2018年高考数学分类汇编:专题11复数
高考数学专题《复数》习题含答案解析

专题10.2 复数1.(2020·全国高考真题(理))复数113i-的虚部是( )A .310-B .110-C .110D .310【答案】D 【解析】因为1131313(13)(13)1010i z i i i i +===+--+,所以复数113z i =-的虚部为310.故选:D.2.(2020·全国高考真题(文))(1–i )4=( )A .–4B .4C .–4i D .4i【答案】A 【解析】422222(1)[(1)](12)(2)4i i i i i -=-=-+=-=-.故选:A.3.(2021·北京·高考真题)在复平面内,复数z 满足(1)2i z -=,则z =( )A .1i --B .1i-+C .1i-D .1i+【答案】D 【分析】由题意利用复数的运算法则整理计算即可求得最终结果.【详解】由题意可得:()()()()2121211112i i z i i i i ++====+--+.故选:D.4.(2021·全国·高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i-C .62i+D .42i+【答案】C 【分析】练基础利用复数的乘法和共轭复数的定义可求得结果.【详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i+=-+--=+故选:C.5.(2021·全国·高考真题(文))已知2(1)32i z i -=+,则z =( )A .312i--B .312i-+C .32i-+D .32i--【答案】B 【分析】由已知得322iz i+=-,根据复数除法运算法则,即可求解.【详解】2(1)232i z iz i -=-=+,32(32)23312222i i i i z i i i i ++⋅-+====-+--⋅.故选:B.6.(2021·全国·高考真题(理))设()()2346z z z z i ++-=+,则z =( )A .12i -B .12i+C .1i+D .1i-【答案】C 【分析】设z a bi =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【详解】设z a bi =+,则z a bi =-,则()()234646z z z z a bi i ++-=+=+,所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1z i =+.故选:C.7.(2021·全国·高考真题(文))设i 43i z =+,则z =( )A .–34i -B .34i-+C .34i-D .34i+【答案】C 【分析】由题意结合复数的运算法则即可求得z 的值.【详解】由题意可得:()2434343341i i i i z i i i ++-====--.故选:C.8.(2021·浙江·高考真题)已知a R ∈,()13ai i i +=+,(i 为虚数单位),则a =( )A .1-B .1C .3-D .3【答案】C 【分析】首先计算左侧的结果,然后结合复数相等的充分必要条件即可求得实数a 的值.【详解】()213ai i i ai i a a i i +=-=-+=++=,利用复数相等的充分必要条件可得:3,3a a -=∴=-.故选:C.9.(2019·北京高考真题(文))已知复数z =2+i ,则( )ABC .3D .5【答案】D 【解析】∵ 故选D.10.(2019·全国高考真题(文))设,则=( )A.2B CD .1【答案】C 【解析】因为,所以,所以,故选C .1.(2010·山东高考真题(文))已知 ,,其中 为虚数单位,则=( )A .-1B .1C .2D .3【答案】B 【解析】z z ⋅=z 2i,z z (2i)(2i)5=+⋅=+-=3i12iz -=+z 312iz i -=+(3)(12)17(12)(12)55i i z i i i --==-+-z ==2a ib i i+=+,a b ∈R i +a b 练提升因为 ,,所以,则,故选B.2.(全国高考真题(理))复数的共轭复数是( )A .B .iC .D .【答案】A 【解析】,故其共轭复数为.所以选A.3.(2018·全国高考真题(理))设,则( )A .B .C .D【答案】C 【解析】,则,故选c.4.(2009·重庆高考真题(理))已知复数的实部为,虚部为2,则的共轭复数是( )A .B .C .D .【答案】B 【解析】由题意得:所以,共轭负数为2+i 故选B5.(2017·山东高考真题(理))已知,是虚数单位,若,,22222a i ai i ai b i i i+--==-=+-,a b ∈R 2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩+1a b =212ii+-i -35i-35i()()()()2i 12i 5i i12i 12i 5++==-+i -1i2i 1iz -=++||z =0121()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+i 2i i =-+=1z =z 1-5iz2i -2i+2i--2i-+R a ∈i z a =4z z ⋅=则( )A .1或B或C .D【答案】A 【解析】由得,所以,故选A.6.(2021·广东龙岗·高三期中)已知复数z 满足()2i 34i z +=+(其中i 为虚数单位),则复数z =( )A .2i -B .2i-+C .2i+D .2i--【答案】C 【分析】根据复数除法运算求出z ,即可得出答案.【详解】()2i 35z +=+= ,()()()52i 52i 2i 2i 2i z -∴===-++-,则2i z =+.故选:C.7.(2021·安徽·合肥一六八中学高一期中)欧拉公式i s co in s i x e x x +=(i 是虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,i 3e π表示的复数位于复平面中的( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【分析】先由欧拉公式计算可得312e π=,然后根据复数的几何意义作出判断即可.【详解】根据题意i s co in s i xe x x +=,故i3is n 1cos 33i 2e πππ=+=,对应点12⎛ ⎝,在第一象限.故选:A .8.【多选题】(2021·全国·模拟预测)已知复数z =(i 为虚数单位),则下列说法正确的是()A .复数z 在复平面内对应的点坐标为()sin 3cos3,sin 3cos3+-a =1-,4z a z z =+⋅=234a +=1a =±B .z 的虚部为C .2z z ⋅=D .z ⋅为纯虚数【答案】CD 【分析】根据复数的概念、共轭复数的概念、复数的几何意义以及四则运算法则即可求解.【详解】复数3cos3i sin 3cos3z =++-.因为334ππ<<,所以sin 3cos3304π⎛⎫+=+< ⎪⎝⎭,sin 3cos30->,所以原式()()sin 3cos3i sin 3cos3=-++-,所以选项A 错误;复数z B错误;222z z ⋅=+=,所以选项C 正确;z ⋅=()i 1sin 61sin 62i⋅=++-=,所以选项D 正确.故选:CD.9.【多选题】(2021·河北武强中学高三月考)已知复数cos isin z θθ=+(其中i 为虚数单位),下列说法正确的是( )A .1z z ⋅=B .1z z+为实数C .若83πθ=,则复数z 在复平面上对应的点落在第一象限D .若(0,)θπ∈,复数z 是纯虚数,则2πθ=【答案】ABD 【分析】对选项A ,根据计算1z z ⋅=即可判断A 正确,对选项B ,根据12cos z zθ+=即可判断B 正确,对选项C ,根据88cosisin 33z ππ=+在复平面对应的点落在第二象限,即可判断C 错误,对选项D ,根据z 是纯虚数得到2πθ=即可判断D 正确.【详解】对选项A ,()()()2222cos isin cos isin cos isin cos sin 1z z θθθθθθθθ⋅=+-=-=+=,故A 正确.对选项B ,因为11cos isin cos isin z z θθθθ+=+++()()cos isin cos isin cos isin cos isin θθθθθθθθ-=+++-cos isin cos isin 2cos θθθθθ=++-=,所以1z z+为实数.故B 正确.对选项C ,因为83πθ=为第二象限角,所以8cos03π<,8sin 03π>,所以88cos isin 33z ππ=+在复平面对应的点落在第二象限.故C 错误.对选项D ,复数z 是纯虚数,则cos 0sin 0θθ=⎧⎨≠⎩,又因为(0,)θπ∈,所以2πθ=,故D 正确.故选:ABD10.(2021·福建·厦门一中模拟预测)在复平面内,复数(,)z a bi a b R =+∈对应向量OZ(O为坐标原点),设||OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则(cos sin )z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:1111(cos sin )z r i θθ=+,2222(cos sin )z r i θθ=+,则12121212[cos()sin()]z z rr i θθθθ=+++,由棣莫弗定理可以推导出复数乘方公式:[(cos sin )](cos sin )n n r i r n i n θθθθ+=+,已知4)z i =,则||z =______;若复数ω满足()*10n n ω-=∈N ,则称复数ω为n 次单位根,若复数ω是6次单位根,且ω∉R ,请写出一个满足条件的ω=______.【答案】16 ()22cossin 1,2,4,566k k i k ππ+= 【分析】2(cos sin )66i i ππ+=+,则4222(cos sin )33z i ππ=+,再由||||z z =求解,由题意知61ω=,设cos sin i ωθθ=+,即可取一个符合题意的θ,即可得解.【详解】解: 2(cos sin )66i i ππ=+,∴4422)2(cos sin )33z i i ππ==+,则4||||216z z ===.由题意知61ω=,设cos sin i ωθθ=+,则6cos 6sin 61i ωθθ=+=,所以sin 60cos 61θθ=⎧⎨=⎩,又ω∉R ,所以sin 0θ≠,故可取3πθ=,则cossin33i ππω=+故答案为:16,cossin33i ππω=+(答案不唯一).1.(2021·江苏·高考真题)若复数z 满足()1i 3i z +=-,则z 的虚部等于( )A .4B .2C .-2D .-4【答案】C 【分析】利用复数的运算性质,化简得出12z i =-.【详解】若复数z 满足()1i 3i z +=-,则()()()()3i 1i 3i 12i 1i 1i 1i z ---===-++-,所以z 的虚部等于2-.故选:C.2.(2021·全国·高考真题)复数2i13i--在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【分析】利用复数的除法可化简2i13i--,从而可求对应的点的位置.【详解】()()2i 13i 2i 55i 1i13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫ ⎪⎝⎭,该点在第一象限,故选:A.3.(2020·全国高考真题(理))若z=1+i ,则|z 2–2z |=( )A .0B .1C D .2练真题【答案】D 【解析】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.4.(2020·全国高考真题(文))若312i i z =++,则||=z ( )A .0B .1CD .2【答案】C 【解析】因为31+21+21z i i i i i =+=-=+,所以z ==故选:C .5.(2019·全国高考真题(理))设z =-3+2i ,则在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C 【解析】由得则对应点(-3,-2)位于第三象限.故选C .6.(2018·江苏高考真题)若复数满足,其中i 是虚数单位,则的实部为________.【答案】2【解析】因为,则,则的实部为.z 32,z i =-+32,z i =--32,z i =--z i 12i z ⋅=+z i 12i z ⋅=+12i2i iz +==-z 2。
2018年高考全国一卷理科数学答案及解析

2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
2018年高考全国卷1理科数学(含答案)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)(2018•新课标Ⅰ)设z=+2i,则|z|=()A.0 B.C.1 D.2.(5分)(2018•新课标Ⅰ)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)(2018•新课标Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)(2018•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.125.(5分)(2018•新课标Ⅰ)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)(2018•新课标Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)(2018•新课标Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2 C.3 D.28.(5分)(2018•新课标Ⅰ)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5 B.6 C.7 D.89.(5分)(2018•新课标Ⅰ)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)(2018•新课标Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p311.(5分)(2018•新课标Ⅰ)已知双曲线C:﹣y2=1,O为坐标原点,F为C 的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2 D.412.(5分)(2018•新课标Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
【高考复习】2018年高考数学总复习:第5章第4讲 数系的扩充与复数的引入(含解析)

第4讲 数系的扩充与复数的引入最新考纲 1.理解复数的基本概念;2.理解复数相等的充要条件;3.了解复数的代数表示法及其几何意义;4.会进行复数代数形式的四则运算;5.了解复数代数形式的加、减运算的几何意义.知 识 梳 理1.复数的有关概念复数集C 和复平面内所有的点组成的集合是一一对应的,复数集C 与复平面内所有以原点O 为起点的向量组成的集合也是一一对应的,即(1)复数z =a +b i复平面内的点Z (a ,b )(a ,b ∈R ).(2)复数z =a +b i(a ,b ∈R )平面向量OZ→.3.复数的运算设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; ④除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd +(bc -ad )ic 2+d 2(c +d i ≠0).诊 断 自 测1.判断正误(在括号内打“√”或“×”) (1)复数z =a +b i(a ,b ∈R )中,虚部为b i.( )(2)复数中有相等复数的概念,因此复数可以比较大小.( ) (3)原点是实轴与虚轴的交点.( )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( )解析 (1)虚部为b ;(2)虚数不可以比较大小 答案 (1)× (2)× (3)√ (4)√2.(2016·全国Ⅰ卷)设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a =( ) A.-3B.-2C.2D.3解析 因为(1+2i)(a +i)=a -2+(2a +1)i ,所以a -2=2a +1,解得a =-3,故选A. 答案 A3.(选修2-2P112A2改编)在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是( ) A.4+8iB.8+2iC.2+4iD.4+i解析 ∵A (6,5),B (-2,3),∴线段AB 的中点C (2,4),则点C 对应的复数为z =2+4i. 答案 C4.(2015·全国Ⅱ卷)若a 为实数,且2+a i 1+i =3+i ,则a 等于( )A.-4B.-3C.3D.4解析 由2+a i1+i=3+i ,得2+a i =(3+i)(1+i)=2+4i ,即a i =4i ,因为a 为实数,所以a =4.故选D. 答案 D5.已知(1+2i)z =4+3i ,则z =________. 解析 ∵z =4+3i 1+2i =(4+3i )(1-2i )(1+2i )(1-2i )=10-5i5=2-i , ∴z =2+i. 答案 2+i6.(2017·温州调研)设a ∈R ,若复数a +i1+i (i 为虚数单位)的实部和虚部相等,则a=________,|z |=________. 解析 复数a +i 1+i =(a +i )(1-i )(1+i )(1-i )=a +1+(1-a )i 2,由于复数a +i1+i(i 为虚数单位)的实部和虚部相等,则a +1=1-a ,解得a =0,则z =12-12i ,则|z |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫-122=22.答案 0 22考点一 复数的有关概念【例1】 (1)i 为虚数单位,i 607的共轭复数为( ) A.iB.-iC.1D.-1(2)(2017·东阳中学期末)设i 是虚数单位,复数a +i2-i 是纯虚数,则实数a =( )A.2B.12C.-12D.-2解析 (1)因为i 607=(i 2)303·i =-i ,-i 的共轭复数为i.所以应选A. (2)∵a +i 2-i=(a +i )(2+i )5=(2a -1)+(a +2)i5是纯虚数,∴2a -1=0且a +2≠0,∴a =12,故选B. 答案 (1)A (2)B规律方法 (1)复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部. 【训练1】 (1)(2016·河南六市联考)如果复数2-b i1+2i (其中i 为虚数单位,b 为实数)的实部和虚部互为相反数,那么b 等于( ) A.-6B.23C.-23D.2(2)设复数a +b i(a ,b ∈R )的模为3,则(a +b i)(a -b i)=________. 解析 (1)由2-b i 1+2i=(2-b i )(1-2i )5=2-2b -(b +4)i5,由2-2b =b +4,得b =-23.(2)因为复数a +b i(a ,b ∈R )的模为3,即a 2+b 2=3,所以(a +b i)(a -b i)=a 2-b 2i 2=a 2+b 2=3. 答案 (1)C (2)3 考点二 复数的几何意义【例2】 (1)(2014·全国Ⅱ卷)设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,则z 1z 2=( ) A.-5B.5C.-4+iD.-4-i(2)(2016·全国Ⅱ卷)已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A.(-3,1) B.(-1,3) C.(1,+∞)D.(-∞,-3)解析 (1)由题意得z 2=-2+i ,∴z 1z 2=(2+i)(-2+i)=-5,故选A.(2)由复数z =(m +3)+(m -1)i 在复平面内对应的点在第四象限得⎩⎨⎧m +3>0,m -1<0,解得-3<m <1,故选A.答案(1)A(2)A规律方法因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.【训练2】(1)(2016·邯郸一中月考)复数z=i(1+i)在复平面内所对应点的坐标为()A.(1,1)B.(-1,-1)C.(1,-1)D.(-1,1)(2)(2016·北京卷)设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=________.解析(1)因为z=i(1+i)=-1+i,故复数z=i(1+i)在复平面内所对应点的坐标为(-1,1),故选D.(2)(1+i)(a+i)=(a-1)+(a+1)i,由已知得a+1=0,解得a=-1.答案(1)D(2)-1考点三复数的运算【例3】(1)(2016·全国Ⅲ卷)若z=1+2i,则4iz z-1=()A.1B.-1C.iD.-i(2)(2015·全国Ⅱ卷)若a为实数,且(2+a i)(a-2i)=-4i,则a=()A.-1B.0C.1D.2解析(1)4izz-1=4i(1+2i)(1-2i)-1=i.(2)因为a为实数,且(2+a i)(a-2i)=4a+(a2-4)i=-4i,得4a=0且a2-4=-4,解得a=0,故选B.答案(1)C(2)B规律方法(1)复数的加法、减法、乘法运算可以类比多项式运算,除法关键是分子分母同乘以分母的共轭复数,注意要把i的幂写成最简形式.(2)记住以下结论,可提高运算速度:①(1±i)2=±2i;②1+i1-i=i;③1-i1+i=-i;④a+b ii=b-a i;⑤i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i(n∈N).【训练3】 (1)(2016·北京卷)复数1+2i2-i =( )A.iB.1+iC.-iD.1-i(2)⎝ ⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i=________. 解析 (1)1+2i 2-i =(1+2i )(2+i )(2-i )(2+i )=2+i +4i +2i 24-i 2=5i 5=i ,故选A.(2)原式=⎣⎢⎡⎦⎥⎤(1+i )226+(2+3i )(3+2i )(3)2+(2)2=i 6+6+2i +3i -65=-1+i.答案 (1)A (2)-1+i[思想方法]1.复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.2.复数z =a +b i(a ,b ∈R )是由它的实部和虚部唯一确定的,两个复数相等的充要条件是把复数问题转化为实数问题的主要方法.对于一个复数z =a +b i(a ,b ∈R ),既要从整体的角度去认识它,把复数看成一个整体;又要从实部、虚部的角度分解成两部分去认识. [易错防范]1.判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义.2.两个虚数不能比较大小.3.注意复数的虚部是指在a +b i(a ,b ∈R )中的实数b ,即虚部是一个实数.基础巩固题组 (建议用时:30分钟)一、选择题1.(2015·福建卷)若(1+i)+(2-3i)=a +b i(a ,b ∈R ,i 是虚数单位),则a ,b 的值分别等于( )A.3,-2B.3,2C.3,-3D.-1,4解析 (1+i)+(2-3i)=3-2i =a +b i ,∴a =3,b =-2,故选A. 答案 A2.(2016·四川卷)设i 为虚数单位,则复数(1+i)2=( ) A.0B.2C.2iD.2+2i解析 (1+i)2=1+2i +i 2=2i ,故选C. 答案 C3.(2016·山东卷)若复数z =21-i,其中i 为虚数单位,则z =( ) A.1+iB.1-iC.-1+iD.-1-i解析 ∵z =21-i =2(1+i )(1-i )(1+i )=1+i ,∴z =1-i ,故选B.答案 B4.(2015·安徽卷)设i 为虚数单位,则复数(1-i)(1+2i)=( ) A.3+3iB.-1+3iC.3+iD.-1+i解析 (1-i)(1+2i)=1+2i -i -2i 2=3+i. 答案 C5.复数1-i 2-i 对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限解析 复数1-i 2-i =(1-i )(2+i )(2-i )(2+i )=35-15i ,∴其对应的点为⎝ ⎛⎭⎪⎫35,-15,在第四象限,故选D. 答案 D6.(2017·北京东城综合测试)若复数(m 2-m )+m i 为纯虚数,则实数m 的值为( ) A.-1B.0C.1D.2解析 因为复数(m 2-m )+m i 为纯虚数,所以⎩⎨⎧m 2-m =0,m ≠0,解得m =1,故选C. 答案 C7.已知复数z=1+2i2-i(i为虚数单位),则z的虚部为()A.-1B.0C.1D.i解析∵z=1+2i2-i=(1+2i)(2+i)(2-i)(2+i)=5i5=i,故虚部为1.答案 C8.设z是复数,则下列命题中的假命题是()A.若z2≥0,则z是实数B.若z2<0,则z是虚数C.若z是虚数,则z2≥0D.若z是纯虚数,则z2<0 解析举反例说明,若z=i,则z2=-1<0,故选C.答案 C9.(2015·全国Ⅰ卷)已知复数z满足(z-1)i=1+i,则z等于()A.-2-iB.-2+iC.2-iD.2+i解析由(z-1)i=1+i,两边同乘以-i,则有z-1=1-i,所以z=2-i.答案 C10.设z1,z2是复数,则下列命题中的假命题是()A.若|z1-z2|=0,则z1=z2B.若z1=z2,则z1=z2C.若|z1|=|z2|,则z1·z1=z2·z2D.若|z1|=|z2|,则z21=z22解析A中,|z1-z2|=0,则z1=z2,故z1=z2,成立.B中,z1=z2,则z1=z2成立.C中,|z1|=|z2|,则|z1|2=|z2|2,即z1z1=z2z2,C正确.D不一定成立,如z1=1+3i,z2=2,则|z1|=2=|z2|,但z21=-2+23i,z22=4,z21≠z22.答案 D11.(2017·浙江省三市联考)若复数z=a+3ii+a在复平面上对应的点在第二象限,则实数a可以是()A.-4B.-3C.1D.2解析因为z=a+3ii+a=(3+a)-a i在复平面上对应的点在第二象限,所以a<-3,选A.答案 A12.(2016·全国Ⅰ卷)设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|=( ) A.1B. 2C. 3D.2解析 由(1+i)x =1+y i ,得x +x i =1+y i ⇒⎩⎨⎧x =1,x =y ⇒⎩⎨⎧x =1,y =1.所以|x +y i|=x 2+y 2=2,故选B. 答案 B 二、填空题13.(2016·江苏卷改编)复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________;z 的虚部是________.解析 (1+2i)(3-i)=3+5i -2i 2=5+5i ,所以z 的实部为5,虚部为5. 答案 5 514.(2015·四川卷)设i 是虚数单位,则复数i -1i =________. 解析 i -1i =i -ii 2=2i. 答案 2i15.(2015·江苏卷)设复数z 满足z 2=3+4i(i 是虚数单位),则z 的模为________. 解析 设复数z =a +b i ,a ,b ∈R ,则z 2=a 2-b 2+2ab i =3+4i ,a ,b ∈R ,则⎩⎨⎧a 2-b 2=3,2ab =4(a ,b ∈R ),解得⎩⎨⎧a =2,b =1或⎩⎨⎧a =-2,b =-1,则z =±(2+i),故|z |= 5. 答案 516.(2017·丽水质测)若3+b i1-i=a +b i(a ,b 为实数,i 为虚数单位),则a =________;b =________. 解析3+b i 1-i=(3+b i )(1+i )2=12[(3-b )+(3+b )i]=3-b 2+3+b 2i.∴⎩⎪⎨⎪⎧a =3-b2,b =3+b 2,解得⎩⎨⎧a =0,b =3.∴a +b =3.答案 0 3能力提升题组 (建议用时:20分钟)17.若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数z 1+i 的点是( )A.EB.FC.GD.H解析 由题图知复数z =3+i ,∴z1+i =3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i 2=2-i.∴表示复数z1+i 的点为H .答案 D18. z 是z 的共轭复数,若z +z =2,(z -z )i =2(i 为虚数单位),则z 等于( ) A.1+iB.-1-iC.-1+iD.1-i解析 法一 设z =a +b i ,a ,b 为实数,则z =a -b i. ∵z +z =2a =2,∴a =1.又(z -z )i =2b i 2=-2b =2,∴b =-1.故z =1-i. 法二 ∵(z -z )i =2,∴z -z =2i =-2i. 又z +z =2,∴(z -z )+(z +z )=-2i +2, ∴2z =-2i +2,∴z =1-i. 答案 D19.(2014·全国Ⅰ卷)设z =11+i+i ,则|z |=( ) A.12 B.22C.32D.2解析 ∵z =11+i +i =1-i (1+i )(1-i )+i =1-i 2+i =12+12i , ∴|z |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=22,故选B.答案 B20.(2017·温州月考)已知复数z =(cos θ-isin θ)·(1+i),则“z 为纯虚数”的一个充分不必要条件是( )A.θ=π4B.θ=π2C.θ=3π4D.θ=5π4解析 因为z =(cos θ+sin θ)+(cos θ-sin θ)i ,所以当θ=3π4时,z =-2i 为纯虚数,当z 为纯虚数时,θ=k π-π4.故选C.答案 C21.(2017·哈尔滨六中期中)若复数z 满足i·z =-12(1+i),则z 的共轭复数的虚部是( )A.-12iB.12iC.-12D.12解析 i·z =-12(1+i)⇒z =-12(1+i )i =-12(1+i )·i i·i =12(-1+i),则z 的共轭复数z =12(-1-i),其虚部是-12.答案 C22.(2017·绍兴月考)i 是虚数单位,若2+i 1+i =a +b i(a ,b ∈R ),则lg(a +b )的值是( )A.-2B.-1C.0D.12 解析 ∵(2+i )(1-i )(1+i )(1-i )=3-i 2=32-12i =a +b i , ∴⎩⎪⎨⎪⎧a =32,b =-12,∴lg(a +b )=lg 1=0. 答案 C23.下面是关于复数z =2-1+i的四个命题: p 1:|z |=2; p 2:z 2=2i ;p 3:z 的共轭复数为1+i; p 4:z 的虚部为-1.其中的真命题为( )A.p 2,p 3B.p 1,p 2C.p 2,p 4D.p 3,p 4解析 ∵z =2-1+i =-1-i , ∴|z |=(-1)2+(-1)2=2,∴p 1是假命题;∵z 2=(-1-i)2=2i ,∴p 2是真命题;∵z =-1+i ,∴p 3是假命题;∵z 的虚部为-1,∴p 4是真命题.其中的真命题共有2个:p 2,p 4.答案 C24.(2017·广州综合测试)若1-i(i 是虚数单位)是关于x 的方程x 2+2px +q =0(p ,q ∈R )的一个解,则p +q =( )A.-3B.-1C.1D.3 解析 依题意得(1-i)2+2p (1-i)+q =(2p +q )-2(p +1)i =0,即⎩⎨⎧2p +q =0,p +1=0,解得p =-1,q =2,所以p +q =1,故选C.答案 C25.复数(3+i)m -(2+i)对应的点在第三象限内,则实数m 的取值范围是________. 解析 z =(3m -2)+(m -1)i ,其对应点(3m -2,m -1)在第三象限内,故3m -2<0且m -1<0,∴m <23.答案 ⎝ ⎛⎭⎪⎫-∞,23 26.设f (n )=⎝ ⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎫1-i 1+i n (n ∈N *),则集合{f (n )}中元素的个数为________. 解析 f (n )=⎝ ⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎫1-i 1+i n =i n +(-i)n , f (1)=0,f (2)=-2,f (3)=0,f (4)=2,f (5)=0,…∴集合中共有3个元素.答案 327.(2017·杭州调研)已知复数z =x +y i ,且|z -2|=3,则y x 的最大值为________;最小值为________.解析 ∵|z -2|=(x -2)2+y 2=3, ∴(x -2)2+y 2=3.由图可知⎝ ⎛⎭⎪⎫y x max =31= 3.⎝ ⎛⎭⎪⎫y x min=- 3. 答案 3 - 328.定义运算=ad -bc .若复数x =1-i 1+i ,y =,则y =________. 解析 因为x =1-i 1+i =(1-i )22=-i. 所以y ===-2. 答案 -2。
高三数学-2018年高考题分章节汇编-复数 精品

2018年高考题分章节汇编 选修Ⅱ第四章 复数一、选择题1.(2018年春考·北京卷·理1文1)2-i 的共轭复数是 ( D )A .i +2B .i -2C .i +-2D .i --2 2.(2018年高考·福建卷·理1)复数iz -=11的共轭复数是( B )A .i 2121+B .i 2121-C .i -1D .i +13.(2018年高考·广东卷2)若i b i i a -=-)2(,其中a 、b ∈R ,i 是虚数单位,则22b a +=( D )A .0B .2C .25D .5 4.(2018年高考·湖北卷·理3)=++-ii i 1)21)(1(( C )A .i --2B .i +-2C .i -2D .i +2 5.(2018年高考·湖南卷·理1)复数z =i +i 2+i 3+i 4的值是 ( B )A .-1B .0C .1D .i6.(2018年高考·辽宁卷1)复数.111-++-=iiz 在复平面内,z 所对应的点在 ( B )A .第一象限B .第二象限C .第三象限D .第四象限7.(2018年高考·江西卷·理2)设复数:2121),(2,1z z R x i x z i z 若∈+=+=为实数,则x =( A )A .-2B .-1C .1D .2 8.(2018年高考·重庆卷·理2)=-+2005)11(ii( A )A .iB .-iC .20052D .-200529.(2018年高考·浙江卷·理4)在复平面内,复数1i i++(1+3i )2对应的点位于 ( B )A .第一象限B .第二象限C .第三象限D .第四象限10.(2018年高考·山东卷·理1)()()221111iii i -++=+- (D )A .iB .i -C .1D .1-11.(2018年高考·天津卷·理2)若复数ii a 213++(a ∈R ,i 为虚数单位位)是纯虚数,则实数a 的值为( C )A .-2B .4C .-6D .6 12.(2018年高考·全国卷Ⅰ·理12)复数=--ii 2123( D )A .iB .i -C .i -22D .i +-2213.(2018年高考·全国卷II ·理5)设a 、b 、c 、d ∈R ,若dic bia ++为实数,则 ( C )A .bc+a d ≠0B .bc -a d ≠0C .bc -a d=0D .bc+a d=0二、填空题1.(2018年高考·北京卷·理9)若2121,43,2z z i z i a z 且-=+=为纯虚数,则实数a 的值为 .38 2.(2018年高考·全国卷Ⅲ·理13)已知复数,230i z +=,300z z z z +=+满足=z 则复数 . i 231-三、解答题1. (本题满分12分) (2018年春考·上海卷17) 已知z 是复数,izi z -+22、均为实数(i 为虚数单位),且复数2)(i a z +在复平面上对应的点在第一象限,求实数a 的取值范围. [解] 设R)∈+=y x yi x z 、(,i y x i z )2(2++=+ ,由题意得 2-=y . …… 2分i x x i i x i i x i z )4(51)22(51)2)(2(51222-++=+-=--=-由题意得 4=x . …… 6分 ∴ i z 24-=.∵ 2)(ai z +i a a a )2(8)412(2-+-+=, …… 9分根据条件,可知⎩⎨⎧>->-+0)2(804122a a a ,解得 62<<a ,∴ 实数a 的取值范围是)6,2(. …… 12分 2.(本题满分12分)(2018年高考·上海卷·理18) 证明:在复数范围内,方程iiz i z i z +-=+--+255)1()1(||2(i 为虚数单位)无解. [证明]原方程化简为.31)1()1(||2i z i z i z -=+--+设yi x z += x (、)R y ∈,代入上述方程得.312222i yi xi y x -=--+⎩⎨⎧=+=+∴)2(322)1(122y x y x 将(2)代入(1),整理得.051282=+-x x )(,016x f 方程∴<-=∆ 无实数解,∴原方程在复数范围内无解.3(本题满分12分)(2018年高考·上海卷·文18) 在复数范围内解方程iii z z z +-=++23)(||2(i 为虚数单位). 解:原方程化简为i i z z z -=++1)(||2设),,(R y x yi x z ∈+=代入上述方程得,121,122222⎩⎨⎧-==+∴-=++x y x i xi y x 解得,2321⎪⎪⎩⎪⎪⎨⎧±=-=y x ∴原方程的解是.2321i z ±-=。
高考数学一轮复习 11.3复数课件

2.如果复数 m2 是 i 纯虚数,那么实数m等于 ( )
1 mi
A.-1 B.0 C.0或1 D.0或-1
答案 D
m=2 i
1 mi
=(m2 1,令i)m(m122+mmi)=0,m得2 m m=10或m(12-1m. 3)i
经检验满足题意.故选D.
3.已知复数z= 1 ,则 z·i在复平面内对应的点位于 ( )
(3)复数的加减法的几何意义
a.复数加法的几何意义 若复数z1、z2对应的向量 Ouu、Zur1 不OuuZ共uur2 线,则复数z1+z2是以OZ1、OZ2为两 邻边的平行四边形的对角线OZ表示的向量 O=uuZur +OuuZu所r1 对OuuZu应ur2 的复数. b.复数减法的几何意义 若复数z1,z2对应的向量分别为 Ouu,Zur1 ,则OuuZu复ur2 数z1-z2是向量 所对Zuu应2uZur1的复 数.
1 i
A.第一象限 B.第二象限
C.第三象限 D.第四象限
答案 B z= 1, i= z +1 i , z·i=- 1 +1 i.
2 22
22
实部为- 1 ,虚部为1
2
2
,对应点为
1 2
,
12,在 第二象限,故选B.
4.i是虚数单位,则 2i3=
.
1 i
答案 -1-i
解析
2i3 2i (2i)(1 i)
则x+y=2a,xy=a2+b2,
代入(x+y)2-3xyi=4-6i,得(2a)2-3(a2+b2)i=4-6i,
根据复数相等得
4a2 3(a2
4, b
最新-2018新高考全案高考数学 17-1复数的概念与运算课件 精品

• 2.推理与证明 • 推理与证明是新课标新增内容,但其内容及其思想方法在 统编教材中都有体现.历年来,高考中都有大量的推理与证 明的题目出现,主要考察的形式有:
• (1)给定命题的证明问题.证明方法主要有综合法、分析 法、数学归纳法、反证法.
• (2)类比型问题.这种题型是新课标创新要求的体现,最 常见的是二维问题与三维问题的类比,同结构问题的类比( 比如圆锥曲线内的类比问题、数列内的类比问题等),较少 对照不同结构的类比问题.
• 1.复数 • (1)复数的运算是本章的重点,复数的几何意义及运算是 主要考查的内容.从题型上看,多以选择题、填空题出现.
• (2)预计2011年高考仍会以选择题、填空题出现,重点考 查复数的基本概念、复数相等及代数形式的几何意义,也可 能与向量结合,考查加、减运算的几何意义,或者以复数代 数运算为载体命制创新题,但总体上难度不大.
• [解析] 设z1=x+yi,z2=-1+bi,由复数相等 • -1+bi=x+yi-i(x-yi)=(x-y)+(y-x)i⇒b=y-x=- (x-y)=1 • [答案] 1
应).即复数z=a+bi(a,b∈R)← 一一对→应 Z(a,b)
复平面内的点
← 一一→ 对应平面向量O→Z. •
(3)复数的模:向量O→Z的模 r 叫做复数 z=a+bi(a,b∈ R)的模,记作 |z|=|a+bi|= a2+b2=r=|O→Z|.(r≥0)
4.熟练掌握并能灵活运用以下结论 (1)a+bi=c+di⇔a=c 且 b=d(a,b,c,d∈R). (2)复数 z 是实数的充要条件:(a,b∈R) z=a+bi∈R⇔b=0⇔z= z ⇔z2≥0⇔z2=|z|2⇔z 对应的
,解得 m=0,或 m=2.
2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2018年全国统一高考数学试卷(文科)(全国新课标Ⅰ)一、选择题目:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{﹣2,﹣1,0,1,2}2.(5分)设z=+2i,则|z|=()A.0B.C.1D.3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为()A.B.C.D.5.(5分)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12πB.12πC.8πD.10π6.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x7.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+ 8.(5分)已知函数f(x)=2cos2x﹣sin2x+2,则()A.f(x)的最小正周期为π,最大值为3B.f(x)的最小正周期为π,最大值为4C.f(x)的最小正周期为2π,最大值为3D.f(x)的最小正周期为2π,最大值为49.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.210.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C 所成的角为30°,则该长方体的体积为()A.8B.6C.8D.811.(5分)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=,则|a﹣b|=()A.B.C.D.112.(5分)设函数f(x)=,则满足f(x+1)<f(2x)的x的取值范围是()A.(﹣∞,﹣1]B.(0,+∞)C.(﹣1,0)D.(﹣∞,0)二、填空题目:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。