蓝宝石晶体生长技术详解
蓝宝石项目晶体生长技术研究报告

蓝宝石项目晶体生长技术研究报告
引用准确,并附有相关图片与数据,由蓝宝石晶体生长研究实验室专
业工作人员为你编写。
一、研究背景
蓝宝石,又称宝石石英,是一种矿物,也是最宝贵的天然宝石之一,
具有抗热、抗紫外线和压磨强度高等优良性能,是展示财富和品位的精品,一直是各类礼物礼品中的新宠。
然而,由于蓝宝石自然产量少,价格昂贵,因此难以满足市场对它的需求。
为此,蓝宝石晶体生长技术应运而生,目前已经逐渐受到业者的重视,为保证生产质量,蓝宝石晶体生长技术也迎来了发展新机遇。
二、实验原理
蓝宝石晶体生长技术是一种由晶面构成的可以按照预先设计的模型来
生长蓝宝石晶体的技术,主要是通过在搅拌溶液中添加二氧化碳等有机物质,使溶液中的成分形成极微量的枝毛状结构,然后利用电磁波原理,在
晶体生长过程中,按照模型的设计顺序形成蓝宝石晶体。
三、实验步骤
(1)首先,我们需要准备一个完整的蓝宝石晶体生长系统,包括可
以通过晶格变化而改变晶面的晶体生长装置、用于调整液体温度的加热装置、用以控制晶面的搅拌装置、用以控制晶体形成的电磁场装置。
蓝宝石项目晶体生长技术研究报告

蓝宝石项目晶体生长技术研究报告蓝宝石是一种非常珍贵且重要的宝石,具有很高的价值和美观度。
为了满足市场需求,并提高蓝宝石的生产效率和质量,不断进行研究和开发新的晶体生长技术。
本报告将介绍蓝宝石项目晶体生长技术的研究进展。
首先,晶体生长技术是指通过控制晶体生长条件,使蓝宝石在合适的环境中快速生长。
目前,常见的蓝宝石晶体生长技术有几种,分别是六角晶体生长法、上升法和束流法。
这些技术在实践中都取得了很好的效果。
第一种技术是六角晶体生长法。
这种方法是在合适的高温和高压条件下,通过溶液中的蓝宝石种子使晶体从上部逐渐生长。
这种方法的优点是可以获得较大尺寸的蓝宝石晶体,同时还能控制其形状和质量。
然而,这种方法的缺点是生长周期较长,且由于生长过程中溶液中杂质的存在,会对晶体的纯度造成一定的影响。
第二种技术是上升法。
这种方法是通过在熔融的混合溶液中加入蓝宝石种子,然后逐渐降低温度使晶体从下部生长。
相对于六角晶体生长法,这种方法的优点是生长周期短,且晶体纯度较高。
然而,这种方法也有其缺点,即在晶体生长过程中易产生内部应力,导致晶体不稳定。
第三种技术是束流法。
这种方法是通过将精细制备的蓝宝石晶体放在真空室中,然后利用电子束照射或离子束轰击的方式促进晶体生长。
这种方法的优点是生长周期较短,同时可以控制晶体的形状和分布。
然而,这种方法的缺点是依赖于高成本的设备和技术,且需要更多的研究和改进。
总结来说,蓝宝石项目晶体生长技术的研究取得了一定的进展。
不同的生长技术各有优缺点,需要根据具体需求选择适合的方法。
未来还需要继续深入研究,提高蓝宝石晶体生长的效率和质量,以满足市场的需求。
蓝宝石晶体生长技术

整理课件
5
Al2O3分子结 构
蓝宝石晶体结构图 (其中黑点为氧离子,白点为铝离子)
整理课件
6
基本性质
蓝宝石单晶是一种简单配位型氧化物晶体,呈各向异性,属六方 晶系,晶格参数a=b=0.4758nm,c=1.299 1 nm,α=β=90°, γ=120°。
蓝宝石单晶的透光范围为0.14-6.0μm,覆盖真空紫外、可见、 近红外到中红外波段,且在3-5μm波段具有很高的光学透过率;具 有高硬度(仅次于金刚石)、高强度、高热导率、高抗热冲击品质因 子的力学及热学性能;具有耐雨水、沙尘、盐雾等腐蚀的稳定化学 性能;具有高表面平滑度、高电阻率及高介电性能。
Ti:Al2O3激光器还应用于非线性物理、太赫兹产生、时间分辨光谱 学、频标计量学、多光子显微镜及生物医学成像等基础研究方面。
Ti:Al2O3激光器在军事与工程方面也应用广泛。如激光测距、光电 干扰、红外对抗、致盲武器等军事领域,以及激光通信、海洋探测、 大气环境监测、激光手术及微加工等诸多领域。
整理课件
(1)高温超导薄膜的衬底,如Tl系薄膜TlBa2Ca2Cu3Oy、 Tl2Ba2CaCu2O8;
(2)红外光学材料的衬底,如近红外材料的碲镉汞晶体(HgCdTe), Ⅲ-Ⅴ族化合物的砷化镓(GaAs)、磷化镓(GaP)、氮化镓(GaN),Ⅱ-Ⅵ 族化合物的硫化锌(ZnS)、硒化锌(ZnSe)、碲化镉(CdTe)、氧化锌 (ZnO)、SiO2及金刚石等;
这些优良的光学、力学、热学、化学及电学性能决定了它在军事 及民用领域中的重要地位和作用。
整理课件
7
(1)化学稳定性:蓝宝石具有高度的化学稳定性,在绝大多数 化学反应过程中不会被腐蚀。
(2)机械特性:蓝宝石单晶因其高硬度和高强度,可以在温度 范围从超低温至1500℃高温之间的不同环境中保持高强度、耐磨耗 与高度的稳定性。同时是目前已知的硬度最高的氧化物晶体材料, 仅次于金刚石达莫氏9级。
浅析蓝宝石晶体生长工艺及设备

浅析蓝宝石晶体生长工艺及设备蓝宝石是贵重材料,作为人工合成晶体中的一种,其机械以及光学层面的性能极优,所以应用极广。
近年半导体照明行业规模急剧膨胀,使得对蓝宝石衬底材料需求越来越大,尤其是MOCVD外延衬底方面,超过整体产量的80%。
半导体照明产业规模不断的扩张,使得其对蓝宝石的需求与日俱增,此种情况下,相关行业面临极大的发展机遇,产品具有极高的效益,市场空间比较大,使得资金源源不断的进入该行业。
本文对蓝宝石单晶所具有的性质和使用进行充分说明,尤其是单晶生长工艺方面,一种为泡生法,另一种为VHGF 法,同时分析了其制备设备,探求相关发展大势。
标签:蓝宝石;单晶;生长;工艺;设备1 蓝宝石的性质及用途蓝宝石本质是纯净氧化铝所存在的单晶形态,由Al2O3组成。
其莫氏硬度可以达到9,排名在金刚石其后。
在25℃温度的时候,其电阻率具体为1×1011Ω·cm,同时其具有极好的电绝缘性能。
其光透性极好,在机械层面的性能极好,同时具有极好的热传导性。
应用广泛,在耐磨元件以及窗口材料方面用处极大,同时在电子器件方面应用价值极高。
从电子层面来看,主要在GaN基蓝绿光LED有着极大的应用,除此之外就是射频器件,后者面向手机智造产业(主要涉及技术为蓝宝石上硅SOS)。
在2009年的时候,蓝宝石衬底约为900万片,一年后达到惊人的2700万片。
2 蓝宝石单晶生长工艺及设备2.1 焰熔法维尔纳叶(Verneuil)作为法国闻名遐迩的研究人员,在1902年提出改法,向世人展示,可以视其为蓝宝石单晶工业生长的开端。
原料选用纯净度极高的Al2O3粉末,加热使用氢氧焰,将Al2O3粉末由上到下散落,经过氢氧焰处理,被熔融,然后掉在籽晶顶部,形成蓝宝石晶体。
改法对设备的要求不高,生长极快,不过在完整性方面存在比较大的问题,应力比较大,晶体通常位错密度范围从105一直到106cm2。
适用于制造价格便宜的仪表轴承或者耐磨元件。
数种蓝宝石晶体生长方法

蓝宝石晶体的生长方法自1885年由Fremy、Feil和Wyse利用氢氧火焰熔化天然红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”,迄今人工生长蓝宝石的研究已有100多年的历史。
在此期间,为了适应科学技术的发展和工业生产对于蓝宝石晶体质量、尺寸、形状的特殊要求,为了提高蓝宝石晶体的成品率、利用率以及降低成本,对蓝宝石的生长方法及其相关理论进行了大量的研究,成果显著。
至今已具有较高的技术水平和较大的生产能力,为之配套服务的晶体生长设备——单晶炉也随之得到了飞速的发展。
随着蓝宝石晶体应用市场的急剧膨胀,其设备和技术也在上世纪末取得了迅速的发展。
晶体尺寸从2吋扩大到目前的12吋。
低成本、高质量地生长大尺寸蓝宝石单晶已成为当前面临的迫切任务。
总体说来,蓝宝石晶体生长方式可划分为溶液生长、熔体生长、气相生长三种,其中熔体生长方式因具有生长速率快,纯度高和晶体完整性好等特点,而成为是制备大尺寸和特定形状晶体的最常用的晶体生长方式。
目前可用来以熔体生长方式人工生长蓝宝石晶体的方法主要有焰熔法、提拉法、区熔法、导模法、坩埚移动法、热交换法、温度梯度法、泡生法等。
而泡生法工艺生长的蓝宝石晶体约为目前市场份额的70%。
LED蓝宝石衬底晶体技术正属于一个处于正在发展的极端,由于晶体生长技术的保密性,其多数晶体生长设备都是根据客户要求按照工艺特点定做,或者采用其他晶体生长设备改造而成。
下面介绍几种国际上目前主流的蓝宝石晶体生长方法。
图9 蓝宝石晶体的生长技术发展1 凯氏长晶法(Kyropoulos method)简称KY法,中国大陆称之为泡生法。
泡生法是Kyropoulos于1926年首先提出并用于晶体的生长,此后相当长的一段时间内,该方法都是用于大尺寸卤族晶体、氢氧化物和碳酸盐等晶体的制备与研究。
上世纪六七十年代,经前苏联的Musatov改进,将此方法应用于蓝宝石单晶的制备。
该方法生长的单晶,外型通常为梨形,晶体直径可以生长到比坩锅内径小10~30mm的尺寸。
CZ法蓝宝石晶体生长工艺研究

200mm 蓝宝石晶体生长工艺研究-CZ 法晶体生长工艺主要分为引晶、缩颈、放肩、晶体生长、退火、冷却四个过程。
晶体生长过程中均匀缓慢的提拉晶体 ,晶体不与坩埚壁接触 ,避免了晶体生长过程中的寄生成核。
实验分析与讨论实验发现晶体有开裂及线形的散射颗粒。
晶体开裂取决于温度梯度、生长速率等生长工艺参数 ;线形散射颗粒则取决于温场、功率控制及炉膛的洁净度等工艺条件。
3. 1 生长速率对晶体开裂的影响根据界面稳定条件分别为界面附近熔体和晶体中的温度梯度, Kl,ks 分别为熔体和晶体的热导率 , L 为结晶潜热 ,ρ为晶体密度。
从 (3)中可以看出晶体的最大生长速率取决于晶体中温度梯度的大小 ,要提高晶体的生长速率 ,必须加大晶体中的温度梯度 ,但是 ,晶体中温度梯度太大 ,将会增加热应力 ,引起位错密度增加 ,甚至导致晶体开裂。
考虑热效应对晶体开裂的影响 ,这时允许的最大热应力为 (1)(2)从 (3)、(4)式中可以看出 :晶体中允许的最大热应力 (或热应变 )与生长极限速率成正比。
故 ,为得到高质量完整的晶体 ,通常生长速率低于极限生长速率。
否则 ,由于晶体生长速率过快 ,将会引起高的热应力 ,引起位错密度增加 ,晶体结构完整性变差 ,导致晶体开裂。
另一方面我们可以看出 ,实际上在保证晶体中温度梯度稳定的条件下 ,适当减少熔体中的轴向温度梯度也可以增大晶体生长速率。
蓝宝石晶体具有较大的导热系数 ,在适当的较小的轴向温度梯度温场以及在保证径向温度合理的条件下 ,更有利于凸生长界面的形成 ,也就相对提高了晶体生长速率。
本实验 ,在生长 A l2O3晶体的过程中 ,采取分段生长晶体 ,以保持恒定的结晶速率与晶体等径。
生长速率为 2. 5~3. 0mm /h,此速率对 A l2O3晶体开裂基本上没有影响。
3. 2 热效应对晶体开裂的影响在晶体生长过程中 ,由于温场不合理 ,温度梯度过大 ,冷却速率过快等都会使晶体产生热应力 ,产生相对形变 ,造成晶体开裂。
蓝宝石长晶

一、蓝宝石生长1.1 蓝宝石生长方法1.1.1 焰熔法Verneuil (flame fusion)最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“ 日内瓦红宝石”。
后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。
因此,这种方法又被称为维尔纳叶法。
1)基本原理焰熔法是从熔体中生长单晶体的方法。
其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在种晶上固结逐渐生长形成晶体。
2)合成装置与条件、过程焰熔法的粗略的说是利用氢及氧气在燃烧过程中产生高温,使一种疏松的原料粉末通过氢氧焰撒下焰融,并落在一个冷却的结晶杆上结成单晶。
下图是焰熔生长原料及设备简图。
这个方法可以简述如下。
图中锤打机构的小锤7按一定频率敲打料筒,产生振动,使料筒中疏松的粉料不断通过筛网6,同时,由进气口送进的氧气,也帮助往下送粉料。
氢经入口流进,在喷口和氧气一起混合燃烧。
粉料在经过高温火焰被熔融而落在一个温度较低的结晶杆2上结成晶体了。
炉体4设有观察窗。
可由望远镜8观看结晶状况。
为保持晶体的结晶层在炉内先后维持同一水平,在生长较长晶体的结晶过程中,同时设置下降机构1,把结晶杆2缓缓下移。
焰熔法合成装置由供料系统、燃烧系统和生长系统组成,合成过程是在维尔纳叶炉中进行的。
A.供料系统原料:成分因合成品的不同而变化。
原料的粉末经过充分拌匀,放入料筒。
如果合成红宝石,则需要Al2O粉末和少量的 Cr2O3参杂,Cr2O3用作致色剂,添加量为 1-3%。
三氧化3二铝可由铝铵矾加热获得。
料筒:圆筒,用来装原料,底部有筛孔。
料筒中部贯通有一根震动装置使粉末少量、等量、周期性地从筛孔漏出。
震荡器:驱动震动棒震动,使料筒不断抖动,以便原料的粉末能从筛孔漏出。
B.燃烧系统氧气管:从料筒一侧释放,与原料粉末一同下降;氢气管:在火焰上方喷嘴处与氧气混合燃烧。
HEM法蓝宝石生长

晶體生長程序:
1.先加熱熔化坩堝內的原 料,使熔 體溫度保持略 高於熔點5~10℃ 2.堝底的晶種,逐漸生長出充滿整 個坩堝的大塊單晶
HEM爐體 示意圖
晶碇與坩堝
HEM爐體 實體圖
熱交換器法優缺點
優點:
1.固/液界面位於坩堝內,且沒有拉伸的動作, 不易受到外力干擾。 2.藉由改變坩堝的外形就能改變晶體的形狀。 3.能夠分別控制熔區及固化區之溫度梯度。 4.可減少浮力對流之影響。 5.可直接在爐內進行退火減少晶體內之熱應 力。 6.易於生長大尺寸晶體。
晶體生長技術—HEM
熱交換法(Heat-Exchanger Method) 1947年美國開始使用 熱交換器法來生產 大直徑藍寶石單晶
熱交換器法(HEM)基本原理
利用熱交換器來帶走熱量,使得晶體生 長區內形成 一下冷上熱縱向溫度梯度 藉由控制熱交換器內氣體流量的大小及 改變加熱功率的大小來控制此一溫度梯 度,藉此達成坩堝內溶液由下慢慢向上 凝固成晶體的目的
缺點:
1.不適於生長強烈腐蝕坩堝的材料。 2.生產過程會引入較大內應力。 3.氦氣價格昂貴。 4.氣流的流量難以精確控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、蓝宝石衬底片的加工工艺
机械 加工
机械 加工
晶体
晶棒
基片
晶体
晶棒
晶棒
基片
thanks
熔体表面有凝固浮岛的照片 (a)多边形(b)长条形
下籽晶照片
6、缩颈生长
当籽晶接触到熔体时,此时将产生一固液接口,晶颈便从籽晶接触到熔 体的固液接口处开始生长。 Kyropoulos方法生长蓝宝石单晶,需使用拉晶装置来拉晶颈部分,这个阶 段主要是判断并微调生长晶体之熔体温度。若晶颈生长速度太快,表示温 度过低,必须调高温度。若晶体生长速度太慢,或是籽晶有熔化现象,表 示温度过高,必须调降温度。由缩颈的速度来调整温度,使晶体生长温度 达到最适化。
晶生长(a)示意图,(b)实际情形照片颈
7、等径生长
当温度调整到最适化时,就停止 缩颈程序,开始生长晶身,不需要 靠拉晶装置往上提拉,只需使温度 慢慢下降,熔体就在坩埚内从籽晶 所延伸出来的单晶接口上,从上往 下慢慢凝固成一整个单晶晶碇。
8、晶体脱离坩埚 9、退火 10、冷却 11、晶体检测
晶体开始生长时期照片
泡生法(Kyropoulos method)原理示意图
泡生法的主要优点是:
1.较快的生长率(0.1—25mm/h) 2.高质量(光学等级) 3.大尺寸,无污染 4.低缺陷密度 5.高产能 6.较佳的成本效益
泡生法主要缺点是:
对生长设备的要求比较高
泡生法生长晶体的一般步骤:
1、填充原料及架设籽晶
首先称取一定重量的原料装到坩 埚内,以达到充填致密之效果。之 后,将坩埚放进炉体内加热器中央。 用耐高温钨钼合金线籽晶固定在 拉晶杆上,以利下籽晶或取出晶体 时可用拉晶装置来控制高度。
2、炉体抽真空
将炉体上盖紧密盖于炉体上 方并转紧密封螺栓。抽真空, 先开启机械泵,再启动扩散泵, 再开启炉体阀门,将炉体抽真 空。真空度达到6×10-3Pa时。
3、加热程序
当炉内真空度抽到实验所需的 压力范围时(6×10-3Pa),就开始加 热,图则为炉体加热时由窥视窗 观察炉体内部的情况,可看见未 熔化之块状原料与架设好之籽晶。
宝国(山东昌乐)主要的蓝宝石产地之一
基本结构
由三个氧原子和两个铝原子以共价键型 式结合而成,其晶体结构为六方晶格结 构,其硬度仅次于金刚石。
蓝宝石晶体结构图 (其中黑点为氧离子,白点为铝离子)
蓝宝石单晶的基本性质及应用 特性
高强度 高硬度 高熔点、高温稳定性好 化学惰性 光学性能优良
泡生法生长蓝宝石单晶
201311438 付现伟
一、蓝宝石
蓝宝石(Sapphire)是一种Al2O3的单晶,属于刚玉族矿物,三方晶 系。就颜色而言,单纯的氧化铝结晶是呈现透明无色的,晶体内含 有钛离子(Ti3+)与铁离子(Fe3+)时,会使晶体呈现蓝色,蓝宝 石由此得名。若含有Cr离子时,呈现红色,称红宝石。
应用
精密机械齿轮及耐磨耐高温部件 医用人造骨骼,人造关节,牙齿等 窗口材料及各种光学镜片 GaN 外延衬底材料 珠宝首饰
二、蓝宝石晶体生长
提世 拉界 法上 、主 导要 模的 法熔 、体 热生 交长 换方 法法 、包 泡括 生晶 法体 。
熔体法生长的蓝宝石晶 体具有生长速度快、纯度高、 完整性好、尺寸较大,目前 最常用的蓝宝石晶体生长方 法,而泡生法工艺约占目前 市场的70%。
4、原料熔化
大约加热到电压约10—10.5Volt 时,推估温度达2100℃(蓝宝石 的熔点约2040℃),可使原料完 全溶化,形成熔体。在实验过程 中,以电压值来推断温度。
炉体加热时观察到的炉体内部的情况
氧化铝原料熔化后形成熔体情形
5、下籽晶
在下籽晶前,必须先作净化籽晶的动作,净化籽晶是将籽晶底端熔化 一部分,使预定生长晶体之籽晶表面更干净,以提高晶体生长的质量 当原料完全溶化形成熔体时,必须让熔体持温一小时,确保熔体内部 温度分布均匀且温度适中,才可下籽晶,若在熔体表面有凝固浮岛存在, 则需再调整电压使凝固浮岛在一段时间内消失。
泡生法 (Kyropoulos method)
泡生法是1926年提出的,其设备是提拉设备的基础上改造的。适于生 长同成分熔化的化合物或用于生长含某种过量组份的晶体。该方法将一 根受冷的籽晶与熔体接触,籽晶以极缓慢的速度往上拉升,在籽晶往上 拉晶一段时间以形成晶颈,待熔体与籽晶界面的凝固速率稳定后,籽晶 便不再拉升,也没有作旋转,仅以控制冷却速率方式来使单晶从上方逐 渐往下凝固,最后凝固成一整个单晶晶碇。