特殊四边形的动点问题
特殊平行四边形动点问题解题技巧

特殊平行四边形动点问题解题技巧《特殊平行四边形动点问题解题技巧:和动点斗志斗勇的日子》嘿,大家好呀!今天咱就来唠唠特殊平行四边形动点问题解题技巧这档子事儿。
咱就说,遇到这种动点问题啊,就像是和一个调皮的小精灵在玩捉迷藏。
它一会儿在这儿,一会儿又跑那儿去了,让人是又好气又好笑。
但咱可不能被它给吓住,得和它斗智斗勇才行。
首先呢,咱得有双“火眼金睛”,能快速地找出题目中的关键信息。
比如这个动点的运动轨迹是啥呀,是沿着边跑,还是在对角线上蹦跶。
这就像是找到了小精灵的行动路线,心里就有底了。
然后呢,咱得学会“以静制动”。
别管它怎么动,咱就把它当成静止的来分析。
比如说,在某个时刻,它在这个位置,那这个时候的图形有啥特点,跟其他条件一结合,能得出啥结论。
嘿,就这么一分析,好像那小精灵也不那么调皮了。
还有啊,要多画画图。
有时候光靠脑子想是不行滴,得动手画出来。
看着那图形在笔下一点点呈现,感觉就像在掌控整个局面一样。
而且呀,多画几种不同时刻的图,说不定就能找到规律,那小精灵的小把戏也就不攻自破啦。
再说说解题的时候,那可得思路清晰啊。
把各种条件、结论像串珠子一样串起来,可不能乱了套。
这就好比在给小精灵设陷阱,让它乖乖地掉进咱的圈套里。
咱还得有点“大胆假设”的精神。
碰到难题别退缩,大胆地去猜测一下,说不定还就猜中了呢。
就算没猜中,那也没啥损失呀,就当给大脑做个热身运动了。
总之,面对特殊平行四边形动点问题,咱可不能怕。
就把它当成一场有趣的挑战,和那个调皮的小精灵好好过过招。
只要咱掌握了这些解题技巧,再加上一点点细心、耐心和恒心,那小精灵最后还不得乖乖就范。
所以呀,大家都别怕,大胆地去和动点战斗吧!让我们在解题的海洋里畅游,享受那份攻克难题后的喜悦和成就感!加油哦,朋友们!。
动点问题与特殊四边形有何关系

动点问题与特殊四边形有何关系嘿,咱们今天来好好聊聊动点问题和特殊四边形之间的那些事儿!不知道你有没有过这样的经历,在教室里,数学老师在黑板上画出那些复杂的图形,嘴里念叨着各种公式和定理,而你的脑袋却像被塞进了一团乱麻?我可是有过!记得有一次,我在辅导一个学生做数学作业,题目就是关于动点问题和特殊四边形的。
那孩子盯着题目,眼睛都快瞪出来了,嘴里还嘟囔着:“这都是啥呀,怎么这么难!” 我当时就笑了,因为我知道,这对于初学者来说,确实不容易。
先来说说动点问题。
动点嘛,顾名思义,就是会动的点。
就好像一个调皮的小精灵,在图形里到处乱跑。
比如说,在一个矩形中,有一个点 P 从 A 点出发,沿着边以一定的速度移动。
这时候,你就得紧紧盯着这个点 P ,看它的位置变化会给整个图形带来什么样的影响。
再说说特殊四边形,像平行四边形、矩形、菱形、正方形,它们可都有自己独特的性质。
比如说平行四边形,它的对边平行且相等;矩形呢,不仅对边相等,四个角还都是直角。
那动点问题和特殊四边形到底有啥关系呢?其实啊,动点的运动往往会导致四边形的形状或者性质发生变化。
举个例子,在一个菱形ABCD 中,点 P 从 A 点出发,沿对角线 AC 以每秒 1 个单位长度的速度向点 C 运动。
当点 P 运动到某个位置时,菱形可能就会变成矩形。
这时候,我们就得根据点 P 的运动时间和速度,来计算出相关的边长或者角度。
有时候,动点问题还会和特殊四边形的面积联系起来。
比如在一个梯形中,有一个动点 P ,它在上下底之间移动。
那么随着点 P 位置的改变,梯形被分割成的两个三角形的面积也会发生变化。
这时候,我们就得通过设未知数,利用相关的面积公式和图形的性质,列出方程来求解。
还有啊,动点问题还能和特殊四边形的周长结合起来。
想象一下,在一个正方形中,有一个点从顶点出发,沿着边移动。
那么在点移动的过程中,正方形被分成的几个部分的周长之和也会不断变化。
这就需要我们认真分析,找出其中的规律。
小专题5_特殊平行四边形中的动点问题——P27复习题T14的变式与应用

小专题5特殊平行四边形中的动点问题——P27复习题T14的变式与应用【教材母题变式】(教材P27复习题T14变式)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以1cm/s的速度向点D运动;点Q从点C同时出发,以2cm/s的速度向点B运动,当点Q到达点B时,点P也停止运动,设点P,Q运动的时间为t、s.(1)CD边的长度为_______cm,t的取值范围为_______.(2)从运动开始,当t取何值时,PQ∥CD?(3)在整个运动过程中是否存在t值,使得四边形PQCD是菱形?若存在,请求出t 值;若不存在,请说明理由;(4)从运动开始,当t取何值时,四边形PQBA是矩形?(5)在整个运动过程中是否存在t值,使得四边形PQBA是正方形?若存在,请求出t值;若不存在,请说明理由;(6)是否存在t,使得△APQ的面积是△ABC面积的半?若存在,请求出t的值;若不存在,请说明理由;(7)是否存在t,使得△DQC是等腰三角形?若存在请求出t值;若不存在,请说明理由参考答案【教材母题变式】(1)100≤t≤9解:(2)如图1,当PQ∥CD时,四边形PDCQ是平行四边形,此时PD=QC.∴12-t=2t,∴t=4. ∴当t=4时,PQ∥CD.(3)不存在. 理由:要使四边形PQCD是菱形,则四边形PQCD一定是平行四边形.由(2)知当t=4时,四边形PQCD是平行四边形. 此时DP=12-t=8≠10,即DP≠DC,∴按已知速度运动,四边形PQCD只能是平行四边形,不可能是菱形.(4)如图2,由题意,得AP=t,DP=12-t,CQ=2t,BQ=18-2t.要使四边形PQBA是矩形,已有∠B=90°,AD∥BC,即AP∥BQ,只需满足AP=BQ,即t=18-2t,解得t=6.∴当t=6时,四边形PQBA是矩形.(5)不存在,理由:要使四边形PQBA是正方形,则四边形PQBA一定是矩形.由(4)知当t=6时,四边形PQBA是矩形. 此时AP=t=6≠8,即AP≠AB,∴按已知速度运动,四边形PQBA只能是矩形,不可能是正方形.(6)存在.若△APQ的面积是△ABC面积的一半,则11=?22AP AB BC AB••.∴AP =12BC ,即t =9. ∵t =9满足0≤t ≤9,存在这样的t 值.(7)存在,△DQC 是等腰三角形时,分三种情况讨论:①如图3,当QC =DC 时,即2t =10,∴t =5. ②如图4,当DQ =DC 时,过点D 作DH ⊥CQ ,则QH =CH =12CQ =t . 又∵CH =BC -AD =6,∴t =6. ③如图5,当QD =QC 时,过点D 作DH ⊥CQ 于点H ,则DH =8,CH =6,DC =10,CQ =QD =2t ,QH =t 2-6. 在Rt △DQH 中,222DH QH DQ +=, ∴222(2t)t 8+ 2-6=. 解得t =256. 综上,当=5,6或256时,△DQC 是等腰三角形.。
特殊四边形中的动点问题专项训练题

特殊四边形中的动点问题专项训练题一选择题1.如图,在平行四边形ABCD中,∠BCD=30°,BC=4,CD=.点M是AD边的中点,点N是AB边上的一个动点.将△AMN沿MN所在的直线翻折到△A′MN,连接A′C.则线段A′C长度的最小值为()A.5 B.7 C.4D.52.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B. C.1﹣D.1﹣3.我们给出如下定义,顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,则中点四边形EFGH的形状是()A.平行四边形 B.矩形 C.菱形 D.正方形4.如图①,点P为矩形ABCD边上一个动点,运动路线是A→B→C→D→A,设点P运动的路径长为x,S△ABP=y,图②是y随x变化的函数图象,则矩形对角线AC的长是()A.2 B.6 C.12 D.245.如图,在菱形ABCD中,∠ABC=120°,AB=2.动点P从点A出发,以每秒2个单位的速度沿折线AD→DC运动到点C,同时动点Q也从点A出发,以每秒个单位的速度沿AC运动到点C,当一个点停止运动时,另一个点也随之停止.设△APQ的面积为y,运动时间为x秒,则下列图象能大致反映y与x之间函数关系的是()A.B.C.D.6.如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连接DP,过点A作AE⊥DP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系的大致图象是()A.B.C.D.7.如图,点P是正方形ABCD的对角线BD上一个动点,PE⊥BC于点E,PF⊥CD于点F,连接EF,有下列5个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤EF的最小值等于.其中正确结论的个数是()A.2个B.3个C.4个D.5个8.如图,正方形ABCD的边长为4,点E,F分别在边DC,BC上,且BF=CE,AE平分∠CAD,连接DF,分别交AE,AC于点G,M.P是线段AG上的一个动点,过点P作PN⊥AC,垂足为N,连接PM.有下列四个结论:①AE垂直平分DM;②PM+PN的最小值为3√2;③CF2=GE•AE;④S△ADM=6√2.其中正确的是()A.①②B.②③④C.①③④D.①③9.如图,在正方形ABCD中,点E为边CD的中点,连接AE,过点B作BF⊥AE于点F,连接BD交AE于点G,FH平分∠BFG交BD于点H.则下列结论中,正确的个数为()①AB2=BF•AE②S△BGF:S△BAF=2:3③当AB=a时,BD2﹣BD•HD=a2A.0个B.1个C.2个D.3个10.如图,在正方形ABCD中,点E,F分别是AB,BC上的动点,且AF⊥DE,垂足为G,将△ABF沿AF翻折,得到△AMF,AM交DE于点P,对角线BD交AF于点H,连接HM,CM,DM,BM,下列结论正确的是()①AF=DE;②BM∥DE;③若CM⊥FM,则四边形BHMF是菱形;④当点E运动到AB的中点,tan∠BHF=2√2;⑤EP•DH=2AG•BH.A.①②③④⑤ B.①②③⑤ C.①②③ D.①②⑤二填空题11.在四边形ABCD中,AD∥BC,BC=6 cm,AD=9cm.点P以1cm/s的速度由A点向D点运动,同时点Q以2 cm/s的速度由C点向B点运动,当点P,Q运动s时,直线QP将四边形ABCD截出一个平行四边形.12.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把△ABE沿AE折叠,使点B落在点F处,当△CEF为直角三角形时,CF的长为.13.如图,已知菱形ABCD的边长为8,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是.14.如图,在边长为6的菱形ABCD中,∠ABC=30°,P为BC上方一点,且S△PBC=S菱形,则PB+PC的最小值为.ABCDB C A M NP F E15.如图,在矩形OAHC 中,OC =8,OA =16,B 为CH 中点,连接AB .动点M 从点O 出发沿OA 边向点A 运动,动点N 从点A 出发沿AB 边向点B 运动,两个动点同时出发,速度都是每秒1个单位长度,连接CM ,CN ,MN ,设运动时间为t (0<t <16)秒,则t=时,△CMN 为直角三角形.三 解答题16.如图,△ABC 中,点P 是边AC 上的一个动点,过P 作直线MN ∥BC ,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F .(1)求证:PE =PF ;(2)当点P 在边AC 上运动时,四边形BCFE 可能是矩形吗?说明理由;(3)若在AC 边上存在点P ,使四边形AECF 是正方形,且 AP BC =32.求此时∠A 的大小.17.▱ABCD 的对角线AC ,BD 交于点O ,∠AOD=60°,∠ADO=90°,BD=12,点P 是AO 上一动点,点Q 是OC 上一动点(P ,Q 不与端点重合),且AP=OQ ,连接BQ ,DP .(1)线段PQ 的长为 ;(2)设△PDO 的面积为S 1,△QBO 的面积为S 2,S 1+S 2的值是否发生变化?若不变,求出这个不变的值;若变化,请说明随着AP 的增大,S 1+S 2的值是如何变化的;(3)DP+BQ 的最小值是 .18.如图,在矩形ABCD 中,AB =4,AD =10,直角尺的直角顶点P 在AD 上滑动时(点P 与A ,D 不重合),一直角边经过点C ,另一直角边AB 交于点E ,我们知道,结论“Rt △AEP ∽Rt △DPC ”成立.(1)当∠CPD =30°时,求AE 的长;(2)是否存在这样的点P,使△DPC的周长等于△AEP周长的2倍?若存在,求出DP的长;若不存在,请说明理由.19.如图,在平面直角坐标系中,已知▱OABC的顶点A(10,0)、C(2,4),点D是OA的中点,点P在BC上由点B向点C运动.(1)求点B的坐标;(2)若点P运动速度为每秒2个单位长度,点P运动的时间为t秒,当四边形PCDA是平行四边形时,求t的值;(3)当△ODP是等腰三角形时,直接写出点P的坐标.20.如图,在口ABCD中,AB⊥AC,AB=1,,对角线BD、AC交于点O.将直线AC 绕点O顺时针旋转分别交BC、AD于点E、F.(1)试说明在旋转过程中,AF与CE总保持相等;(2)证明:当旋转角为90⁰时,四边形ABEF是平行四边形;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,求出此时AC绕点O顺时针旋转的角度.21.如图①,将矩形纸片ABCD(AD>AB)折叠,使点C刚落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)求证:四边形CEGF是菱形;(2)如图②,若AB=3,BC=9,当点G与点A重合时,求折痕EF的长.22.已知正方形ABCD,点F是射线DC上一动点(不与C、D重合),连接AF并延长交直线BC于点E,交BD于H,连接CH,过点C作CG⊥HC交AE于点G.(1)若点F在边CD上,如图1.①证明:∠DAH=∠DCH;②猜想△GFC的形状并说明理由.(2)取DF中点M,连结MG.若MG=5,正方形边长为8,求BE的长.23.如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD 的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.24.如图,四边形OABC为矩形,OA=4,OC=5,正比例函数y=2x的图象交AB于点D,连接DC,动点Q从D点出发沿DC向终点C运动,动点P从C点出发沿CO向终点O运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了ts.(1)求△PCQ的面积S△PCQ=?(用t的代数式表示);(2)问:是否存在时刻t使S△DOP=S△PCQ?为什么?(3)当t为何值时,△DPQ是一个以DP为腰的等腰三角形?25.如图1,平行四边形ABCD中,AB=7,BC=10,点P是BC边上的点,连结AP,以AP 为对称轴作△ABP的轴对称图形△AQP.(1)如图1,连接CQ,若CQ∥AP,求BP的长;(2)如图2,当点P,Q,D三点共线时,恰有∠DCQ=∠DPC,求BP的长;(3)如图3,若点P在边BC运动的过程中,点Q到CD的最短距离为1,求BP的长.26.矩形ABCD的边长AB=18cm,点E在BC上,把△ABE沿AE折叠,使点B落在CD边的点F处,∠BAE=30°.(1)如图1,求DF的长度;(2)如图2,点N从点F出发沿FD以每秒1cm的速度向点D运动,同时点P从点A出发沿AF以每秒2cm的速度向点F运动,运动时间为t秒(0<t<9),过点P作PM⊥AD,于点M.①请证明在N、P运动的过程中,四边形FNMP是平行四边形;②连接NP,当t为何值时,△MNP为直角三角形?27.在矩形ABCD中,点E为射线BC上一动点,连接AE.(1)当点E在BC边上时,将△ABE沿AE翻折,使点B恰好落在对角线BD上点F处,AE 交BD于点G.①如图1,若BC=AB,求∠AFD的度数;②如图2,当AB=4,且EF=EC时,求BC的长.(2)在②所得矩形ABCD中,将矩形ABCD沿AE进行翻折,点C的对应点为C',当点E,C',D三点共线时,求BE的长.28.如图1,在正方形ABCD中,边长为2a,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:AF=BE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DG=2a;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.29.如图,点F在四边形ABCD的边AB上.(1)如图1,当四边形ABCD是正方形时,过点B作BE⊥CF,垂足为O,交AD于点E.求证:BE=CF;(2)当四边形ABCD是矩形,AD=6,AB=8时,①如图2,点P是BC上的一点,过点P作PE⊥CF,垂足为O,点O恰好落在对角线BD上,求的值;②如图3,点P是BC上的一点,过点P作PE⊥CF,垂足为O,点O恰好落在对角线BD上,延长EP、AB交于点G,当BG=2时,请直接写出DE的值.30.如图,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿B⇒A,B⇒C运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M也随之停止运动.设运动时间为t秒.(1)若a=4厘米,t=1秒,则PM=厘米;(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积都相等?若存在,求a的值;若不存在,请说明理由.。
与特殊的平行四边形有关的动点问题

第13讲 与特殊的平行四边形有关的动点问题小测试 总分10分 得分___________2.(6分)如图,矩形ABCD 中,AB =4,BC =8,将其折叠,使点A 与点C 重合,则折痕EF 的长为________.25【教学目标】能熟练运用特殊平行四边形的性质定理和判定定理解决动点问题. 【教学重难点】根据已知几何图形间的位置关系和数量关系(如平行、全等),建立方程,解决动点涉及到的特殊平行四边形的存在性等问题.【考点1】菱形的存在性问题【例1】如图,矩形ABCD 中,E 、F 分别是AD 、BC 上两点,且AE =CF .(1)求证:四边形BEDF 为平行四边形.(2)若AB =6,AD =9,则当AE 为何值时,四边形BFDE 为菱形.(2)AE =2.5【例2】如图,平行四边形ABCD 中,AD =9cm ,CD =32cm ,∠B =45°,点M 、N 分别以A 、C 为起点,1cm /秒的速度沿AD 、CB 边运动,设点M 、N 运动的时间为t 秒(0≤t ≤6).(1)求BC 边上高AE 的长度; (2)连接AN 、CM ,当t 为何值时,四边形AMCN 为菱形.t =15/4【考点2】矩形的存在性问题【例3】如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AC =20cm ,BD =12cm ,两动点E 、F A D E F B CA D EBC NM A DF B CE同时分别以2cm /s 的速度从点A 、C 出发在线段AC 上运动.(1)求证:当E 、F 运动过程中不与点O 重合时,四边形BEDF 一定为平行四边形;(2)当E 、F 运动时间t 为何值时,四边形BEDF 为矩形?t =2s 或8s【例4】如图,△ABD 和△CEF 都是斜边长为2cm 的全等直角三角形,其中∠ABD =∠FEC =60°,且B 、D 、C 、E 在同一直线上,DC =4.(1)求证:四边形ABFE 是平行四边形.(2)△ABD 沿着BE 的方向以每秒1cm 的速度运动,设△ABD 运动的时间为t s .①当t 为何值时,□ABFE 是菱形?请说明理由;t =4s②□ABFE 有可能是矩形吗?若可能,求出t 的值及此矩形的面积;若不可能,请说明理由.t =2s S 矩形ABFE =43cm 2【家庭作业】1.如图,△ABC 和△DEF 是两个边长都为1cm 的等边三角形,且B 、D 、C 、E 都在同一直线上,连接AD 及CF .(1)求证:四边形ADFC 是平行四边形;A B E D FC(2)若BD=0.3cm,△ABC沿着BE的方向以每秒1cm的速度运动,设△ABC运动时间为t秒,①当t为何值时,□ADFC是菱形?请说明你的理由;t=0.3s②□ADFC有可能是矩形吗?若可能,求出t的值及此矩形的面积;若不可能,请说明理由.t=1.3s S矩形ADFC=3cm22.如图,矩形ABCD中,AB=4cm,BC=6cm,点P从B出发向点C运动,速度为1cm/s,点Q从C出发,沿C-D-A方向运动,速度为2cm/s,P、Q两点同时出发,当点Q到达终点A时,P、Q两点同时停止运动,设点P的运动的时间为t(s).(1)当点P是线段BC的中点时,求AP的长;5cm (2)t为何值时,四边形AQCP是平行四边形.t=4QA DB C备用图AB DCEF。
2025年沪科版八年级下册数学期末复习专题训练11专项整合 特殊平行四边形中的动点问题

∴ = = ,
∴ =
+ = ,
∴ + 的最小值为 ,
1
2
3
4
易得此时△为等腰直角三角形,
则∠ = ∘ ,
∴ △为等腰直角三角形,
∴ = ,
∴ 矩形为正方形,
∴ ∠ = ∘ .
1
2
3
4
的周长的比值为 = .
1
2
3
4
最值问题
2.如图,在正方形中, = ,点
在边上,且 = ,是对角线
上的一个动点,则 + 的最小值是
( A
A.
)
B.
C.9
1
2
3
4
D.
3.[2023·合肥模拟] 如图,在矩形
中, = , = ,动点满足
+ = − ,解得
为菱形,∴ = ,∴
= ,
∴ 当 = 时, ⊥ .
1
2
3
4
(3)当四边形的面积为 时,求
矩形的周长与四边形的周长的
比值.
1
2
3
4
∵ 四边形为平行四边形,
∴ 四边形的面积为
3
4
(1)求矩形的周长;
解:∵ 四边形为矩形,
∴ ∠ = ∠ = ∘ .
∵ = , = ,
∴ = − = ,
∴ 矩形的周长为 + = × + = .
1
2
3
4
(2)求 + 的最小值和此时∠的度数.
1
2
3
4
连接.
专题利用特殊四边形的性质巧解动点问题(原卷版)
八年级下册数学《第十八章 平行四边形》 专题 利用特殊四边形的性质巧解动点问题【例题1】(2021春•费县期中)如图所示,在四边形ABCD 中,AD ∥BC ,AD =27cm ,BC =36cm ,点P 从A 向点D 以1cm /s 的速度运动,到点D 即停止.点Q 从点C 向点B 以2cm /s 的速度运动,到点B 即停止.直线PQ 将四边形ABCD 截成两个四边形,分别为四边形ABQP 和四边形PQCD ,则当P ,Q 两点同时出发,几秒后所截得两个四边形中,其中一个四边形为平行四边形?【变式11】(2021春•阳谷县期末)如图,在四边形ABCD中,AD∥BC,且AD<BC,BC=6cm,动点P,Q分别从点D,B同时出发,点P以1cm/s的速度向点A方向运动,点Q以2cm/s的速度向点C运动,几秒后四边形CDPQ是平行四边形()A.1 B.2 C.3 D.4【变式12】(2021秋•抚州期末)如图,在▱ABCD中,对角线BD⊥AD,AB=16,∠A=60°,O为BD 的中点,E为边AB上一动点,以2cm/s的速度从A点向B点运动,运动时间为ts,连接EO并延长交CD 于点F,连接DE、BF,下列结论不成立的是()A.四边形DEBF为平行四边形B.若t=4,则四边形DEBF为菱形C.若t=2,则四边形DEBF为矩形D.若t=6,则四边形DEBF为正方形【变式13】如图,在四边形ABCD中,AD∥BC且AD=9cm,BC=6cm,点P、Q分别从点A、C同时出发,点P以1cm/s的速度由A向D运动,点Q以2cm/s的速度由C向B运动.问几秒后直线PQ将四边形ABCD截出一个平行四边形?【变式14】(2021春•闽侯县月考)如图,四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P 自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,则当P,Q同时出发,设运动时间为t(s).(1)当t为何值时,四边形APQB为平行四边形?(2)当t为何值时,四边形PDCQ为平行四边形?【变式15】(2022春•滨湖区期末)如图,∠ABC=45°,AB=2,BC=2√2,点P为BC上一动点,AQ ∥BC,CQ∥AP,AQ、CQ交于点Q,则四边形APCQ的形状是,连接PQ,当PQ取得最小值时,四边形APCQ的周长为.【变式16】如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD方向以每秒1个单位的速度运动,同时点Q从点C出发沿射线CB方向以每秒2个单位的速度运动,在线段QC上取点E,使得QE=2,连接PE,设点P的运动时间为t秒.(1)若PE⊥BC,求BQ的长;(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.【变式17】如图,等边△ABC的边长为10cm,动点M从点B出发,沿B→A→C→B的方向以4cm/s的速度运动,动点N从点C出发,沿C→A→B→C方向以3cm/s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点第一次相遇?(2)若动点M、N同时出发,且其中一点到达终点时,另一点即停止运动.那么运动到第几秒钟时,点A、M、N以及△ABC的边上一点D恰能构成一个平行四边形?求出时间t并请指出此时点D的具体位置.【变式18】(2021春•惠来县期末)如图,在△ABC中,AB=AC=20cm,BD⊥AC于点D,且BD=16cm.点M从点A出发,沿AC方向匀速运动,速度为4cm/s;同时点P由B点出发,沿BA方向匀速运动,速度为1cm/s,过点P的直线PQ∥AC,交BC于点Q,连接PM,设运动时间为t(s)(0<t<5),解答下列问题:(1)线段AD=cm;(2)求证:PB=PQ;(3)当t为何值时,以P、Q、D、M为顶点的四边形是平行四边形?【例题2】(2021秋•迁安市期末)如图,在长方形ABCD 中,AB =CD =8cm ,BC =12cm ,点P 从点B出发,以2cm /秒的速度沿BC 向点C 运动,同时,点Q 由点C 出发,以相同的速度沿CD 向点D 运动,设点P 的运动时间为t 秒,当△ABP ≌△PCQ 时,t 的值为( )A .1或3B .2C .2或4D .1或2【变式21】(2022春•玄武区校级期中)如图,在矩形ABCD 中,AB =4,BC =8,点E 在BC 边上,且BE =3,F 为AB 边上的一个动点,连接EF ,以EF 为边作正方形EFGH ,且点H 在矩形ABCD 内,连接CH ,则CH 的最小值为( )A .3B .4C .√8D .√10【变式22】(2022春•新洲区期中)如图,矩形ABCD 中,AB =8,AD =2,点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的左上方作正方形AEFG ,同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当点F 落在直线MN 上,设运动的时间为t ,则t 的值为( )A .1B .4C .103D .143【变式23】如图,矩形ACBE中,AC=12,BC=5,点M在边AB上,且AM=6,动点D在矩形边上运动一周,能使△ADM是以∠AMD为顶角的等腰三角形共有()A.3个B.4个C.5个D.6个【变式24】如图,在矩形ABCD中,AB=3,AD=4,点P,Q分别是边BC和CD上的两个动点(可以与线段的端点重合,但P,Q两点不重合),点E、F分别是P A和PQ的中点,在两个动点的移动过程中,线段EF的长度取值范围是.【变式25】如图,在长方形ABCD中,AB=5cm,AD=3cm.点E从点A出发,以每秒2cm的速度沿折线ABC方向运动,点F从点C出发,以每秒1cm的速度沿线段CD方向向点D运动.已知动点E、F 同时发,当点E运动到点C时,E、F停止运动,设运动时间为t.(1)当E运动到B点时,求出t的值;(2)在点E、点F的运动过程中,是否存在某一时刻,使得EF=3cm?若存在,请求出t的值;若不存在,请说明理由.【变式26】如图,在长方形ABCD中,AB=8cm,BC=12cm,点P从点B出发,以2cm/秒的速度沿BC 向点C运动,设点P的运动时间为t秒.(1)如图1,S△DCP=.(用t的代数式表示)(2)如图1,当t=3时,试说明:△ABP≌△DCP.(3)如图2,当点P从点B开始运动的同时,点Q从点C出发,以vcm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.【变式27】(2022春•黄州区校级期中)如图,在矩形ABCD中,AB=3cm,BC=4cm,E,F是对角线AC上的两个动点,分别从A,C同时出发相向而行,速度均为1cm/s,运动时间为ts(0≤t≤5).(1)AE=t,EF=.(2)若G,H分别是AB,DC的中点,求证:四边形EGFH是平行四边形.(3)在(2)的条件下,当t为何值时,四边形EGFH为矩形?【变式28】(2021•合川区校级模拟)如图,在四边形ABCD中,∠A=∠B=∠BCD=90°,AB=DC =4,AD=BC=8.延长BC到E,使CE=3,连接DE,由直角三角形的性质可知DE=5.动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P运动的时间为t秒.(t>0)(1)当t=3时,BP=;(2)当t=时,点P运动到∠B的角平分线上;(3)请用含t的代数式表示△ABP的面积S;(4)当0<t<6时,直接写出点P到四边形ABED相邻两边距离相等时t的值.【例题3】如图,在菱形ABCD中,∠A=60°,E,F分别为AD,DC上的动点,∠EBF=60°,点E 从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.保持不变且与EF的长度相等C.逐渐减小D.保持不变且与AB的长度相等【变式31】(2022春•西湖区期末)如图,在菱形ABCD 中,∠B =60°,点P 从点B 出发,沿折线B一C 一D 方向移动,移动到点D 停止,连结AP ,DP .在△DAP 形状的变化过程中,出现的特殊三角形有:①等腰三角形;②等边三角形;③直角三角形,以下排序正确的是( )A .①③②③B .③②①③C .①③②①D .③②③①【变式32】(2022•槐荫区一模)如图,菱形ABCD 中对角线AC 与BD 相交于点F ,且AC =8,BD =8√3,若点P 是对角线BD 上一动点,连接AP ,将AP 绕点A 逆时针旋转使得∠P AE =∠BAD ,连接PE ,取AD 的中点O ,连接OE ,则在点P 的运动过程中,线段OE 的最小值为( )A .2B .4C .4√3D .4√2【变式33】(2021春•仙桃期末)如图,在菱形ABCD 中,AB =5cm ,∠ADC =120°,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1cm /s ,点F 的速度为2cm /s ,经过t 秒△DEF 为等边三角形,则t 的值为( )A .34B .43C .32D .53【变式34】如图,在菱形ABCD中,对角线AC、BD相交于点O.AC=8cm,BD=6cm,点P为AC上一动点,点P以1cm/s的速度从点A出发沿AC向点C运动.设运动时间为ts,当t=s时,△P AB为等腰三角形.【变式35】(2021•江西模拟)如图,在菱形ABCD中,AB=6√3,∠ABC=60°,AE⊥BC于点E,交BD于点F.若P是菱形ABCD边上的一动点,当△AFP的面积是9√3时,DP的长为.【变式36】如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:四边形PBQD是平行四边形;(2)若AD=8cm,AB=6cm,P从点A出发,以1cm/秒的速度向D运动(不与D重合),设点P运动时间为t秒.①请用t表示PD的长;②求t为何值时,四边形PBQD是菱形.【变式37】(2022春•桥西区校级期中)如图所示,在菱形ABCD 中,AB =8,∠BAD =120°,△AEF 为等边三角形,点E 、F 分别在菱形的边BC 、CD 上滑动,且E 、F 不与B 、C 、D 重合.(1)证明不论E 、F 在BC 、CD 上如何滑动,总有BE =CF .(2)当点E 、F 在BC 、CD 上滑动时,分别探讨四边形AECF 和△CEF 的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.【变式38】如图,在菱形ABCD 中,AB =2cm ,∠ADC =120°.动点E 、F 分别从点B 、D 同时出发,都以0.5cm /s 的速度向点A 、C 运动,连接AF 、CE ,分别取AF 、CE 的中点G 、H .设运动的时间为ts (0<t <4).(1)求证:AF ∥CE ;(2)当t 为何值时,△ADF 的面积为√32cm 2; (3)连接GE 、FH .当t 为何值时,四边形EHFG 为菱形.【例题4】如图,点P 是正方形ABCD 的BC 边上一动点,PE ⊥BD 于E ,PF ⊥AC 于F ,若AC =12,则PE +PF 的值是( )A .6B .10C .6√2 D .12【变式41】正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D .在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积( )A .先变大后变小B .先变小后变大C .一直变大D .保持不变 【变式42】(2022•乐陵市模拟)如图,在正方形ABCD 中,已知边长AB =5,点E 是BC 边上一动点(点E 不与B 、C 重合),连接AE ,作点B 关于直线AE 的对称点F ,则线段CF 的最小值为( )A .54B .5√2−5C .5√22D .52【变式43】(2021春•金寨县期末)如图,在边长为2的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于点E,MF⊥CD于点F,连接EF,则EF的最小值为()A.1B.2√2C.√3D.√2【变式44】(2021•东阿县三模)如图,正方形ABCD的边长为2,E为AB边的中点,点F在BC边上,点B关于直线EF的对称点记为B',连接B'D,B'E,B'F.当点F在BC边上移动使得四边形BEB'F成为正方形时,B'D的长为()A.√2B.√3C.2√2D.3【变式45】如图,在边长为8的正方形ABCD中,E、F分别是边AB、BC上的动点,且EF=6,M为EF中点,P是边AD上的一个动点,则CP+PM的最小值是()A.10B.8√5−3C.6√5+3D.3√3+5【变式46】(2021春•潼南区期末)如图,在正方形ABCD中,E、F分别为BC、CD上的点,且AE平分∠BAC,BE=CF,P为线段AC上的动点,记PD+PF的最小值为m,若正方形边长为√2,则m2的值为()A.6﹣4√2B.8﹣4√2C.8+4√2D.6+4√2【变式47】如图,点E是边长为12的正方形ABCD边BC上的一点,BE=5,点F在该正方形的边上运动,当BF=AE时,设线段AE与线段BF相交于点H,则BH的长等于.【变式48】如图,E是正方形ABCD一边CD上的中点,AB=4,动点P从A→B→C→D在正方形的边上运动,当△P AE为等腰三角形时,则AP的长为.。
人教版八年级数学下册-难点探究专题(选做):特殊四边形中的综合性问题
难点探究专题(选做):特殊四边形中的综合性问题◆类型一特殊平行四边形的动态探究问题一、动点问题1.(2016·枣庄中考)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=63,∠BAD=60°,且AB>6 3.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E,F,P分别在线段AB,AD,AC上运动,请直接写出AP的最大值和最小值.二、图形的变换问题2.如图①,点O是正方形ABCD两条对角线的交点.分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG,OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图②.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′的最大值和此时α的度数,直接写出结果不必说明理由.◆类型二四边形间的综合性问题3.(2016·德州中考)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图①,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图②,点P是四边形ABCD内一点,且满足P A=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)参考答案与解析1.解:(1)如图①,过点P 作PG ⊥EF 于点G ,H 为PE 的中点,连接GH ,∴∠PGE=90°,GH =PH =HE =12PE =3.∵PF =PE ,∴∠FPG =∠EPG ,FG =GE =12EF =3 3.在Rt △PGE 中,由勾股定理得PG =PE 2-GE 2=62-(33)2=3.∴PG =GH =PH ,即△GPH 为等边三角形,∴∠GPH =60°,∴∠FPE =∠FPG +∠GPE =2∠GPE =2×60°=120°.(2)如图①,过点P 作PM ⊥AB 于点M ,作PN ⊥AD 于点N ,∴∠ANP =∠AMP =90°.∵AC为菱形ABCD 的对角线,∴∠DAC =∠BAC =12∠DAB =30°,PM =PN .在Rt △PME 和Rt △PNF 中,PM =PN ,PE =PF ,∴Rt △PME ≌Rt △PNF ,∴ME =NF .∵∠P AM =30°,AP=10,∴PM =12AP =5.由勾股定理得AM =P A 2-PM 2=5 3.在△ANP 和△AMP 中,⎩⎪⎨⎪⎧∠NAP =∠MAP ,∠ANP =∠AMP =90°,AP =AP ,∴△ANP ≌△AMP ,∴AN =AM =5 3.∴AE +AF =(AM +ME )+(AN -NF )=AM +AN +ME -NF =10 3.(3)如图②,△EFP 的三个顶点分别在AB ,AD ,AC 上运动,点P 在P 1,P 之间运动.P 1O =PO =12PE =3,AE =EF =63,AO =AE 2-EO 2=9.∴AP 的最大值为AO +OP =12,AP 的最小值为AO -OP 1=6.2.(1)证明:如图,延长ED 交AG 于点H .∵四边形ABCD 与OEFG 均为正方形,∴OA =OD ,OG =OE ,∠AOG =∠DOE =90°,∴Rt △AOG ≌Rt △DOE ,∴∠AGO =∠DEO .∵∠AGO +∠GAO =90°,∴∠DEO +∠GAO =90°,∴∠AHE =90°,即DE ⊥AG ;(2)解:①在旋转过程中,∠OAG ′成为直角有以下两种情况:a .α由0°增大到90°过程中,当∠OAG ′为直角时,∵OA =OD =12OG =12OG ′,∴∠AG ′O =30°,∠AOG ′=60°.∵OA ⊥OD ,∴∠DOG ′=90°-∠AOG ′=30°,即α=30°;b .α由90°增大到180°过程中,当∠OAG ′为直角时,同理可求的∠AOG ′=60°,∴α=90°+∠AOG ′=150°.综上,当∠OAG ′为直角时,α=30°或150°;②AF ′长的最大值是2+22,此时α=315°. 3.(1)证明:如图①中,连接BD .∵点E ,H 分别为边AB ,DA 的中点,∴EH ∥BD ,EH =12BD .∵点F ,G 分别为边BC ,CD 的中点,∴FG ∥BD ,FG =12BD ,∴EH ∥FG ,EH =GF ,∴中点四边形EFGH 是平行四边形.(2)解:四边形EFGH 是菱形.理由如下:如图②中,连接AC ,BD .∵∠APB =∠CPD ,∴∠APB +∠APD =∠CPD +∠APD ,即∠APC =∠BPD .在△APC 和△BPD 中,⎩⎪⎨⎪⎧AP =PB ,∠APC =∠BPD ,PC =PD ,∴△APC ≌△BPD ,∴AC =BD .∵点E ,F ,G 分别为边AB ,BC ,CD 的中点,∴EF =12AC ,FG =12BD ,∴EF =FG .∵四边形EFGH 是平行四边形,∴四边形EFGH 是菱形.(3)解:四边形EFGH 是正方形.理由如下:如图②中,设AC 与BD 交于点O .AC 与PD 交于点M ,AC 与EH 交于点N .∵△APC ≌△BPD ,∴∠ACP =∠BDP .∵∠DMO =∠CMP ,∴∠COD =∠CPD =90°.∵EH ∥BD ,AC ∥HG ,∴∠EHG =∠ENO =∠BOC =∠DOC =90°.∵四边形EFGH 是菱形,∴四边形EFGH 是正方形.19.2.3 一次函数与方程、不等式一.选择题(共8小题)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=﹣1D.y=﹣12.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=33.一元一次方程ax﹣b=0的解x=3,函数y=ax﹣b的图象与x轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.5.若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m >nx+4n>0的整数解为()A.﹣1B.﹣5 C.﹣4D.﹣38.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0B.0<x<1C.x<1 D.x>1二.填空题(共10小题)9.若直线y=2x+b与x轴交于点(﹣3,0),则方程2x+b=0的解是_________.10.如图是一次函数y=kx+b的图象,则方程kx+b=0的解为_________.11.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为_________.12.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.13.如图,直线y=kx+b分别交x轴和y轴于点A、B,则关于x的方程kx+b=0的解为_________.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.16.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.18.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:_________;(2)设直线l2与x轴交于点A,求△OAP的面积.21.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B两点,求不等式kx+b≤0的解.22.在直角坐标系xOy中,直线y=kx+b(k≠0)经过(﹣2,1)和(2,3)两点,且与x 轴、y轴分别交于A、B两点,求不等式kx+b≥0的解集.19.2.3 一次函数与方程、不等式一.选择题(共8小题)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=﹣1D.y=﹣12.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=33.一元一次方程ax﹣b=0的解x=3,函数y=ax﹣b的图象与x轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.5.若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m >nx+4n>0的整数解为()A.﹣1B.﹣5 C.﹣4D.﹣38.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0B.0<x<1C.x<1 D.x>1二.填空题(共10小题)9.若直线y=2x+b与x轴交于点(﹣3,0),则方程2x+b=0的解是_________.10.如图是一次函数y=kx+b的图象,则方程kx+b=0的解为_________.11.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为_________.12.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.13.如图,直线y=kx+b分别交x轴和y轴于点A、B,则关于x的方程kx+b=0的解为_________.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.16.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.18.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:_________;(2)设直线l2与x轴交于点A,求△OAP的面积.21.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B两点,求不等式kx+b≤0的解.22.在直角坐标系xOy中,直线y=kx+b(k≠0)经过(﹣2,1)和(2,3)两点,且与x 轴、y轴分别交于A、B两点,求不等式kx+b≥0的解集.。
特殊平行四边形动点问题
特殊四边形:动点问题题型一:1.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当PA +PD 取最小值时,△APD 中边AP 上的高为A 、17172B 、17174C 、 17178D 、3 2.如图4,在梯形ABCD 中,AD ∥BC ,AD =6,BC =16,E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t = 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.3.如图,在梯形ABCD 中,AD ∥BC,E 是BC 的中点,AD=5,BC=12,CD=42,∠C=045,点P 是BC 边上一动点,设PB 长为x.1当x 的值为 时,以点P 、A 、D 、E 为顶点的四边形为直角梯形. 2当x 的值为 时,以点P 、A 、D 、E 为顶点的四边形为平行四边形.3点P 在BC 边上运动的过程中,以点P 、A 、D 、E 为顶点的四边形能否构成菱形试说明理由.4.在一个等腰梯形ABCD 中,AD1.t 为何值时,四边形ABQP 为平行四边形2.四边形ABQP 能为等腰梯形吗如果能,求出t 的值,如果不能,请说明理由;6.梯形ABCD 中,AD ∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P 从点A 开始,沿AD 边,以1厘米/秒的速度向点D 运动;动点Q 从点C 开始,沿CB 边,以3厘米/秒的速度向B 点运动;已知P 、Q 两点分别从A 、C 同时出发,,当其中一点到达端点时,另一点也随之停止运动;假设运动时间为t 秒,问:1t 为何值时,四边形PQCD 是平行四边形2在某个时刻,四边形PQCD 可能是菱形吗为什么3t 为何值时,四边形PQCD 是直角梯形4t 为何值时,四边形PQCD 是等腰梯形5 t 为何值时, APQ 是等腰三角形7.如图,在直角梯形ABCD 中,∠B=90°,AD ‖BC,且AD=4cm,AB=8cm,DC=10cm;若动点P 从点A 出发,以每秒4cm 的速度沿线段AD 、DC 向C 点运动;动点Q 从C 点以每秒5cm 的速度沿CB 向B 点运动;当Q 点到达B 点时,动点P 、Q 同时停止运动;设P 、Q 同时出发,并运动了t 秒; 1直角梯形ABCD 的面积为__________cm 的平方.2当t=________秒时,四边形PQCD 为平行四边形;3当t=________秒时,PQ=DC4是否存在t,使得P 点在线段DC 上,且PQ ⊥DC 如图2所示若存在,列出方程求出此时的t ;若不存在,请说明理由;8.如图,在直角梯形ABCD 中,∠B=90°,AB ‖CD,且AB=4cm,BC=8cm,DC=10cm;若动点P 从点A 出发,以每秒1cm 的速度沿线段AB 、BC 向C 点运动;动点Q 从C 点以每秒1cm 的速度沿CB 向B 点运动;当Q 点到达B 点时,动点P 、Q 同时停止运动;设P 、Q 同时出发,并运动了t 秒; 1直角梯形ABCD 的面积为__________cm 的平方.2当t=________秒时,四边形PBCQ 为平行四边形;3当t=________秒时,PQ=BC.10. 如图,在等腰梯形ABCD 中,AB ∥CD,其中AB=12 cm,CD=6cm ,梯形的高为4,点P 从开始沿AB 边向点B 以每秒3cm 的速度移动,点Q 从开始沿CD 边向点D 以每秒1cm 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达终点时运动停止;设运动时间为t 秒; 1求证:当t 为何值时,四边形APQD 是平行四边形;2PQ 是否可能平分对角线BD 若能,求出当t 为何值时PQ 平分BD ;若不能,请说明理由; 3若△DPQ 是以PQ 为腰的等腰三角形,求t 的值;11.如图,在直角梯形ABCD 中,AB1求CD 的长;2当四边形PBQD 为平行四边形时,求四边形PBQD 的周长;3在点P,点Q 的运动过程中,是否存在某一时刻,使得ΔBPQ 的面积为20cm 2若存在,请求出所有满足条件的t 的值;若不存在,请说明理由;13. 已知,矩形ABCD 中,4AB cm =,8BC cm =,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .1如图10-1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;2如图10-2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和CDE ∆各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b 单位:cm ,0ab ≠,已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.14.已知:如图,在梯形ABCD 中,AB ∥DC,∠B=90°,BC=8cm,CD=24cm,AB=26Cm,点P 从C 出发,以1cm/s 的速度向D 运动,点Q 从A 出发,以3cm/s 的速度向B 运 动,其中一动点达到端点时,另一动点随之停止运动.从运动开始.1经过多少时间,四边形AQPD 是平行四边形2经过多少时间,四边形AQPD 成为等腰梯形3在运动过程中,P 、Q 、B 、C 四点有可能构成正方形吗为什么A BC D EF 图10-1 O 图10-2 备用图如图,在梯形ABCD 中,AD ∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P 从点B 出发,沿射线BC 的方向以每秒2cm 的速度运动,动点Q 从点A 出发,在线段AD 上以每秒1cm 的速度向点D 运动,点P,Q 分别从点B,A 同时出发,当点Q 运动到点D 时,点P 随之停止运动,设运动的时间为t 秒.①当t 为何值时,四边形PQDC 是平行四边形;②当t 为何值时,以C,D,Q,P 为顶点的梯形面积等于60cm 2 ③是否存在点P,使△PQD 是等腰三角形若存在,请求出所有满足要求的t 的值,若不存在,请说明理由. 15.如图,在梯形ABCD 中,AD ∥BC,AD=6,DC=10,AB=65,∠B=45°.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.16.1求BC 的长.17.2当MN ∥AB 时,求t 的值.18.3△MNC 可能为等腰三角形吗若能,请求出t 的值;若不能,请说明理由.(4)△MNC 可能为直角三角形吗若能,请求出t 的值;若不能,请说明理由.(5)△MNC 为20时,请求出t 的值.如图,直角梯形ABCD 中,AB ∥CD,∠A=90°,AB=34,AD=4,DC=234 ,点P 从点A 出发沿折线段AD-DC-CB 以每秒3个单位长的速度向点B 匀速运动,同时,点Q 从点A 出发沿射线AB 方向以每秒2个单位长的速度匀速运动,当点P 与点B 重合时停止运动,点Q 也随之停止,设点P,Q 的运动时间是t 秒t >0.1当点P 到达终点B 时,求t 的值;2设△APQ 的面积为S,分别求出点P 运动到AD 、CD 上时,S 与t 的函数关系式;3当t 为何值时,能使PQ ∥DB ;4当t 为何值时,能使P 、Q 、D 、B 四点构成的四边形是平行四边形;16.如图,在等腰梯形ABCD 中,AD ∥BC,AB=DC=60,AD=75,BC=135.点P 从点B 出发沿折线段BA-AD-DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC,交折线段CD-DA-AB 于点E .点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒t >0.1当点P 到达终点C 时,求t 的值,并指出此时BQ 的长;2当点P 运动到AD 上时,t 为何值能使PQ ∥DC ;3设射线QK 扫过梯形ABCD 的面积为S,分别求出点E 运动到CD 、DA 上时,S 与t 的函数关系式;不必写出t 的取值范围4△PQE 能否成为直角三角形若能,写出t 的取值范围;若不能,请说明理由.17.如图,直角梯形ABCD 中,AD ∥BC,∠ABC=90°,已知AD=AB=3,BC=33,动点P 从B 点出发,沿线段BC 向点C 作匀速运动;动点Q 从点D 出发,沿线段DA 向点A 作匀速运动.过Q 点垂直于AD 的射线交AC 于点M,交BC 于点N .P 、Q 两点同时出发,速度都为每秒1个单位长度.当Q 点运动到A 点,P 、Q 两点同时停止运动.设点Q 运动的时间为t 秒.1求NC,MC 的长用t 的代数式表示;2当t 为何值时,四边形PCDQ 构成平行四边形3当t 为何值时,射线QN 恰好将△ABC 的面积平分并判断此时△ABC 的周长是否也被射线QN 平分.19.如图,已知直角梯形ABCD 中,AD ∥BC,AB ⊥BC,AD=2,AB=8,CD=10.1求梯形ABCD 的面积S ;2动点P 从点B 出发,以2cm/s 的速度、沿B →A →D →C 方向,向点C 运动;动点Q 从点C 出发,以2cm/s 的速度、沿C →D →A 方向,向点A 运动.若P 、Q 两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t 秒.问:①当点P 在B →A 上运动时,是否存在这样的t,使得直线PQ 将梯形ABCD 的周长平分若存在,请求出t 的值,并判断此时PQ 是否平分梯形ABCD 的面积;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P 、D 、Q 为顶点的三角形恰好是以DQ 为一腰的等腰三角形若存在,请求出所有符合条件的t 的值;若不存在,请说明理由.20.在直角梯形ABCD 中,∠C=90°,高CD=6cm,底BC=10cm 如图1.动点Q 从点B 出发,沿BC 运动到点C 停止,运动的速度都是1cm/s .同时,动点P 也从B 点出发,沿BA →AD 运动到点D 停止,且PQ 始终垂直BC .设P,Q 同时从点B 出发,运动的时间为ts,点P 运动的路程为ycm .分别以t,y 为横、纵坐标建立直角坐标系如图2,已知如图中线段为y 与t 的函数的部分图象.经测量点M 与N 的坐标分别为4,5和2, 25.1求M,N 所在直线的解析式;2求梯形ABCD 中边AB 与AD 的长;3写出点P 在AD 边上运动时,y 与t 的函数关系式注明自变量的取值范围,并在图2中补全整运动中y 关于t 的函数关系的大致图象.22.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=3 3,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM 返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒t>0.23.1设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式不必写t的取值范围;24.2当BP=1时,求△EPQ与梯形ABCD重叠部分的面积;已知:如图,在直角梯形COAB中,OC∥AB,∠AOC=90°,AB=4,AO=8,OC=10,以O为原点建立平面直角坐标系,点D为线段BC的中点,动点P从点A出发,以每秒4个单位的速度,沿折线AOCD 向终点C运动,运动时间是t秒.1D点的坐标为;2当t为何值时,△APD是直角三角形;3如果另有一动点Q,从C点出发,沿折线CBA向终点A以每秒5个单位的速度与P点同时运动,当一点到达终点时,两点均停止运动,问:P、C、Q、A四点围成的四边形的面积能否为28如果可能,求出对应的t;如果不可能,请说明理由.在梯形ABCO中,OC∥AB,以O为原点建立平面直角坐标系,A、B、C三点的坐标分别是A8,0,B8,10,C0,4.点D4,7为线段BC的中点,动点P从O点出发,以每秒1个单位的速度,沿折线OAB的路线运动,运动时间为t秒.1求直线BC的解析式;2设△OPD的面积为s,求出s与t的函数关系式,并指出自变量t的取值范围;33当t为何值时,△OPD的面积是梯形OABC的面积的8如图,在直角梯形COAB中,CB∥OA,以O为原点建立直角坐标系,A、C的坐标分别为A10,0、C0,8,CB=4,D为OA中点,动点P自A点出发沿A→B→C→O的线路移动,速度为1个单位/秒,移动时间为t秒.1求AB的长,并求当PD将梯形COAB的周长平分时t的值,并指出此时点P在哪条边上;2动点P在从A到B的移动过程中,设△APD的面积为S,试写出S与t的函数关系式,并指出t的取值范围;3几秒后线段PD将梯形COAB的面积分成1:3的两部分求出此时点P的坐标已知直角梯形OABC在如图所示的平面直角坐标系中,AB∥OC,AB=10,OC=22,BC=15,动点M从A点出发,以每秒一个单位长度的速度沿AB向点B运动,同时动点N从C点出发,以每秒2个单位长度的速度沿CO向O点运动.当其中一个动点运动到终点时,两个动点都停止运动.1求B点坐标;2设运动时间为t秒;①当t为何值时,四边形OAMN的面积是梯形OABC面积的一半;②当t为何值时,四边形OAMN的面积最小,并求出最小面积;③若另有一动点P,在点M、N运动的同时,也从点A出发沿AO运动.在②的条件下,PM+PN 的长度也刚好最小,求动点P的速度.如图1,以梯形OABC的顶点O为原点,底边OA所在的直线为轴建立直角坐标系.梯形其它三个顶点坐标分别为:A14,0,B11,4,C3,4,点E以每秒2个单位的速度从O点出发沿射线OA 向A点运动,同时点F以每秒3个单位的速度,从O点出发沿折线OCB向B运动,设运动时间为t.1当t=4秒时,判断四边形COEB是什么样的四边形2当t为何值时,四边形COEF是直角梯形3在运动过程中,四边形COEF能否成为一个菱形若能,请求出t的值;若不能,请简要说明理由,并改变E、F两点中任一个点的运动速度,使E、F运动到某时刻时,四边形COEF 是菱形,并写出改变后的速度及t的值如图,在平面直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14,A16,0,C0,2.1如图①,若点P、Q分别从点C、A同时出发,点P以每秒2个单位的速度由C向B运动,点Q以每秒4个单位的速度由A向O运动,当点Q停止运动时,点P也停止运动.设运动时间为t秒0≤t≤4.①求当t为多少时,四边形PQAB为平行四边形②求当t为多少时,直线PQ将梯形OABC分成左右两部分的比为1:2,并求出此时直线PQ 的解析式.2如图②,若点P、Q分别是线段BC、AO上的任意两点不与线段BC、AO的端点重合,且四边形OQPC面积为10,试说明直线PQ一定经过一定点,并求出该定点的坐标.如图,在平面直角坐标系中,直角梯形ABCO的变OC落在x轴的正半轴上,且AB方形ODEF 的两边分别坐落在坐标轴上,且它的面积等于直角梯形ABCO面积,将正方形ODEF沿x轴的正半轴平行移动,设它与直角梯形ABCO的重叠部分面积为S;(1)求正方形ODEF的边长;(2)求OA所在直线的解析式(3)当正方形ODEF移动到顶点O与C重合时,求S的值(4)设正方形ODEF顶点O向右移动的距离为x,当正方形ODEF的边ED与y轴重合时,停止移动,求重叠部分面积S与x的函数关系式;如图,在△ABC中,∠ACB=90°,AC=BC=6cm,等腰RT△DEF中,∠D=90°,EF=在BC所在直线L上,开始时点F与点C重合,让等腰RT△DEF沿直线L向右以每秒1cm的速度做匀速运动,最后点E和点B重合;(1)请直接写出等腰RT△DEF运动6S时与△ABC重叠部分面积(2)设运动时间为xS,运动过程中,等腰RT△DEF与△ABC重叠部分面积为ycm2①在等腰RT△DEF运动6S后至运动停止前这段时间内,求y与x之间的函数关系式②在RT△DEF整个运动过程中,求当x为何值时,y=1/2.题型二:1.如图,正方形ABCD的边长为4cm,两动点P、Q分别同时从D、A出发,以1cm/秒的速度各自沿着DA、AB边向A、B运动;试解答下列各题:1当P出发后多少秒时,三角形PDO为等腰三角形;2当P、Q出发后多少秒,四边形APOQ为正方形;3当P、Q出发后多少秒时,ABCD PQDSS正方形325=∆.2.如图所示,有四个动点P 、Q 、E 、F 分别从正方形ABCD 的四个顶点出发,沿着AB 、BC 、CD 、DA 以同样的速度向B 、C 、D 、A 各点移动;1试判断四边形PQEF 是正方形并证明;2PE 是否总过某一定点,并说明理由;(3)四边形PQEF 的顶点位于何处时,其面积最小,最大各是多少(4)3.已知:如图,边长为a 的菱形ABCD 中,∠DAB=60°,E 是异于A 、D 两点的动点,F 是CD 上的动点;请你判断:无论E 、F 怎样移动,当满足:AE+CF=a 时,△BEF 是什么三角形并说明你的结论;4.如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD 不含B 点上任意一点,将BM 绕点B 逆时针旋转60°得到BN,连接EN 、AM 、CM.⑴ 求证:△AMB ≌△ENB ;⑵ ①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;⑶ 当AM +BM +CM 的最小值为13 时,求正方形的边长.题型三:1.如图,在直角梯形ABCD 中,AD//BC,∠C =90°,BC =16,DC =12,AD =21;动点P 从点D 出发,沿射线DA 的方向以每秒2两个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P,Q 分别从点D,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动;设运动的时间为t 秒;(1)设▲BPQ 的面积为S,求S 与t 之间的函数关系式;(2)当t 为何值时,四边形ABPQ 平行四边形3当t 为何值时,以B 、P 、Q 三点为顶点的三角形是等腰三角形4是否存在时刻t,使得PQ ⊥BD 若存在,求出t 的值;若不存在,请说明理由;E A DB C N M2.如图①,在等腰梯形ABCD中,AD边长为6的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DM交AC于点N.1如图25-1,当点M在AB边上时,连接BN.△≌△;①求证:ABN ADN②若∠ABC = 60°,AM = 4,∠ABN =α,求点M到AD的距离及tanα的值;2如图25-2,若∠ABC = 90°,记点M运动所经过的路程为x6≤x≤12.试问:x为何值时,△ADN为等腰三角形.4.在正方形ABCD中,M是边BC中点,E是边AB上的一个动点,MF⊥ME,MF交射线CD于点F,AB=4,BE=x,CF=y1求y关于x的解析式及定义域2当点F在边CD上时,四边形AEFD的周长是否随点E的运动而发生变化请说明理由3当DF=1时,求点A到直线EF的距离;5.如图1,在等腰梯形ABCD中,AD‖BC,E是AB的中点,过点E作EF‖BC交CD于点F;AB=4,BC=6,∠B=60°1求点E到BC的距离;2点P为线段EF上的一个动点,过点P作PM⊥EF交BC于点M,过M作MN‖AB交折线ADC于点N,连接PN,设EP=x.①当点N在线段AD上时,△PMN的形状是否发生改变若不变,求出△PMN的周长,若改变,说明理由.②当点N在线段DC上时,是否存在点P,使△PMN为等腰三角形若存在,请求出所有满足要求的x的值,若不存在,说明理由.6.在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD;一动点P从A出发以每秒1cm的速度沿A-B-C的路线做匀速运动,过点P做直线PM,使PM⊥AD;当点P运动2秒时,另一动点Q也从A 出发沿A-B-C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动;过Q做直线QN,使QN∥PM;设点Q的运动时间为t秒0≤t≤10,直线PM与QN截平cm行四边形所得图形的面积为S2①求S关于t的函数关系式;②求S的最大值;7.菱形ABCD中∠A=60°,边长为4CM,动点P从A出发,以1CM/秒的速度沿A-B-C的路线运动,在点P出发1秒后,点Q以同样的速度,沿同样的路径运动,过点P、Q的直线L1、L2互相平行,且都与AB边所在的直线成60°角,设点P运动的时间是X1≤X≤8秒,直线L1、L2在菱形上截出的图形周长为Y厘米1求Y与X的函数关系;2当X取何值时,Y的值最大最大值是多少8.如图,在矩形ABCD中,AB=12cm,BC=8cm,点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动,点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G即点F与点G重合时,三个点随之停止移动.设移动开始后第t秒时,△EF G的面积为Scm2.1当t=1秒时,S的值是多少2写出S和t之间的函数解析式,并指出自变量t的取值范围.。
专训1 利用特殊四边形的性质巧解动点问题
专训1利用特殊四边形的性质巧解动点问题名师点金:利用特殊四边形的性质解动点问题,一般将动点看成特殊点解决问题,再运用从特..殊到一般的思想.......,将特殊点转化为一般点(动点)来解答.平行四边形中的动点问题1.如图,在▱ABCD中,E,F两点在对角线BD上运动(E,F不重合),且保持BE=DF,连接AE,CF.请你猜想AE与CF有怎样的数量关系和位置关系,并说明理由.(第1题)菱形中的动点问题2.如图,在菱形ABCD中,∠B=60°,动点E在边BC上,动点F在边CD上.(1)如图①,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图②,若∠EAF=60°,求证:△AEF是等边三角形.(第2题)矩形中的动点问题3.在矩形ABCD中,AB=4 cm,BC=8 cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为O.(1)如图①,连接AF,CE.试说明四边形AFCE为菱形,并求AF的长.(2)如图②,动点P,Q分别从A,C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为5 cm/s,点Q的速度为4 cm/s,运动时间为t s,当以A,C,P,Q四点为顶点的四边形是平行四边形时,求t的值.(第3题)正方形中的动点问题4.如图,正方形ABCD的边长为8 cm,E,F,G,H分别是AB,BC,CD,DA上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过一个定点,并说明理由.(第4题)答案1.解:AE=CF,AE∥CF.理由如下:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠ABE =∠CDF .又∵BE =DF ,∴△ABE ≌△CDF .∴AE =CF ,∠AEB =∠CFD .∵∠AEB +∠AED =∠CFD +∠CFB =180°,∴∠AED =∠CFB .∴AE ∥CF .2.证明:(1)连接AC .∵在菱形ABCD 中,∠B =60°,AB =BC =CD ,∴∠BCD =180°-∠B =120°,△ABC 是等边三角形.又∵E 是BC 的中点,∴AE ⊥BC .∵∠AEF =60°,∴∠FEC =90°-∠AEF =30°.∴∠CFE =180°-∠FEC -∠BCD =180°-30°-120°=30°.∴∠FEC =∠CFE .∴EC =CF .∴BE =DF .(2)连接AC .由(1)知△ABC 是等边三角形,∴AB =AC ,∠ACB =∠BAC =∠EAF =60°.∴∠BAE =∠CAF .∵∠BCD =120°,∠ACB =60°,∴∠ACF =60°=∠B .∴△ABE ≌△ACF .∴AE =AF .∴△AEF 是等边三角形.3.解:(1)∵四边形ABCD 是矩形,∴AD ∥BC .∴∠OAE =∠OCF ,∠AEO =∠CFO .∵EF 垂直平分AC ,垂足为O ,∴OA =OC .∴△AOE ≌△COF .∴OE =OF .∴四边形AFCE 为平行四边形.又∵EF ⊥AC ,∴四边形AFCE 为菱形.设AF =CF =x cm ,则BF =(8-x )cm ,在Rt △ABF 中,AB =4 cm ,由勾股定理得42+(8-x )2=x 2,解得x =5,∴AF =5 cm.(第3题)(2)显然当P 点在AF 上,Q 点在CD 上时,A ,C ,P ,Q 四点不可能构成平行四边形;同理P 点在AB 上时,Q 点在DE 或CE 上,也不可能构成平行四边形.因此只有当P 点在BF 上,Q 点在ED 上时,才能构成平行四边形,如图,连接AP ,CQ ,若以A ,C ,P ,Q 四点为顶点的四边形是平行四边形,则PC =QA .∵点P 的速度为5 cm/s ,点Q 的速度为4 cm/s ,运动时间为t s ,∴PC =5t cm ,QA =(12-4t )cm.∴5t =12-4t ,解得t =43. ∴以A ,C ,P ,Q 四点为顶点的四边形是平行四边形时,t =43.(第4题)4.(1)证明:如图,∵四边形ABCD为正方形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=BC=CD=AD.∵AE=BF=CG=DH,∴BE=CF=DG=AH.∴△AEH≌△BFE≌△CGF≌△DHG.∴EH=EF=FG=GH,∠1=∠2.∴四边形EFGH为菱形.∵∠1+∠3=90°,∠1=∠2,∴∠2+∠3=90°.∴∠HEF=90°.∵四边形EFGH为菱形,∴四边形EFGH是正方形.(2)解:直线EG经过一个定点.理由如下:如图,连接BD,DE,BG.设EG与BD交于O点.∵BE平行且等于DG,∴四边形BGDE为平行四边形.∴BD,EG互相平分.∴BO=OD.∴点O为正方形ABCD的对角线的交点.∴直线EG必过正方形ABCD的对角线的交点.。