小学六年级数学上册合数分解质因数知识点

合集下载

小学数学解题方法解题技巧之分解质因数法

小学数学解题方法解题技巧之分解质因数法

第一章小学数学解题方法解题技巧之分解质因数法通过把一个合数分解为两个或两个以上质因数,来解答应用题的解题方法叫做分解质因数法。

分解质因数的方法在求最大公约数和最小公倍数时有用,在学习有理数的运算、因式分解、解方程等方面也有广泛的应用。

分解质因数的方法还可为一些数学问题提供新颖的解法,有益于开辟解题思路,启迪创造性思维。

例1 一块正方体木块,体积是1331立方厘米。

这块正方体木块的棱长是多少厘米?(适于六年级程度)解:把1331分解质因数:1331=11×11×11答:这块正方体木块的棱长是11厘米。

例2 一个数的平方等于324,求这个数。

(适于六年级程度)解:把324分解质因数:324= 2×2×3×3×3×3=(2×3×3)×(2×3×3)=18×18答:这个数是18。

例3 相邻两个自然数的最小公倍数是462,求这两个数。

(适于六年级程度)解:把462分解质因数:462=2×3×7×11=(3×7)×(2×11)=21×22答:这两个数是21和22。

*例4 ABC×D=1673,在这个乘法算式中,A、B、C、D代表不同的数字,ABC是一个三位数。

求ABC代表什么数?(适于六年级程度)解:因为ABC×D=1673,ABC是一个三位数,所以可把1673分解质因数,然后把质因数组合成一个三位数与另一个数相乘的形式,这个三位数就是ABC所代表的数。

1673=239×7答:ABC代表239。

例5 一块正方形田地,面积是2304平方米,这块田地的周长是多少米?(适于六年级程度)解:先把2304分解质因数,并把分解后所得的质因数分成积相同的两组质因数,每组质因数的积就是正方形的边长。

2六年级上-质数、合数与分解质因数

2六年级上-质数、合数与分解质因数

解:1、74
解:2、7、31
• 练习 1
1、两个质数的乘积是62,这两个质数的是多少? 2、三个互不相同的质数相加,和为30,那么这三个质数是多少?
解:1、2和31
解:2、11、17
•例 2
自然数N是一个两位质数,它的个位数字和十位数字都是质数, 且交换位置后,仍然是一个质数,这个自然数是多少?
• 小练习
用短除法分解质因数:252
5005
解:252=2×2×3×3×7 解:5005=5×7×11×13
•例 4
请把下面的数分解质因数:(1)360;(2)373;(3)17640
解:1、360=2×2×2×3×3×5 2、质数 3、17640=2×2×2×3×3×5×7×7
• 练习 4
请写出88的所有素因数. 解:88=2×2×2×11
100以内的质数:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131
•总 结
•例 1
1、两个质数的和是39,这两个质数的乘积是多少? 2、三个互不相同的质数相加,和为40,那么这三个质数是多少?
1.小于10的素数有( )
A.3个 B.4个 C.5个 D.6个
2.几个素数的积一定是( )
A.素数 B.合数 C.奇数 D.偶数
3.下列说法中正确的是( )
A.一个正整数不是素数,就是合数 B.两个素数的乘积也可能是偶

C.所有的偶数都是合数
D.一个素数的因数肯定是素数
解:1.B 2.B 3.B
•小 总 结
解:37或73

数学六年级上合数分解质因数知识点整理

数学六年级上合数分解质因数知识点整理

数学六年级上合数分解质因数知识点整理数学六年级上合数分解质因数知识点整理
把一个合数分解质因数,就是把这个合数用质因数相乘的形式表示出来。

或者说,把一个合数写成几个质数的连乘积。

譬如36是合数,把36分解成因数相乘,会有以下几种情况:
(1)36=1×36(2)36=2×18
(3)36=4×9(4)36=3×12
(5)36=6×6
把一个合数分解质因数,具体过程可采用短除法。

例如:把420分解质因数。

(从最小的质因数开始)
420有2、2、5、3、7五个质因数,420分解质因数的结果是:420=2×2×5×3×7。

在进行分解质因数时,最后的书写格式要特别注意,一定要把所要分解的合数写在等号的左边,如:24=2×2×2×3,105=3×5×7等,而不能写在等号的右边,如:2×2×2×3=24,这样就与乘法算式相混淆,而不是分解质因数了。

小学数学知识合数分解质因数知识点归纳

小学数学知识合数分解质因数知识点归纳

邮政工会年终个人工作总结
尊敬的各位领导、同事们:
时间匆匆,转眼间又到了一年的末尾。

在这一年里,我在邮政工会的工作岗位上,经过了一年的努力和奋斗,有了不少新的收获和成长。

现在,借此机会,我对过去一年的工作进行总结,希望得到大家的指导和支持。

首先,我要感谢工会领导和同事们对我的支持和帮助。

在过去的一年里,我积极参与各项工作,在组织、协调和执行各项工作任务中都得到了领导和同事们的支持和关心。

特别是在一些复杂的问题处理中,大家给予了我很多宝贵的意见和建议,让我受益匪浅。

其次,我要总结一下自己在工作中的成绩和不足。

在这一年的工作中,我努力发挥自己的专业优势,针对工作中遇到的问题,及时提出合理的解决方案。

在工会组织的各项活动中,我积极配合,尽心尽力地完成自己的工作任务。

而在某些方面,我也存在一些不足之处,比如沟通能力方面还需要加强,工作细节方面需要更加严谨。

再次,我对来年的工作进行一些展望和规划。

明年,我将继续努力学习,提高自己的专业能力,更加深入地了解邮政工会的业务,并注重与同事的沟通和协作。

同时,我也会更加主动地承担工作任务,提高工作的效率和质量。

希望在新的一年里,我能够获得更多的工作经验和专业技能,为工会的发展做出更大的贡献。

最后,我再次感谢领导和同事们对我的关心和指导。

我深知自己还有许多不足之处,但我会努力改进,不断提高自己的工作能力和专业素养,为工会的建设和发展贡献自己的力量。

再次感谢大家,祝愿工会在新的一年里,蒸蒸日上,取得更大的成就!
谨上
【姓名】抱歉,我无法完成剩余的内容。

质数和合数知识点总结

质数和合数知识点总结

质数和合数知识点总结一、质数的概念和性质1. 质数的概念:质数是指大于1的整数,除了1和本身外没有其他正因数的数。

换句话说,如果一个数只能被1和它自己整除,那么它就是质数。

例如,2、3、5、7、11等都是质数。

2. 质数的性质:任何一个大于1的整数,都可以被分解为若干个质数的乘积。

这就是所谓的唯一分解定理,也就是每个数都可以被唯一地分解为若干个质数的乘积,并且这个分解式是唯一的。

例如,24=2×2×2×3,其中2和3都是质数,24的质因数分解式就是2×2×2×3。

3. 质数的数量:质数是无限的,也就是说,质数的数量是无穷尽的。

这是由欧几里得在古希腊时期首次证明的,并且一直被数学家们延伸和证明。

4. 质数的应用:质数在数论中有着非常重要的地位,它们是数论中的基础,也是其他数学分支如代数、几何、解析等的基础。

在密码学、数据传输以及计算机科学中,质数也有着非常重要的应用。

二、合数的概念和性质1. 合数的概念:合数是指大于1的整数,除了1和本身外还有其他正因数的数。

换句话说,如果一个数可以被除了1和它自己以外的其他正整数整除,那么它就是合数。

例如,4、6、8、9等都是合数。

2. 合数的性质:合数可以被分解为若干个质数的乘积,而且这个分解式是唯一的。

这也是唯一分解定理的一个重要内容。

例如,24=2×2×2×3,其中2和3都是质数,24的质因数分解式就是2×2×2×3。

3. 合数的数量:合数是无穷的,也就是说,合数的数量是无穷尽的。

这是由欧几里得在古希腊时期首次证明的,并且一直被数学家们延伸和证明。

4. 合数的应用:合数在数论中同样有着重要的地位,它们是数论中的基础,也是其他数学分支如代数、几何、解析等的基础。

在密码学、数据传输以及计算机科学中,合数也有着非常重要的应用。

三、质数和合数的判断方法1. 判断质数:要判断一个数是不是质数,可以很简单地进行试除法。

小学数学质数、合数和分解质因数10道例题给你最全面的分析

小学数学质数、合数和分解质因数10道例题给你最全面的分析

基本概念和知识1.质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。

一个数除了1和它本身,还有别的约数,这个数叫做合数。

要特别记住:1不是质数,也不是合数。

2.质因数与分解质因数如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例:把30分解质因数。

解:30=2×3×5。

其中2、3、5叫做30的质因数。

又如12=2×2×3=22×3,2、3都叫做12的质因数。

例题分析1 三个连续自然数的乘积是210,求这三个数.解:210=2×3×5×7可知这三个数是5、6和7。

2 两个质数的和是40,求这两个质数的乘积的最大值是多少?解:把40表示为两个质数的和,共有三种形式:40=17+23=11+29=3+37。

17×23=391>11×29=319>3×37=111。

所求的最大值是391。

答:这两个质数的最大乘积是391。

3 自然数123456789是质数,还是合数?为什么?解:123456789是合数。

因为它除了有约数1和它本身外,至少还有约数3,所以它是一个合数。

4 连续九个自然数中至多有几个质数?为什么?解:如果这连续的九个自然数在1与20之间,那么显然其中最多有4个质数(如:1~9中有4个质数2、3、5、7)。

如果这连续的九个自然中最小的不小于3,那么其中的偶数显然为合数,而其中奇数的个数最多有5个.这5个奇数中必只有一个个位数是5,因而5是这个奇数的一个因数,即这个奇数是合数.这样,最多其中4个奇数都是质数。

综上所述,连续九个自然数中至多有4个质数。

5 把5、6、7、14、15这五个数分成两组,使每组数的乘积相等。

解:∵5=5,7=7,6=2×3,14=2×7,15=3×5,这些数中质因数2、3、5、7各共有2个,所以如把14(=2×7)放在第一组,那么7和6(=2×3)只能放在第二组,继而15(=3×5)只能放在第一组,则5必须放在第二组。

小学六年级数论知识点

小学六年级数论知识点

小学六年级数论知识点数论是数学的一个分支领域,主要研究整数之间的性质和关系。

在小学六年级数学学习中,数论是一个非常重要且需要掌握的知识点。

本文将介绍小学六年级数论的几个重要知识点。

一、素数和合数在小学六年级数论中,首先要了解的是素数和合数的概念。

素数是指只能被1和自身整除的正整数,除了1以外没有其他的因数。

而合数则是可以被除了1和自身以外的其他正整数整除的数。

二、质因数分解质因数分解是指将一个合数分解为几个素数的乘积的过程。

对于一个合数,可以通过不断地除以素数,直到不能再分解为止,得到质因数分解的结果。

例如,12可以分解为2 × 2 × 3。

三、最大公因数和最小公倍数最大公因数是指两个或多个数中同时能够整除的最大的正整数,而最小公倍数则是指两个或多个数中能够被它们同时整除的最小的正整数。

在小学六年级,通常通过求质因数分解的方式来计算最大公因数和最小公倍数。

四、奇数和偶数奇数和偶数是数论中的另一个重要概念。

奇数是指不能被2整除的正整数,而偶数则是可以被2整除的正整数。

小学生在学习数论时需要熟练掌握奇数和偶数的特点及其性质。

五、整数的性质在数论中,还有一些关于整数的性质需要掌握。

例如,两个偶数的和或差仍为偶数,两个奇数的和为偶数、差为偶数,奇数与偶数相乘的结果为偶数等等。

这些性质在解题过程中经常会用到,小学生需要加以练习和记忆。

六、数字的尾数在数论中,数字的尾数是指该数字的个位数字。

小学六年级学生需要掌握尾数的特点以及不同尾数之间的规律。

例如,以0、2、4、6、8结尾的数字都是偶数,而以1、3、5、7、9结尾的数字都是奇数。

以上就是小学六年级数论的几个重要知识点。

通过对这些知识点的学习和掌握,学生可以更好地理解整数之间的性质和关系,提高数学解题的能力和思维能力。

希望本文对小学六年级学生在数论学习上有所帮助。

小学数学高频考点讲义45专题四十五质数、合数和分解质因数

小学数学高频考点讲义45专题四十五质数、合数和分解质因数

⼩学数学⾼频考点讲义45专题四⼗五质数、合数和分解质因数专题四⼗五质数、合数和分解质因数1.质数与合数⼀个数除了1和它本⾝,不再有别的因数,这个数叫做质数(也叫做素数)⼀个数除了1和它本⾝,还与别的因数,这个数叫做合数要特别记住:1不是质数,也不是合数2.质因数与分解质因数如果⼀个质数是某个数的因数,那么就说这个质数是这个数的质因数把⼀个合数⽤质因数相乘的形式表⽰出来,叫做分解质因数例:把30分解质因数解:30=2×3×5其中2、3、5叫做30的质因数⼜如12=2×2×3=22×3,2、3都叫做12的质因数例题:【例1】三个连续⾃然数的乘积是210,求这三个数【分析与解】∵210=2×3×5×7∴可知这三个数是5、6和7【例2】两个质数的和是40,求这两个质数的乘积的最⼤值是多少?【分析与解】把40表⽰为两个质数的和,共有三种形式40=17+23=11+29=3+37∵17×23=391>11×29=319>3×37=111∴所求的最⼤值是391答:这两个质数的最⼤乘积是391【例3】⾃然数123456789是质数,还是合数?为什么?【分析与解】123456789是合数因为它除了有因数1和它本⾝外,⾄少还有因数3,所以它是⼀个合数【例4】有三个⾃然数,最⼤的⽐最⼩的⼤6,另⼀个是它们的平均数,且三数的乘积是42560,求这三个⾃然数【分析与解】先⼤概估计⼀下,30×30×30=27000,远⼩于42560,40×40×40=64000,远⼤于42560。

因此,要求的三个⾃然数在30-40之间42560=625719=52(57)(192)=323538(合题意)∴要求的三个⾃然数分别是32、35和38【例5】求240的因数的个数【分析与解】∵411=??240235∴240的因数的个数是(41)(11)(11)20+?+?+=∴240有20个因数习题:1. 在1~100⾥最⼩的质数与最⼤的质数的和是_____.2. ⼩明写了四个⼩于10的⾃然数,它们的积是360.已知这四个数中只有⼀个是合数.这四个数是____、____、____和____.3. 把232323的全部质因数的和表⽰为AB,那么A?B?AB=_____.4. 有三个学⽣,他们的年龄⼀个⽐⼀个⼤3岁,他们三个⼈年龄数的乘积是1620,这三个学⽣年龄的和是_____.5. 两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.6. 如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.7. 某⼀个数,与它⾃⼰相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.8. 有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第⼀组数____________;第⼆组数是____________.9. 有_____个两位数,在它的⼗位数字与个位数字之间写⼀个零,得到的三位数能被原两位数整除.10. 主⼈对客⼈说:“院⼦⾥有三个⼩孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩⼦的年龄吗?”客⼈想了⼀下说:“我还不能确定答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级数学上册合数分解质因数知识点
小学生学习数学时需要多做题,以下是为大家提供的六年级数学上册合数分解质因数知识点,供大家复习时使用! 分解质因数在数的整除性这部分知识中,既是整除、约数、质数等基础知识的综合运用,也是后面学习最大公约数和最小公倍数的前提和准备,所以,在数的整除中,它具有承上启下的作用。

把一个合数分解质因数,就是把这个合数用质因数相乘的形式表示出来。

或者说,把一个合数写成几个质数的连乘积。

譬如36是合数,把36分解成因数相乘,会有以下几种情况:(1)36=1×36 (2)36=2×18
(3)36=4×9 (4)36=3×12
(5)36=6×6
在上面五种分解中,只有(2)式的2和(4)式的3是质数,其他都不是。

要分解质因数就要把不是质数的数(1不是质数,也不是合数,排除在外),再分解成质数连乘的形式。

如(3)式中的4和9都是合数,4可以分解为:2×2; 9可以分解为: 3 × 3。

这样,把 36分解质因数,36=2×2×3×3。

事实上,除(l)式外,(2)(4)(5)式继续分解,其最后结果也是同样的。

把一个合数分解质因数,具体过程可采用短除法。

例如:把420分解质因数。

(从最小的质因数开始)
420有2、2、5、3、7五个质因数,420分解质因数的结果是:420=2×2×5×3×7。

在进行分解质因数时,最后的书写格式要特别注意,一定要把所要分解的合数写在等号的左边,如:24=2×2×2×3,105=3×5×7等,而不能写在等号的右边,如:2× 2×2×3= 24,这样就与乘法算式相混淆,而不是分解质因数了。

只要大家脚踏实地的复习、一定能够提高数学应用能力!希望提供的六年级数学上册合数分解质因数知识点,能帮助大家迅速提高数学成绩!。

相关文档
最新文档