天津市部分区2017-2018学年高一第一学期期末考试数学试卷
天津市河西区2017-2018学年高二上学期期末考试数学理试卷(WORD版)

2017-2018学年天津市河西区高二(上)期末数学试卷(理科)一、选择题(本大题共8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题若“x2+y2=0,则x=y=0”的否命题是()A.若x2+y2=0,则x,y中至少有一个不为0B.若x2+y2≠0,则x,y中至少有一个不为0C.若x2+y2≠0,则x,y都不为0D.若x2+y2=0,则x,y都不为02.在空间直角坐标系中,已知点P(x,y,z),给出下列4条叙述:①点P关于x轴的对称点的坐标是(x,﹣y,z);②点P关于yOz平面的对称点的坐标是(x,﹣y,﹣z);③点P关于y轴的对称点的坐标是(x,﹣y,z);④点P关于原点的对称点的坐标是(﹣x,﹣y,﹣z).其中正确的个数是()A.3 B.2 C.1 D.03.准线方程为y=4的抛物线的标准方程是()A.x2=16y B.x2=8y C.x2=﹣16y D.x2=﹣8y4.在长方体ABCD﹣A1B1C1D1中,=()A.B.C.D.5.设双曲线的渐近线方程为3x±2y=0,则a的值为()A.4 B.3 C.2 D.16.设a,b∈R,则“a+b>4”是“a>2且b>2”的()A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件7.已知椭圆C :+=1(a >b >0)的左、右焦点为F 1、F 2,离心率为,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为4,则C 的方程为( )A .+=1B .+y 2=1C .+=1D .+=1 8.已知点M (﹣3,0)、N (3,0)、B (1,0),动圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为( )A .B .C .D .二、填空题(本大题共6小题,每小题4分,共24分)9.已知命题p :∀x >0,总有(x +1)e x >1.则¬p 为 .10.已知向量m u r ,分别是直线l 的方向向量和平面α的法向量,cos <m u r ,>=﹣,则l 与α所成的角为 .11.设双曲线C 经过点(2,2),且与﹣x 2=1具有相同的渐近线,则C 的方程为 . 12.已知p :x ,若p 且q 为真,则x 的取值范围是 . 13.已知A ,B 两点均在焦点为F 的抛物线y 2=2px (p >0)上,若|AF |+|BF |=4,线段AB 的中点到直线x=的距离为1,则p 的值为 .14.设椭圆C :+=1(a >b >0)的左右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于 .三、解答题(本大题共6小题,共52分)15.已知=(1,5,﹣1),=(﹣2,3,5).(Ⅰ)若(k+)∥(﹣3),求实数k的值;(Ⅱ)若(k+)⊥(﹣3),求实数k的值.16.求双曲线9y2﹣16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.17.命题p:设c>0,c≠1,函数y=c x是R上的单调减函数,命题q:1﹣2c<0,若p∨q是真命题,p∧q是假命题,求常数c的取值范围.18.已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|,求C的方程.19.如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.(Ⅰ)证明:平面PQC⊥平面DCQ(Ⅱ)求二面角Q﹣BP﹣C的余弦值.20.已知椭圆C:(a>b>0)的离心率为,短轴一个端点到右焦点的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB 面积的最大值.2017-2018学年天津市河西区高二(上)期末数学试卷(理科)参考答案一、选择题(本大题共8小题,每小题3分,共24分。
天津市部分区2022-2023学年高二下学期期末数学试题

故选:C. 3.C 【分析】根据样本相关系数,回归直线方程,相关指数和残差的概念判断即可.
【详解】对于 A 选项,样本相关系数 r 来刻画成对样本数据的相关程度,当 r 越大,则成 对样本数据的线性相关程度越强,故 A 正确;
天津市部分区 2022-2023 学年高二下学期期末数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题 1.在下列各散点图中,两个变量具有正相关关系的是( )
A.
B.
C.
D.
2.设全集U = {-2, -1, 0,1, 2} , A = {-2, -1,0} , B = {0,1, 2} ,则 (ðU A) Ç B = ( )
的三位数,这样的三位数共有( )
A.24 个
B.36 个
C.48 个
D.54 个
8.已知每门大炮击中目标的概率都是 0.5,现有 10 门大炮同时对某一目标各射击一次.
记恰好击中目标 3 次的概率为 A;若击中目标记 2 分,记 10 门大炮总得分的期望值为
B,则 A,B 的值分别为( )
A. 15 ,5 128
【分析】求导
f ¢(x) =
2 x
,可得斜率 k
=
f ¢(1) = 2 ,进而得出切线的点斜式方程.
【详解】由
y
=
f
( x)
=
2 ln
x ,得
f
¢( x )
=
2 x
,
则曲线 y = 2 ln x 在点 (1, 0) 处的切线的斜率为 k = f ¢(1) = 2 ,
2019-2020学年人教A版天津市部分区高一上学期期末数学试卷及答案 (解析版)

2019-2020学年高一上学期期末数学试卷一、选择题1.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=()A.{2,5} B.{3,6} C.{2,5,6} D.{2,3,5,6,8} 2.下列函数中既是奇函数,又在R上单调递增的是()A.B.y=sin x C.y=x3D.y=lnx3.函数f(x)=lnx+x﹣3的零点所在区间为()A.(4,5)B.(1,2)C.(2,3)D.(3,4)4.在平面直角坐标系中,若角α以x轴的非负半轴为始边,且终边过点,则sinα的值为()A.B.C.D.5.已知a=log20.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.c>b>a B.b>c>a C.a>b>c D.b>a>c6.为了得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象上所有的点()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位7.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若,则不等式f(2x﹣1)<0的解集为()A.B.C.D.8.若α、β都是锐角,且sinα=,cos(α+β)=﹣,则sinβ的值是()A.B.C.D.9.下列命题正确的是()A.命题“∃x∈R,使得2x<x2”的否定是“∃x∈R,使得2x≥x2”B.若a>b,c<0,则C.若函数f(x)=x2﹣kx﹣8(k∈R)在[1,4]上具有单调性,则k≤2D.“x>3”是“x2﹣5x+6>0”的充分不必要条件10.已知函数在区间上单调递增,且存在唯一使得f(x0)=1,则ω的取值范围为()A.B.C.D.二、填空题11.幂函数f(x)的图象经过(2,4),则f(3)=.12.函数的定义域为.13.已知lga+lg(2b)=1,则a+b的最小值是.14.酒驾是严重危害交通安全的违法行为,为了保障交通安全,根据国家有关规定:100ml 血液中酒精含量达到20〜79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/ml,如果在停止喝酒以后,他血液中酒精含量会以每小时20%的速度减少,那么他至少要经过t小时后才可以驾驶机动车.则整数t的值为(参考数据:lg2≈0.30,lg3≈0.48)三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤. 15.设集合A={x|x2﹣x﹣6>0},B={x|﹣4<3x﹣7<8}.(1)求A∪B,A∩B;(2)已知集合C={x|a<x<2a+1},若C⊆B,求实数a的取值范围.16.已知函数.(1)在给出的直角坐标系中,画出y=f(x)的大致图象;(2)根据图象写出f(x)的单调区间;(3)根据图象写出不等式f(x)>0的解集.17.已知sinα=,α∈(,π),cosβ=,β∈(0,).(1)求cos(α﹣β)的值;(2)求tan(2β+)的值.18.已知函数.(1)判断f(x)的单调性,并用函数单调性的定义证明;(2)判断f(x)的奇偶性,并说明理由.19.已知函数.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值;(3)若关于x的不等式mf(x)+3m≥f(x)在R上恒成立,求实数m的取值范围.参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.第I卷(选择题共40分)1.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=()A.{2,5} B.{3,6} C.{2,5,6} D.{2,3,5,6,8} 【分析】由全集U及B,求出B的补集,找出A与B补集的交集即可;解:∵全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},∴∁U B={2,5,8},则A∩∁U B={2,5}.故选:A.2.下列函数中既是奇函数,又在R上单调递增的是()A.B.y=sin x C.y=x3D.y=lnx【分析】分别判断函数的奇偶性和单调性即可.解:A.f(x)是奇函数,在定义域(﹣∞,0)∪(0,+∞)上不单调,不满足条件.B.f(x)是奇函数,则R上不是单调函数,不满足条件.C.f(x)是奇函数,在R上是增函数,满足条件.D.函数的定义域为(0,+∞),为非奇非偶函数,不满足条件.故选:C.3.函数f(x)=lnx+x﹣3的零点所在区间为()A.(4,5)B.(1,2)C.(2,3)D.(3,4)【分析】根据对数函数单调性和函数单调性的运算法则,可得f(x)=lnx+x﹣3在(0,+∞)上是增函数,再通过计算f(1)、f(2)、f(3)的值,发现f(2)•f(3)<0,即可得到零点所在区间.解:∵f(x)=lnx+x﹣3在(0,+∞)上是增函数f(1)=﹣2<0,f(2)=ln2﹣1<0,f(3)=ln3>0∴f(2)•f(3)<0,根据零点存在性定理,可得函数f(x)=lnx+x﹣3的零点所在区间为(2,3)故选:C.4.在平面直角坐标系中,若角α以x轴的非负半轴为始边,且终边过点,则sinα的值为()A.B.C.D.【分析】利用三角函数定义直接求解.解:在平面直角坐标系中,角α以x轴的非负半轴为始边,且终边过点,∴,r==1,∴sinα==.故选:D.5.已知a=log20.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.c>b>a B.b>c>a C.a>b>c D.b>a>c【分析】利用指数与对数函数的单调性即可得出.解:∵a=log20.3<0,b=20.3>1,0<c=0.30.2<1,∴b>c>a.故选:B.6.为了得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象上所有的点()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【分析】由函数y=A sin(ωx+φ)的图象变换规律,可得结论.解:∵y=sin(2x﹣)=sin[2(x﹣)],∴将函数y=sin2x的图象上所有的点向右平移个单位,即可得到函数y=sin(2x﹣)的图象.故选:C.7.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若,则不等式f(2x﹣1)<0的解集为()A.B.C.D.【分析】根据函数的奇偶性和单调性的性质将不等式进行转化求解即可.解:∵f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,∴若,则不等式f(2x﹣1)<0等价为f(|2x﹣1|)<f(),即|2x﹣1|<,即﹣<2x﹣1<,得<x<,即不等式的解集为(,),故选:A.8.若α、β都是锐角,且sinα=,cos(α+β)=﹣,则sinβ的值是()A.B.C.D.【分析】利用同角三角函数间的关系式的应用,可求得sin(α+β)与cosα的值,再利用两角差的正弦函数,可求得sinβ=sin[(α+β)﹣α]的值.解:∵cos(α+β)=﹣,α、β都是锐角,∴sin(α+β)==;又sinα=,∴cosα==,∴sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=×﹣(﹣)×=.故选:A.9.下列命题正确的是()A.命题“∃x∈R,使得2x<x2”的否定是“∃x∈R,使得2x≥x2”B.若a>b,c<0,则C.若函数f(x)=x2﹣kx﹣8(k∈R)在[1,4]上具有单调性,则k≤2D.“x>3”是“x2﹣5x+6>0”的充分不必要条件【分析】A由命题的否命题,既要对条件否定,也要对结论否定,注意否定形式,可判断;B由条件,注意举反例,即可判断;C由二次函数的图象,即可判断;D先求出不等式x2﹣5x+6>0的解集,再由充分必要条件的定义,即可判断.解:对于A,命题“∃x∈R,使得2x<x2”的否定是“∀x∈R,使得2x≥x2”,故A错误;对于B,由条件知,比如a=2,b=﹣3,c=﹣1,则=﹣<=,故B错误;对于C,若函数f(x)=x2﹣kx﹣8(k∈R)在[1,4]上具有单调性,则≤1或≥4,故k≤2或k≥8,故C错误;对于D,x2﹣5x+6>0的解集为{x|x<2或x>3},故“x>3”是“x2﹣5x+6>0”的充分不必要条件,正确.故选:D.10.已知函数在区间上单调递增,且存在唯一使得f(x0)=1,则ω的取值范围为()A.B.C.D.【分析】由函数f(x)在[﹣,]上单调递增求出0<ω≤,再由存在唯一使得f(x0)=1求出≤ω<3;由此求得ω的取值范围.解:由于函数f(x)=sin(ωx+)(ω>0)在[﹣,]上单调递增;x∈[﹣,],ωx+∈[﹣ω+,ω+],﹣≤﹣ω+且ω+≤,解得ω≤且ω≤,所以0<ω≤;又存在唯一使得f(x0)=1,即x∈[0,]时,ωx+∈[,ω+];所以≤ω+<,解得≤ω<3;综上知,ω的取值范围是[,].故选:B.二、填空题:本大题共4小题,每小题4分,共20分.11.幂函数f(x)的图象经过(2,4),则f(3)=9 .【分析】设幂函数f(x)=x a,由幂函数f(x)的图象经过(2,4),解得f(x)的解析式,由此能求出f(3).解:设幂函数f(x)=x a,∵幂函数f(x)的图象经过(2,4),∴2a=4,解得a=2,∴f(x)=x2,∴f(3)=32=9.故答案为:9.12.函数的定义域为(﹣1,4).【分析】由分母中根式内部的代数式大于0且对数式的真数大于0联立不等式组求解.解:由,得﹣1<x<4.∴函数的定义域为(﹣1,4).故答案为:(﹣1,4).13.已知lga+lg(2b)=1,则a+b的最小值是2.【分析】利用对数运算性质可得ab,再利用基本不等式的性质即可得出.解:∵lga+lg(2b)=1,∴2ab=10,即ab=5.a,b>0.则a+b≥2=2,当且仅当a=b=时取等号.因此:a+b的最小值是2.故答案为:2.14.酒驾是严重危害交通安全的违法行为,为了保障交通安全,根据国家有关规定:100ml 血液中酒精含量达到20〜79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/ml,如果在停止喝酒以后,他血液中酒精含量会以每小时20%的速度减少,那么他至少要经过t小时后才可以驾驶机动车.则整数t的值为 5 (参考数据:lg2≈0.30,lg3≈0.48)【分析】100ml血液中酒精含量达到60ml,由题意得则60(1﹣20%)t<20由此利用对数的性质能求出整数t的值.解:某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/ml,则100ml血液中酒精含量达到60ml,在停止喝酒以后,他血液中酒精含量会以每小时20%的速度减少,他至少要经过t小时后才可以驾驶机动车.则60(1﹣20%)t<20,∴0.8t<,∴t>=﹣=﹣=≈=4.8.∴整数t的值为5.故答案为:5.三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤. 15.设集合A={x|x2﹣x﹣6>0},B={x|﹣4<3x﹣7<8}.(1)求A∪B,A∩B;(2)已知集合C={x|a<x<2a+1},若C⊆B,求实数a的取值范围.【分析】(1)求出集合A,B,由此能求出A∪B,A∩B.(2)当C=∅时,a≥2a+1,a≤﹣1,当C≠∅时,,由此能求出实数a的取值范围.解:(1)∵集合A={x|x2﹣x﹣6>0}={x|x>3或x<﹣2},B={x|﹣4<3x﹣7<8}={x|1<x<5},∴A∪B={x|x<﹣2或x>1},A∩B={x|3<x<5}.(2)∵集合C={x|a<x<2a+1},C⊆B,∴当C=∅时,a≥2a+1,a≤﹣1,当C≠∅时,,解得1≤a≤2,综上,实数a的取值范围是(﹣∞,﹣1]∪[1,2].16.已知函数.(1)在给出的直角坐标系中,画出y=f(x)的大致图象;(2)根据图象写出f(x)的单调区间;(3)根据图象写出不等式f(x)>0的解集.【分析】根据各段函数的解析式作图即可解:(1)如图,(2)由图可知f(x)的单调递增区间为(﹣∞,﹣2),(0,1);单调递减区间为(﹣2,0),(1,+∞);(3)由图可知f(x)>0时,x∈(﹣4,﹣1).17.已知sinα=,α∈(,π),cosβ=,β∈(0,).(1)求cos(α﹣β)的值;(2)求tan(2β+)的值.【分析】(1)由题意利用同角三角函数的基本关系,两角差的余弦公式,求得结果.(2)由题意利用同角三角函数的基本关系,两角和的正切公式,求得结果.解:(1)∵已知sinα=,α∈(,π),∴cosα=﹣=﹣.∵cosβ=,β∈(0,),∴sinβ==,∵cos(α﹣β)=cosαcosβ+sinαsinβ=﹣•+•==﹣.(2)由以上可得tanβ==2,∴tan2β===﹣,tan(2β+)===﹣.18.已知函数.(1)判断f(x)的单调性,并用函数单调性的定义证明;(2)判断f(x)的奇偶性,并说明理由.【分析】(1)根据函数单调性的定义进行证明即可;(2)根据函数奇偶性的定义进行证明即可.解:(1)函数的定义域为R,设x1<x2,则f(x1)﹣f(x2)=﹣﹣+=﹣==,∵x1<x2,∴<,则﹣<0,即f(x1)﹣f(x2)<0,则f(x1)<f(x2),即函数f(x)为增函数.(2)f(x)==,则f(﹣x)===﹣f(x),即f(x)是奇函数.19.已知函数.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值;(3)若关于x的不等式mf(x)+3m≥f(x)在R上恒成立,求实数m的取值范围.【分析】(1)根据f(x)=sin(2x﹣)可求最小正周期;(2)利用x∈以及正弦函数单调区间即可求出最大最小值;(3)令t=sin(2x﹣),将不等式化成m≥=1﹣对∀t∈[﹣1,1]恒成立,即可求出m取值范围.解:f(x)=sin2x﹣cos2x=2sin(2x﹣),(1)T==π,即f(x)的最小正周期为π;(2)当x∈时,则2x﹣∈[﹣,π],sin(2x﹣)∈[﹣,1],所以f(x)∈[﹣,2],即f(x)最大值为2,最小值为﹣;(3)mf(x)+3m≥f(x)即2m sin(2x﹣)+3m≥2sin(2x﹣),令t=f(x)=sin(2x﹣),则t∈[﹣1,1],所以2t+3∈[1,5]根据题意得2mt+3m≥2t对∀t∈[﹣1,1]恒成立,即有m≥=1﹣对∀t∈[﹣1,1]恒成立,因为1﹣最大为1﹣=,所以m≥.。
天津市部分区2024_2025学年高二数学上学期期末考试试卷含解析

天津市部分区2024-2025学年高二上学期期末考试数学试卷一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.双曲线﹣y2=1的焦点坐标为()A. (﹣3,0),(3,0)B. (0,﹣3),(0,3)C. (﹣,0),(,0)D. (0,﹣),(0,)【答案】C【解析】【分析】利用双曲线的标准方程干脆计算。
【详解】由双曲线﹣y2=1可得:,则所以双曲线﹣y2=1的焦点坐标为:(﹣,0),(,0)故选:C【点睛】本题主要考查了双曲线的简洁性质,属于基础题。
2.命题“∃x0∈(0,+∞),使得<”的否定是()A. ∃x0∈(0,+∞),使得B. ∃x0∈(0,+∞),使得C. ∀x∈(0,+∞),均有e x>xD. ∀x∈(0,+∞),均有e x≥x【答案】D【解析】【分析】由特称命题的否定干脆写出结果即可推断。
【详解】命题“∃x0∈(0,+∞),使得<”的否定是:“x∈(0,+∞),使得”故选:D【点睛】本题主要考查了特称命题的否定,属于基础题。
3.若复数(为虚数单位),则的共轭复数()A. B. C. D.【答案】B【解析】因为,所以,应选答案B。
4.设R,则“>1”是“>1”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【详解】试题分析:由可得成立,反之不成立,所以“”是“”的充分不必要条件考点:充分条件与必要条件5.设公比为﹣2的等比数列{a n}的前n项和为S n,若S5=,则a4等于()A. 8B. 4C. ﹣4D. ﹣8【答案】C【解析】【分析】由S5=求出,再由等比数列通项公式求出即可。
【详解】由S5=得:,又解得:,所以故选:C【点睛】本题主要考查了等比数列的前n项和公式及等比数列通项公式,考查计算实力,属于基础题。
6.已知函数f(x)=lnx﹣,则f(x)()A. 有微小值,无极大值B. 无微小值有极大值C. 既有微小值,又有极大值D. 既无微小值,又无极大值【答案】B【解析】【分析】求出,对的正负分析,即可推断函数的极值状况。
2017-2018学年天津市部分区高一(上)期末数学试卷

2017-2018 学年天津市部分区高一(上)期末数学试卷一、选择题(本题共 10 小题,每小题 4 分,共 40 分)1.(4.00 分)设集合 U={1,2,3,4,5},集合 A={1,2,3},则 U A=( )A .{1,2,3}B .{4,5}C .{1,2,3,4,5}D .∁24.00 60°=1 =2 •= .(分)已知向量 , 的夹角为 ,且| || ,则 ( ) ,| ∅ A . B .C .1 D .23.(4.00 分)下列运算的结果正确的是()A .log 43=2log 23B .(﹣a 2)3=﹣a 6C .( ﹣1)0=0 D .lg2+lg3=lg54.(4.00 分)函数 f (x )= ﹣x +1 的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)5.(4.00 分)将函数 y=sin2x 的图象上所有点向左平移个单位长度,再把所得各点的横坐标伸长为原来的 2 倍(纵坐标不变),所得图象对应的函数解析式是( )A .y=sin (x +)B .y=sin (2x +) C .y=sin (x +) D .y=sin (x +)6.(4.00 分)已知函数 f (x )=a x(a >0,a ≠1),若 f (﹣2)<f (﹣3),则 a的取值范围是( )A .2<a <3B .<a <C .a >1D .0<a <17.(4.00 分)若非零向量 , 满足| + |=| ﹣ |,则( )A . ⊥B . ∥C .| |=| |D .| |≥| |8.(4.00 分)若α为第二象限的角,且 tanα=﹣ ,则 cosα=( )A .B .﹣C .D .﹣9.(4.00 分)已知集合 P={x |y= },Q={x |y=lg (x ﹣1)},则 P ∩Q=() A .{x |1≤x ≤3}B .{x |1<x <3}C .{x |1<x ≤3}D .{x |x <1,或 x ≥3}10.(4.00 分)已知偶函数 f (x )在[0,+∞)上单调递减,若 a=f (ln2.1),b=f(1.11.1),c=f (﹣3),则 a ,b ,c 的大小关系是( )A.a<b<c B.c<b<a C.c<a<b D.b<a<c二、填空题(本大题共 5 小题,每小题 4 分,共 20 分)11.(4.00 分)sin(﹣)= .12.(4.00 分)已知幂函数 f(x)经过点(2,8),则 f(3)= .13.(4.00 分)设集合 A={x|2<x<3},B={x|x>a},若 A∪B=B,则实数 a 的取值范围是.14.(4.00 分)已知 sin(α﹣)=,则sin(﹣α)=.15.(4.00 分)在平行四边形 ABCD 中,AB=8,AD=6,∠BAD=60°,点 P 在 CD 上,且=3,则•=.三、解答题(本大题共 60 分)16.(12.00 分)已知向量=(1,2),=(2,λ),=(﹣3,2).(1)若∥,求实数λ的值;(2)若 k+与﹣2垂直,求实数k的值.17.(12.00 分)已知函数 f(x)=.(1)求 f(2)及 f(f(﹣1))的值;(2)若 f(x)≥4,求 x 的取值范围.18.(12.00 分)已知在△ABC 中,sinA=,cosB=﹣.(1)求 sin2A 的值;(2)求 cosC 的值.19.(12.00 分)已知函数 f(x)=是奇函数,且f(1)=1.(1)求 a,b 的值;(2)判断函数 f(x)在(0,+∞)上的单调性,并用定义证明.20.(12.00 分)已知函数 f(x)=2sinxcos(x+)+.(1)求 f(x)的最小正周期;(2)求 f(x)在区间[﹣,]上的最大值.2017-2018 学年天津市部分区高一(上)期末数学试卷参考答案与试题解析一、选择题(本题共 10 小题,每小题 4 分,共 40 分)∅1.(4.00 分)设集合 U={1,2,3,4,5},集合 A={1,2,3},则U A=()A.{1,2,3} B.{4,5} C.{1,2,3,4,5} D.∁【分析】由集合的补集的定义,即由 U 中不属于 A 的元素构成的集合,即可得到所求.【解答】解:集合 U={1,2,3,4,5},集∁合A={1,2,3},则U A={4,5}.故选:B.2.(4.00 分)已知向量,的夹角为60°,且||=1,||=2,则•=()A. B. C.1D.2【分析】利用已知条件,通过向量的数量积公式求解即可.【解答】解:向量,的夹角为60°,且| |=1,| |=2,则•===1.故选:C.3.(4.00 分)下列运算的结果正确的是()A.log43=2log23 B.(﹣a2)3=﹣a6C.(﹣1)0=0D.lg2+lg3=lg5【分析】利用有理指数幂的运算性质及对数的运算性质逐一核对四个选项得答案.【解答】解:∵log43=,∴选项A错误;∵(﹣a2)3=﹣(a2)3=﹣a6,∴选项 B 正确;由 a0=1(a≠0),可得(﹣1)0=1,故C错误;∵lg2+lg3=lg(2×3)=lg6,∴D 错误.∴计算结果正确的是(﹣a2)3=﹣a6,故选:B.4.(4.00 分)函数 f(x)=﹣x+1的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)【分析】据函数零点的判定定理,判断 f(2),f(3)的符号,即可求得结论.【解答】解:函数 f(x)=﹣x+1是连续函数,f(2)=﹣2+1>0,f(3)=<0,故有 f(2)•f(3)<0,由零点的存在性定理可知:函数 f(x)=﹣x+1的零点所在的区间是(2,3)故选:C.5.(4.00 分)将函数 y=sin2x 的图象上所有点向左平移个单位长度,再把所得各点的横坐标伸长为原来的 2 倍(纵坐标不变),所得图象对应的函数解析式是()A.y=sin(x+)B.y=sin(2x+)C.y=sin(x+)D.y=sin(x+)【分析】按照题目所给条件,先求把函数y=sin2x 的图象向左平移个单位长度,函数解析式,再把所得图象上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),求出解析式即可.【解答】解:把函数 y=sin2x 的图象向左平移个单位长度,得y=sin2(x+)=sin(2x+)的图象,再把所得各点的横坐标伸长到原来的 2 倍(纵坐标不变),得到 y=sin(x+)的图象;故选:A.6.(4.00 分)已知函数 f(x)=a x(a>0,a≠1),若 f(﹣2)<f(﹣3),则 a 的取值范围是()A.2<a<3 B.<a< C.a>1D.0<a<1【分析】根据指数函数的单调性即可得出 a 的取值范围.【解答】解:函数 f(x)=a x(a>0,a≠1),若f(﹣2)<f(﹣3),则 f(x)是单调减函数,∴a 的取值范围是 0<a<1.故选:D.7.(4.00 分)若非零向量,满足|+|=|﹣|,则()A.⊥ B.∥ C.||=||D.||≥||【分析】利用向量的几何意义解答.【解答】解:如图,设=,=,则|+|=||,|﹣|=||,则||=||,所以四边形 ABCD 为矩形,所以 AB⊥BC,所以⊥.故选:A.8.(4.00 分)若α为第二象限的角,且tanα=﹣,则cosα=()A. B.﹣ C. D.﹣【分析】利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得cosα的值.【解答】解:∵α是第二象限角,且tanα==﹣,∴sinα=﹣cosα,∵cosα<0,sinα>0,sin2α+cos2α=1,∴(﹣cosα)2+cos2α=1,可得:cosα=﹣,故选:D.9.(4.00 分)已知集合 P={x|y=},Q={x|y=lg(x﹣1)},则P∩Q=()A.{x|1≤x≤3}B.{x|1<x<3}C.{x|1<x≤3}D.{x|x<1,或 x≥3}【分析】由偶次根式被开方式非负,化简集合 P,对数的真数大于 0,化简集合Q,再由交集的定义,即可得到所求集合.【解答】解:集合 P={x|y=}={x|3﹣x≥0}={x|x≤3},Q={x|y=lg(x﹣1)}={x|x﹣1>0}={x|x>1},则P∩Q={x|1<x≤3},故选:C.10.(4.00 分)已知偶函数 f(x)在[0,+∞)上单调递减,若 a=f(ln2.1),b=f (1.11.1),c=f(﹣3),则 a,b,c 的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.b<a<c【分析】根据函数奇偶性和单调性的性质,进行转化求解即可.【解答】解:∵偶函数 f(x)在[0,+∞)上单调递减,∴a=f(ln2.1),b=f(1.11.1),c=f(﹣3)=f(3),∵0<ln2.1<1,1<1.11.1<3,则0<ln2.1<1.11.1<3,∴f(ln2.1)<f(1.11.1)<f(3),即f(ln2.1)<f(1.11.1)<f(﹣3),则 c<b<a,故选:B.二、填空题(本大题共 5 小题,每小题 4 分,共 20 分)11.(4.00 分)sin(﹣)=﹣.【分析】由条件利用诱导公式化简所给的三角函数式,可得结果.【解答】解:sin(﹣)=sin(﹣)=﹣sin=﹣,故答案为:﹣.12.(4.00 分)已知幂函数 f(x)经过点(2,8),则 f(3)= 27.【分析】设 f(x)=x n,代入(2,8),求得 n,再计算 f(3),即可得到所求值.【解答】解:设 f(x)=x n,由题意可得2n=8,解得 n=3,则f(x)=x3,f(3)=33=27,故答案为:27.13.(4.00 分)设集合 A={x|2<x<3},B={x|x>a},若 A∪B=B,则实数 a 的取值范围是a≤2.⊆【分析】根据 A∪B=B 得出 A B,从而写出实数 a 的取值范围.【解答】解:集合⊆ A={x|2<x<3},B={x|x>a},若 A∪B=B,则A B,∴a≤2,∴实数 a 的取值范围是 a≤2.故答案为:a≤2.14.(4.00 分)已知 sin(α﹣)=,则sin(﹣α)= .【分析】由已知直接利用三角函数的诱导公式化简求值.【解答】解:∵sin(α﹣)=,∴sin(﹣α)=sin(π+﹣α)=﹣sin()=sin(α﹣)=,故答案为:.15.(4.00 分)在平行四边形 ABCD 中,AB=8,AD=6,∠BAD=60°,点 P 在 CD上,且=3,则•=12.【分析】建立坐标系,求出各向量坐标,再计算数量积.【解答】解:以 A 为原点建立坐标系,则 A(0,0),B(8,0),D(3,3),∵=3,∴DP=2,即P(5,3),∴=(5,3),=(﹣3,3),∴=﹣15+27=12.故答案为:12.三、解答题(本大题共 60 分)16.(12.00 分)已知向量=(1,2),=(2,λ),=(﹣3,2).(1)若∥,求实数λ的值;(2)若 k+与﹣2垂直,求实数k的值.【分析】(1)利用向量平行的性质能出实数λ的值;(2)先利用平面向量坐标运算法则求出 k+,﹣2,由此利用向量垂直的性质能求出实数 k 的值.【解答】解:(1)∵向量=(1,2),=(2,λ),=(﹣3,2).∥,∴,解得实数λ=4.(2)k+=(k﹣3,2k+2),=(7,﹣2),∵k+与﹣2垂直,∴(k)•()=7k﹣21﹣4k﹣4=0,解得实数 k=.17.(12.00 分)已知函数 f(x)=.(1)求 f(2)及 f(f(﹣1))的值;(2)若 f(x)≥4,求 x 的取值范围.【分析】(1)根据分段函数的表达式,利用代入法进行求解即可.(2)根据分段函数的表达式,讨论 x 的取值范围进行求解即可.【解答】解:(1)f(2)=﹣2×2+8=﹣4+8=4,f(f(﹣1))=f(﹣1+5)=f(4)= ﹣2×4+8=0.(2)若 x≤1,由 f(x)≥4 得 x+5≥4,即 x≥﹣1,此时﹣1≤x≤1,若x>1,由 f(x)≥4 得﹣2x+8≥4,即 x≤2,此时 1<x≤2,综上﹣1≤x≤2.18.(12.00 分)已知在△ABC 中,sinA=,cosB=﹣.(1)求 sin2A 的值;(2)求 cosC 的值.【分析】(1)由已知可得 B 为钝角,分别求出 sinB,cosA 的值,由二倍角公式求得 sin2A;(2)利用三角形内角和定理可得 cosC=cos[π﹣(A+B)]=﹣cos(A+B),展开两角和的余弦得答案.【解答】解:( 1 )在△ ABC 中,由 cosB= ﹣,可知B为钝角,且sinB=,又sinA=,得cosA=.∴sin2A=2sinAcosA=2×;(2)cosC=cos[π﹣(A+B)]=﹣cos(A+B)=﹣cosAcocB+sinAsinB=﹣+=.19.(12.00 分)已知函数 f(x)=是奇函数,且f(1)=1.(1)求 a,b 的值;(2)判断函数 f(x)在(0,+∞)上的单调性,并用定义证明.【分析】(1)根据函数奇偶性的性质和定义建立方程进行求解即可.(2)根据函数单调性的定义进行证明即可.【解答】解:(1)∵f(1)=1,∴f(1)==1,即 a﹣1=1+b,则 a=2+b,则f(﹣x)=﹣f(x),即=﹣,即﹣x+b=﹣x﹣b,则b=﹣b,b=0,得a=2.(2)∵b=0,a=2,∴f(x)==2x1﹣﹣2x2+=2(x1﹣x2)+=(x1﹣x2)(2+)∵x1,x2为(0,+∞)上任意两个自变量,且 x1<x2∴x1﹣x2<0,2+>0,∴(x1﹣x2)(2+)<0,∴f(x1)﹣f(x2)<0,即 f(x1)<f(x2)第 11页(共 12页)∴函数 f(x)在(0,+∞)上为增函数.20.(12.00 分)已知函数 f(x)=2sinxcos(x+)+.(1)求 f(x)的最小正周期;(2)求 f(x)在区间[﹣,]上的最大值.【分析】展开两角和的余弦,再由辅助角公式化积.(1)直接利用周期公式求周期;(2)由 x 的范围求得相位的取值范围,则 f(x)在区间[﹣,]上的最大值可求.【解答】解:f(x)=2sinxcos(x+)+=2sinx(cosxcos)+=2sinx()=sin2x﹣===.(1)f(x)的最小正周期 T=;(2)由,得0,∴sin()∈[0,1],则∈[﹣,1﹣],∈则 f(x)在区间[﹣,]上的最大值为.第 12页(共 12页)。
2023-2024学年天津市部分区七年级(上)期末数学试卷+答案解析

2023-2024学年天津市部分区七年级(上)期末数学试卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列四个数中,是负整数的是()A.0B.C.D.2.袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年努力,目前我国杂交水稻种植面积约为亿亩.将250000000用科学记数法表示应为()A. B. C. D.3.如图所示的几何体,从上往下看的视图是()A. B. C. D.4.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若把气温为零上记作,则表示气温为()A.零上B.零下C.零上D.零下5.下面的计算正确的是()A. B.C. D.6.如果是关于x的方程的解,那么a的值为()A. B.4 C.6 D.107.若多项式为常数化简后的结果不含字母y,则a的值为()A. B.0 C.2或 D.68.如图,某海域有三个小岛A,B,O,在小岛O处观测到小岛A在它的北偏东的方向上,观测到小岛B在它的南偏西的方向上,则的度数是()A.B.C.D.9.实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A. B. C. D.10.A,B,C三点在同一直线上,线段,,那么A,C两点的距离是()A.1cmB.9cmC.1cm或9cmD.以上答案都不对11.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.设人数为x,则可列方程为()A. B. C. D.12.观察如图“蜂窝图”,按照这样的规律,第2024个图案中的“”的个数是()A.6074B.6072C.6073D.6068二、填空题:本题共6小题,每小题3分,共18分。
13.已知一个角是,则它的余角是______.14.按括号内的要求,用四舍五入法求近似数:精确到______.15.如图所示,在我国“西气东输”的工程中,从A城市往B城市架设管道,有三条路可供选择,在不考虑其他因素的情况下,架设管道的最短路线是______,依据是______.16.若,则______,______.17.如图,,OC平分,OD平分,则的大小为______度18.已知数轴上A,B两点所对应的数分别是1和3,P为数轴上任意一点,对应的数为,B两点之间的距离为______;式子的最小值为______.三、计算题:本大题共1小题,共8分。
天津市部分区2018-2019学年高一上学期期末考试英语试卷

天津市部分区2018~2019学年度第一学期期末考试高一英语本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(三大题,共85分)第一部分:听力(共两节,满分20分)做题时,先将答案划在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1分,满分5分)听下面五段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你将有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What happened to the man?A. He hurt his arm.B. He lost his books.C. He fell off his bike.2. What will the weather be probably like tomorrow?A. Cloudy.B. Rainy.C. Sunny.3. How much did the man’s uncle give him?A. $15.B. $35.C. $50.4. Where is the man’s English book?A. On the sofa.B. On the desk.C. On the floor.5. Where does the conversation take place?A. In a bookstore.B. In a library.C. In a classroom.第二节(共10小题;每小题1.5分,满分15分)听下面几段材料。
每段材料后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段材料前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段材料读两遍。
听下面一段对话,回答第6至第8小题。
6. What is the relationship between the speakers?A. Co-workers.B. Business partners.C. Schoolmates.7. Where does the man work?A. At a restaurant.B. In a school.C. At a travel agency.8. What are the speakers going to do next?A. Go to a café.B. Attend a meeting.C. Have dinner at a restaurant.听下面一段对话,回答第9至第11小题。
天津市部分区2023-2024学年高一下学期期末考试 语文试题

天津市部分区2023~2024学年度第二学期期末练习高一语文注意事项:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷两部分。
全卷满分120分,考试时间120分钟。
第Ⅰ卷(24分,每小题2分)一、(14分)阅读下面的文字,完成1~3题。
ChatGPT诞生及其给人留下的“惊艳”印象,未必是因为它使用了多具有突破性的技术,而是它搜集了更多的素材,因此能够更加“聪明”地解答用户的提问。
对于重复性的、记忆性的问题,人工智能确实越来越得心应手了,但人工智能看似“聪明”,实则只是无意识的表现。
当然,这并不意味着人工智能对创造性工作来说____________。
人工智能学者王咏刚就认为:“无论是AI对话、AI写文章还是AI作画,大规模预训练模型圈有的非确定性、发散性、____________的特点,恰好可以成为激发人类灵感的好帮手。
”人的灵感并非从天而降的,很多时候正是“站在巨人的肩膀上”,而人工智能背后的庞大数据库,可以扮演“巨人”的作用,让创造者站得更高、看得更远。
随着语科素材的积累,比ChatGPT更“聪明”、更“全能”的聊天程序,一定会在不久的将来____________。
对此,(),欢迎技术进步给工作与生活带来的改变。
人类腾出更多精力,聚焦于思想与观念的创新,机器当好“秘书”,科学与文化可以取得更深远的突破。
1.依次填入文中横线处的词语,最为恰当的一项是()A.一无所长天马行空方兴未艾B.一无所长无所不知应运而生C.一无是处无所不知方兴未艾D.一无是处天马行空应运而生2.下列填入文中括号内的语句,衔接最恰当的一项是()A.人们与其焦虑“机器取代人工”,不如敞开胸怀B.人们应该敞开胸怀,何苦焦虑“机器取代人工”C.与其人们焦虑“机器取代人工”,不如敞开胸怀D.人们并非焦虑“机器取代人工”,早已敞开胸怀3.文中画波浪线的句子有语病,下列修改最恰当的一项是()A.人的灵感并非从天而降,很多时候正是“站在巨人的肩膀上”,而人工智能背后的庞大数据库,可以发挥“巨人”的作用,让创造者看得更远、站得更高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津市部分区2017~2018学年度第一学期期末考试
高一数学
温馨提示:使用答题卡的区,学生作答时请将答案写在答题卡上;不使用答题卡的区,学生作答时请将答案写在试卷上。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.
第Ⅰ卷(选择题,共40分)
一、选择题(本题共10小题,每小题4分,共40分,在每小题
给出的四个选项中,只有一项是符合题目要求的)
1.设全集}
5,4,3,2,1{=U ,集合}3,2,1{=A ,则U A =ð( )
(A) }3,2,1{ (B) }5,4{
(C) }5,4,3,2,1{
(D) φ
2.已知向量,
a b 的夹角为60,且||1,||2a b ==,则a b ⋅=( )
(A)
1
2
(C) 1
(D) 2
3.下列运算的结果正确的是( )
(A) 3log 23log 24=
(B) 23
6
()a a -=-
(C) 01)0=
(D) lg2lg3lg5+=
4.函数()1f x x =
+的零点所在的区间是( )
(A) (0,1)
(B) (1,2)
(C) (2,3)
(D) (3,4)
5.将函数sin 2y x =的图象上所有点向左平移
3
π
个单位长度,再把所得各点的横坐标伸长为原来的2倍(纵坐标不变),所得图象对应的函数解析式是( ) (A) 2sin()3
y x π
=+
(B) sin(2)3
y x π
=+
(C) sin()3
y x π
=+
(D) sin()6
y x π
=+
6.已知函数()(0,1)x f x a a a =>≠,若(2)(3)f f -<-,则a 的取值范围是( )
(A) 23a << (B)
11
32
a <<
(C) 1a >
(D) 01a <<
7.若非零向量,a b 满足||||a b a b +=-,则( )
(A) a b ⊥ (B) a ∥
(C) ||||a b =
(D) ||||a b ≥
8.若α为第二象限的角,且5
tan 12
α=-
,则cos α=( ) (A)
5
13 (B) 5
13-
(C) 1213
(D) 12
13
-
9.已知集合{|{|lg(1)}P x y Q x y x ====-,则=Q P ( )
(A) }31|{≤≤x x (B) }31|{<<x x (C) }31|{≤<x x
(D) 1|{<x x ,或}3≥x
10.已知偶函数()f x 在[)0,+∞上单调递减,若 1.1(ln2.1),(1.1),(3)a f b f c f ===-,则
,,a b c 的大小关系是( )
(A) a b c << (B) c b a << (C) c a b <<
(D) b a c <<
第Ⅱ卷(非选择题,共80分)。