同时被2,3,5整 除的最大三位数是( 420 ),最小三位数是( 240 )。
4.联 系 实 际 , 挖掘 材料的 闪光点 。生活 中有些 事情看 似平淡 无奇, 但它却 是整个 社会的 基础, 对这些 生活素 材进行 多方面 的思考 ,深入 的开掘 ,就能 够从具 体的人 事景物 概括出 人类普 遍的感 情和抽 象的道 理。 5. 重 视 细 节 描写, 于细微 处见大 。这是 很重要 的一个 环节, 因为要 于细微 处见事 物的大 ,往往 是通过 其细部 特征传 达出来 的,写 得越细 致,越 深入, 给读者 留下的 印象就 越深, 所体现 出的道 理就越 深。 6. 选 择 思 维 方式。 除直接 从事物 本身入 手,抓 住其中 自己感 受最深 的一个 方面外 ,也可 以从侧 面出击 ,这往 往能出 奇制胜 。 7. 合 理 想 象 联想、 提升材 料层次 。联想 和想象 是作文 不可或 缺的思 维方式 ,它可 以使我 们在写 作时由 物及人 ,由人 及社会 ,有效 地提升 素材的 层次, 从而达 到文章 表达“ 以小见 大”的 目的。
2.判断。 (1)自然数可分为奇数、偶数、质数、合数四类。
( ✕) (2)两个质数相乘的积一定是合数。 ( √ ) (3)合数至少有3个因数。 ( √ )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 1文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 质数 合数 分解质因数

在自然数中,一个数除1和它本身,不再有别的约数,这个数叫做质数,也叫做素数.例如2,3,5,7,11,……都是质数.一个数除了1和它本身,还有别的约数,这个数叫做合数.例如4,6,8,9,12,……都是合数. 1既不是质数,也不是合数.这样,自然数在按约数个数分类,可以分成:质数、合数和1. 偶数中只有2是质数,而且是所有质数中最小的一个.除2以外所有的偶数都是合数,除2以外所有的质数都是奇数. 每个合数都可以写成几个质数相乘的形式,这几个质数就叫做这个合数的质因数.例如,因为70=2×5×7,所以2,5,7是70的质因数. 把一个合数用质数相乘的形式表示出来,叫做分解质因数.例如,60=2×2×3×5=22×3×5,把60这个合数用2×2×3×5或22×3×5的形式来表示,就是把60分解质因数. 例1 两个质数的积是46,求这两个质数的和. 分析:两个质数的积是46,46是偶数,只能是一个奇质数与一个偶质数的积,而偶质数只有2,文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 2文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 因此很容易得出另外的质数,从而问题得以解决. 解:因为46是偶数,因此它必是一个奇质数与一个偶质数的积,而偶质数只有2,另一质数46÷2=23,所以2与23的和为25. 例2 用2,3,4,5中的三个数能组成哪些三位质数? 分析:首先考虑个位数字是几,如果个位数字是2或4,这样的三位数必能被2整除,因此这样的三位数不会是质数,如果个位数字是5,这样的三位数必能被5整除,这样的三位数也不会是质数,所以个位数字只能是3,再由剩下的三个数字组成百位、十位,得出个位数字是3的三位数为:243,423,253,523,453,543,最后根据质数的判断方法,得到所求的质数. 解:如果组成的三位数的个位数字是2、4、5时,这个数必能被2或5整除,因此个位数字只能是3,而个位数字是3的三位数有243,423,253,523,453,543,其中243,423,453,543均能被3整除,253能被11整除,所以只有523是质数. 质数的判断方法是,当一个数比较小时,用定义直接判断,但这个数比较大时,通常采用查质数表,最好记住100以内的所有质数.在没有质数表文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 3文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 的情况下,可以用质数从小到大的顺序逐个地去试除.如果能被其中某一个质数整除,就说明这个数是合数,如果除到商已比试除的质数小,还不能被这些质数中的任何一个整除,那么这个数一定是质数. 例如,判断100以内的数是否是质数,只需用2、3、5、7这四个质数去试除,如果没有一个能整除它,这个数一定是质数,否则不是质数.判断97是不是质数,因为97不能被2,3,5,7中的任何一个整除,因此97是质数.为什么不必去试除比97小的所有的质数呢?因为97不能被2,3,5,7中的任何一个整除,它就一定不能被4,6,8,9,10等数(分别为2,3,5的倍数)整除,又因为,如果用11或大于11的质数去试除, 97÷11=8…9, 97÷13=7…6,其商为8、7,比除数还小,都已试除过,因此判断100以内的数是否是质数只需用2,3,5,7去试除. 判断200以内的数是否是质数,只需用2,3,5,7,11,13,17这七个质数去试除;判断300以内的质数,只需用2到17这七个质数去试除;判断400以内的质数,只需用20以内的八个质数与去试除;判断500以内的质数,只需2到23的质数去试文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 4文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 除.其余可用类似的方法推出,你可以思考一下1000以内的质数如何判断? 例3 将40,44,45,63,65,78,99,105这八个数平分成两组,使每组四个数的乘积相等. 分析:如果采用观察、计算调整的方法是比较麻烦的.要使两组数的乘积相等,只有两组数中的质因数相同,而且质因数的个数也相同,就可以了,所以从这八个数分解质因数入手,根据各质因数的个数,进行适当的搭配,便能找出问题的答案. 解:将八个数分解成质因数: 40=23×5 44=22×11 45=32×5 63=32×7 65=5×13 78=2×3×13 99=32×11 105=3×5×7 这八个数分解质因数后一共有6个2,8个3,4个5,2个7,2个11,2个13.因此,这八个数被分成两组后,每一组应含有3个2,4个3,2个5,1个7,1个11,1个13,这样可以得到两组分别为:40,63,65,99和44,45,78,105. 例4 360有多少个约数? 分析:如果先求360的所有约数,再数出它们的个数,显然比较麻烦.为此,先将360分解质因文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 5文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 数:360=23×32×5,360的任意一个约数均由若干个2或3或5组成,我们将360的所有约数列成下面的数阵: 1 2 22 23 3 2×3 22×3 23×3 32 2×32 22×32 23×32 5 2×5 22×5 23×5 3×5 2×3×5 22×3×5 23×3×5 32×5 2×32×5 22×32×5 23×32×5 这个数阵共6行,每行4个约数,所以360共有4×6=24个,而24=(3+1)×(2+1)×(1+1),这里3,2,1恰好是360分解质数式子中2,3,5的个数,从而得到下面关于约数个数的一个重要结论: 一个大于1的整数的约数个数,等于它的质因数分解式中每个质因数的个数加1的连乘积.用数字式子表示为: 文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 6文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 如果A分解质因数为:

则A的全体约数的个数为: (r1+1)×(r2+1)×…×(rn+1) 例5 有30个约数的最小自然数是多少? 分析:设所求的数为A,则A有30个约数,因为30= 30×1=2×15=6×5=10×3=2×3×5,要使A最小,一般使A的质因数的幂指数尽可能小,质因数的个数尽可能少, 所以A必为下列形式:

其中a1,a2,a3为互不相同的质数. 要使A最小,a1,a2,a3尽可能小,显然a3=2,a2=3,a1=5,这样 A=24×32×5=720 解:因为30=30×1=2×15=6×5=10×3=2×3×5,而且题中要求 a2、a3为互不相等的质数,为了使A最小,a3=2,a2=3,a1=5,所以A=24×32×5=720. 例6 九个连续自然数中至多有四个质数,例如1至9中有2、3、5、7四个质数.请在200以内再找出五组这样的质数. 分析:9个连续自然数中至多有5个奇数.在文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 7文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 两位数中,个位是5的数必能被5整除,而且三个连续的奇数必有一个能被3整除,所以只有当个位数字为5的两位数又能被3整除时,其余的四个奇数才有可能是质数.当找到一组这样的两位以上的质数时,另一组与这组对应的数的差必定是30的倍数.按照上述办法找出后,再根据质数的判断方法去筛选就可得出结果. 首先容易得出3,5,7,11;5,7,11,13;在两位数中,按照上面的方法可得出以下各组数: 11,13,15,17,19; 41,43,45,47,49; 71,73,75,77,79; 101,103,105,107,109; 131,133,135,137,139; 161,163,165,167,169; 191,193,195,197,199; 根据质数的判断方法可以得出两位数中还有11,13,17,19;101,103,107,109;191,193,197,199这三组符合条件. 解:200以内另外五组这样的质数为:3,5,7,11;5,7,11,13;11,13,17,19;101,103,107,109;191,193,197,199. 文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 8文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 在自然数中,一个数除1和它本身,不再有别的约数,这个数叫做质数,也叫做素数.例如2,3,5,7,11,……都是质数.一个数除了1和它本身,还有别的约数,这个数叫做合数.例如4,6,8,9,12,……都是合数. 1既不是质数,也不是合数.这样,自然数在按约数个数分类,可以分成:质数、合数和1. 偶数中只有2是质数,而且是所有质数中最小的一个.除2以外所有的偶数都是合数,除2以外所有的质数都是奇数. 每个合数都可以写成几个质数相乘的形式,这几个质数就叫做这个合数的质因数.例如,因为70=2×5×7,所以2,5,7是70的质因数. 把一个合数用质数相乘的形式表示出来,叫做分解质因数.例如,60=2×2×3×5=22×3×5,把60这个合数用2×2×3×5或22×3×5的形式来表示,就是把60分解质因数. 例1 两个质数的积是46,求这两个质数的和. 分析:两个质数的积是46,46是偶数,只能是一个奇质数与一个偶质数的积,而偶质数只有2,因此很容易得出另外的质数,从而问题得以解决.

相关文档
最新文档