2020-2021南京市高一数学上期末模拟试卷(及答案)
2020-2021学年辽宁省沈阳市高一上学期期末数学试卷 (解析版)

2020-2021学年辽宁省沈阳市高一(上)期末数学试卷一、选择题(共8小题).1.已知全集U={1,2,3,4,5,6,7},集合A={2,4,6,7},B={1,3,4,6},则A∩∁U B=()A.{2,7}B.{4,6}C.{2,5,7}D.{2,4,5,6,7} 2.某单位共有500名职工,其中不到35岁的有125人,35﹣49岁的有a人,50岁及以上的有b人,现用分层抽样的方法,从中抽出100名职工了解他们的健康情况.如果已知35﹣49岁的职工抽取了56人,则50岁及以上的职工抽取的人数为()A.19B.95C.220D.2803.设x∈R,则“x<1”是“2x<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.2020年12月4日,中国科学技术大学宣布该校潘建伟等人成功构建76个光子的量子计算原型机“九章”.据介绍,将这台量子原型机命名为“九章”,是为了纪念中国古代的数学专著《九章算术》.在该书的《方程》一章中有如下一题:“今有上禾二秉,中禾三秉,下禾四秉,实皆不满斗.上取中,中取下,下取上,各一秉,而实满斗.问上中下禾实一秉各几何?”其译文如下:“今有上等稻禾2束,中等稻禾3束,下等稻禾4束,各等稻禾总数都不足1斗.如果将2束上等稻禾加上1束中等稻禾,或者将3束中等稻禾加上1束下等稻禾,或者将4束下等稻禾加上1束上等稻禾,则刚好都满1斗.问每束上、中、下等的稻禾各多少斗?”现请你求出题中的1束上等稻禾是多少斗?()A.B.C.D.5.在△ABC中,,.若点D满足,则=()A.B.C.D.6.设a=50.6,b=()﹣0.7,c=log0.60.7,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b7.已知实数a>0,b>0,且2a+b=2ab,则a+2b的最小值为()A.B.C.D.8.已知函数f(x)=+x(其中e为自然对数的底数,e=2.71828…),若实数m满足f(m)=﹣1,则f(﹣m)=()A.4B.3C.2D.1二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.下列命题中错误的是()A.若a>b,则<B.若a>b,则>C.若a>b,c<d,则a﹣d>b﹣cD.若b>a>0,m>0,则>10.在某次高中学科竞赛中,5000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中的数据用该组区间中点值为代表,则下列说法中正确的是()A.考生成绩在[70,80)的人数最多B.考生成绩在[80,90)对应的频率为0.015C.不及格的考生人数为1000D.考生成绩的平均分约为70.511.已知函数f(x)=|()x﹣1|﹣b有两个零点,分别为x1,x2(x1<x2),则下列结论正确的是()A.﹣1<x1<0B.0<x2<2C.()+()=2D.0<b<112.若关于x的方程=的解集中只含有一个元素,则满足条件的实数k可以为()A.﹣B.﹣1C.1D.三、填空题:本题共4小题,每小题5分,共20分.13.计算lg8+lg25﹣lg2的结果是.14.设A,B,C为三个随机事件,若A与B互斥,B与C对立,且P(A)=,P(C)=,则P(A+B)=.15.已知函数f(x)=则不等式x+f(x﹣1)≤2的解集是.16.给定函数y=f(x),设集合A={x|y=f(x)},B={y|y=f(x)}.若对于∀x∈A,∃y∈B,使得x+y=0成立,则称函数f(x)具有性质P.给出下列三个函数:①;②;③y=lgx.其中,具有性质P的函数的序号是.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)设A,B,C,D为平面直角坐标系中的四点,且A(2,﹣2),B(4,1),C(1,3).(1)若=,求D点的坐标及||;(2)设向量=,=,若k﹣与+3平行,求实数k的值.18.(12分)已知全集U=R,集合A={x|x2﹣4x<0},B={x|m≤x≤3m﹣2}.(1)当m=2时,求∁U(A∩B);(2)如果A∪B=A,求实数m的取值范围.19.(12分)中学阶段是学生身体发育重要的阶段,长时间熬夜学习严重影响学生的身体健康.某校为了解甲、乙两个班的学生每周熬夜学习的总时长(单位:小时),从这两个班中各随机抽取6名同学进行调查,将他们最近一周熬夜学习的总时长作为样本数据,如表所示.如果学生一周熬夜学习的总时长超过21小时,则称为“过度熬夜”.甲班91113202431乙班111218202225(1)分别计算出甲、乙两班样本的平均值;(2)为了解学生过度热夜的原因,从甲、乙两班符合“过度熬夜”的样本数据中,抽取2个数据,求抽到的数据来自于同一个班级的概率;(3)从甲班的样本数据中有放回地抽取2个数据,求恰有1个数据为“过度熬夜”的概率.20.(12分)已知函数f(x)=x2+2ax+1(a∈R).(1)求f(x)在区间[1,3]上的最小值g(a);(2)设函数h(x)=,用定义证明:h(x)在(0,1)上是减函数.21.(12分)近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以30天计),每件的销售价格P(x)(单位:元)与时间x(单位:天)的函数关系近似满足P(x)=10+(k 为常数,且k>0),日销售量Q(x)(单位:件)与时间x(单位:天)的部分数据如表所示:x1015202530 Q(x)5055605550已知第10天的日销售收入为505元.(1)求k的值;(2)给出以下四个函数模型:①Q(x)=ax+b;②Q(x)=a|x﹣m|+b;③Q(x)=a•b x;④Q(xr)=a•log b x.请你根据表中的数据,从中选择你认为最合适的一种函数模型来描述日销售量Q(x)与时间x的变化关系,并求出该函数的解析式;(3)设该工艺品的日销售收入为f(x)(单位:元),求f(x)的最小值.22.(12分)已知函数f(x)=ln(e x+1)+kx是偶函数(其中e为自然对数的底数,e=2.71828…).(1)求k的值;(2)若方程f(x)=x+b在区间[﹣1,0]上有实数根,求实数b的取值范围.参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5,6,7},集合A={2,4,6,7},B={1,3,4,6},则A∩∁U B=()A.{2,7}B.{4,6}C.{2,5,7}D.{2,4,5,6,7}解:∵U={1,2,3,4,5,6,7},A={2,4,6,7},B={1,3,4,6},∴∁U B={2,5,7},A∩∁U B={2,7}.故选:A.2.某单位共有500名职工,其中不到35岁的有125人,35﹣49岁的有a人,50岁及以上的有b人,现用分层抽样的方法,从中抽出100名职工了解他们的健康情况.如果已知35﹣49岁的职工抽取了56人,则50岁及以上的职工抽取的人数为()A.19B.95C.220D.280解:计算抽样比例为,所以不到35岁的应抽取125×=25(人),所以50岁及以上的应抽取100﹣25﹣56=19(人).故选:A.3.设x∈R,则“x<1”是“2x<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:由2x<1,解得x<0,由x<0,可得x<1,反之不成立.∴“x<1”是“2x<1”的必要不充分条件.故选:B.4.2020年12月4日,中国科学技术大学宣布该校潘建伟等人成功构建76个光子的量子计算原型机“九章”.据介绍,将这台量子原型机命名为“九章”,是为了纪念中国古代的数学专著《九章算术》.在该书的《方程》一章中有如下一题:“今有上禾二秉,中禾三秉,下禾四秉,实皆不满斗.上取中,中取下,下取上,各一秉,而实满斗.问上中下禾实一秉各几何?”其译文如下:“今有上等稻禾2束,中等稻禾3束,下等稻禾4束,各等稻禾总数都不足1斗.如果将2束上等稻禾加上1束中等稻禾,或者将3束中等稻禾加上1束下等稻禾,或者将4束下等稻禾加上1束上等稻禾,则刚好都满1斗.问每束上、中、下等的稻禾各多少斗?”现请你求出题中的1束上等稻禾是多少斗?()A.B.C.D.解:设上等稻禾x斗/束,中等稻禾y斗/束,下等稻禾z斗/束,由已知得:,解得:,故一束上等稻禾是斗.故选:D.5.在△ABC中,,.若点D满足,则=()A.B.C.D.解:在△ABC中,,;如图;∴=﹣=﹣,又,∴==(﹣);∴=+=+(﹣)=+;故选:C.6.设a=50.6,b=()﹣0.7,c=log0.60.7,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b解:∵y=5x在R上递增,∴1=50<a=50.6<b=()﹣0.7=50.7,而c=log0.60.7<1,故c<a<b,故选:D.7.已知实数a>0,b>0,且2a+b=2ab,则a+2b的最小值为()A.B.C.D.解:∵a>0,b>0,且2a+b=2ab,∴=1,则a+2b=(a+2b)()==.当且仅当且=1,即a=b=时取等号.∴a+2b的最小值为.故选:B.8.已知函数f(x)=+x(其中e为自然对数的底数,e=2.71828…),若实数m满足f(m)=﹣1,则f(﹣m)=()A.4B.3C.2D.1解:根据题意,函数f(x)=+x,则f(﹣x)=+(﹣x)=﹣x,则f(x)+f(﹣x)=(+x)+(﹣x)=2,即有f(m)+f(﹣m)=2,若f(m)=﹣1,则f(﹣m)=3,故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.下列命题中错误的是()A.若a>b,则<B.若a>b,则>C.若a>b,c<d,则a﹣d>b﹣cD.若b>a>0,m>0,则>解:对于A:令a=0,b=﹣1,显然错误;对于B:若a>b,则>,故B正确;对于C:若a>b,c<d,则a>b,﹣c>﹣d,则a﹣c>b﹣d,故C错误;对于D:若b>a>0,m>0,则bm>am,则ab+bm>ab+am,则b(a+m)>a(b+m),则>,故D正确;故选:AC.10.在某次高中学科竞赛中,5000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中的数据用该组区间中点值为代表,则下列说法中正确的是()A.考生成绩在[70,80)的人数最多B.考生成绩在[80,90)对应的频率为0.015C.不及格的考生人数为1000D.考生成绩的平均分约为70.5解:由成绩统计图知,考生成绩在[70,80)内的小矩形图最高,所以频率最大,对应人数最多,A正确;考生成绩在[80,90)对应的频率为0.015×10=0.15,所以B错误;60分以下的人数为(0.010+0.015)×10×5000=1250(人),所以C错误;计算考生成绩的平均分为45×0.10+55×0.15+65×0.20+75×0.30+85×0.15+95×0.10=70.5,所以D正确.故选:AD.11.已知函数f(x)=|()x﹣1|﹣b有两个零点,分别为x1,x2(x1<x2),则下列结论正确的是()A.﹣1<x1<0B.0<x2<2C.()+()=2D.0<b<1解:函数f(x)=|()x﹣1|﹣b有两个零点,即有两个根,问题即转化为y=b与g(x)=的有两个不同交点.做出函数g(x)的图象如右:其函数解析式为:,由题意两交点横坐标分别为x1,x2(x1<x2),①若有两个交点,则0<b<1,D对;②当x<0时,令g(x)=1,得x=﹣1,故﹣1<x1<0,A对;③易知,整理得:,C对;④由③得,所以x2>0,B错.故选:ACD.12.若关于x的方程=的解集中只含有一个元素,则满足条件的实数k可以为()A.﹣B.﹣1C.1D.解:易知,当k=1时,方程只有一个根1,满足题意;当k≠1时,原方程可化为,即①方程只有一个非零实数根即可.对于方程①,显然x≠0,即x2﹣x+k﹣1=0只有一个非零实根,所以,解得.故选:CD.三、填空题:本题共4小题,每小题5分,共20分.13.计算lg8+lg25﹣lg2的结果是2.解:原式=3lg2+2lg5﹣lg2=2lg2+2lg5=2(lg2+lg5)=2.故答案为:2.14.设A,B,C为三个随机事件,若A与B互斥,B与C对立,且P(A)=,P(C)=,则P(A+B)=.解:∵随机事件A,B,C中,A与B互斥,B与C对立,且P(A)=,P(C)=,∴P(B)=1﹣P(C)=,∴P(A+B)=P(A)+P(B)=+=.故答案为:.15.已知函数f(x)=则不等式x+f(x﹣1)≤2的解集是{x|x≤1}.解:∵函数f(x)=,∴当x﹣1≥0即x≥1时,x+f(x﹣1)≤2⇒x+1+(x﹣1)≤2⇒x≤1,故x=1;当x﹣1<0即x<1时,x+f(x﹣1)≤2⇒x+1﹣(x﹣1)≤2⇒2≤2,故x<1;∴不等式x+f(x﹣1)≤2的解集是:{x|x≤1}.故答案为:{x|x≤1}.16.给定函数y=f(x),设集合A={x|y=f(x)},B={y|y=f(x)}.若对于∀x∈A,∃y∈B,使得x+y=0成立,则称函数f(x)具有性质P.给出下列三个函数:①;②;③y=lgx.其中,具有性质P的函数的序号是①③.解:对①,A=(﹣∞,0)∪(0,+∞),B=(﹣∞,0)∪(0,+∞),显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P;对②,A=R,B=(0,+∞),当x>0时,不存在y∈B,使得x+y=0成立,即不具有性质P;对③,A=(0,+∞),B=R,显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P;故答案为:①③.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)设A,B,C,D为平面直角坐标系中的四点,且A(2,﹣2),B(4,1),C(1,3).(1)若=,求D点的坐标及||;(2)设向量=,=,若k﹣与+3平行,求实数k的值.解:(1)设D(x,y),则,且,,∴(2,3)=(x﹣1,y﹣3),∴,解得,∴D(3,6),,∴;(2),∴,,且与平行,∴9(2k+3)+7(3k﹣2)=0,解得.18.(12分)已知全集U=R,集合A={x|x2﹣4x<0},B={x|m≤x≤3m﹣2}.(1)当m=2时,求∁U(A∩B);(2)如果A∪B=A,求实数m的取值范围.解:(1)A={x|0<x<4},m=2时,B={x|2≤x≤4},∴A∩B={x|2≤x<4},且U=R,∴∁U(A∩B)={x|x<2或x≥4};(2)∵A∪B=A,∴B⊆A,①B=∅时,m>3m﹣2,解得m<1;②B≠∅时,,解得1≤m<2;综上,实数m的取值范围为(﹣∞,2).19.(12分)中学阶段是学生身体发育重要的阶段,长时间熬夜学习严重影响学生的身体健康.某校为了解甲、乙两个班的学生每周熬夜学习的总时长(单位:小时),从这两个班中各随机抽取6名同学进行调查,将他们最近一周熬夜学习的总时长作为样本数据,如表所示.如果学生一周熬夜学习的总时长超过21小时,则称为“过度熬夜”.甲班91113202431乙班111218202225(1)分别计算出甲、乙两班样本的平均值;(2)为了解学生过度热夜的原因,从甲、乙两班符合“过度熬夜”的样本数据中,抽取2个数据,求抽到的数据来自于同一个班级的概率;(3)从甲班的样本数据中有放回地抽取2个数据,求恰有1个数据为“过度熬夜”的概率.解:(1)甲班样本的平均值为:=(9+11+13+20+24+31)=18.乙班样本的平均成绩为:=(11+12+18+20+22+25)=18.(2)甲班符合“过度熬夜”的样本数据有2个,乙班符合“过度熬夜”的样本数据有2个,从甲、乙两班符合“过度熬夜”的样本数据中,抽取2个数据,基本事件总数n==6,抽到的数据来自于同一个班级包含的基本事件个数m==2,∴抽到的数据来自于同一个班级的概率p===.(3)甲班的6个样本数据中,为“过度熬夜”的数据有2个,从甲班的样本数据中有放回地抽取2个数据,基本事件总数n=6×6=36,恰有1个数据为“过度熬夜”包含的基本事件总数m==16,∴恰有1个数据为“过度熬夜”的概率P===.20.(12分)已知函数f(x)=x2+2ax+1(a∈R).(1)求f(x)在区间[1,3]上的最小值g(a);(2)设函数h(x)=,用定义证明:h(x)在(0,1)上是减函数.解:(1)因为f(x)=x2+2ax+1的对称轴x=﹣a,开口向上,当﹣a≤1即a≥﹣1时,g(a)=f(1)=2+2a,当﹣a≥3即a≤﹣3时,g(a)=f(3)=10+6a,当1<﹣a<3即﹣3<a<﹣1时,g(a)=f(﹣a)=1﹣a2,故g(a)=.(2)证明:h(x)==x++2a,设0<x1<x2<1,则h(x1)﹣h(x2)==(x1﹣x2)+=(x1﹣x2)()>0,∴h(x1)>h(x2),∴h(x)在(0,1)上是减函数.21.(12分)近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以30天计),每件的销售价格P(x)(单位:元)与时间x(单位:天)的函数关系近似满足P(x)=10+(k 为常数,且k>0),日销售量Q(x)(单位:件)与时间x(单位:天)的部分数据如表所示:x1015202530 Q(x)5055605550已知第10天的日销售收入为505元.(1)求k的值;(2)给出以下四个函数模型:①Q(x)=ax+b;②Q(x)=a|x﹣m|+b;③Q(x)=a•b x;④Q(xr)=a•log b x.请你根据表中的数据,从中选择你认为最合适的一种函数模型来描述日销售量Q(x)与时间x的变化关系,并求出该函数的解析式;(3)设该工艺品的日销售收入为f(x)(单位:元),求f(x)的最小值.解:(1)由题意,Q(10)•P(10)=50(10+)=505,即k=1;(2)由表中数据可知,当时间变化时,日销售量有增有减,函数不单调,而①③④均为单调函数,故Q(x)=a|x﹣m|+b,则,解得a=1,m=10,b=50.故函数解析式为Q(x)=|x﹣10|+50;(3)由(2)可知,Q(x)=|x﹣10|+50=,则f(x)=P(x)•Q(x)=.当1≤x≤10时,f(x)=600﹣1+,该函数为单调减函数,f(x)min=f(10)=505;当10<x≤30时,f(x)=400+1+10x+,在(10,30]上为增函数,则f(x)>505.综上,该工艺品的日销售收入f(x)的最小值为505元.22.(12分)已知函数f(x)=ln(e x+1)+kx是偶函数(其中e为自然对数的底数,e=2.71828…).(1)求k的值;(2)若方程f(x)=x+b在区间[﹣1,0]上有实数根,求实数b的取值范围.解:(1)由f(x)是偶函数得:f(x)﹣f(﹣x)=ln(e x+1)+kx﹣ln(e﹣x+1)﹣(﹣kx)===(2k+1)x=0恒成立,故2k+1=0,即k=﹣.(2)由(1)知f(x)=ln(e x+1)x.由f(x)=x+b得b=ln(e x+1)﹣x,x∈[﹣1,0].令g(x)=ln(e x+1)﹣x=,x∈[﹣1,0].当x∈[﹣1,0]时,∈[2,1+e],故ln(1)∈[ln2,ln(1+e)].故b∈[ln2,ln(1+e)]时,方程f(x)=x+b在区间[﹣1,0]上有实数根.即b的取值范围是[ln2,ln(1+e)].。
2020-2021苏州苏州外国语学校高一数学上期末模拟试题(附答案)

解析:
【解析】
【分析】
先分别求解出绝对值不等式、分式不等式的解集作为集合 ,然后根据交集概念求解 的结果.
17.若集合 , ,则 ______.
18.已知函数 , ,若关于 的不等式 恰有两个非负整数解,则实数 的取值范围是__________.
19.某食品的保鲜时间y(单位:小时)与储存温度x(单位: )满足函数关系 ( 为自然对数的底数,k、b为常数).若该食品在0 的保鲜时间设计192小时,在22 的保鲜时间是48小时,则该食品在33 的保鲜时间是小时.
【详解】
当 时, ,所以 在 上单调递增,因为 ,所以当 时, 等价于 ,即 ,
因为 是定义在 上的奇函数,所以 时, 在 上单调递增,且 ,所以 等价于 ,即 ,所以不等式 的解集为
【点睛】
本题考查函数的奇偶性,单调性及不等式的解法,属基础题.应注意奇函数在其对称的区间上单调性相同,偶函数在其对称的区间上单调性相反.
(1)当 时,求该厂用于配料的保管费用 元;
(2)求该厂配料的总费用 (元)关于 的函数关系式,根据平均每天支付的费用,请你给出合理建议,每隔多少天购买一次配料较好.
附: 在 单调递减,在 单调递增.
25.攀枝花是一座资源富集的城市,矿产资源储量巨大,已发现矿种76种,探明储量39种,其中钒、钛资源储量分别占全国的63%和93%,占全球的11%和35%,因此其素有“钒钛之都”的美称.攀枝花市某科研单位在研发钛合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值y(y值越大产品的性能越好)与这种新合金材料的含量x(单位:克)的关系为:当0≤x<7时,y是x的二次函数;当x≥7时, .测得部分数据如表:
2020-2021学年湖北省鄂东南新高考联盟高一(上)期末数学试卷(解析版)

2020-2021学年湖北省鄂东南新高考联盟高一(上)期末数学试卷一、选择题(共8小题).1.设集合A={x|x﹣1≤0},B={x|x2﹣x﹣6<0},则A∩B=()A.(﹣1,2)B.(﹣2,1]C.[1,2)D.[﹣2,3)2.sin454°+cos176°的值为()A.sin4°B.cos4°C.0D.2sin4°3.函数f(x)=lnx﹣的零点所在的大致区间是()A.(,1)B.(1,e)C.(e,e2)D.(e2,e3)4.设p:实数a,b满足a>1且b>1,q:实数a,b满足,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.已知0.4771<lg3<0.4772,则下列各数中与最接近的是()A.1033B.1053C.1073D.10936.把函数的图象向左平移φ(0<φ<π)个单位可以得到函数g(x)的图象,若g(x)是偶函数,则φ的值为()A.B.C.或D.或7.已知,则=()A.B.C.D.8.已知函数,若不等式f(3x﹣9x)+f(m•3x﹣3)<0对任意x∈R 均成立,则m的取值范围为()A.(﹣∞,2﹣1)B.C.D.二、选择题(共4小题).9.如果角α与角γ+45°的终边相同,角β与γ﹣45°的终边相同,那么α﹣β的可能值为()A.90°B.360°C.450°D.2330°10.下列函数中,既是偶函数又是区间(1,+∞)上的增函数有()A.y=3|x|+1B.y=ln(x+1)+ln(x﹣1)C.y=x2+2D.11.已知f(x)=cos(sin x),g(x)=sin(cos x),则下列说法正确的是()A.f(x)与g(x)的定义域都是[﹣1,1]B.f(x)为偶函数且g(x)也为偶函数C.f(x)的值域为[cos1,1],g(x)的值域为[﹣sin1,sin1]D.f(x)与g(x)最小正周期为2π12.高斯(Gauss)是德国著名的数学家,近代数学奠基者之一,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数,例如:[﹣2.3]=﹣3,[15.31]=15.已知函数,G(x)=[f(x)],则下列说法正确的有()A.G(x)是偶函数B.G(x)的值域是{﹣1,0}C.f(x)是奇函数D.f(x)在R上是增函数三、填空题:(本题共4小题,每小题5分,共20分.)13.已知扇形的弧长为6,圆心角弧度数为2,则其面积为.14.已知实数a,b满足log4(a+9b)=log2,则a+b的最小值是.15.已知函数f(x)的定义域为(0,+∞),且f(x)=2f()﹣1,则f(x)=.16.已知函数f(x)=A sin(2x+φ)﹣(A>0,0<φ<),g(x)=,f(x)的图象在y轴上的截距为1,且关于直线x=对称.若对于任意的x1∈[﹣1,2],存在x2∈[0,],使得g(x1)≥f(x2),则实数m的取值范围为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知全集U=R,集合A={x|≤0},B={x|x2﹣2ax+(a2﹣1)<0}.(1)当a=2时,求(∁U A)∩(∁U B);(2)若x∈A是x∈B的必要不充分条件,求实数a的取值范围.18.已知函数f(x)=sin(﹣ωx)(ω>0),且其图象上相邻最高点、最低点的距离为.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若已知sinα+f(α)=,求的值.19.李庄村电费收取有以下两种方案供农户选择:方案一:每户每月收管理费2元,月用电不超过30度每度0.5元,超过30度时,超过部分按每度0.6元.方案二:不收管理费,每度0.58元.(1)求方案一收费L(x)元与用电量x(度)间的函数关系;(2)李刚家九月份按方案一交费35元,问李刚家该月用电多少度?(3)李刚家月用电量在什么范围时,选择方案一比选择方案二更好?20.已知函数f(x)=2sinωx,其中常数ω>0.(Ⅰ)若y=f(x)在[﹣,]上单调递增,求ω的取值范围;(Ⅱ)令ω=2,将函数y=f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象求y=g(x)的图象离原点O最近的对称中心.21.已知连续不断函数,.(1)求证:函数f(x)在区间上有且只有一个零点;(2)现已知函数g(x)在上有且只有一个零点(不必证明),记f(x)和g (x)在上的零点分别为x1,x2,试求x1+x2的值.22.已知f(x)=log2(4x+1)﹣kx(k∈R).(1)设g(x)=f(x)﹣a+1,k=2,若函数g(x)存在零点,求a的取值范围;(2)若f(x)是偶函数,设h(x)=log2(b•2x),若函数f(x)与h(x)的图象只有一个公共点,求实数b的取值范围.参考答案一、选择题:(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合A={x|x﹣1≤0},B={x|x2﹣x﹣6<0},则A∩B=()A.(﹣1,2)B.(﹣2,1]C.[1,2)D.[﹣2,3)解:由A={x|x﹣1≤0}={x|x≤1},B={x|x2﹣x﹣6<0}={x|﹣2<x<3},则A∩B={x|﹣2<x≤1},故选:B.2.sin454°+cos176°的值为()A.sin4°B.cos4°C.0D.2sin4°解:sin454°+cos176°=sin94°﹣cos4°=cos4°﹣cos4°=0,故选:C.3.函数f(x)=lnx﹣的零点所在的大致区间是()A.(,1)B.(1,e)C.(e,e2)D.(e2,e3)解:由于连续函数f(x)=lnx﹣满足f(1)=﹣1<0,f(e)=1﹣>0,且函数在区间(0,e)上单调递增,故函数f(x)=lnx﹣的零点所在的区间为(1,e).故选:B.4.设p:实数a,b满足a>1且b>1,q:实数a,b满足,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:当a>1且b>1时,ab>1,a+b>2成立,即充分性成立,反之当a=4,b=1时,满足足但a>1且b>1不成立,即必要性不成立,即p是q的充分不必要条件,故选:A.5.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.已知0.4771<lg3<0.4772,则下列各数中与最接近的是()A.1033B.1053C.1073D.1093解:∵围棋状态空间复杂度的上限M约为3361,可观测宇宙中普通物质的原子总数N约为1080.∴M≈3361,N≈1080,根据对数性质有3=10lg3≈100.477,∴M≈3361≈(100.477)361≈10172.2,∴≈=1092.2≈1093,故选:D.6.把函数的图象向左平移φ(0<φ<π)个单位可以得到函数g(x)的图象,若g(x)是偶函数,则φ的值为()A.B.C.或D.或解:把函数的图象向左平移φ(0<φ<π)个单位,可以得到函数g(x)=sin(2x+2φ﹣)的图象,若g(x)是偶函数,则2φ﹣=+kπ,k∈Z,∴分别令k=0、k=1,可得φ=,或φ=,故选:D.7.已知,则=()A.B.C.D.解:因为,所以sin(+θ)=﹣,则=cos[﹣(+θ)]=sin(+θ)=﹣.故选:B.8.已知函数,若不等式f(3x﹣9x)+f(m•3x﹣3)<0对任意x∈R 均成立,则m的取值范围为()A.(﹣∞,2﹣1)B.C.D.解:因为f(﹣x)+f(x)=﹣2x+ln()+2x+ln()=ln1=0,所以函数f(x)是奇函数,由复合函数的单调性可知y=ln()在R上单调递增,而y=2x在R上也单调递增,所以函数f(x)在R上单调递增,所以不等式f(3x﹣9x)+f(m•3x﹣3)<0对任意x∈R均成立等价于f(3x﹣9x)<﹣f(m •3x﹣3)=f(3﹣m•3x),即3x﹣9x<3﹣m•3x,即m<对任意x∈R均成立,因为≥,所以m<.故选:A.二、选择题:(本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求全部选对的得5分,有选错的得0分,部分选对的得3分)9.如果角α与角γ+45°的终边相同,角β与γ﹣45°的终边相同,那么α﹣β的可能值为()A.90°B.360°C.450°D.2330°解:如果角α与γ+45°终边相同,则α=2mπ+γ+45°,m∈Z角β与γ﹣45°终边相同,则β=2nπ+γ﹣45°.n∈Z,∴α﹣β=2mπ+γ+45°﹣2nπ﹣γ+45°=2(m﹣n)π+90°,(k=m﹣n+1),即α﹣β与90°角的终边相同,观察选项,选项AC符合题意,故选:AC.10.下列函数中,既是偶函数又是区间(1,+∞)上的增函数有()A.y=3|x|+1B.y=ln(x+1)+ln(x﹣1)C.y=x2+2D.解:根据题意,依次分析选项:对于A,y=3|x|+1,其定义域为R,有f(﹣x)=3|﹣x|+1=3|x|+1=f(x),即函数f(x)为偶函数,在区间(1,+∞)上,y=3|x|+1=y=3x+1,为增函数,符合题意,对于B,y=ln(x+1)+ln(x﹣1),有,解可得x>1,即函数的定义域为(1,+∞),不是偶函数,不符合题意,对于C,y=x2+2为二次函数,开口向上且对称轴为y轴,既是偶函数又是区间(1,+∞)上的增函数,符合题意,对于D,y=x2+,其定义域为R,有f(﹣x)=(﹣x)2+=x2+=f(x),即函数f(x)为偶函数,可令t=x2,可得t=x2在(1,+∞)递增;y=t+在(1,+∞)递增,则函数y=x2+为增函数,符合题意,故选:ACD.11.已知f(x)=cos(sin x),g(x)=sin(cos x),则下列说法正确的是()A.f(x)与g(x)的定义域都是[﹣1,1]B.f(x)为偶函数且g(x)也为偶函数C.f(x)的值域为[cos1,1],g(x)的值域为[﹣sin1,sin1]D.f(x)与g(x)最小正周期为2π解:对于A,f(x)与g(x)的定义域都是R,所以A错;对于B,因为f(﹣x)=f(x),g(﹣x)=g(x),f(x)和g(x)都是偶函数,所以B对;对于C,因为sin x∈[﹣1,1]⊂(﹣,),所以f(x)的值域为[cos1,1],因为cos x∈[﹣1,1]⊂(﹣,),sin t在(﹣,)内单调递增,所以g(x)的值域为[﹣sin1,sin1],所以C对;对于D,f(x)=cos(sin x)=cos|sin x|,π是f(x)一个周期,所以D错.故选:BC.12.高斯(Gauss)是德国著名的数学家,近代数学奠基者之一,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数,例如:[﹣2.3]=﹣3,[15.31]=15.已知函数,G(x)=[f(x)],则下列说法正确的有()A.G(x)是偶函数B.G(x)的值域是{﹣1,0}C.f(x)是奇函数D.f(x)在R上是增函数解:根据题意,对于A,G(1)=[f(1)]=0,G(﹣1)=[f(﹣1)]=﹣1,G(1)≠G(﹣1),则函数G(x)不是偶函数,A错误,对于B,=﹣,由1+2x>1,则﹣<f(x)<,则有G(x)的值域是{﹣1,0},B正确,对于C,,其定义域位R,由f(﹣x)=﹣=﹣,则f(﹣x)+f(x)=0,即函数f(x)为奇函数,C正确,对于D,=﹣,设t=1+2x,则y=﹣,t=2x+1在R上是增函数,y=﹣,在(1,+∞)也是增函数,则f(x)在R上是增函数,D正确,故选:BCD.三、填空题:(本题共4小题,每小题5分,共20分.)13.已知扇形的弧长为6,圆心角弧度数为2,则其面积为9.解:半径r===3,根据扇形面积公式S=|α|r2=×2×32=9,故答案为:9.14.已知实数a,b满足log4(a+9b)=log2,则a+b的最小值是16.解:∵log4(a+9b)=log2=log4()2,∴a+9b=ab,即=1,∴a+b=(a+b)•()=1+9++≥10+2=16,当且仅当=,即a=3b=12时,等号成立,∴a+b的最小值是16.故答案为:16.15.已知函数f(x)的定义域为(0,+∞),且f(x)=2f()﹣1,则f(x)=+.解:考虑到所给式子中含有f(x)和f(),故可考虑利用换元法进行求解.在f(x)=2f()﹣1,用代替x,得f()=2f(x)﹣1,将f()=﹣1代入f(x)=2f()﹣1中,可求得f(x)=+.故答案为:+16.已知函数f(x)=A sin(2x+φ)﹣(A>0,0<φ<),g(x)=,f(x)的图象在y轴上的截距为1,且关于直线x=对称.若对于任意的x1∈[﹣1,2],存在x2∈[0,],使得g(x1)≥f(x2),则实数m的取值范围为.解:f(x)的图象在y轴上的截距为1,且关于直线x=对称.∴f(0)=A sinφ﹣=1,sin(2×+φ)=±1.又A>0,0<φ<,∴φ=,A=.∴f(x)=sin(2x+)﹣,x∈[0,],∴(2x+)∈,∴sin(2x+)∈,∴f(x)∈.∴f(x)min=1.g(x)==﹣m,∵x∈[﹣1,2],∴g(x)min=﹣m.若对于任意的x1∈[﹣1,2],存在x2∈[0,],使得g(x1)≥f(x2),则g(x1)min≥f(x2)min,∴﹣m≥1,解得m≤﹣.∴实数m的取值范围为.故答案为:.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知全集U=R,集合A={x|≤0},B={x|x2﹣2ax+(a2﹣1)<0}.(1)当a=2时,求(∁U A)∩(∁U B);(2)若x∈A是x∈B的必要不充分条件,求实数a的取值范围.解:(1)A={x|≤0}={x|2≤x<5},B={x|x2﹣2ax+(a2﹣1)<0}={x|a﹣1<x<a+1}.当a=2时,B=(1,3),则∁U A={x|x≥5或x<2},∁U B={x|x≥3或x≤1},则(∁U A)∩(∁U B)={x|x≥5或x≤1.(2)若x∈A是x∈B的必要不充分条件,则B⫋A,则,得,得3≤a≤4,即实数a的取值范围是[3,4].18.已知函数f(x)=sin(﹣ωx)(ω>0),且其图象上相邻最高点、最低点的距离为.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若已知sinα+f(α)=,求的值.解:(Ⅰ)∵函数f(x)=sin(﹣ωx)=cosωx,故其周期为,最大值为1.设图象上最高点为(x1,1),与之相邻的最低点为(x2,﹣1),则|x2﹣x1|==.∵其图象上相邻最高点与最低点之间的距离为=,解得ω=1,∴函数f(x)=cos x.(Ⅱ)∵sinα+f(α)=,∴sinα+cosα=,两边平方可得:1+2sinαcosα=,解得:2sinαcosα=﹣,cosα﹣sinα=±,∴===±.19.李庄村电费收取有以下两种方案供农户选择:方案一:每户每月收管理费2元,月用电不超过30度每度0.5元,超过30度时,超过部分按每度0.6元.方案二:不收管理费,每度0.58元.(1)求方案一收费L(x)元与用电量x(度)间的函数关系;(2)李刚家九月份按方案一交费35元,问李刚家该月用电多少度?(3)李刚家月用电量在什么范围时,选择方案一比选择方案二更好?解:(1)当0≤x≤30时,L(x)=2+0.5x;当x>30时,L(x)=2+30×0.5+(x﹣30)×0.6=0.6x﹣1,∴(注:x也可不取0);(2)当0≤x≤30时,由L(x)=2+0.5x=35得x=66,舍去;当x>30时,由L(x)=0.6x﹣1=35得x=60,∴李刚家该月用电60度;(3)设按第二方案收费为F(x)元,则F(x)=0.58x,当0≤x≤30时,由L(x)<F(x),得:2+0.5x<0.58x,解得:x>25,∴25<x≤30;当x>30时,由L(x)<F(x),得:0.6x﹣1<0.58x,解得:x<50,∴30<x<50;综上,25<x<50.故李刚家月用电量在25度到50度范围内(不含25度、50度)时,选择方案一比方案二更好.20.已知函数f(x)=2sinωx,其中常数ω>0.(Ⅰ)若y=f(x)在[﹣,]上单调递增,求ω的取值范围;(Ⅱ)令ω=2,将函数y=f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象求y=g(x)的图象离原点O最近的对称中心.解:(Ⅰ)∵函数f(x)=2sinωx在[﹣,]上单调递增,∴ω•≤,∴0<ω≤.(Ⅱ)令ω=2,将函数y=f(x)=2sin2x的图象向左平移个单位,可得y=2sin2(x+)的图象;再向上平移1个单位,得到函数y=g(x)=2sin2(x+)+1的图象,令2sin(2x+)=0,可得2x+=kπ,k∈Z,求得x=﹣,故g(x)的图象的对称中心为(﹣,1),k∈Z,故g(x)的图象离原点O最近的对称中心为(﹣,1).21.已知连续不断函数,.(1)求证:函数f(x)在区间上有且只有一个零点;(2)现已知函数g(x)在上有且只有一个零点(不必证明),记f(x)和g(x)在上的零点分别为x1,x2,试求x1+x2的值.【解答】(1)证明:函数,因为,,所以,又y=sin x和y=在区间上单调递增,故函数f(x)在区间上单调递增,由零点的存在性定理可得函数f(x)在区间上有且只有一个零点;(2)解:因为函数f(x)在区间上有且只有一个零点,所以,即,即=0,因为函数g(x)在上有且只有一个零点x2,所以,则x1+x2=.22.已知f(x)=log2(4x+1)﹣kx(k∈R).(1)设g(x)=f(x)﹣a+1,k=2,若函数g(x)存在零点,求a的取值范围;(2)若f(x)是偶函数,设h(x)=log2(b•2x),若函数f(x)与h(x)的图象只有一个公共点,求实数b的取值范围.解:(1)由题意函数g(x)存在零点,即f(x)=a﹣1有解.又f(x)=log2(4x+1)﹣2x=log2()=log2(1+),易知f(x)在(﹣∞,+∞)上是减函数,又1+>1,log2()>0,即f(x)>0,所以a﹣1∈(0,+∞),所以a的取值范围是a∈(1,+∞).(2)∵f(x)=log2(4x+1)﹣kx的定义域为R,f(x)是偶函数,∴f(﹣1)=f(1),∴log2(+1)+k=log2(4+1)﹣k,∴k=1检验f(x)=log2(4x+1)﹣x=log2(2x+2﹣x),f(﹣x)=log2(4﹣x+1)+x=log2(2x+2﹣x),∴f(x)=f(﹣x),∴f(x)为偶函数,函数f(x)与h(x)的图象有且只有一个公共点,∴方程f(x)=g(x)只有一解,即方程2x+=b•2x﹣b有且只有一个实根,令t=2x>0,则方程(b﹣1)t2﹣bt﹣1=0有且只有一个正根,①当b=1时,t=﹣,不合题意,②当b≠1时,若方程有两相等正根,则△=(﹣4b)2﹣4×3(b﹣1)×(﹣3)=0,且>0,解得b=﹣3③若一个正根和一个负根,则<0,即b>1时,满足题意,∴实数a的取值范围为{b|b>1或b=﹣3}.。
福建省漳州市2020-2021学年学年高一数学上学期期末考试试题(含解析)

福建省漳州市2020-2021学年学年高一数学上学期期末考试试题(含解析)本试卷共5页,22题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束,考生必须将试题卷和答题卡一并交回.一.单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{|4}A x x =>,{|2}B x x ,则A B =( )A. (2,)+∞B. (4,)+∞C. (2,4)D. (,4)-∞【答案】B 【解析】 【分析】由交集的定义求解即可. 【详解】{|{|2}4}{|4}x A B x x x x x =>>=>故选:B【点睛】本题主要考查了集合间的交集运算,属于基础题. 2.sin(600)-︒的值是( )A.12B. 12-C.2D. 【答案】C 【解析】 【分析】原式中的角度变形后,利用诱导公式及特殊角的三角函数值计算即可得到结果.【详解】解:()()()sin 600sin 720120sin120sin 18060sin60-︒=-︒+︒=︒=︒-︒=︒= 故选C .【点睛】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键. 3.下列各函数的值域与函数y x =的值域相同的是( ) A. 2yxB. 2xy =C. sin y x =D.2log y x =【答案】D 【解析】 【分析】分别求出下列函数的值域,即可判断. 【详解】函数y x =的值域为R20y x =≥,20x y =>则A ,B 错误;函数sin y x =的值域为[]1,1-,则C 错误; 函数2log y x =的值域为R ,则D 正确; 故选:D【点睛】本题主要考查了求具体函数的值域,属于基础题.4.已知函数42,0,()log ,0,x x f x x x ⎧=⎨>⎩则((1))f f -=( )A. 2-B. 12-C.12D. 2【答案】B 【解析】 【分析】分别计算(1)f -,12f ⎛⎫ ⎪⎝⎭即可得出答案.【详解】121(1)2f --==,241211log log 12222f -⎛⎫===- ⎪⎝⎭所以1((1))2f f -=- 故选:B【点睛】本题主要考查了已知自变量求分段函数的函数值,属于基础题. 5.函数log ||()(1)||a x x f x a x =>图象的大致形状是( )A. B.C. D.【答案】A 【解析】 【分析】判断函数函数()f x 为奇函数,排除BD 选项,取特殊值排除C ,即可得出答案. 【详解】log ||log ||()()||||a a x x x x f x f x x x ---==-=--所以函数()f x 为奇函数,故排除BD.log ||()10||a a a f a a ==>,排除C故选:A【点睛】本题主要考查了函数图像的识别,属于基础题.6.已知0.22log 0.2,2,sin 2a b c ===,则( )A. a b c <<B. a c b <<C. c a b <<D.b c a <<【答案】B【解析】 【分析】分别求出a ,b ,c 的大概范围,比较即可.【详解】因为22log 0.2log 10<=,0sin 21<<,0.20221>= 所以a c b <<. 故选:B【点睛】本题主要考查了指数,对数,三角函数的大小关系,找到他们大概的范围再比较是解决本题的关键,属于简单题.7.已知以原点O 为圆心的单位圆上有一质点P ,它从初始位置01(,22P 开始,按逆时针方向以角速度1/rad s 做圆周运动.则点P 的纵坐标y 关于时间t 的函数关系为 A. sin(),03y t t π=+≥ B. sin(),06y t t π=+≥ C. cos(),03y t t π=+≥D. cos(),06y t t π=+≥【答案】A 【解析】当时间为t 时,点P 所在角的终边对应的角等于3t π+, 所以点P 的纵坐标y 关于时间t 的函数关系为sin(),03y t t π=+≥.8.已知函数()f x 为定义在(0,)+∞的增函数,且满足()()()1f x f y f xy +=+.若关于x 的不等式(1sin )(1)(cos )(1sin )f x f f a x f x --<+-+恒成立,则实数a 的取值范围为( ) A. 1a >- B. 14a >-C. 1a >D. 2a >【答案】D 【解析】 【分析】将题设不等式转化为2(cos )(cos )f x f a x <+,根据函数()f x 的单调性解不等式得出2cos cos x a x <+,通过换元法,构造函数2()g x t t =-,[]1,1t ∈-求出最大值,即可得到实数a 的取值范围.【详解】(1sin )(1)(cos )(1sin )f x f f a x f x --<+-+(1sin )(1sin )(cos )(1)f x f x f a x f ∴-++<++因为()()()2(1sin )(1sin )1sin 1sin 1(cos)1f x f x fx x f x -++=-++=+,(cos )(1)(cos )1f a x f f a x ++=++所以2(cos )(cos )f x f a x <+在(0,)x ∈+∞恒成立故2cos cos x a x <+在(0,)x ∈+∞恒成立,即2cos cos x x a -<在(0,)x ∈+∞恒成立 令[]cos ,1,1x t t =∈-,则22()cos cos g x x x t t =-=-所以函数2()g x t t =-在11,2⎡⎤-⎢⎥⎣⎦上单调递减,在1,12⎛⎤ ⎥⎝⎦上单调递增,(1)2(1)0g g -=>= 所以2a > 故选:D【点睛】利用函数的单调性解抽象不等式以及不等式的恒成立问题,属于中档题.二.多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分.9.设11,,1,32α⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=的定义域是R ,且为奇函数的α值可以是( )A. 1-B.12C. 1D. 3【答案】CD 【解析】 【分析】求出对应α值函数y x α=的定义域,利用奇偶性的定义判断即可.【详解】当α的值为11,2-时,函数y x α=的定义域分别为()(),00,-∞+∞,[)0,+∞当1α=时,函数y x =的定义域为R ,令()f x x =,()()f x x f x -=-=-,则函数y x =为R 上的奇函数当3α=时,函数3y x =的定义域为R ,令3()f x x =,3()()f x x f x -=-=-,则函数3y x=为R 上的奇函数故选:CD【点睛】本题主要考查了判断函数的奇偶性,属于基础题. 10.要得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数sin y x =的图象上所有的点( ) A. 向右平行移动5π个单位长度,再把所得各点的横坐标缩短到原来的12倍B. 向右平行移动10π个单位长度,再把所得各点的横坐标缩短到原来的12倍C. 横坐标缩短到原来的12倍,再把所得各点向右平行移动5π个单位长度D. 横坐标缩短到原来的12倍,再把所得各点向右平行移动10π个单位长度【答案】AD 【解析】 【分析】由正弦函数的伸缩变换以及平移变换一一判断选项即可. 【详解】将函数sin y x =的图象上所有的点向右平行移动5π个单位长度,得到函数n 5si y x π⎛⎫=- ⎪⎝⎭的图象,再把所得各点的横坐标缩短到原来的12倍,得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,故A 正确;将函数sin y x =的图象上所有的点向右平行移动10π个单位长度,得到函数sin 10y x π⎛⎫=- ⎪⎝⎭的图象,再把所得各点的横坐标缩短到原来的12倍,得到sin 210y x π⎛⎫=- ⎪⎝⎭的图象,故B 错误;将函数sin y x =的图象上所有的点横坐标缩短到原来的12倍,得到sin 2y x =的图象,再把所得各点向右平行移动5π个单位长度,得到25sin 2y x π⎛⎫=-⎪⎝⎭的图象,故C 错误; 将函数sin y x =的图象上所有的点横坐标缩短到原来的12倍,得到sin 2y x =的图象,再把所得各点向右平行移动10π个单位长度,得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,故D 正确;故选:AD【点睛】本题主要考查了正弦函数的伸缩变换以及平移变换,属于基础题.11.对于函数()sin(cos )f x x =,下列结论正确的是( ) A. ()f x 为偶函数B. ()f x 的一个周期为2πC. ()f x 的值域为[sin1,sin1]-D. ()f x 在[]0,π单调递增【答案】ABC 【解析】 【分析】利用奇偶性的定义以及周期的定义判断A ,B 选项;利用换元法以及正弦函数的单调性判断C 选项;利用复合函数的单调性判断方法判断D 选项. 【详解】函数()f x 的定义域为R ,关于原点对称()()()()sin cos sin cos ()f x x x f x -=-==,则函数()f x 偶函数,故A 正确;()()()sin co 22s sin cos ()f x x x f x ππ+=+==⎡⎤⎣⎦,则函数()f x 的一个周期为2π,故B正确;令[]cos ,1,1t x t =∈-,则()sin f x t =,由于函数sin y t=[]1,1-上单调递增,则()sin 1()sin1sin1()sin1f x f x -≤≤⇒-≤≤,故C 正确;当[]0,x π∈时,函数cos t x =为减函数,由于[]cos 0,1t x =∈,则函数sin y t =在0,1上为增函数,所以函数()f x 在[]0,π单调递减,故D 错误; 故选:ABC【点睛】本题主要考查了判断函数的奇偶性,周期性,求函数值域,复合函数的单调性,属于中档题.12.已知()f x 为R 上的奇函数,且当0x >时,()lg f x x =.记()sin ()cos g x x f x x =+⋅,下列结论正确的是( ) A. ()g x 为奇函数B. 若()g x 的一个零点为0x ,且00x <,则()00lg tan 0x x --=C. ()g x 在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为3个 D. 若()g x 大于1的零点从小到大依次为12,,x x ,则1223x x ππ<+<【答案】ABD 【解析】 【分析】根据奇偶性的定义判断A 选项;将()0g x =等价变形为tan ()x f x =-,结合()f x 的奇偶性判断B 选项,再将零点问题转化为两个函数的交点问题,结合函数()g x 的奇偶性判断C 选项,结合图象,得出12,x x 的范围,由不等式的性质得出12x x +的范围. 【详解】由题意可知()g x 的定义域为R ,关于原点对称因为()()()sin ()cos sin ()cos ()g x x f x x x f x x g x -=-+-⋅-=--⋅=-,所以函数()g x 为奇函数,故A 正确; 假设cos 0x =,即,2x k k Z ππ=+∈时,sin ()co cos s sin 02x k x f x k πππ⎛⎫++⋅==≠ ⎪⎝⎭所以当,2x k k Z ππ=+∈时,()0g x ≠当,2x k k Z ππ≠+∈时,sin ()cos 0tan ()x f x x x f x +⋅=⇔=-当00x <,00x ->,则()000()()lg f x f x x =--=--由于()g x 的一个零点为0x , 则()()00000tan ()lg t lg an 0x x f x x x =-=⇒--=-,故B 正确;当0x >时,令12tan ,lg y x y x ==-,则()g x 大于0的零点为12tan ,lg y x y x ==-的交点,由图可知,函数()g x 在区间()0,π的零点有2个,由于函数()g x 为奇函数,则函数()g x 在区间,02π⎛⎫-⎪⎝⎭的零点有1个,并且(0)sin 0(0)cos00g f =+⋅= 所以函数在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为4个,故C 错误;由图可知,()g x 大于1的零点123,222x x ππππ<<<< 所以1223x x ππ<+< 故选:ABD【点睛】本题主要考查了判断函数的奇偶性以及判断函数的零点个数,属于较难题. 三、填空题:本大题共4题,每小题5分,共20分.13.函数()1xf x a =+(0a >且1a ≠)的图象恒过点__________【答案】()0,2 【解析】分析:根据指数函数xy a =过()0,1可得结果.详解:由指数函数的性质可得xy a =过()0,1,所以1xy a =+过()0,2,故答案为()0,2.点睛:本题主要考查指数函数的简单性质,属于简单题. 14.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【答案】6π 【解析】 【分析】由扇形面积公式求出扇形半径,根据扇形弧长公式即可求解.【详解】设扇形的半径为r 由扇形的面积公式得:216212r ππ=⨯,解得2r该扇形的弧长为2126ππ⨯=故答案为:6π 【点睛】本题主要考查了扇形面积公式以及弧长公式,属于基础题. 15.函数()2sin 23f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的值域为______;【答案】[2] 【解析】 【分析】由x 的范围,确定23x π-的范围,利用换元法以及正弦函数的单调性,即可得出答案.【详解】0,2x π⎡⎤∈⎢⎥⎣⎦,22,333x πππ⎡⎤∴-∈-⎢⎥⎣⎦令22,333t x πππ⎡⎤=-∈-⎢⎥⎣⎦,函数()2sin g t t =在,32ππ⎡⎤-⎢⎥⎣⎦上单调递增,在2,23ππ⎡⎤⎢⎥⎣⎦上单调递减2si ()(n 33)g ππ--==2si 2()2n 2g ππ==, 222sin (3)3g ππ==所以函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的值域为[2]故答案为:[2]【点睛】本题主要考查了正弦型函数的值域,属于中档题. 16.已知函数1()f x x=,()2sin g x x =,则函数()f x 图象的对称中心为_____,函数()y f x =的图象与函数()y g x =的图象所有交点的横坐标与纵坐标之和为____. 【答案】 (1). (0,0) (2). 0 【解析】 【分析】判断函数()f x ,()g x 为奇函数,即可得出函数()f x ,()g x 图象的对称中心都为原点; 根据对称性即可得出所有交点的横坐标与纵坐标之和. 【详解】1()()f x f x x-=-=-,则函数()f x 为奇函数,即函数()f x 图象的对称中心为(0,0) ()()2sin 2sin ()g x x x g x -=-=-=-,则函数()g x 为奇函数,即函数()g x 的对称中心为(0,0)所以函数()y f x =的图象与函数()y g x =的图象所有交点都关于原点对称 即所有交点的横坐标之和为0,纵坐标之和也为0则函数()y f x =的图象与函数()y g x =的图象所有交点的横坐标与纵坐标之和为0 故答案为:(0,0);0【点睛】本题主要考查了函数奇偶性的应用以及对称性的应用,属于中档题.四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.已知α为锐角,且3cos 5α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)求cos sin(2)2παπα⎛⎫-+-⎪⎝⎭的值. 【答案】(1)-7(2)4425【解析】 【分析】(1)利用平方关系以及商数关系得出tan α,再利用两角和的正切公式求解即可; (2)利用诱导公式以及二倍角的正弦公式求解即可. 【详解】解:(1)因为α为锐角,且3cos 5α=. 所以24sin 1cos 5αα, 所以sin 4tan cos 3ααα==, 所以41tan tan34tan 7441tan tan 1143παπαπα++⎛⎫+===- ⎪⎝⎭--⨯. (2)因为cos sin 2παα⎛⎫-=⎪⎝⎭, sin(2)sin 2παα-=,所以cos sin(2)sin sin 22παπααα⎛⎫-+-=+ ⎪⎝⎭sin 2sin cos ααα=+4432555=+⨯⨯ 4425= 【点睛】本题主要考查了两角和的正切公式,诱导公式,二倍角的正弦公式,属于中档题. 18.已知集合{}|2216xA x =<<,{|sin 0,(0,2)}B x x x π=>∈. (1)求AB ;(2)集合{|1}C x x a =<<()a ∈R ,若AC C =,求a 的取值范围.【答案】(1){|04}A B x x ⋃=<<(2)4a 【解析】 【分析】(1)利用指数函数以及正弦函数的性质化简集合,A B ,再求并集即可;(2)由题设条件得出C A ⊆,分别讨论集合C =∅和C ≠∅的情况,即可得出答案.【详解】解:(1)依题意{|14}A x x =<<,{|0}B x x π=<<,所以{|04}A B x x ⋃=<<. (2)因为AC C =,所以C A ⊆.①当C =∅时,1a ,满足题意;②当C ≠∅时,1a >,因为C A ⊆,得4a ≤,所以14a <; 综上,4a .【点睛】本题主要考查了集合的并集运算以及根据集合间的包含关系求参数范围,属于中档题.19.已知函数()2sin (sin cos )f x x x x =⋅+. (1)求()f x 的最小正周期; (2)求()f x 的单调区间.【答案】(1)最小正周期为π.(2)单调递增区间为3,()88k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ,()f x 的单调递减区间为37,()88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .【解析】 【分析】利用倍角公式以及辅助角公式化简函数()f x ,根据周期公式得出第一问;根据正弦函数的单调增区间和减区间求()f x 的单调区间,即可得出第二问. 【详解】解:因为2()2sin 2sin cos f x x x x =+⋅22sin sin 2x x =+1cos2sin2x x =-+ sin2cos21x x =-+214x π⎛⎫=-+ ⎪⎝⎭(1)所以函数()f x 的最小正周期为22T ππ==.(2)由222,242k x k k πππππ-+-+∈Z ,得3222,44k x k k ππππ-++∈Z , 即3,88k xk k ππππ-++∈Z , 所以()f x 的单调递增区间为3,()88k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ,同理可得,()f x 的单调递减区间为37,()88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .【点睛】本题主要考查了求正弦型函数的最小正周期以及单调区间,属于中档题. 20.已知2()1x af x x bx +=++是定义在[1,1]-上的奇函数. (1)求a 与b 的值;(2)判断()f x 的单调性,并用单调性定义加以证明; (3)若[0,2)απ∈时,试比较(sin )f α与(cos )f α的大小.【答案】(1)0a =. 0b =.(2)()f x 在[1,1]-单调递增.见解析 (3)见解析 【解析】 【分析】(1)根据奇函数的性质得出(0)0f =,(1)(1)f f -=-,求解方程,即可得出a 与b 的值; (2)利用函数单调性的定义证明即可;(3)分别讨论α的取值使得sin cos αα=,sin cos αα<,sin cos αα>,结合函数()f x 的单调性,即可得出(sin )f α与(cos )f α的大小.【详解】解:(1)因为()f x 是定义在[1,1]-上的奇函数,所以(0)0f =,得0a =.又由(1)(1)f f -=-,得到1122b b -=--+,解得0b =. (2)由(1)可知2()1xf x x =+,()f x 在[1,1]-上为增函数.证明如下:任取12,[1,1]x x ∈-且设12x x <, 所以()()1212221211x x f x f x x x -=-++()()22121212221211x x x x x x x x +--=++ ()()()()122112221211x x x x x x x x -+-=++()()()()21122212111x x x x xx --=++由于12x x <且12,[1,1]x x ∈-,所以210x x ->,且2110x x -<,又2110x +>,2210x +>,所以()()()()211222121011x x x x xx --<++,所以()()12f x f x <,从而()f x 在[1,1]-单调递增. (3)当4πα=或54πα=时,sin cos αα=,所以(sin )(cos )f f αα=;当04πα<或524παπ<<时,sin cos αα<, 又因为sin [1,1]α∈-,cos [1,1]α∈-,且()f x 在[1,1]-上为增函数,所以(sin )(cos )f f αα<当544ππα<<时,sin cos αα>,同理可得(sin )(cos )f f αα>; 综上,当4πα=或54πα=时,(sin )(cos )f f αα=;当50,,244ππαπ⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭时,(sin )(cos )f f αα<;当5,44ππα⎛⎫∈ ⎪⎝⎭时,(sin )(cos )f f αα>.【点睛】本题主要考查由函数的奇偶性求参数,判断函数的单调性以及利用单调性比较函数值大小,属于中档题.21.海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表: .(1)设港口在x 时刻的水深为y 米,现给出两个函数模型:sin()(0,0,)y A x h A ωϕωπϕπ=++>>-<<和2(0)y ax bx c a =++≠.请你从两个模型中选择更为合适的函数模型来建立这个港口的水深与时间的函数关系式(直接选择模型,无需说明理由);并求出7x =时,港口的水深.(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),问该船何时能进入港口,何时应离开港口?一天内货船可以在港口呆多长时间?【答案】(1)选择函数模型Asin()y x h ωϕ=++更适合. 水深为3米 (2)货船可以在1时进入港口,在5时出港;或者在13时进港,17时出港.一天内货船可以在港口呆的时间为8小时. 【解析】 【分析】(1)观察表格中水深的变化具有周期性,则选择函数模型Asin()y x h ωϕ=++更适合,由表格数据得出,,,A h ωϕ的值,将7x =代入解析式求解即可; (2)由题意 5.5y 时,船可以进港,解不等式2.5sin4.255.56x π+,得出x 的范围,由x的范围即可确定进港,出港,一天内在港口呆的时间. 【详解】解:(1)选择函数模型Asin()y x h ωϕ=++更适合因为港口在0:00时刻的水深为4.25米,结合数据和图象可知 4.25h =6.75 1.752.52A -==因为12T =,所以22126T πππω===, 所以 2.5sin 4.256y x πϕ⎛⎫=++⎪⎝⎭, 因为0x =时, 4.25y =,代入上式得sin 0ϕ=,因为πϕπ-<<,所以0ϕ=, 所以 2.5sin4.256y x π=+.当7x =时,712.5sin4.25 2.5 4.25362y π⎛⎫=+=⨯-+= ⎪⎝⎭, 所以在7x =时,港口的水深为3米(2)因为货船需要的安全水深是4 1.5 5.5+=米, 所以 5.5y 时,船可以进港, 令2.5sin4.255.56x π+,则1sin62xπ, 因为024x <,解得15x 或1317x ,所以货船可以在1时进入港口,在5时出港;或者在13时进港,17时出港. 因为(51)(173)8-+-=,一天内货船可以在港口呆的时间为8小时. 【点睛】本题主要考查了三角函数在生活中的应用,属于中档题. 22.已知函数3(1)log (1)f x a x +=+,且(2)1f =. (1)求()f x 的解析式;(2)已知()f x 的定义域为[2,)+∞. (ⅰ)求()41xf +的定义域;(ⅱ)若方程()()412xxf f k k x +-⋅+=有唯一实根,求实数k 取值范围.【答案】(1)2()log f x x =(2)(ⅰ)[0,)+∞.(ⅱ)1k = 【解析】 【分析】(1)利用换元法以及(2)1f =,即可求解()f x 的解析式;(2)(ⅰ)解不等式412x +≥,即可得出()41xf +的定义域;(ⅱ)根据()41xf +,()2x f k k ⋅+的定义域得出1k ,结合函数()f x 的解析式将方程化为()2(1)2210x x k k -⋅+⋅-=,利用换元法得出2()(1)1,[1,)g t k t k t t =-+⋅-∈+∞,讨论k的值,结合二次函数的性质即可得出实数k 的取值范围.【详解】解:(1)令1(0)t x t =+>,则3()log f t a t =,所以3()log f x a x =, 因为3(2)log 21f a ==,所以231log 3log 2a ==, 所以3232()log log 3log log f x a x x x ==⨯= (2)(ⅰ)因为()f x 的定义域为[2,)+∞, 所以412x +≥,解得0x , 所以()41xf +的定义域为[0,)+∞.(ⅱ)因为0,22,x x k k ⎧⎨⋅+⎩,所以221xk +在[0,)+∞恒成立, 因为221x y =+在[0,)+∞单调递减,所以221x y =+最大值为1,所以1k .又因为()()412xxf f k k x +-⋅+=,所以()()22log 41log 2xxk k x +-⋅+=, 化简得()2(1)2210xx k k -⋅+⋅-=,令2(1)xt t =,则2(1)10k t k t -⋅+⋅-=在[1,)+∞有唯一实数根, 令2()(1)1,[1,)g t k t k t t =-+⋅-∈+∞,当1k =时,令()0g t =,则1t =,所以21x =,得0x =符合题意,所以1k =; 当1k >时,2440k k ∆=+->,所以只需(1)220g k =-,解得1k ,因为1k >,所以此时无解; 综上,1k =.【点睛】本题主要考查了利用换元法求函数解析式以及根据函数的零点确定参数的范围,属于较难题.。
2020-2021上海久隆模范中学高一数学上期末第一次模拟试卷(含答案)

2020-2021上海久隆模范中学高一数学上期末第一次模拟试卷(含答案)一、选择题1.已知集合21,01,2A =--{,,},{}|(1)(2)0B x x x =-+<,则A B =I ( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}0,1,22.函数y =a |x |(a >1)的图像是( ) A .B .C .D .3.定义在R 上的偶函数()f x 满足:对任意的1x ,212[0,)()x x x ∈+∞≠,有2121()()0f x f x x x -<-,则( ).A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-4.函数()2sin f x x x =的图象大致为( )A .B .C .D .5.已知函数()()y f x x R =∈满足(1)()0f x f x ++-=,若方程1()21f x x =-有2022个不同的实数根i x (1,2,3,2022i =L ),则1232022x x x x ++++=L ( ) A .1010 B .2020 C .1011D .20226.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48) A .1033 B .1053 C .1073D .10937.定义在[]7,7-上的奇函数()f x ,当07x <≤时,()26xf x x =+-,则不等式()0f x >的解集为A .(]2,7B .()(]2,02,7-UC .()()2,02,-+∞UD .[)(]7,22,7--U8.偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos 12xf x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( )A .()3,5B .()2,4C .11,42⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭9.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( )A .1B .2C .3D .410.函数()f x 是周期为4的偶函数,当[]0,2x ∈时,()1f x x =-,则不等式()0xf x >在[]1,3-上的解集是 ( ) A .()1,3B .()1,1-C .()()1,01,3-UD .()()1,00,1-U11.已知函数f (x )=x (e x +ae ﹣x )(x ∈R ),若函数f (x )是偶函数,记a=m ,若函数f (x )为奇函数,记a=n ,则m+2n 的值为( ) A .0B .1C .2D .﹣112.函数()()212ln 12f x x x =-+的图象大致是( ) A .B .C .D .二、填空题13.若函数(),021,01x x f x x mx m ≥⎧+=⎨<+-⎩在(),∞∞-+上单调递增,则m 的取值范围是__________.14.若关于x 的方程42x x a -=有两个根,则a 的取值范围是_________15.函数22log (56)y x x =--单调递减区间是 .16.若点(4,2)在幂函数()f x 的图像上,则函数()f x 的反函数1()f x -=________.17.已知11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,若幂函数()af x x =为奇函数,且在()0,∞+上递减,则a的取值集合为______. 18.若函数()121xf x a =++是奇函数,则实数a 的值是_________. 19.若函数()242xx f x a a =+-(0a >,1a ≠)在区间[]1,1-的最大值为10,则a =______.20.已知函数1,0()ln 1,0x x f x x x ⎧+≤=⎨->⎩,若方程()()f x m m R =∈恰有三个不同的实数解()a b c a b c <<、、,则()a b c +的取值范围为______;三、解答题21.已知函数()log (12)a f x x =+,()log (2)a g x x =-,其中0a >且1a ≠,设()()()h x f x g x =-.(1)求函数()h x 的定义域; (2)若312f ⎛⎫=-⎪⎝⎭,求使()0h x <成立的x 的集合. 22.已知函数()()sin ωφf x A x B =++(0A >,0>ω,2πϕ<),在同一个周期内,当6x π=时,()f x取得最大值2,当23x π=时,()f x取得最小值2-. (1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间. (2)将函数()f x 的图象向左平移12π个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤⎢⎥⎣⎦有2个不同的实数解,求实数a 的取值范围.23.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2019年不仅净利润创下记录,海外增长同祥强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投人固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210200,040()100008019450,40x x x R x x x x ⎧+<<⎪=⎨+-⎪⎩…,由市场调研知,每部手机售价0.8万元,且全年内生产的手机当年能全部销售完.(Ⅰ)求出2020年的利润()Q x (万元)关于年产量x (千部)的函数关系式(利润=销售额-成本);(Ⅱ)2020年产量x 为多少(千部)时,企业所获利润最大?最大利润是多少? (说明:当0a >时,函数ay x x=+在单调递减,在)+∞单调递增) 24.设函数()()2log xxf x a b=-,且()()211,2log 12f f ==.(1)求a b ,的值; (2)求函数()f x 的零点;(3)设()xxg x a b =-,求()g x 在[]0,4上的值域.25.某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S 中的成员仅以自驾或公交方式通勤.分析显示:当S 中%x (0100x <<)的成员自驾时,自驾群体的人均通勤时间为()30030180029030100x f x x x x <≤⎧⎪=⎨+-<<⎪⎩,,(单位:分钟),而公交群体的人均通勤时间不受x 影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间? (2)求该地上班族S 的人均通勤时间()g x 的表达式;讨论()g x 的单调性,并说明其实际意义.26.已知()log a f x x =,()()()2log 2201,1,a g x x a a a =+>+≠∈R ,()1h x x x=+. (1)当[)1,x ∈+∞时,证明:()1h x x x=+为单调递增函数; (2)当[]1,2x ∈,且()()()F x g x f x =-有最小值2时,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】 【详解】由已知得{}|21B x x =-<<,因为21,01,2A =--{,,},所以{}1,0A B ⋂=-,故选A .2.B解析:B 【解析】因为||0x ≥,所以1x a ≥,且在(0,)+∞上曲线向下弯曲的单调递增函数,应选答案B .3.A解析:A 【解析】由对任意x 1,x 2 ∈ [0,+∞)(x 1≠x 2),有()()1212f x f x x x -- <0,得f (x )在[0,+∞)上单独递减,所以(3)(2)(2)(1)f f f f <=-<,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行4.C解析:C 【解析】 【分析】根据函数()2sin f x x x =是奇函数,且函数过点[],0π,从而得出结论.【详解】由于函数()2sin f x x x =是奇函数,故它的图象关于原点轴对称,可以排除B 和D ;又函数过点(),0π,可以排除A ,所以只有C 符合. 故选:C . 【点睛】本题主要考查奇函数的图象和性质,正弦函数与x 轴的交点,属于基础题.5.C解析:C 【解析】 【分析】 函数()f x 和121=-y x 都关于1,02⎛⎫⎪⎝⎭对称,所有1()21f x x =-的所有零点都关于1,02⎛⎫⎪⎝⎭对称,根据对称性计算1232022x x x x ++++L 的值. 【详解】()()10f x f x ++-=Q ,()f x ∴关于1,02⎛⎫⎪⎝⎭对称,而函数121=-y x 也关于1,02⎛⎫⎪⎝⎭对称, ()121f x x ∴=-的所有零点关于1,02⎛⎫⎪⎝⎭对称,()121f x x ∴=-的2022个不同的实数根i x (1,2,3,2022i =L ), 有1011组关于1,02⎛⎫ ⎪⎝⎭对称,122022...101111011x x x ∴+++=⨯=.故选:C 【点睛】本题考查根据对称性计算零点之和,重点考查函数的对称性,属于中档题型.6.D解析:D 【解析】试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即M N 最接近9310,故选D.【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log n a a M n M =.7.B解析:B 【解析】 【分析】当07x <≤时,()f x 为单调增函数,且(2)0f =,则()0f x >的解集为(]2,7,再结合()f x 为奇函数,所以不等式()0f x >的解集为(2,0)(2,7]-⋃.【详解】当07x <≤时,()26xf x x =+-,所以()f x 在(0,7]上单调递增,因为2(2)2260f =+-=,所以当07x <≤时,()0f x >等价于()(2)f x f >,即27x <≤,因为()f x 是定义在[7,7]-上的奇函数,所以70x -≤< 时,()f x 在[7,0)-上单调递增,且(2)(2)0f f -=-=,所以()0f x >等价于()(2)f x f >-,即20x -<<,所以不等式()0f x >的解集为(2,0)(2,7]-⋃ 【点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题.应注意奇函数在其对称的区间上单调性相同,偶函数在其对称的区间上单调性相反.8.D解析:D 【解析】试题分析:由()()2f x f x =-,可知函数()f x 图像关于1x =对称,又因为()f x 为偶函数,所以函数()f x 图像关于y 轴对称.所以函数()f x 的周期为2,要使函数()()log a g x f x x =-有且仅有三个零点,即函数()y f x =和函数log a y x =图形有且只有3个交点.由数形结合分析可知,0111{log 31,53log 51a a a a <<>-⇒<<<-,故D 正确. 考点:函数零点【思路点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.9.B解析:B 【解析】 【分析】根据零点存在定理判断023x <<,从而可得结果. 【详解】 因为()2ln f x x x=-在定义域内递增, 且()2ln 210f =-<,()23ln 303f =->, 由零点存在性定理可得023x <<,根据[]x 表示不超过实数x 的最大整数可知()02g x =, 故选:B. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.10.C解析:C 【解析】若[20]x ∈-,,则[02]x -∈,,此时1f x x f x -=--Q (),()是偶函数,1f x x f x ∴-=--=()(), 即1[20]f x x x =--∈-(),,, 若[24]x ∈, ,则4[20]x -∈-,, ∵函数的周期是4,4413f x f x x x ∴=-=---=-()()(),即120102324x x f x x x x x ---≤≤⎧⎪=-≤≤⎨⎪-≤≤⎩,(),, ,作出函数f x ()在[13]-, 上图象如图, 若03x ≤<,则不等式0xf x ()> 等价为0f x ()> ,此时13x <<, 若10x -≤≤ ,则不等式0xfx ()>等价为0f x ()< ,此时1x -<<0 , 综上不等式0xf x ()> 在[13]-, 上的解集为1310.⋃-(,)(,)故选C.【点睛】本题主要考查不等式的求解,利用函数奇偶性和周期性求出对应的解析式,利用数形结合是解决本题的关键.11.B解析:B 【解析】试题分析:利用函数f (x )=x (e x +ae ﹣x )是偶函数,得到g (x )=e x +ae ﹣x 为奇函数,然后利用g (0)=0,可以解得m .函数f (x )=x (e x +ae ﹣x )是奇函数,所以g (x )=e x +ae ﹣x 为偶函数,可得n ,即可得出结论.解:设g (x )=e x +ae ﹣x ,因为函数f (x )=x (e x +ae ﹣x )是偶函数,所以g (x )=e x +ae ﹣x 为奇函数.又因为函数f (x )的定义域为R ,所以g (0)=0, 即g (0)=1+a=0,解得a=﹣1,所以m=﹣1.因为函数f (x )=x (e x +ae ﹣x )是奇函数,所以g (x )=e x +ae ﹣x 为偶函数 所以(e ﹣x +ae x )=e x +ae ﹣x 即(1﹣a )(e ﹣x ﹣e x )=0对任意的x 都成立 所以a=1,所以n=1, 所以m+2n=1 故选B .考点:函数奇偶性的性质.12.A解析:A 【解析】函数有意义,则:10,1x x +>∴>-, 由函数的解析式可得:()()21002ln 0102f =⨯-+=,则选项BD 错误; 且211111112ln 1ln ln 402222848f ⎛⎫⎛⎫⎛⎫-=⨯--⨯-+=-=+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则选项C 错误; 本题选择A 选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.二、填空题13.【解析】【分析】由题意根据函数在区间上为增函数及分段函数的特征可求得的取值范围【详解】∵函数在上单调递增∴函数在区间上为增函数∴解得∴实数的取值范围是故答案为【点睛】解答此类问题时要注意两点:一是根 解析:(0,3]【解析】 【分析】由题意根据函数1y mx m =+-在区间(),0-∞上为增函数及分段函数的特征,可求得m 的取值范围. 【详解】∵函数(),021,01x x f x x mx m ≥⎧+=⎨<+-⎩在(),-∞+∞上单调递增,∴函数1y mx m =+-在区间(),0-∞上为增函数, ∴01212m m >⎧⎨-≤+=⎩,解得03m <≤, ∴实数m 的取值范围是(0,3]. 故答案为(0,3]. 【点睛】解答此类问题时要注意两点:一是根据函数()f x 在(),-∞+∞上单调递增得到在定义域的每一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档题.14.【解析】【分析】令可化为进而求有两个正根即可【详解】令则方程化为:方程有两个根即有两个正根解得:故答案为:【点睛】本题考查复合函数所对应的方程根的问题关键换元法的使用难度一般解析:1(,0)4-【解析】 【分析】令20x t =>,42x x a -=,可化为20t t a --=,进而求20t t a --=有两个正根即可. 【详解】令20x t =>,则方程化为:20t t a --=Q 方程42x x a -=有两个根,即20t t a --=有两个正根,1212140100a x x x x a ∆=+>⎧⎪∴+=>⎨⎪⋅=->⎩,解得:104a -<<.故答案为: 1(,0)4-. 【点睛】本题考查复合函数所对应的方程根的问题,关键换元法的使用,难度一般.15.【解析】【分析】先求出函数的定义域找出内外函数根据同增异减即可求出【详解】由解得或所以函数的定义域为令则函数在上单调递减在上单调递增又为增函数则根据同增异减得函数单调递减区间为【点睛】复合函数法:复 解析:(,1)-∞-【解析】 【分析】先求出函数的定义域,找出内外函数,根据同增异减即可求出. 【详解】由2560x x -->,解得6x >或1x <-,所以函数22log (56)y x x =--的定义域为(,1)(6,)-∞-+∞U .令256u x x =--,则函数256u x x =--在(),1-∞-上单调递减,在()6,+∞上单调递增,又2log y u =为增函数,则根据同增异减得,函数22log (56)y x x =--单调递减区间为(,1)-∞-.【点睛】复合函数法:复合函数[]()y f g x =的单调性规律是“同则增,异则减”,即()y f u =与()u g x =若具有相同的单调性,则[]()y f g x =为增函数,若具有不同的单调性,则[]()y f g x =必为减函数.16.【解析】【分析】根据函数经过点求出幂函数的解析式利用反函数的求法即可求解【详解】因为点在幂函数的图象上所以解得所以幂函数的解析式为则所以原函数的反函数为故答案为:【点睛】本题主要考查了幂函数的解析式 解析:2(0)x x ≥【解析】【分析】根据函数经过点(4,2)求出幂函数的解析式,利用反函数的求法,即可求解.【详解】因为点(4,2)在幂函数()()f x x R αα=∈的图象上,所以24α=,解得12α=, 所以幂函数的解析式为12y x =,则2x y =,所以原函数的反函数为12()(0)fx x x -=≥. 故答案为:12()(0)fx x x -=≥【点睛】本题主要考查了幂函数的解析式的求法,以及反函数的求法,其中熟记反函数的求法是解答的关键,着重考查了推理与运算能力,属于基础题. 17.【解析】【分析】由幂函数为奇函数且在上递减得到是奇数且由此能求出的值【详解】因为幂函数为奇函数且在上递减是奇数且故答案为:【点睛】本题主要考查幂函数的性质等基础知识考查运算求解能力考查函数与方程思想 解析:{}1-【解析】【分析】由幂函数()af x x =为奇函数,且在(0,)+∞上递减,得到a 是奇数,且0a <,由此能求出a 的值.【详解】 因为11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,幂函数为奇()a f x x =函数,且在(0,)+∞上递减, a ∴是奇数,且0a <,1a ∴=-.故答案为:1-.【点睛】本题主要考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.【解析】【分析】由函数是奇函数得到即可求解得到答案【详解】由题意函数是奇函数所以解得当时函数满足所以故答案为:【点睛】本题主要考查了利用函数的奇偶性求解参数问题其中解答中熟记奇函数的性质是解答的关键解析:12- 【解析】【分析】由函数()f x 是奇函数,得到()010021f a =+=+,即可求解,得到答案. 【详解】由题意,函数()121x f x a =++是奇函数,所以()010021f a =+=+,解得12a =-, 当12a =-时,函数()11212x f x =-+满足()()f x f x -=-, 所以12a =-. 故答案为:12-. 【点睛】 本题主要考查了利用函数的奇偶性求解参数问题,其中解答中熟记奇函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.19.2或【解析】【分析】将函数化为分和两种情况讨论在区间上的最大值进而求【详解】时最大值为解得时最大值为解得故答案为:或2【点睛】本题考查已知函数最值求参答题时需要结合指数函数与二次函数性质求解解析:2或12 【解析】【分析】将函数化为()2()26x f x a =+-,分01a <<和1a >两种情况讨论()f x 在区间[]1,1-上的最大值,进而求a .【详解】()242x x f x a a =+-()226x a =+-,11x -≤≤Q , 01a ∴<<时,1x a a a -<<,()f x 最大值为()21(1)2610f a --=+-=,解得12a = 1a >时,1x a a a -≤≤,()f x 最大值为()2(1)2610f a =+-=,解得2a =, 故答案为:12或2.【点睛】本题考查已知函数最值求参,答题时需要结合指数函数与二次函数性质求解.20.【解析】【分析】画出的图像根据图像求出以及的取值范围由此求得的取值范围【详解】函数的图像如下图所示由图可知令令所以所以故答案为:【点睛】本小题主要考查分段函数的图像与性质考查数形结合的数学思想方法属解析:)22,2e e ⎡--⎣【解析】【分析】画出()f x 的图像,根据图像求出+a b 以及c 的取值范围,由此求得()a b c +的取值范围.【详解】函数()f x 的图像如下图所示,由图可知1,22a b a b +=-+=-.令2ln 11,x x e -==,令ln 10,x x e -==,所以2e c e <≤,所以)2()22,2a b c c e e ⎡+=-∈--⎣. 故答案为:)22,2e e ⎡--⎣【点睛】本小题主要考查分段函数的图像与性质,考查数形结合的数学思想方法,属于基础题.三、解答题21.(1)1,22⎛⎫-⎪⎝⎭;(2)1,23⎛⎫ ⎪⎝⎭ 【解析】【分析】(1)由真数大于0列出不等式组求解即可;(2)由312f ⎛⎫=- ⎪⎝⎭得出14a =,再利用对数函数的单调性解不等式即可得出答案. 【详解】(1)要使函数有意义,则12020x x +>⎧⎨->⎩, 即122x -<<,故()h x 的定义域为1,22⎛⎫- ⎪⎝⎭. (2)∵312f ⎛⎫=-⎪⎝⎭,∴log (13)log 41a a +==-, ∴14a =, ∴1144()log (12)log (2)h x x x =+--,∵()0h x <,∴0212x x <-<+,得123x <<, ∴使()0h x <成立的的集合为1,23⎛⎫ ⎪⎝⎭.【点睛】 本题主要考查了求对数型函数的定义域以及由对数函数的单调性解不等式,属于中档题.22.(1)()262f x x π⎛⎫=++ ⎪⎝⎭,单调增区间为06,π⎡⎤⎢⎥⎣⎦,2π,π3轾犏犏臌;(2)a ∈⎣ 【解析】【分析】(1)由最大值和最小值求得,A B ,由最大值点和最小值点的横坐标求得周期,得ω,再由函数值(最大或最小值均可)求得ϕ,得解析式;(2)由图象变换得()g x 的解析式,确定()g x 在[0,]2π上的单调性,而()g x a =有两个解,即()g x 的图象与直线y a =有两个不同交点,由此可得.【详解】(1)由题意知2A B A B ⎧+=⎪⎪⎨⎪-+=-⎪⎩解得A =,2B =. 又22362T πππ=-=,可得2ω=.由6322fππϕ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,解得6π=ϕ.所以()262f x xπ⎛⎫=++⎪⎝⎭,由222262k x kπππππ-≤+≤+,解得36k x kππππ-≤≤+,k∈Z.又[]0,xπ∈,所以()f x的单调增区间为06,π⎡⎤⎢⎥⎣⎦,2π,π3轾犏犏臌.(2)函数()f x的图象向左平移12π个单位长度,再向下平移2个单位长度,得到函数()g x的图象,得到函数()g x的表达式为()23xg xπ⎛⎫=+⎪⎝⎭.因为0,2xπ⎡⎤∈⎢⎥⎣⎦,所以42,333xπππ⎡⎤+∈⎢⎥⎣⎦,()g x在[0,]12π是递增,在[,]122ππ上递减,要使得()g x a=在0,2π⎡⎤⎢⎥⎣⎦上有2个不同的实数解,即()y g x=的图像与y a=有两个不同的交点,所以2a∈⎣.【点睛】本题考查求三角函数解析式,考查图象变换,考查三角函数的性质.“五点法”是解题关键,正弦函数的性质是解题基础.23.(Ⅰ)()210600250,040,100009200,40.x x xQ xx xx⎧-+-<<⎪∴=⎨--+≥⎪⎩(Ⅱ)2020年年产量为100(千部)时,企业获得的利润最大,最大利润为9000万元.【解析】【分析】(Ⅰ)根据题意知利润等于销售收入减去可变成本及固定成本,分类讨论即可写出解析式(Ⅱ)利用二次函数求040x<<时函数的最大值,根据对勾函数求40x≥时函数的最大值,比较即可得函数在定义域上的最大值.【详解】(Ⅰ)当040x << 时,()()228001020025010600250Q x x x x x x =-+-=-+- ;当40x ≥时,()100001000080080194502509200Q x x x x x x ⎛⎫=-+--=--+ ⎪⎝⎭. ()210600250,040,100009200,40.x x x Q x x x x ⎧-+-<<⎪∴=⎨--+≥⎪⎩(Ⅱ)当040x <<时,()()210308750Q x x =--+, ()()max 308750Q x Q ∴==万元;当40x ≥时,()100009200Q x x x ⎛⎫=-++ ⎪⎝⎭ ,当且仅当100x =时, ()()max 1009000Q x Q ==万元.所以,2020年年产量为100(千部)时,企业获得的利润最大,最大利润为9000万元.【点睛】本题主要考查了分段函数,函数的最值,函数在实际问题中的应用,属于中档题.24.(1)4,2a b ==(2)2log x =(3)()[]0,240g x ∈ 【解析】【分析】(1)由()()211,2log 12f f ==解出即可(2)令()0f x =得421x x -=,即()22210xx --=,然后解出即可 (3)()42x x g x =-,令2x t =,转化为二次函数【详解】(1)由已知得()()()()222221log 12log log 12f a b f a b ⎧=-=⎪⎨=-=⎪⎩,即22212a b a b -=⎧⎨-=⎩, 解得4,2a b ==;(2)由(1)知()()2log 42x x f x =-,令()0f x =得421x x -=,即()22210x x --=,解得122x =,又20,2x x >∴=,解得2log x = (3)由(1)知()42x x g x =-,令2x t =,则()221124g t t t t ⎛⎫=-=-- ⎪⎝⎭,[]1,16t ∈, 因为()g t 在[]1,16t ∈上单调递增 所以()[]0,240g x ∈,25.(1) ()45100x ,∈时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)见解析.【解析】【分析】(1)由题意知求出f (x )>40时x 的取值范围即可;(2)分段求出g (x )的解析式,判断g (x )的单调性,再说明其实际意义.【详解】(1)由题意知,当30100x <<时,()180029040f x x x=+->, 即2659000x x -+>,解得20x <或45x >,∴()45100x ∈,时,公交群体的人均通勤时间少于自驾群体的人均通勤时间; (2)当030x <≤时,()()30%401%4010x g x x x =⋅+-=-; 当30100x <<时, ()()218013290%401%585010x g x x x x x x ⎛⎫=+-⋅+-=-+ ⎪⎝⎭; ∴()2401013585010x g x x x ⎧-⎪⎪=⎨⎪-+⎪⎩;当032.5x <<时,()g x 单调递减;当32.5100x <<时,()g x 单调递增;说明该地上班族S 中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点睛】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.26.(1)证明见解析(2)4a =【解析】【分析】(1)利用定义法证明函数的单调性,按照:设元、作差、变形、判断符号、下结论的步骤完成即可;(2)首先表示出()()()F x g x f x =-,再根据复合函数的单调性分类讨论可得。
2020-2021学年辽宁省大连市高一(上)期末数学试卷(附答案详解)

2020-2021学年辽宁省大连市高一(上)期末数学试卷一、单选题(本大题共8小题,共40.0分)1.“a⃗=b⃗ ”是“|a⃗|=|b⃗ |”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件2.若A=(−1,3),B={x|y=log2(2−x)},则A∩(∁R B)=()A. {x|3≤x}B. {x|−1<x<2}C. {x|2≤x<3}D. {x|x<3}3.若样本平均数为x.,总体平均数为μ,则()A. x.=μB. x.≈μC. μ是x.的估计值D. x.是μ的估计值4.如图所示,在正方形ABCD中,E为AB的中点,F为CE的中点,则AF⃗⃗⃗⃗⃗ =()A. 34AB⃗⃗⃗⃗⃗ +14AD⃗⃗⃗⃗⃗⃗B. 14AB⃗⃗⃗⃗⃗ +34AD⃗⃗⃗⃗⃗⃗C. 12AB⃗⃗⃗⃗⃗ +AD⃗⃗⃗⃗⃗⃗D. 34AB⃗⃗⃗⃗⃗ +12AD⃗⃗⃗⃗⃗⃗5.幂函数y=x−1及直线y=x,y=1,x=1将平面直角坐标系的第一象限分成八个“卦限”:①,②,③,④,⑤,⑥,⑦,⑧(如图所示),那么幂函数y=x12的图象经过的“卦限”是()A. ④⑦B. ④⑧C. ③⑧D. ①⑤6.从含有两件正品a1,a2和一件次品b的3件产品中,按先后顺序任意取出两件产品,每次取出后不放回,则取出的两件产品中恰有一件次品的概率是()A. 34B. 23C. 12D. 147. 基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt 描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT.有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为( )(ln2≈0.69)A. 1.2天B. 1.8天C. 2.5天D. 3.5天8. 已知函数f(x)={e x ,x ≥0lg(−x),x <0,若关于x 的方程f 2(x)+f(x)+t =0有三个不同的实根,则t 的取值范围是( )A. (−∞,−2]B. [1,+∞)C. [−2,1]D. (−∞,−2]∪[1,+∞)二、多选题(本大题共4小题,共20.0分)9. 设A ,B ,C 为三个事件,下列各式意义表述正确的是( )A. A −BC 表示事件A 不发生且事件B 和事件C 同时发生 B. A +B +C −表示事件A ,B ,C 中至少有一个没发生 C. A +B 表示事件A ,B 至少有一个发生D. A −B −C +A −BC −+AB −C −表示事件A ,B ,C 恰有一个发生10. 已知正数a ,b ,则下列不等式中恒成立的是( )A. a +b ≥2√abB. (a +b)(1a +1b )≥4 C. (a +b)2≥2(a 2+b 2)D. 2aba+b >√ab11. 下列结论正确的是( )A. 一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底B. 若a e 1⃗⃗⃗ +b e 2⃗⃗⃗ =c e 1⃗⃗⃗ +d e 2⃗⃗⃗ ,(a,b ,c ,d ∈R ,e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是单位向量),则a =c ,b =dC. 向量a ⃗ 与b ⃗ 共线⇔存在不全为零的实数λ1,λ2,使λ1a ⃗ +λ2b ⃗ =0⃗ D. 已知A ,B ,P 三点共线,O 为直线外任意一点,若OP ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗⃗ ,则x +y =1 12. 已知函数f(x)={|log 2x|(0<x <2)x 2−8x +13(x ≥2),若f(x)=a 有四个解x 1,x 2,x 3,x 4满足x 1<x 2<x 3<x 4,则下列命题正确的是( )A. 0<a <1B. x 1+2x 2∈(3,+∞)C. x 1+x 2+x 3+x 4∈(10,212)D. x 3∈[2,+∞)三、单空题(本大题共4小题,共20.0分) 13. lg2+lg5+2log 23的值为______ .14. 设a ⃗ ,b ⃗ 是两个不共线的向量,AB ⃗⃗⃗⃗⃗ =2a ⃗ −b ⃗ ,BC ⃗⃗⃗⃗⃗ =4a ⃗ +k b ⃗ ,A ,B ,C 三点共线,则k = ______ .15. 我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓放粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为______石;(结果四舍五入,精确到各位). 16. 已知定义在R 上函数f(x)=ln(√x 2+1−x)−e x −e −x e x +e −x+2x +1,已知定义在R 上函数y =g(x)满足g(x)+g(−x)=2,设函数f(x)与g(x)图象交点为(x 1,y 1),(x 2,y 2),(x n ,y n ),则f(2)+f(−2)的值为______ ;∑(n i=1x i +y i )的值为______ .(用n 表示) 四、解答题(本大题共6小题,共70.0分)17. 如图,已知M ,N ,P 是△ABC 三边BC ,CA ,AB 上的点,且BM ⃗⃗⃗⃗⃗⃗=14BC ⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗⃗ =14CA ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ =14AB ⃗⃗⃗⃗⃗ ,若AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,试用基底{a ⃗ ,b ⃗ }表示向量NP ⃗⃗⃗⃗⃗⃗ ,AM ⃗⃗⃗⃗⃗⃗ .18. 我国是世界上严重缺水的国家之一,某市为了制定合理的节水方案,对家庭用水进行了调查,通过抽样,获得了某年100个家庭的月均用水量(单位:t),将数据按照[0,1),[1,2),[2,3),[3,4),[4,5]分成5组,制成了如图所示的频率分布直方图.(Ⅰ)求图中a 的值;(Ⅱ)假设同组中的每个数据都用该组区间的中值点代替,估计全市家庭月均用水量的平均数.19. 已知函数f(x)=e x −ae −x 的反函数f −1(x)的图象经过点P(32,ln2).(Ⅰ)求函数f(x)的解析式;(Ⅱ)判断函数f(x)的奇偶性,并证明.20. 某项选拔共有四轮考核.每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为45、35、25、15,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手进入第四轮才被淘汰的概率;(Ⅱ)求该选手至多进入第三轮考核的概率.(注:本小题结果可用分数表示)21.定义满足性质“y=f(x)(x∈D),对任意x,y,x+y2∈D均满足f(x+y2)≥12[f(x)+f(y)],当且仅当x=y时等号成立”的函数叫M函数.(Ⅰ)下列函数(1)g(x)=−x2;(2)m(x)=x2;(3)ℎ(x)=e x;(4)g(x)=log2x是M 函数是_____(直接写出序号).(Ⅱ)选择(Ⅰ)中一个M函数,加以证明;(Ⅲ)试利用M函数解决下列问题:若实数m,n满足2m+2n=1,求m+n的最大值.22.已知函数f(x)=2log a(mx+b)−log a x,其中b∈R.(Ⅰ)若m=b=2,且x∈[14,2]时,f(x)的最小值是−2,求实数a的值;(Ⅱ)若m=2,0<a<1,且x∈[14,2]时,f(x)≤0恒成立,求实数b的取值范围;(Ⅲ)若a=2,b=1,∀t∈[12,1],函数g(x)=f(x)−log2x在区间[t,t+1]上的最大值与最小值的差不大于2,求正数m的取值范围.答案和解析1.【答案】A【解析】解:a ⃗ =b ⃗ 时,有|a ⃗ |=|b ⃗ |成立,是充分条件; |a ⃗ |=|b ⃗ |时,a ⃗ =b ⃗ 不一定成立,不是必要条件; 所以“a ⃗ =b ⃗ ”是“|a ⃗ |=|b ⃗ |”的充分不必要条件. 故选:A .分别判断充分性和必要性是否成立即可.本题考查了平面向量的基本概念与充分、必要条件的判断问题,是基础题.2.【答案】C【解析】解:B ={x|y =log 2(2−x)}={x|2−x >0}={x|x <2}, 则∁R B ={x|x ≥2},则A ∩(∁R B)={x|2≤x <3}, 故选:C .求出集合B 的等价条件,结合集合补集交集的定义进行求解即可.本题主要考查集合的基本运算,求出集合的等价条件,结合集合的基本运算是解决本题的关键.比较基础.3.【答案】D【解析】解:样本平均数为x .,总体平均数为μ, 统计学中,利用样本数据估计总体数据, ∴样本平均数x .是总体平均数μ的估计值. 故选:D .统计学中利用样本数据估计总体数据,可知样本平均数是总体平均数的估计值. 本题考查了利用样本数据估计总体数据的应用问题,是基础题.4.【答案】D【解析】本题主要考查了平面向量的基本定理的简单应用,属于基础题.根据题意得:AF ⃗⃗⃗⃗⃗ =12(AC ⃗⃗⃗⃗⃗ +AE ⃗⃗⃗⃗⃗ ),结合向量加法的四边形法则及平面向量的基本定理可求. 【解答】解:根据题意得:AF ⃗⃗⃗⃗⃗ =12(AC ⃗⃗⃗⃗⃗ +AE ⃗⃗⃗⃗⃗ ), 又AC⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ , 所以AF ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ )=34AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗⃗ . 故选D .5.【答案】D【解析】解:取x =12得y =(12)12=√12=√22∈(0,1),故在第⑤卦限;再取x =2得y =212=√2∈(1,2),故在第①卦限 故选:D .结合幂函数的五种形式,再代入12和2验证即可. 本题考查幂函数的图象,考查对函数图象的分析和理解.6.【答案】B【解析】解:从含有两件正品a 1,a 2和一件次品b 的3件产品中, 按先后顺序任意取出两件产品,每次取出后不放回, 基本事件总数n =3×2=6,取出的两件产品中恰有一件次品包含的基本事件个数m =2×1+1×2=4, 则取出的两件产品中恰有一件次品的概率是P =m n=46=23.故选:B .基本事件总数n =3×2=6,取出的两件产品中恰有一件次品包含的基本事件个数m =2×1+1×2=4,由此能求出取出的两件产品中恰有一件次品的概率.本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.【解析】【分析】根据所给模型求得r=0.38,令t=0,求得I,根据条件可得方程e0.38t=2,然后解出t即可.本题考查函数模型的实际运用,考查学生阅读理解能力,计算能力,属于中档题.【解答】解:把R0=3.28,T=6代入R0=1+rT,可得r=0.38,∴I(t)=e0.38t,当t=0时,I(0)=1,则e0.38t=2,≈1.8.两边取对数得0.38t=ln2,解得t=ln20.38故选:B.8.【答案】A【解析】解:设m=f(x),作出函数f(x)的图象如图:则m≥1时,m=f(x)有两个根,当m<1时,m=f(x)有1个根,若关于x的方程f2(x)+f(x)+t=0有三个不同的实根,则等价为m2+m+t=0有2个不同的实根,且m≥1或m<1,当m=1时,t=−2,此时由m2+m−2=0得m=1或m=−2,满足f(x)=1有两个根,f(x)=−2有1个根,满足条件当m≠1时,设ℎ(m)=m2+m+t,则ℎ(1)<0即可,即1+1+t<0,则t <−2, 综上t ≤−2, 故选:A .利用换元法设m =f(x),将方程转化为关于m 的一元二次方程,利用根的分布建立不等式关系进行求即可.本题主要考查方程根的个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合以及换元法是解决本题的关键.9.【答案】ACD【解析】解:根据题意,依次分析选项:对于A ,A −BC 表示事件A 不发生且事件B 和事件C 同时发生,A 正确,对于B ,A +B +C 表示事件A 、B 、C 至少一个发生,则A +B +C −表示事件ABC 都没有发生,B 错误,对于C ,A +B 表示事件A ,B 至少有一个发生,C 正确,对于D ,A −B −C 表示事件A 、B 不发生且事件C 发生,A −BC −事件A 、C 不发生且事件B 发生,AB −C −事件B 、C 不发生且事件A 发生,则A −B −C +A −BC −+AB −C −表示事件A ,B ,C 恰有一个发生, 故选:ACD .根据题意,依次分析选项是否正确,综合即可得答案. 本题考查对立,互斥事件的定义以及概率性质,10.【答案】AB【解析】解:A :当a >0,b >0时,由基本不等式得,a +b ≥2√ab ,当且仅当a =b 时取等号,A 成立;(a +b)(1a +1b )=2+b a +a b ≥2+2√a b ⋅ba =4,当且仅当a =b 时取等号,B 成立;2(a 2+b 2)−(a +b)2=a 2+b 2−2ab =(a −b)2≥0,则(a +b)2≤2(a 2+b 2),C 不恒成立;因为a +b ≥2√ab ,所以2ab ≤(a +b)√ab ,所以2aba+b ≤√ab ,当且仅当a =b 时取等号,D 不恒成立. 故选:AB .由已知结合基本不等式及不等式的性质分别检验各选项即可判断. 本题主要考查了基本不等式,不等式的性质的应用,属于中档题.11.【答案】CD【解析】 【分析】本题主要考查基底的概念、平面向量共线的充要条件、平面向量共线定理,属于中档题. 根据基底的概念即可判断选项A ;当e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是共线向量时即可判断选项B ;根据向量共线定理即可判断选项C ,D . 【解答】解:根据基底的概念可知,平面内不共线的向量都可以作为该平面内向量的基底,故A 错误;当e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是共线向量时,结论不一定成立,故B 错误;若a ⃗ 与b ⃗ 均为零向量,则显然符合题意,且存在不全为零的实数λ1,λ2,使得λ1a ⃗ +λ2b ⃗ =0⃗ ; 若a ⃗ ≠0⃗ ,则由两向量共线知,存在λ,使得b ⃗ =λa ⃗ ,即λa ⃗ −b ⃗ =0⃗ ,符合题意,故C 正确;由于A ,B ,P 三点共线,所以AB ⃗⃗⃗⃗⃗ ,AP⃗⃗⃗⃗⃗ 共线, 由共线向量定理可知,存在实数λ使得AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,即OP ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =λ(OB ⃗⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ ), 所以OP ⃗⃗⃗⃗⃗ =(1−λ)OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗⃗ , 故x =1−λ,y =λ, 所以x +y =1,故D 正确. 故选:CD .12.【答案】AC【解析】 【分析】本题考查函数零点与方程根的关系,考查数形结合思想,属于中档题.作函数f(x)={|log 2x|(0<x <2)x 2−8x +13(x ≥2)的图象,由图象可得x 1⋅x 2=1,x 3+x 4=8;从而逐项判断各选项即可得答案. 【解答】解:作函数f(x)={|log 2x|(0<x <2)x 2−8x +13(x ≥2)的图象如下,f(x)=a 有四个解,即y =a 与f(x)的图象有4个交点,x 1<x 2<x 3<x 4, 可得0<a <1,可知选项A 正确; 图象可得x 1⋅x 2=1, 则1x 1=x 2∵12<x 1<1,且1<x 2<2,∴1=x 1⋅x 2=1⋅x 1⋅2x 2≤1⋅(x 1+2x 2)2 令y =x 1+2x 2=x 1+2x 1,根据函数单调性可得y ∈(3,4.5).可知选项B 错误;∵12<x 1<1,且1<x 2<2,得1=x 1⋅x 2<(x 1+x 22)2,可得x 1+x 2>2,当且仅当x 1=x 2=1时,取等号. ∵x 3+x 4=8;∴x 1+x 2+x 3+x 4∈(10,212),可知选项C 正确; 从图象可知x 3∈[2,+∞)不正确; 故选:AC .13.【答案】4【解析】解:原式=lg10+3=1+3=4, 故答案为:4.根据对数的运算法则计算即可.本题考查了对数的运算法则,考查了运算能力,属于基础题.14.【答案】−2【解析】解:∵a ⃗ ,b ⃗ 是两个不共线的向量,AB ⃗⃗⃗⃗⃗ =2a ⃗ −b ⃗ ,BC ⃗⃗⃗⃗⃗ =4a ⃗ +k b ⃗ ,A ,B ,C 三点共线, ∴AB ⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ , ∴42=k −1,解得k =−2.故答案为:−2.由A ,B ,C 三点共线,得AB ⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ ,由此能求出k 的值.本题考查利用三点共线求参数的值,向量平行的性质等基础知识,考查运算求解能力,是基础题.15.【答案】169【解析】解:由题意,这批米内夹谷约为1534×28254≈169石, 故答案为:169.根据254粒内夹谷28粒,可得比例,即可得出结论.本题考查利用数学知识解决实际问题,考查学生的计算能力,比较基础.16.【答案】2 2n【解析】解:函数f(x)=ln(√x 2+1−x)−e x −e −x e x +e −x+2x +1,那么f(−x)=2+1+x)+e x −e −xe x +e −x −2x +1,则f(x)+f(−x)=2,∴f(2)+f(−2)=2,g(x)+g(−x)=2, 可知f(x)与g(x)的图象都关于点(0,1)对称,函数f(x)与g(x)图象交点为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),可得这些交点也关于(0,1)对称;∴∑(n i=1x i +y i )=x 1+y 1+x 2+y 2+⋯+x n +y n =2n ; 故答案为2;2n .由f(x)+f(−x)=2,可知f(2)+f(−2)的值为2,g(x)+g(−x)=2,可知f(x)与g(x)的图象都关于点(0,1)对称,即可求解∑(n i=1x i +y i )的值.本题考查函数与方程的应用,函数的对称性的应用,考查分析问题解决问题的能力,属于中档题.17.【答案】解:因为CN ⃗⃗⃗⃗⃗⃗ =14CA ⃗⃗⃗⃗⃗ ,所以AN ⃗⃗⃗⃗⃗⃗ =34AC ⃗⃗⃗⃗⃗ , 所以NP ⃗⃗⃗⃗⃗⃗ =AP ⃗⃗⃗⃗⃗ −AN ⃗⃗⃗⃗⃗⃗ =14AB ⃗⃗⃗⃗⃗ −34AC ⃗⃗⃗⃗⃗ =14a ⃗ −34b ⃗ , AM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +14BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +14(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=34AB ⃗⃗⃗⃗⃗ +14AC ⃗⃗⃗⃗⃗ =34a ⃗ +14b ⃗ .【解析】根据向量运算的三角形法则及共线向量定理,即可求得结论.本题主要考查向量加法的三角形法则和共线向量定理以及平面向量基本定理,属于基础题.18.【答案】解:(Ⅰ)由频率和为1,得a =1−0.12−0.22−0.36−0.12=0.18.(Ⅱ)计算平均数为x −=0.5×0.12+1.5×0.22+2.5×0.36+3.5×0.18+4.5×0.12=2.46(t),估计全市家庭月均用水量的平均数为2.46t .【解析】(Ⅰ)由频率和为1求出a 的值;(Ⅱ)利用该组区间的中值点代替同组中的数据,计算月均用水量的平均数即可. 本题考查了频率求值问题,也考查了平均数计算问题,是基础题.19.【答案】解:(Ⅰ)函数f(x)=e x −ae −x 的反函数f −1(x)的图象经过点P(32,ln2).所以函数f(x)经过(ln2,32),即当x =ln2时,f(ln2)=32,所以a =1, 所以f(x)=e x −e −x .(Ⅱ)由(1)知f(x)=e x −e −x ,则函数为奇函数.证明如下:因为f(x)的定义域为R ,且f(−x)=e −x −e x =−(e x −e −x )=−f(x). 所以函数f(x)为奇函数.【解析】(Ⅰ)直接利用原函数和反函数的关系式,求出a 的值,进一步得到f(x)的解析式;(Ⅱ)利用函数的奇偶性的定义进行判断即可.本题考查的知识要点:原函数和反函数的关系,函数的奇偶性的判断与证明,主要考查运算能力,属于基础题.20.【答案】解:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为A i (i =1,2,3,4),则P(A 1)=45,P(A 2)=35,P(A 3)=25,P(A 4)=15, ∴该选手进入第四轮才被淘汰的概率P 1=P(A 1A 2A 3A 4−) =P(A 1)P(A 2)P(A 3)P(P 4−) =45×35×25×45=96625.(Ⅱ)该选手至多进入第三轮考核的概率P 2=P(A 1−+A 1A 2−+A 1A 2A 3−)=P(A 1−)+P(A 1)P(A 2−)+P(A 1)P(A 2)P(A 3−) =15+45×25+45×35×35=101125【解析】(1)该选手进入第四轮才被淘汰,表示前三轮通过,第四轮淘汰,则该选手进入第四轮才被淘汰的概率P =P(A 1A 2A 3A 4−)=P(A 1)P(A 2)P(A 3)P(P 4−),根据已知条件,算出式中各数据量的值,代入公式即可求解.(2)求该选手至多进入第三轮考核表示该选手第一轮被淘汰,或是第二轮被淘汰,或是第三轮被淘汰,则该选手至多进入第三轮考核的概率P =P(A 1−+A 1A 2−+A 1A 2A 3−),根据已知条件,算出式中各数据量的值,代入公式即可求解.本小题主要考查相互独立事件概率的计算,运用数学知识解决问题的能力,要想计算一个事件的概率,首先我们要分析这个事件是分类的(分几类)还是分步的(分几步),然后再利用加法原理和乘法原理进行求解.21.【答案】(Ⅰ)(1)(4).(Ⅱ)若选(1)g(x)=−x2,那么任取x,y∈R,则g(x+y2)=−(x+y2)2,g(x)+g(y)2=−x2+(−y2)2,所以g(x+y2)−g(x)+g(y)2=−(x+y2)2−−x2+(−y2)2=−2xy+x2+y24=(x−y)22≥0,当且仅当x=y时,取等号,所以g(x+y2)≥g(x)+g(y)2.若选(4)g(x)=log2x,任取x,y∈(0,+∞),则g(x+y2)=log2x+y2,g(x)+g(y)2=log2x+log2y2=log2√xy,所以g(x+y2)−g(x)+g(y)2=log2x+y2−log2√xy,因为x+y2≥√xy,(当且仅当x=y时,取等号),所以log2x+y2≥log2√xy,所以g(x+y2)−g(x)+g(y)2=log2x+y2−log2√xy≥0,所以g(x+y2)≥g(x)+g(y)2.(Ⅲ)利用g(x)=log2x,设x=2m,y=2n,则m=log2x,n=log2y,由(Ⅱ)知,log2x+y2≥log2√xy,(当且仅当x=y时,取等号),所以log212≥12(m+n),(当且仅当m=n时,取等号),所以−1≥12(m+n),所以m+n≤−2,所以m+n的最大值为−2.【解析】(Ⅰ)(1)(4).(Ⅱ)分别选(1)(4),结合M 函数的定义,即可得出证明. (Ⅲ)利用g(x)=log 2x ,设x =2m ,y =2n ,由(Ⅱ)知,log 2x+y 2≥log 2√xy ,(当且仅当x =y 时,取等号),推出log 212≥12(m +n),(当且仅当m =n 时,取等号),即可得出m +n 的最大值.本题考查“M 函数”的新定义,解题关键是对“M 函数”定义的理解,属于中档题.22.【答案】解:(Ⅰ)若m =b =2,则f(x)=2log a (2x +2)−log a x =log a (2x+2)2x=log a (4x +4x +8),当0<a <1时,f(x)在[14,1]上单调递增,(1,2]上单调递减,此时f(x)min =f(14)=−2,即log a (4×14+414+8)=log a 25=−2,∴a =±15,又∵0<a <1,∴a =15,当a >1时,f(x)在[14,1]上单调递减,(1,2]上单调递增,此时f(x)min =f(1)=−2,即log a (4+4+8)=log a 16=−2,解得a =±14,又a >1,故不符合题意, 综上所述,a 的值为15;(Ⅱ)若m =2,f(x)=2log a (2x +b)−log a x =log a (4x +b 2x+4b)=log a(2x+b)2x,由题意可知当x ∈[14,2]时,f(x)≤0恒成立,即(2x+b)2x≥1,即4x 2+(4b −1)x +b 2≥0在[14,2]上恒成立, 令ℎ(x)=4x 2+(4b −1)x +b 2,1°{−4b−18≤14ℎ(14)≥0ℎ(2)≥0,解得b ≥0,2°{−4b−18≥2ℎ(14)≥0ℎ(2)≥0,解得b ≤−4−√2,而2x +b >0,故不符合题意,3°{14<−4b−18<2△≤0,无解,综上所述:b ≥0;(Ⅲ)若a =2,b =1,f(x)=2log 2(mx +1)−log 2x =log 2(m 2x +2m +1x ), g(x)=f(x)−log 2x =log 2(m 2+2m x+1x 2)=2log 2mx+1x,令p(x)=mx+1x,则原问题转化成p(x)在区间[t,t +1]上的最大值与最小值的比不大于2,p(x)=mx+1x,x ∈[t,t +1],故p(x)max =m +1t ,p(x)min =m +1t+1, 故m +1t ≤2(m +1t+1),即m ≥1t −2t+1,t ∈[12,1], 令H(t)=1t −2t+1,H′(x)=−1t 2+2(t+1)2=t 2−2t−1t 2(t+1)2<0, 所以H(t)max =H(12)=23,故m ∈[23,+∞). 解得:m 的取值范围为[23,+∞).【解析】(Ⅰ)先利用对数的运算法则化简函数解析式,讨论a ,根据函数的单调性建立方程,解之即可;(Ⅱ)要使x ∈[14,2]时,f(x)≤0恒成立,转化成4x 2+(4b −1)x +b 2≥0在[14,2]上恒成立,利用二次函数的性质进行求解即可;(Ⅲ)利用函数的单调性求出函数g(x)在[t,t +1]的最大值和最小值,然后建立不等式解之即可.本题主要考查了函数恒成立问题,解题的关键是转化成利用函数单调性研究函数的最值,同时考查了学生运算求解的能力.。
江苏省南京市2024小学数学一年级上学期统编版期末考试(备考卷)完整试卷
江苏省南京市2024小学数学一年级上学期统编版期末考试(备考卷)完整试卷一、填一填(共10小题,28分) (共10题)第(1)题填一填。
第(2)题分一分。
第(3)题比一比,填一填.第一行:第二行:(1)从第一行拿走_____支,两行同样多.(2)给第二行添上_____支,两行同样多.(3)从第一行移_____支到第二行,两行同样多.第(4)题看图写数。
第(5)题6个一,1个十,合起来是( ),合起来的数再加上( )个一就是20。
第(6)题在括号里填上“>”“<”或“=”。
( )( )( )第(7)题在括号里填上合适的数。
9-( )=7 ( )+8=15 19-10=( )-1第(8)题在括号里填上“<”“>”或“=”。
3-1( )5 0+4( )3 2+2( )3+1 4-1( )3+2第(9)题1个十和8个一合起来是( ),读作( )。
第(10)题看图写数。
( ) ( ) ( )二、轻松选择(共4题,12分) (共4题)第(1)题下面第()个图形可以立起来,还可以滚动。
A.B.C.第(2)题美术小组有男生8人,女生5人。
这些学生坐一辆汽车去动物园,用哪一辆车比较合适?()A.B.C.第(3)题在7和12之间有()个数。
A.4B.5C.6第(4)题下面三枚图章,()可以印出○。
A.B.C.三、算一算(共4题,32分) (共4题)第(1)题看图计算。
()第(2)题我会列式计算。
(朵)第(3)题看图写算式。
第(4)题我会看图列式计算。
(个)四、解答题(共4题,28分) (共4题)第(1)题小军吃了7个苹果,还剩4个,小军原来有多少个苹果?答:小军原来有()个苹果。
第(2)题教室里有15把椅子,有7个男生,9个女生。
椅子够坐吗?(个)在正确选项后面打“√”。
够()不够()第(3)题电线杆上原来有8只小鸟,飞走()只又飞来()只,现在有()只小鸟。
(只)第(4)题大象要搬9根木头,搬走了2根,还有多少根没搬?(根)。
2020-2021学年深圳红岭中学高一上学期期中数学模拟试卷及答案解析
A.
B.
C.
D.
【解答】解:∵函数 y=x2+2x 的图象为开口方向朝上,以 x=﹣1 为对称轴的抛物线
当 x=﹣1 时,函数取最小时﹣1
若 y=x2+2x=3,则 x=﹣3,或 x=1
而函数 y=x2+2x 在闭区间[a,b]上的值域为[﹣1,3],
则
或
则有序实数对(a,b)在坐标平面内所对应点组成图形为
21.已知 p:x2﹣7x+10<0,q:(x﹣m)(x﹣3m)<0,其中 m>0.若 q 是 p 的必要不充分 条件,求实数 m 的取值范围.
22.已知函数 f(x)=x2+(2a﹣1)x﹣3. (1)当 a=2,x∈[﹣2,3]时,求函数 f(x)的值域. (2)若函数 f(x)在[﹣1,3]上单调递增,求实数 a 的取值范围.
2020-2021 学年深圳红岭中学高一上学期期中数学模拟试卷
一.选择题(共 8 小题,满分 40 分,每小题 5 分)
1.已知集合 U={0,1,2,3,4},集合 A={1,2},B={2,3},则 A∪(∁UB)=( )
A.{1}
B.{0,2,4}
C.{1,2,3}
D.{0,1,2,4}
2.若命题“∃x0∈R,x (a﹣1)x0+1<0”的否定是假命题,则实数 a 的取值范围是
第 4 页 共 13 页
A.9
B.8
C.6
【解答】解:f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),
D.4
∴
0,
∴b ,
∵f(x)<c 的解集为(m,m+4), ∴f(x)﹣c=0 的根为 m,m+4,
天津市西青区2020-2021学年高一上学期期末考试数学试卷 Word版含解析
西青区2020~2021学年度第一学期期末考试高一数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.注意事项:答卷前务必将自己的姓名、准考号填写在答题卡上;答卷时,考生务必把答案涂写在答题卡各题目指定区域内相应的位置,答在试卷上的无效. 祝各位考生考试顺利!第Ⅰ卷一.选择题:本大题共9小题,每小题5分,共45分.1. 已知全集{}1,2,3,4U =,集合{}1,2,3A =,{}2,3,4B =,则()UA B =( )A. {}2,3B. {}1,2,3,4C. {}1,4D. {}2,3,4【答案】C 【解析】 【分析】利用补集和交集的定义可求得集合()UA B .【详解】已知全集{}1,2,3,4U =,集合{}1,2,3A =,{}2,3,4B =,{}2,3A B ∴=,因此,(){}1,4UA B ⋂=.故选:C.2. 下列四个函数中,在其定义域上既是奇函数又是递增函数的是( )A. x y e =B. sin y x =C. y =D. 3y x =【答案】D 【解析】 【分析】根据函数的解析式直接判断函数的奇偶性和单调性即可. 【详解】对A:xy e =它不奇函数也不是偶函数; 对B: sin y x =是奇函数,它在区间(2,2)()22k k k Z ππππ-+∈上递增,在定义域内不能说对C: y =对D:3y x =是奇函数,在定义域内是增函数. 故选:D .3. 设a ∈R ,则“1a >”是“2a a >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】 【分析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可. 【详解】求解二次不等式2a a >可得:1a >或0a <, 据此可知:1a >是2a a >的充分不必要条件. 故选:A.【点睛】本题主要考查二次不等式的解法,充分性和必要性的判定,属于基础题. 4. 下列说法正确的是( ) A. 若0a b >>,则22ac bc > B. 若a b >,则22a b > C. 若0a b <<,则22a ab b >> D. 若a b <,则11a b> 【答案】C 【解析】 【分析】根据已知条件结合不等式的性质可判断C 正确;举反例可判断ABD 错误. 【详解】对于A ,若0c,则22ac bc =,故A 错误;对于B ,若1,2a b ==-,则22a b <,故B 错误; 对于C ,若0a b <<,则22a ab b >>,故C 正确; 对于D ,若1,1a b =-=,则11a b<,故D 错误.5. 设函数1()ln (0),3f x x x x =->则()y f x =( ) A. 在区间1(,1),(1,e)e 内均有零点.B. 在区间1(,1),(1,e)e内均无零点.C. 在区间1(,1)e 内无零点,在区间(1,)e 内有零点.D. 在区间1(,1)e内有零点,在区间(1,)e 内无零点.【答案】C 【解析】 【分析】令()0f x =,画出函数13y x =和ln y x =的图像,观察两图像的交点所在的区间,即可得答案【详解】解:令()0f x =,得1ln 3x x =,作出函数13y x =和ln y x =的图像,如图所示根据图像可知,()y f x =区间1(,1)e内无零点,在区间(1,)e 内有零点,故选:C6. 已知函数()sin 12f x x π⎛⎫=++ ⎪⎝⎭,则( ) A. ()f x 是偶函数,最大值为1 B. ()f x 是偶函数,最大值为2 C. ()f x 是奇函数,最大值为1 D. ()f x 是奇函数,最大值为2【答案】B【分析】利用诱导公式进行化简,得到()cos 1f x x =+,结合余弦函数的性质,即可求解,得到答案. 【详解】由题意,函数()sin 1cos 12f x x x π⎛⎫=++=+ ⎪⎝⎭, 则()cos()1cos 1()f x x x f x -=-+=+=,所以()f x 是偶函数; 又由cos y x =的最大值为1,()f x ∴的最大值为2; 故选:B.【点睛】本题主要考查了三角函数的诱导公式,以及余弦函数的性质的应用,其中解答中熟记三角函数的诱导公式,以及三角函数的性质是解答的关键,着重考查了计算能力,属于基础题. 7. 设1ln2a =,12eb =,2c e -=,则a 、b 、c 的大小关系为( ) A. a c b << B. a b c << C. b c a << D. c a b <<【答案】A 【解析】 【分析】利用指数函数和对数函数的单调性比较a 、b 、c 三个数与0、1的大小关系,由此可得出a 、b 、c 的大小关系.【详解】1lnln102a =<=,10221eb =>=,2001c e e -<=<=,因此,a c b <<. 故选:A8. 对于函数()sin(2)6f x x π=+,下列命题①函数图象关于直线12x π=-对称; ②函数图象关于点(,0)对称;③函数图象可看作是把sin 2y x =的图象向左平移个单位而得到;④函数图象可看作是把sin()6y x π=+的图象上所有点的横坐标缩短到原来的倍(纵坐标不变)而得到;其中正确的命题的个数是( ▲ ) A. 0 B. 1 C. 2 D. 3【答案】C考点:正弦函数的对称性;函数y=Asin (ωx+φ)的图象变换. 专题:综合题. 分析:①把x=-π12代入函数的表达式,函数是否取得最大值,即可判定正误; ②把x=5π12,代入函数,函数值是否为0,即可判定正误; ③函数图象可看作是把y=sin2x 的图象向左平移个 π6单位,推出函数的表达式是否相同,即可判定;④函数图象可看作是把y=sin (x+π6)的图象上所有点的横坐标缩短到原来的 12倍,得到函数的表达式是否相同,即可判定正误.解答:解:①把x=-π12代入函数f (x )=sin (2x+π6)=0,所以,①不正确; ②把x=5π12,代入函数f (x )=sin (2x+π6)=0,函数值为0,所以②正确;③函数图象可看作是把y=sin2x 的图象向左平移π6个单位得到函数为f (x )=sin (2x+3π),所以不正确;④函数图象可看作是把y=sin (x+π6)的图象上所有点的横坐标缩短到原来的12倍,得到函数f (x )=sin (2x+π6),正确; 故选C .点评:本题是基础题,考查三角函数的基本性质的应用,考查逻辑推理能力,常考题型. 9. 定义在R 上的偶函数f (x )满足f (x+2)=f (x ),且在[1,2]上是减函数,若α,β是锐角三角形的两个内角,则( ) A. f()sin αf >(cos β)B. f ()sin αf < (cos β)C. f (sin α)f > (sin β)D. f()cos αf <(cos β)【答案】A 【解析】 【分析】根据题意,分析可得f (﹣x )=f (x +2),即函数f (x )的图象关于直线x =1对称,据此分析可得f (x )在区间[0,1]上是增函数,由α,β是锐角三角形的两个内角便可得出sin α>cos β,从而根据f (x )在(0,1)上是增函数即可得出f (sin α)>f (cos β),即可得答案. 【详解】根据题意,定义在R 上的偶函数f (x )满足f (x +2)=f (x ), 则有f (﹣x )=f (x +2),即函数f (x )的图象关于直线x =1对称, 又由函数f (x )在[1,2]上是减函数,则其在[0,1]上是增函数, 若α,β是锐角三角形的两个内角, 则α+β2>π,则有α2>π-β,则有sin α>sin (2π-β)=cos β, 又由函数f (x )在[0,1]上是增函数, 则f (sin α)>f (cos β); 故选A .【点睛】本题考查函数的奇偶性、周期性与周期性的综合应用,注意分析函数在(0,1)上的单调性.第Ⅱ卷温馨提示:请将答案写在答题纸上,写在卷面上无效.二.填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10. 已知幂函数()y f x =的图象过点,则()f x =_____________.【答案】12x 【解析】 【分析】设出幂函数解析式,根据点(求得幂函数的解析式.【详解】由于()f x 为幂函数,设()f x x α=,将(代入得122αα==,所以()12f x x=.故答案为12x【点睛】本小题主要考查幂函数解析式的求法,属于基础题.11. 132327log 3log 48⎛⎫⋅+= ⎪⎝⎭______.【答案】112【分析】根据指数、对数的运算性质计算即可得答案.【详解】原式=1323227311log 3log 4log +2=822⎛⎫⋅++= ⎪⎝⎭.故答案为:11212. 命题“x ∀∈R ,*n ∃∈N ,使得2n x ≥”的否定形式是__________. 【答案】x ∃∈R ,*n ∀∈N ,使2n x < 【解析】因为“∀”的否定是“∃”,“∃”的否定是“∀”,“2n x ≥”的否定是“2n x <”,所以命题“x R ∀∈,*n N ∃∈,使得2n x ≥”的否定形式是x R ∃∈,*n N ∀∈,使2n x <,故答案为x ∃∈R ,*n ∀∈N ,使2n x <.13. 函数tan y x =的定义域为______;若tan 2x =,则5cos sin sin 2cos x xx x-=+______.【答案】 (1). ,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭(2). 34 【解析】 【分析】根据正切函数的性质可直接得出定义域,将5cos sin sin 2cos x xx x-+化为关于tan x 的式子即可求出.【详解】可知tan y x =的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭, tan 2x =,5cos sin 5tan 523sin 2cos tan 2224x x x x x x ---∴===+++.故答案为:,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭;34. 14. 用长度为28米的篱笆围成一边靠墙的矩形花园,墙长为16米,则矩形花园面积的最大值是______平方米.【解析】 【分析】设与墙平行的篱笆长为x 米,表示出矩形花园面积,利用二次函数的性质可求出. 【详解】设与墙平行的篱笆长为x 米,由题可得016x <≤, 则花园面积()2281149822x S x x -=⋅=--+,016x <≤, 则当14x =时,S 取得最大值为98,故矩形花园面积的最大值是98平方米. 故答案为:98.15. 已知函数()()232115,14ln ,1x a x x f x a a x x ⎧+-+≤=⎨-+>⎩,若对任意的1x 、2x R ∈,12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围是______.【答案】8,23⎡⎤--⎢⎥⎣⎦【解析】 【分析】分析出函数()f x 为R 上的减函数,结合已知条件可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.【详解】设12x x <,则120x x -<,由()()12120f x f x x x -<-可得()()120f x f x ->,即()()12f x f x >,所以,函数()f x 为R 上的减函数.由于()()232115,14ln ,1x a x x f x a a x x ⎧+-+≤=⎨-+>⎩,由题意可知,函数()232115y x a x =+-+在(],1-∞上为减函数,则113a-≥, 函数ln 4y a x a =-在()1,+∞上为减函数,则0a <,且有()321154a a +-+≥-,所以11301624a a a a-⎧≥⎪⎪<⎨⎪+≥-⎪⎩,解得823a -≤≤-.因此,实数a 的取值范围是8,23⎡⎤--⎢⎥⎣⎦.故答案为:8,23⎡⎤--⎢⎥⎣⎦.【点睛】关键点点睛:在利用分段函数的单调性求参数时,除了分析每支函数的单调性外,还应由间断点处函数值的大小关系得出关于参数的不等式组求解.三.解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤.16. 已知,2παπ⎛⎫∈⎪⎝⎭,3sin 5α=.(1)求tan α的值; (2)求cos2α的值; (3)若0,2⎡⎤∈⎢⎥⎣⎦πβ,()5sin 13αβ+=-,求sin β. 【答案】(1)34-;(2)725;(3)5665. 【解析】 【分析】( 1 ) 根据同角的三角函数的关系即可求出; ( 2 ) 根据二倍角的正弦公式、二倍角的余弦公式以及两角差的余弦公式即可求出; ( 3 ) 由 β=[(α+β)−α] ,根据同角的三角函数的关系结合两角差的正弦公式即可求出. 【详解】(1)3sin 5α=,,2παπ⎛⎫∈ ⎪⎝⎭.4cos 5α∴==-.sin 3tan cos 4ααα∴==-. ( 2) 27cos 22cos 125αα=-=. (3)0,2⎡⎤∈⎢⎥⎣⎦πβ,,2παπ⎛⎫∈ ⎪⎝⎭322ππαβ∴<+<()5sin 13αβ+=-. 32ππαβ∴<+<()12cos 13αβ∴+==-. ()()()5412356sin sin sin cos cos sin 13513565βαβααβααβα⎛⎫=+-=+-+=-⨯-+⨯=⎡⎤ ⎪⎣⎦⎝⎭.17. 若()()211f x ax a x =-++,a R ∈.(Ⅰ)若()0f x <的解集为1,14⎛⎫⎪⎝⎭,求a 的值; (Ⅱ)求关于x 的不等式()0f x <的解集. 【答案】(Ⅰ)4a =;(Ⅱ)答案见解析. 【解析】 【分析】 (Ⅰ)14,1为方程()0f x =的两个根,用韦达定理构建方程解出来即可. (Ⅱ)(1)(1)0ax x -->,分0a <、0a =、01a <<、1a =和1a >五种情况讨论即可 【详解】(Ⅰ)()2110ax a x -++<的解集为1,14⎛⎫⎪⎝⎭,14,1是()2110ax a x -++=的解.1114114a aa+⎧+=⎪⎪⎨⎪=⎪⎩. 解得:4a =(Ⅱ)当0a =时,不等式的解为1x >,解集为{}1x x > 当0a ≠时,分解因式()()110x ax --<()()110x ax --=的根为11x =,21x a=. 当0a <时,11a >,不等式的解为1x >或1x a <;解集为11x x x a ⎧⎫><⎨⎬⎩⎭或.当01a <<时,11a <,不等式的解为11x a <<;解集为11x x a ⎧⎫<<⎨⎬⎩⎭.当1a >时,11a <,不等式的解为11x a <<;等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭. 当1a =时,原不等式为()210x -<,不等式的解集为∅. 综上:当0a =时,不等式的解集为{}1x x >; 当0a <时,不等式的解集为11x x x a ⎧⎫><⎨⎬⎩⎭或; 当01a <<时,不等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭; 当1a >时,不等式的解集为11xx a ⎧⎫<<⎨⎬⎩⎭; 当1a =时,不等式的解集为∅. 18. 已知函数log ay x =过定点(),m n ,函数()2xf x n x m=++的定义域为[]1,1-. (Ⅰ)求定点(),m n 并证明函数()f x 的奇偶性; (Ⅱ)判断并证明函数()f x 在[]1,1-上的单调性;(Ⅲ)解不等式()()210f x f x -+<.【答案】(Ⅰ)定点为()1,0,奇函数,证明见解析;(Ⅱ)()f x 在[]1,1-上单调递增,证明见解析;(Ⅲ)1|03x x ⎧⎫≤<⎨⎬⎩⎭. 【解析】 【分析】(Ⅰ)根据解析式可求得定点为()1,0,即可得()f x 的解析式,根据奇函数的定义,即可得证; (Ⅱ)利用定义法即可证明()f x 的单调性;(Ⅲ)根据()f x 的单调性和奇偶性,化简整理,可得()()21f x f x -<-,根据函数的定义域,列出不等式组,即可求得答案. 【详解】(Ⅰ)函数log ay x =过定点(),m n ,∴定点为()1,0,()21xf x x ∴=+,定义域为[]1,1-, ()()21xf x f x x -∴-==-+. ∴函数()f x 为奇函数.(Ⅱ)()f x 在[]1,1-上单调递增. 证明:任取[]12,1,1x x ∈-,且12x x <,则()()()()()()()()()()22122112121212222222121212*********x x x x x x x x x x f x f x x x x x x x +-+---=-==++++++. []12,1,1x x ∈-,12x x <,120x x ∴-<,1210x x ->,∴()()120f x f x -<,即()()12f x f x <, ∴函数()f x 在区间[]1,1-上是增函数.(Ⅲ)()()210f x f x -+<,即()()21f x f x -<-, 函数()f x 为奇函数()()21f x f x ∴-<-()f x 在[]1,1-上为单调递增函数,12111121x x x x -≤-≤⎧⎪∴-≤-≤⎨⎪-<-⎩, 011113x x x ⎧⎪≤≤⎪∴-≤≤⎨⎪⎪<⎩,解得:103x ≤<.故不等式的解集为:1|03x x ⎧⎫≤<⎨⎬⎩⎭【点睛】解题的关键是熟练掌握函数奇偶性、单调性的定义,并灵活应用,在处理单调性、奇偶性综合问题时,需要注意函数所有的自变量都要在定义域内,方可求得正确答案. 19. 已知函数()2231f x x x =-+.(Ⅰ)函数()h x 是奇函数,当0x >时,()()h x f x =,求()h x 在x ∈R 上的解析式; (Ⅱ)若()()1g x f x mx =-++,当[]1,2x ∈时,若()g x 的最大值为2,求m 的值.【答案】(Ⅰ)()222310002310x x x h x x x x x ⎧---<⎪==⎨⎪-+>⎩;(Ⅱ)1.【解析】 【分析】(Ⅰ)首先设0x <,利用函数是奇函数,求函数的解析式;(Ⅱ)由(Ⅰ)可知()()223g x x m x =-++,讨论对称轴和定义域的关系,讨论函数的最大值,列式求m 的值.【详解】(Ⅰ)设0x <则0x -> 函数()h x 是奇函数,()()2231h x h x x x ∴=--=---()222310002310x x x h x x x x x ⎧---<⎪∴==⎨⎪-+>⎩(Ⅱ)()()1g x f x mx =-++,()()223g x x m x ∴=-++.()g x 二次函数开口向下,对称轴34mx +=, 在[]1,2x ∈时,()g x 的最大值为2, ①当314m+≤,即1m 时,()()max 1232g x g m ==-++=,解得1m =; ②当3124m +<<,即15m <<时,()2max 369248m m m g x g +++⎛⎫=== ⎪⎝⎭,解得1m =(舍)或7m =-(舍);③当324m+≥,即5m ≥时,()()max 28262g x g m ==-++=,解得2m =(舍); 综上所述,m 的值为1,即1m =.【点睛】关键点点睛:本题第一问的关键是:因为重点求0x <的解析式,所以设0x <,而不要设0x >;第二问的关键是讨论对称轴和定义域的关系,由函数在区间[]1,2的单调性,求函数的最大值.20. 已知函数()4cos cos 3f x x x a π⎛⎫=⋅-+ ⎪⎝⎭. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调递增区间; (Ⅲ)若23π是函数()f x 的一个零点,求实数a 的值及函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的值域. 【答案】(Ⅰ)T π=;(Ⅱ)06,π⎡⎤⎢⎥⎣⎦;(Ⅲ)[]1,4.【解析】 【分析】利用三角恒等变换公式化简函数解析式,(1)利用周期公式2T πω=求解;(2)利用换元法或整体代换法求函数单调递增区间;(3)利用换元法求判断函数单调性,并求值域.【详解】解:(Ⅰ)()4cos cos 4cos cos cos sin sin 333f x x x a x x x a πππ⎛⎫⎛⎫=-+=++ ⎪ ⎪⎝⎭⎝⎭22cos cos cos 2122sin 216x x x a x x a x a π⎛⎫=++=++=+++ ⎪⎝⎭,22T ππ==; (Ⅱ)法一: 令26z x π=+;0,2x π⎡⎤∈⎢⎥⎣⎦则7,66z ππ⎡⎤∈⎢⎥⎣⎦. sin y z =,7,66z ππ⎡⎤∈⎢⎥⎣⎦的单调增区间为,62ππ⎡⎤⎢⎥⎣⎦. 2662x πππ∴≤+≤,解得06x π∴≤≤.∴函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调递增区间06,π⎡⎤⎢⎥⎣⎦.法二:222262k x k πππππ-≤+≤+,k Z ∈36k x k ππππ-≤≤+,k Z ∈0,2x π⎡⎤∈⎢⎥⎣⎦画数轴与所有区间取交集可知:06x π∴≤≤.∴函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调递增区间06,π⎡⎤⎢⎥⎣⎦;(Ⅲ)23π是函数()2sin 216f x x a π⎛⎫=+++ ⎪⎝⎭的一个零点 242sin 10336f a πππ⎛⎫⎛⎫=+++= ⎪ ⎪⎝⎭⎝⎭. 32sin102a π∴++= 解得:1a =.()2sin 226f x x π⎛⎫=++ ⎪⎝⎭.0,2x π⎡⎤∈⎢⎥⎣⎦,sin y z ∴=,当7,66z ππ⎡⎤∈⎢⎥⎣⎦单调递减区间为7,26ππ⎡⎤⎢⎥⎣⎦.72266x πππ∴≤+≤,解得62x ππ∴≤≤ f x 在区间,62ππ⎡⎤⎢⎥⎣⎦上为减函数.∴函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调递增区间06,π⎡⎤⎢⎥⎣⎦,单调递减区间,62ππ⎛⎤⎥⎝⎦()02sin236f π=+=,2sin 2462f ππ⎛⎫=+= ⎪⎝⎭,72sin 2126f ππ⎛⎫=+= ⎪⎝⎭.∴函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的值域为[]1,4.【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为y =Asin (ωx +φ)或y =Acos (ω x +φ)的形式,则最小正周期为2T πω=,最大值为A ,最小值为A -;奇偶性的判断关键是解析式是否为y =Asin ωx 或y =Acos ωx 的形式.。
江苏省2020-2021学年高一上学期数学期中试题汇编04:函数的概念与性质【填选题】(答案版)
8.(江苏省南京市第十二中学2020-2021学年上学期期中4)下面各组函数中表示同个函数的是()
A. , B. ,
C. , D. ,
【答案】B
【解析】对于A, 的定义域为 ,而 的定义域为 ,两函数的定义域不相同,所以不是同一函数;
对于B,两个函数的定义域都为 ,定义域相同, ,所以这两个函数是同一函数;
A.0B.2
C.4D.-2
【答案】B
【解析】取 ,则 ,
因为函数为奇函数,则 , 即 ,
整理可得 ,即 .故选:B
10.(江苏省南通市西亭高级中学2020-2021学年上学期期中4)已知函数 ,若 =10,则实数a的值为()
A 5B.9C.10D.11
【答案】B
【解析】由 ,令 ,则 .
因为 ,所以a=9.故选:B
A.-4 B.5 C.14 D.23
【答案】C
【解析】由题意可设 ,则当 时, 单调,且 ≥0恒成立,因为 的对称轴方程为 ,则 或 ,解得6≤a≤17或-3≤a≤-2,即 ,则只有14满足题意,故答案选C.
23.(江苏省南通市西亭高级中学2020-2021学年上学期期中6)已知 是偶函数,且其定义域为 ,则 的值是()
【答案】C
【解析】满足条件的函数的定义域为 、 、 、 、 、 、 、 、 ,共 个.故选:C.
18.(江苏省南京市南师附中2020-2021学年上学期期中5)函数 的值域为( )
A. B. C. D.
【答案】D
19.(江苏省南通市西亭高级中学2020-2021学年上学期期中5)已知函数 的值域是()
C.[-4,-1]∪[0,2]D.(-∞,-1]∪[0,2]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021南京市高一数学上期末模拟试卷(及答案)一、选择题1.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C .等于0D .正负都有可能2.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<3.函数y =a |x |(a >1)的图像是( ) A .B .C .D .4.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a <<B .b a c <<C .a c b <<D .c a b <<5.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦6.已知函数()2log 14x f x x ⎧+=⎨+⎩ 00x x >≤,则()()3y f f x =-的零点个数为( ) A .3B .4C .5D .67.用二分法求方程的近似解,求得3()29f x x x =+-的部分函数值数据如下表所示:x1 2 1.5 1.625 1.75 1.875 1.8125 ()f x-63-2.625-1.459-0.141.34180.5793则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6B .1.7C .1.8D .1.98.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞, 9.已知()y f x =是以π为周期的偶函数,且0,2x π⎡⎤∈⎢⎥⎣⎦时,()1sin f x x =-,则当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()f x =( ) A .1sin x +B .1sin x -C .1sin x --D .1sin x -+10.偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos12xf x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( ) A .()3,5B .()2,4C .11,42⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭11.已知函数f (x )=x (e x +ae ﹣x )(x ∈R ),若函数f (x )是偶函数,记a=m ,若函数f (x )为奇函数,记a=n ,则m+2n 的值为( ) A .0B .1C .2D .﹣112.已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( )A .][(),22,-∞-⋃+∞B .][)4,20,⎡--⋃+∞⎣C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞二、填空题13.已知()f x 是定义域为R 的单调函数,且对任意实数x 都有21()213xf f x ⎡⎤+=⎢⎥+⎣⎦,则52(log )f =__________.14.对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0,则称x 0是f (x )的一个不动点,已知f (x )=x 2+ax +4在[1,3]恒有两个不同的不动点,则实数a 的取值范围______.15.若函数()()()()22,0,0x x x f x g x x ⎧+≥⎪=⎨<⎪⎩为奇函数,则()()1f g -=________.16.函数{}()min 2f x x =-,其中{},min ,{,a a ba b b a b≤=>,若动直线y m =与函数()y f x =的图像有三个不同的交点,则实数m 的取值范围是______________.17.若集合{||1|2}A x x =-<,2|04x B x x -⎧⎫=<⎨⎬+⎩⎭,则A B =I ______. 18.已知函数()()g x f x x =-是偶函数,若(2)2f -=,则(2)f =________19.若函数在区间 单调递增,则实数的取值范围为__________.20.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[3,4]4-=-,[2,7]2=.已知函数21()15x xe f x e =-+,则函数[()]y f x =的值域是_________. 三、解答题21.已知函数22()log (3)log (1)f x x x =-++. (1)求该函数的定义域;(2)若函数()y f x m =-仅存在两个零点12,x x ,试比较12x x +与m 的大小关系.22.已知函数()x xk f x a ka -=+,(k Z ∈,0a >且1a ≠).(1)若1132f ⎛⎫=⎪⎝⎭,求1(2)f 的值; (2)若()k f x 为定义在R 上的奇函数,且01a <<,是否存在实数λ,使得(cos 2)(2sin 5)0k k f x f x λ+->对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立若存在,请写出实数λ的取值范围;若不存在,请说明理由.23.已知函数()()sin ωφf x A x B =++(0A >,0>ω,2πϕ<),在同一个周期内,当6x π=时,()f x 32,当23x π=时,()f x 取得最小值2-. (1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间. (2)将函数()f x 的图象向左平移12π个单位长度,再向下平移22个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤⎢⎥⎣⎦有2个不同的实数解,求实数a 的取值范围.24.已知函数2()log (421)x xf x a a =+⋅++,x ∈R .(Ⅰ)若1a =,求方程()3f x =的解集;(Ⅱ)若方程()f x x =有两个不同的实数根,求实数a 的取值范围.25.某上市公司股票在30天内每股的交易价格P (元)关于时间t (天)的函数关系为12,020,518,2030,10t t t P t t t ⎧+≤≤∈⎪⎪=⎨⎪-+<≤∈⎪⎩N N ,该股票在30天内的日交易量Q (万股)关于时间t(天)的函数为一次函数,其图象过点(4,36)和点(10,30). (1)求出日交易量Q (万股)与时间t (天)的一次函数关系式;(2)用y (万元)表示该股票日交易额,写出y 关于t 的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少? 26.已知函数2()1f x x x m =-+.(1)若()f x 在x 轴正半轴上有两个不同的零点,求实数m 的取值范围; (2)当[1,2]x ∈时,()1f x >-恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】因为f (x ) 在R 上的单调增,所以由x 2+x 1>0,得x 2>-x 1,所以21121()()()()()0f x f x f x f x f x >-=-⇒+>同理得2313()()0,()()0,f x f x f x f x +>+> 即f (x 1)+f (x 2)+f (x 3)>0,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行2.A解析:A 【解析】 【分析】 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.3.B解析:B 【解析】因为||0x ≥,所以1x a ≥,且在(0,)+∞上曲线向下弯曲的单调递增函数,应选答案B .4.D解析:D 【解析】 【分析】可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.5.B解析:B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈Q 时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.6.C解析:C 【解析】 【分析】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,结合图象可知,方程()3f t =有三个实根,进而可得答案. 【详解】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,如图所示,结合图象可知,方程()3f t =有三个实根11t =-,214t =,34t =, 则()1f x =- 有一个解,()14f x =有一个解,()4f x =有三个解, 故方程()()3ff x =有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程()3f t =的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.7.C解析:C 【解析】 【分析】利用零点存在定理和精确度可判断出方程的近似解. 【详解】根据表中数据可知()1.750.140f =-<,()1.81250.57930f =>,由精确度为0.1可知1.75 1.8≈,1.8125 1.8≈,故方程的一个近似解为1.8,选C. 【点睛】不可解方程的近似解应该通过零点存在定理来寻找,零点的寻找依据二分法(即每次取区间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终零点所在区间的端点的近似值相同,则近似值即为所求的近似解.8.D解析:D 【解析】试题分析:求函数f (x )定义域,及f (﹣x )便得到f (x )为奇函数,并能够通过求f′(x )判断f (x )在R 上单调递增,从而得到sinθ>m ﹣1,也就是对任意的0,2πθ⎛⎤∈ ⎥⎝⎦都有sinθ>m ﹣1成立,根据0<sinθ≤1,即可得出m 的取值范围. 详解:f (x )的定义域为R ,f (﹣x )=﹣f (x ); f′(x )=e x +e ﹣x >0; ∴f (x )在R 上单调递增;由f (sinθ)+f (1﹣m )>0得,f (sinθ)>f (m ﹣1); ∴sin θ>m ﹣1; 即对任意θ∈0,2π⎛⎤⎥⎝⎦都有m ﹣1<sinθ成立;∵0<sinθ≤1; ∴m ﹣1≤0;∴实数m 的取值范围是(﹣∞,1]. 故选:D .点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.9.B解析:B 【解析】【分析】 【详解】因为()y f x =是以π为周期,所以当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()()3πf x f x =-, 此时13,02x -π∈-π⎡⎤⎢⎥⎣⎦,又因为偶函数,所以有()()3π3πf x f x -=-, 3π0,2x π⎡⎤-∈⎢⎥⎣⎦,所以()()3π1sin 3π1sin f x x x -=--=-,故()1sin f x x =-,故选B.10.D解析:D 【解析】试题分析:由()()2f x f x =-,可知函数()f x 图像关于1x =对称,又因为()f x 为偶函数,所以函数()f x 图像关于y 轴对称.所以函数()f x 的周期为2,要使函数()()log a g x f x x =-有且仅有三个零点,即函数()y f x =和函数log a y x =图形有且只有3个交点.由数形结合分析可知,0111{log 31,53log 51a a a a <<>-⇒<<<-,故D 正确. 考点:函数零点【思路点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.11.B解析:B 【解析】试题分析:利用函数f (x )=x (e x +ae ﹣x )是偶函数,得到g (x )=e x +ae ﹣x 为奇函数,然后利用g (0)=0,可以解得m .函数f (x )=x (e x +ae ﹣x )是奇函数,所以g (x )=e x +ae ﹣x 为偶函数,可得n ,即可得出结论.解:设g (x )=e x +ae ﹣x ,因为函数f (x )=x (e x +ae ﹣x )是偶函数,所以g (x )=e x +ae ﹣x 为奇函数.又因为函数f (x )的定义域为R ,所以g (0)=0, 即g (0)=1+a=0,解得a=﹣1,所以m=﹣1.因为函数f (x )=x (e x +ae ﹣x )是奇函数,所以g (x )=e x +ae ﹣x 为偶函数所以(e ﹣x +ae x )=e x +ae ﹣x 即(1﹣a )(e ﹣x ﹣e x )=0对任意的x 都成立 所以a=1,所以n=1, 所以m+2n=1 故选B .考点:函数奇偶性的性质.12.C解析:C 【解析】 【分析】由()()2g x f x =-是奇函数,可得()f x 的图像关于()2,0-中心对称,再由已知可得函数()f x 的三个零点为-4,-2,0,画出()f x 的大致形状,数形结合得出答案. 【详解】由()()2g x f x =-是把函数()f x 向右平移2个单位得到的,且()()200g g ==,()()()4220f g g -=-=-=,()()200f g -==,画出()f x 的大致形状结合函数的图像可知,当4x ≤-或2x ≥-时,()0xf x ≤,故选C. 【点睛】本题主要考查了函数性质的应用,作出函数简图,考查了学生数形结合的能力,属于中档题.二、填空题13.【解析】【分析】由已知可得=a 恒成立且f (a )=求出a =1后将x =log25代入可得答案【详解】∵函数f (x )是R 上的单调函数且对任意实数x 都有f =∴=a 恒成立且f (a )=即f (x )=﹣+af (a )解析:23 【解析】 【分析】由已知可得()221x f x ++=a 恒成立,且f (a )=13,求出a =1后,将x =log 25代入可得答案. 【详解】∵函数f (x )是R 上的单调函数,且对任意实数x ,都有f[()221xf x ++]=13, ∴()221xf x ++=a 恒成立,且f (a )=13, 即f (x )=﹣x 221++a ,f (a )=﹣x 221++a =13, 解得:a =1,∴f (x )=﹣x 221++1, ∴f (log 25)=23, 故答案为:23. 【点睛】本题考查的知识点是函数解析式的求法和函数求值的问题,正确理解对任意实数x ,都有()21213x f f x ⎡⎤+=⎢⎥+⎣⎦成立是解答的关键,属于中档题.14.【解析】【分析】不动点实际上就是方程f (x0)=x0的实数根二次函数f (x )=x2+ax+4有不动点是指方程x=x2+ax+4有实根即方程x=x2+ax+4有两个不同实根然后根据根列出不等式解答即可解析:10,33⎡⎫--⎪⎢⎣⎭【解析】 【分析】不动点实际上就是方程f (x 0)=x 0的实数根,二次函数f (x )=x 2+ax +4有不动点,是指方程x =x 2+ax +4有实根,即方程x =x 2+ax +4有两个不同实根,然后根据根列出不等式解答即可. 【详解】解:根据题意,f (x )=x 2+ax +4在[1,3]恒有两个不同的不动点,得x =x 2+ax +4在[1,3]有两个实数根,即x 2+(a ﹣1)x +4=0在[1,3]有两个不同实数根,令g (x )=x 2+(a ﹣1)x +4在[1,3]有两个不同交点,∴2(1)0(3)01132(1)160g g a a ≥⎧⎪≥⎪⎪⎨-<<⎪⎪-->⎪⎩,即24031001132(1)160a a a a +≥⎧⎪+≥⎪⎪⎨-<<⎪⎪-->⎪⎩,解得:a ∈10,33⎡⎫--⎪⎢⎣⎭; 故答案为:10,33⎡⎫--⎪⎢⎣⎭. 【点睛】本题考查了二次函数图象上点的坐标特征、函数与方程的综合运用,属于中档题.15.【解析】根据题意当时为奇函数则故答案为解析:15-【解析】根据题意,当0x <时,()()(),f x g x f x =为奇函数,()()()()()()()()()211113(323)15f g f f f f f f f -=-=-=-=-=-+⨯=-,则 故答案为15-.16.【解析】【分析】【详解】试题分析:由可知是求两个函数中较小的一个分别画出两个函数的图象保留较小的部分即由可得x2﹣8x+4≤0解可得当时此时f (x )=|x ﹣2|当或时此时f (x )=2∵f (4﹣2)= 解析:0232m <<【解析】【分析】【详解】试题分析:由{},min ,{,a a b a b b a b ≤=>可知{}()min 2,2f x x x =-是求两个函数中较小的一个,分别画出两个函数的图象,保留较小的部分,即由22x x ≥-可得x 2﹣8x +4≤0,解可得423423x -≤≤+当423423x -≤+22x x ≥-,此时f (x )=|x ﹣2|当423x +>或0433x ≤-<时,22x x -<,此时f (x )=2x∵f (4﹣23)=232-其图象如图所示,0232m -<<时,y =m 与y =f (x )的图象有3个交点故答案为0232m -<<考点:本小题主要考查新定义下函数的图象和性质的应用,考查学生分析问题、解决问题的能力和数形结合思想的应用.点评:本小题通过分别画出两个函数的图象,保留较小的部分,可以很容易的得到函数的图象,从而数形结合可以轻松解题.17.【解析】【分析】先分别求解出绝对值不等式分式不等式的解集作为集合然后根据交集概念求解的结果【详解】因为所以所以;又因为所以所以所以;则故答案为:【点睛】解分式不等式的方法:首先将分式不等式转化为整式 解析:()1,2-【解析】【分析】先分别求解出绝对值不等式、分式不等式的解集作为集合,A B ,然后根据交集概念求解A B I 的结果.【详解】因为12x -<,所以13x -<<,所以()1,3A =-;又因为204x x -<+,所以()()4204x x x ⎧+-<⎨≠-⎩,所以42x -<<,所以()4,2B =-; 则()1,2A B =-I .故答案为:()1,2-.【点睛】解分式不等式的方法:首先将分式不等式转化为整式不等式,若对应的整式不等式为高次可因式分解的不等式,可采用数轴穿根法求解集.18.6【解析】【分析】根据偶函数的关系有代入即可求解【详解】由题:函数是偶函数所以解得:故答案为:6【点睛】此题考查根据函数的奇偶性求函数值难度较小关键在于根据函数奇偶性准确辨析函数值的关系解析:6【解析】【分析】根据偶函数的关系有()(2)2g g =-,代入即可求解.【详解】由题:函数()()g x f x x =-是偶函数,(2)(2)24g f -=-+=,所以(2)(2)24g f =-=,解得:(2)6f =.故答案为:6【点睛】此题考查根据函数的奇偶性求函数值,难度较小,关键在于根据函数奇偶性准确辨析函数值的关系.19.(-∞1∪4+∞)【解析】由题意得a +1≤2或a≥4解得实数a 的取值范围为(-∞1∪4+∞)点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间ab 上单调则该函数在此区间的任意 解析:【解析】由题意得 或 ,解得实数的取值范围为点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量的取值范围.20.【解析】【分析】求出函数的值域由高斯函数的定义即可得解【详解】所以故答案为:【点睛】本题主要考查了函数值域的求法属于中档题解析:{}1,0,1-【解析】【分析】求出函数()f x 的值域,由高斯函数的定义即可得解.【详解】2(1)212192()2151551x x x x e f x e e e+-=-=--=-+++Q , 11x e +>Q ,1011xe ∴<<+, 2201x e ∴-<-<+, 19195515x e ∴-<-<+, 所以19(),55f x ⎛⎫∈- ⎪⎝⎭, {}[()]1,0,1f x ∴∈-,故答案为:{}1,0,1-【点睛】本题主要考查了函数值域的求法,属于中档题.三、解答题21.(1)(1,3)- (2)12x x m +>【解析】【分析】(1)根据对数真数大于零列不等式组,解不等式组求得函数的定义域.(2)化简()f x 表达式为对数函数与二次函数结合的形式,结合二次函数的性质,求得12x x +以及m 的取值范围,从而比较出12x x +与m 的大小关系.【详解】(1)依题意可知301310x x x ->⎧⇒-<<⎨+>⎩,故该函数的定义域为(1,3)-; (2)2222()log (23)log ((1)4)f x x x x =-++=--+,故函数关于直线1x =成轴对称且最大值为2log 42=,∴122x x +=,2m <,∴12x x m +>.【点睛】本小题主要考查函数定义域的求法,考查对数型复合函数对称性和最值,属于基础题.22.(1)47;(2)存在,3λ<【解析】【分析】(1)由指数幂的运算求解即可.(2)由函数()k f x 的性质可将问题转化为cos252sin x x λ<-对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立,分离变量后利用均值不等式求最值即可得解.【详解】解:(1)由已知11221132f a a -⎛⎫=+= ⎪⎝⎭, 21112229a a a a --⎛⎫∴+=++= ⎪⎝⎭,17a a -∴+=, ()2122249a a a a --∴+=++=,2247a a -∴+=,即221(2)47f a a -=+=.(2)若()k f x 为定义在R 上的奇函数,则(0)10k f k =+=,解得1k =-,01a <<Q ,()x x k f x a a -∴=-,在R 上为减函数,则(cos 2)(2sin 5)0k k f x f x λ+->,可化为(cos 2)(2sin 5)(52sin )k k k f x f x f x λλ>--=-,即cos252sin x x λ<-对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立, 即25cos 22sin 42sin 2sin 2sin sin x x x x x xλ-+<==+,对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立, 令sin ,t x =[0,1]t ∈,则2y t t=+为减函数, 当1t =时,y 取最小值为3,所以3λ<.【点睛】本题考查了不等式恒成立问题,重点考查了均值不等式,属中档题.23.(1)()26f x x π⎛⎫=++ ⎪⎝⎭06,π⎡⎤⎢⎥⎣⎦,2π,π3轾犏犏臌;(2)2a ∈⎣ 【解析】【分析】(1)由最大值和最小值求得,A B ,由最大值点和最小值点的横坐标求得周期,得ω,再由函数值(最大或最小值均可)求得ϕ,得解析式;(2)由图象变换得()g x 的解析式,确定()g x 在[0,]2π上的单调性,而()g x a =有两个解,即()g x 的图象与直线y a =有两个不同交点,由此可得.【详解】(1)由题意知,22A B A B ⎧+=⎪⎪⎨⎪-+=-⎪⎩解得A =,B =. 又22362T πππ=-=,可得2ω=.由6322f ππϕ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭, 解得6π=ϕ. 所以()262f x x π⎛⎫=++ ⎪⎝⎭, 由222262k x k πππππ-≤+≤+, 解得36k x k ππππ-≤≤+,k ∈Z .又[]0,x π∈,所以()f x 的单调增区间为06,π⎡⎤⎢⎥⎣⎦,2π,π3轾犏犏臌. (2)函数()f x 的图象向左平移12π个单位长度,再向下平移2个单位长度,得到函数()g x 的图象,得到函数()g x 的表达式为()23x g x π⎛⎫=+ ⎪⎝⎭. 因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以42,333x πππ⎡⎤+∈⎢⎥⎣⎦, ()g x 在[0,]12π是递增,在[,]122ππ上递减, 要使得()g x a =在0,2π⎡⎤⎢⎥⎣⎦上有2个不同的实数解, 即()y g x =的图像与y a =有两个不同的交点,所以a ∈⎣. 【点睛】本题考查求三角函数解析式,考查图象变换,考查三角函数的性质.“五点法”是解题关键,正弦函数的性质是解题基础.24.(Ⅰ){}1(Ⅱ)13a -<<-【解析】【分析】(Ⅰ)将1a =代入直接求解即可;(Ⅱ)设2x t =,得到()()2110t a t a +-++=在()0,+∞有两个不同的解,利用二次函数的性质列不等式组求解即可.【详解】(Ⅰ)当1a =时,()()2log 4223x x f x =++=, 所以34222x x ++=,所以4260x x +-=,因此()()23220x x +-=,得22x =解得1x =,所以解集为{}1.(Ⅱ)因为方程()2log 421x x a a x +⋅++=有两个不同的实数根,即4212x x x a a +⋅++=,设2x t =,()()2110t a t a +-++=在()0,+∞有两个不同的解, 令()()()211f t t a t a =+-++,由已知可得()()()2001021410f a a a ⎧>⎪-⎪->⎨⎪⎪=--+>⎩n解得13a -<<-【点睛】本题主要考查了对数函数与指数函数的复合函数的处理方式,考查了函数与方程的思想,属于中档题.25.(1)40Q t =-+,030t <≤,t ∈N (2)在30天中的第15天,日交易额最大为125万元.【解析】【分析】(1)设出一次函数解析式,利用待定系数法求得一次函数解析式.(2)求得日交易额的分段函数解析式,结合二次函数的性质,求得最大值.【详解】(1)设Q ct d =+,把所给两组数据()()4,36,10,30代入可求得1c =-,40d =. ∴40Q t =-+,030t <≤,t N ∈(3)首先日交易额y (万元)=日交易量Q (万股)⨯每股交易价格P (元)()()1240,020,51840,2030,10t t t t N y t t t t N ⎧⎛⎫+-+≤≤∈ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-+<≤∈ ⎪⎪⎝⎭⎩, ∴()()22115125,020,516040,2030,10t t t N y t t t N ⎧--+≤≤∈⎪⎪=⎨⎪--<≤∈⎪⎩ 当020t ≤≤时,当15t =时,max 125y =万元当20t 30<≤时,y 随x 的增大而减小故在30天中的第15天,日交易额最大为125万元.【点睛】本小题主要考查待定系数法求函数解析式,考查分段函数的最值,考查二次函数的性质,属于中档题.26.(1)2m >;(2)m <【解析】【分析】(1)首先>0∆,保证有两个不等实根,又121=x x ,两根同号,因此只要两根的和也大于0,则满足题意;(2)当[1,2]x ∈时,()1f x >-恒成立,转化为2m x x<+在[1,2]x ∈上恒成立即可 ,只要求得2x x+在[1,2]上的最小值即可. 【详解】 (1)由题知210x mx -+=有两个不等正根,则2121240010m x x m x x ⎧∆=->⎪+=>⎨⎪=>⎩,∴2m >;(2)211x mx -+>-恒成立即22mx x <+恒成立,又[1,2]x ∈,故2m x x <+在[1,2]x ∈上恒成立即可 , 又2y x x=+在[1,2]x ∈上的值域为 ,故m <【点睛】本题考查一元二次方程根的分布,考查不等式恒成立问题.一元二次方程根的分布可结合二次函数图象得出其条件,不等式恒成立可采用分离参数法,把问题转化为求函数的最值.。