牛顿第二定律实验

合集下载

牛顿第二定律实验的教学设计方案

牛顿第二定律实验的教学设计方案

实验效果评估结果分析
质量分析
对学生实验报告质量进行 详细分析 评估实验结果的准确性
结论总结
总结实验评估结果 提出改进建议
教学方法探讨
探讨如何利用评估结果改 进教学方法 提出教学方法改进方案
未来建议
探讨未来实验设计的发展 方向 提出未来实验课程的建议
深化实验的延伸
在实验内容的基础上, 引导学生思考将实验 延伸到其他领域的可 能性,激发学生进一 步研究的兴趣。同时, 探讨未来实验设计的 发展方向和建议,为 学生提供更多探索的 空间。
指导学生正确佩戴实验服 装和个人防护装备,确保 实验安全进行
总结
通过以上准备工作,学生将能够熟悉实验所需的 仪器、材料和环境要求,为进行牛顿第二定律实 验打下坚实的基础。实验前的充分准备和注意事 项的提醒,有助于保障实验的顺利进行,同时确 保实验结果的准确性和安全性。
● 03
第3章 实验步骤和操作
● 08
第八章 实验附加说明
实验安全注意事项
在进行牛顿第二定律实验时,学生们需要时刻注 意实验中的安全意识和操作规范。为了预防实验 中可能出现的危险和事故,学生们应该认真遵守 实验室规定,正确使用实验设备和仪器,确保实 验过程安全稳定。
实验设计改进建议
针对本次实验设计中存在的问题和不足,学生们 可以提出改进实验设计的建议和措施。鼓励学生 在实验设计中发挥创新和实践能力,通过改进设 计提升实验的准确性和有效性,让实验过程更加 有趣和富有挑战性。
● 04
第4章 实验效果评估
实验效果评估指标
01 客观性
确保实验结果不受主观影响
02 科学性
保证实验设计符合科学原理
03 方法多样性
采用多种方法进行评估

牛顿第二定律的实验验证及教学处理

牛顿第二定律的实验验证及教学处理

牛顿第二定律的实验验证及教学处理用实验验证牛顿第二定律,历来受到物理教师的重视,历史上最成功的是英国剑桥大学的一位教师阿特武德(1746~1807)设计了一套简单的滑轮装置,即阿特武德机,事先测定质量m1和m2,通过实验测定自由释放后下降或上升的距离及对应的时间,从而求出加速度,其结果与理论值较为一致,牛顿第二定律得到验证,后来,教师们将阿特武德机横向放置于水平桌面,可取得相同效果,而操作测量更加简单、实用,这就是所谓的横式阿特武德机.建国以后,我国历次统编高中物理教材,对牛顿第二定律的教学处理,基本上都是在学生懂得加速度并能测量后,在建立了力和质量的初步概念的基础上,通过演示实验测定在质量一定的情况下加速度与作用力成正比以及相同作用力情况下,加速度与质量成反比,从而导出牛顿第二定律.在理解该定律的基础上,再安排学生分组实验,让学生独立进行操作.这样不仅可以加深对该定律的理解,并通过实验进行实验思想的教育和实验方法的训练.为了提高验证第二定律的实验精确性,20世纪80年代,教师们采用了气垫导轨和光电计时的方法.虽然这种方法在一定程度上提高了实验精确度,但仪器套件昂贵,许多学校因条件所限而无法采用.与此同时,中学教学中又采用了横向导轨、电磁打点计时的方法验证牛顿第二定律.其特点是简单易行、操作方便.但由于方法粗糙、误差较大,且电磁打点计时器难于维修和调试,在实施中弊端越来越突出.我国80年代末新研制并上市的、使用电火花描迹的“一维运动描迹仪”既简单易行、操作方便、安全可靠,又能减小误差、提高精确度,适宜于教师演示和学生操作,从而为验证牛顿第二定律提供需要的可靠数据.牛顿第二定律发现的历史考查在牛顿之前,没有一个科学家定量地研究过力与加速度的量值关系和方向关系.牛顿早在他的《自然哲学的数学原理》发表前22年(即1665年),通过研究惯性运动的变化与作用力的关系,开始注意运动第二定律.他在《流水账》的定理107中,提出使物体运动的力或保持物体运动的力“与物体(即质量)成比例”,因此,“任何一物体发生的运动与作用于它们上的力成比例”,但是,牛顿在1684年之前在没有做大量有关实验和未提出惯性质量概念的条件下,不可能得出第二定律的定量结果.直到1687年出版《原理》一书时,在充分的实验研究和大量的理论准备基础上提出该定律的定量表述.该书《运动的公理或定律》中写道:“运动的变化正比于外力,变化的方向沿外力作用的直线方向.”在该书的进一步阐释中,牛顿还明确提出了“作用力等于加速度乘以质量”的表述.300多年来,直到现在,教科书都采用了这种表述,教科书的数学表述通常是:F=ma或F=d(mv)/dt.牛顿第二定律教学纵横谈牛顿第二定律是动力学理论的核心,各类基础物理教科书,历来都将该定律置于中心位置,作为重点内容.在对这一定律的教学处理上,却有各种不同的方式.有的把第二定律作为实验定律引进;有的把它作为动量对时间变化率的数学演绎导出;更多的是在力、质量和加速度概念基础上,以公理的形式直接提出第二定律.处理方式不同,对牛顿第二定律实验取舍的态度也就各异,或在实验基础上归纳定律;或根本不做实验;或在提出定律后安排验证性实验等.本文从定律的历史渊源、理论建构以及教学需要等几个方面的分析入手,归纳出两点处理牛顿第二定律教学的意见:第一,在力、质量和加速度概念基础上,以公理形式提出定律并辅以验证性实验;第二,用先进的电火花计时器和一维描迹仪进行演示实验或分组实验均可取得预期的效果.突破思路超重和失重现象虽然学生可能听说过,但却不知道所代表的含义.所谓超重现象是指物体对支持物的压力(或悬挂处的拉力)大于物体重力的现象,此时物体存在向上的加速度;所谓失重现象是指物体对支持物的压力(或悬挂处的拉力)小于物体重力的现象,此时物体存在向下的加速度;完全失重现象是指物体对支持物的压力(或悬挂处的拉力)等于零的现象,此时物体存在向下的加速度,大小等于g.本节教学中几个注意的问题:(1)要深刻理解超重和失重的物理意义,不能把超重和失重真的看作重力变大或变小.(2)要注意引导学生区分超重和失重与物体的速度方向无关,而只决定于物体的加速度方向.(3)在解决实际问题时,要特别注意选取正方向,正方向选取不明确或混乱,计算往往出错.在计算问题中要按牛顿运动定律的应用过程按步骤进行.牛顿第二定律的理论建构作为第二定律的前提,应当赋予力、质量和加速度三个量以明确的意义和量度方法.加速度a的意义和量度方法早在牛顿之前,伽利略就已经赋予了明确的意义和方法.在牛顿时代对于质量m,人们凭经验知道物体的质量与其重量成正比的关系,从而用比较重量的方法来量度质量m,随着牛顿第二定律建立之后,人们对质量概念的认识深化了,产生了惯性质量、引力质量等新的观念.这里顺便说明,一些基本概念的建立及其精确的定量测量,常引起逻辑上的困难,陷入所谓循环论证的怪圈.事实上,这是囿于实证主义对物理概念一定要给出一套操作程序的困惑.“现代物理已经超越了操作主义,更加倾向于认为基本概念原则上是一组不可预先严格定义的假设,它们的合理性只能靠以此为基础而建立的理论所得出的大量的结果而得到证实.”什么是惯性质量?由于加速度a的定义、意义和量度早已明确,所以马赫和麦克斯韦都采用了加速度定义惯性质量的方法,从而力图克服第二定律中质量定义的困难,即所谓动力学质量定义法.马赫方法,如果我们取某一参考系A的质量为单位,那么另一物体在和A相互作用时给予A的加速度为其自身所得加速度的m倍,我们就称它的质量为m.实际上,马赫是承认牛顿第三定律,即|F AB|=|F BA|,若定义m A=1,则m A a A =m B a B,a A=ma B,得m B=m.麦克斯韦方法,以一个确定的力先后对两个物体施加作用,这两个物体所获得的加速度的比值的倒数就是它们的质量之比,即m∝l/a.这种方法,只要规定一个标准物体的质量为m0=1,再通过测量任一物体与标准物体在同一个力作用下获得的加速度a及a0,则可由实验发现得a∶a0=常数这一结论得出:m/m0=a0/a,即m=a0/a,这里应该注意,a∶a0=常数是在相同力作用于任一物体与标准物体的情况下得出的,因此常数与F无关,是物体加速难易程度即惯性本性的反映,因此才有m/m0=a0/a,即m=a0/a.什么是力?与定义质量相似,我们也可利用力的动力学效应定义力.即把物体相对于惯性参考系不再保持静止或做匀速直线运动而产生加速度的能力的大小定义为力.因此,选取某个特定物体,把力F施加于这个特定物体,测定该物体相对于某个惯性参考系的加速度a,a的大小可以作为F的度量,即:F∝a(特定物体).F、m、a三者都有了明确的意义和度量方法,就可以具体测量各种情况下三者的量值关系.由此可得出:a∝1/m(相等的F)a∝F(相等的m)即:F∝ma或F=kma(k为比例常数)如果m、a、F都用国际单位制的单位,则k=1,牛顿第二定律的公式简化为:F=ma.新题解答【例1】跳高运动员从地面起跳的瞬间,下列说法正确的是()A.运动员给地面的压力大于运动员受到的重力B.地面给运动员的支持力大于运动员受到的重力C.地面给运动员的支持力大于运动员对地面的压力D.地面给运动员的支持力等于运动员对地面的压力答案:ABD解析:地面给运动员的支持力和运动员对地面的压力是一对作用力和反作用力,永远大小相等,方向相反,作用在一条直线上,与运动员的运动状态无关.所以选项C错误,选项D正确.跳高运动员从地面起跳的瞬间,必有向上的加速度,这是因为地面给运动员的支持力大于运动员受到的重力,运动员所受合外力竖直向上的结果.所以选项B正确.依据牛顿第三定律可知,选项A正确.点评:本题着重考查对力的概念,牛顿第三定律以及超重失重的理解.【例2】质量是60kg的人站在升降机中的体重计上,当升降机做下列各种运动时,体重计的读数是多少?(g=10m/s2)图6—13(1)升降机匀速上升;(2)升降机以4m/s2的加速度加速上升;(3)升降机以5m/s2的加速度加速下降.解析:人站在升降机中的受力情况如图6—13所示.(1)当升降机匀速上升时,由牛顿第二定律得:F N—mg=0所以,人受到的支持力FN=mg=60×10N=600N.根据牛顿第三定律,人对体重计的压力即体重计的示数为600N.(2)当升降机以4m/s2的加速度加速上升时,根据牛顿第二定律得FN—mg=ma,FN=mg+ma=60×(10+4)=840N,此时体重计的示数为840N,人处于超重状态.(3)当升降机以5m/s2的加速度加速下降时,根据牛顿第二定律得mg—FN=ma,FN=mg—ma=60×(10—5)=300N,此时体重计的示数为300N,人处于失重状态.点评:当物体处于超重、失重状态时,其本身的重力保持不变,物体所受的拉力(或支持力)的大小,可根据牛顿第二定律计算出来,再根据牛顿第三定律可知物体对支持物的压力或对悬挂物的拉力大小.思维过程在地球表面附近,无论物体处于什么状态,其本身的重力G=mg始终不变.超重时,物体所受的拉力(或支持力)与重力的合力方向向上,测力计的示数大于物体的重力;失重时,物体所受的拉力(获支持力)与重力的合力方向向下,测力计的示数小于物体的重力.可见,在失重、超重现象中,物体所受的重力始终不变,只是测力计的示数(又称视重)发生了变化,好像物体的重量有所增大或减小.发生超重或失重现象,只决定于物体在竖直方向上的加速度,与物体的运动方向无关.合作讨论(一)跳高运动员在起跳过程和落到海绵垫子上的过程中哪个过程是超重,哪个过程是失重?我的思路:跳高运动员起跳时先经历一个向上加速的过程,这段时间的加速度是向上的,因此是超重过程,此时它对地面的压力大于人的重力;当人落到海绵垫子上时,开始时重力大于弹力,仍然向下加速一段很短的时间,这段时间是失重,接着弹力大于运动员的重力,运动员减速,这个过程是超重;运动员在空中的运动过程,加速度始终是向下的,并且大小等于g,所以,这个过程是完全失重.(二)一个举重运动员在地球上能举起300kg的重物,这个运动员在什么环境中能举起400kg的重物?我的思路:运动员要举起比平时重的物体必须处于失重环境,例如:在加速向下、减速上升的电梯中;在空间站上;在月球上都可能举起400kg的物体.合作讨论(一)跳高运动员在起跳过程和落到海绵垫子上的过程中哪个过程是超重,哪个过程是失重?我的思路:跳高运动员起跳时先经历一个向上加速的过程,这段时间的加速度是向上的,因此是超重过程,此时它对地面的压力大于人的重力;当人落到海绵垫子上时,开始时重力大于弹力,仍然向下加速一段很短的时间,这段时间是失重,接着弹力大于运动员的重力,运动员减速,这个过程是超重;运动员在空中的运动过程,加速度始终是向下的,并且大小等于g,所以,这个过程是完全失重.(二)一个举重运动员在地球上能举起300kg的重物,这个运动员在什么环境中能举起400kg的重物?我的思路:运动员要举起比平时重的物体必须处于失重环境,例如:在加速向下、减速上升的电梯中;在空间站上;在月球上都可能举起400kg的物体.规律总结规律:牛顿第二定律、牛顿第三定律知识:超重、失重、完全失重方法:超重和失重的判断方法:判断超重和失重要依据加速度的方向来判定.当加速度方向向上时,物体处于超重状态;当加速度方向向下时,物体处于失重状态;当加速度大小为g且方向向下时,物体处于完全失重状态.即使加速度的方向不是竖直向上或向下的,只要加速度存在竖直方向的分量,就会出现超重或失重现象.如果物体处于完全失重状态,会呈现于常规完全不同的物理现象,像宇宙飞船中宇航员飘飘然的举动,满舱飞舞的物品等怪现象都是由于完全失重造成的.在完全失重的情况下,有些实验是不能进行的,例如:沸腾实验、天平测质量的实验、托里拆利实验等;同时也有一些特殊的实验在失重状态下更容易成功,例如:晶体生长实验等.变式练习一、选择题1.下面关于失重和超重的说明,正确的是()A.物体处于失重状态时,所受重力减小,处于超重状态时所受重力增大B.在电梯上出现失重状态时,电梯必定处于下降过程C.在电梯上出现超重现象时,电梯有可能处于下降过程D.只要物体运动的加速度方向向上,必定处于失重状态解析:加速度向下物体处于失重状态,加速度向上物体处于超重状态,超重和失重并非物体的重量增大或减小,而是使悬绳或支持面的弹力增大或减小;电梯加速向上运动时,物体处于超重状态,电梯减速下降时,也处于超重状态.答案:C2.如图6—14所示,质量分别为M和m的物体用细线连接,悬挂在定滑轮上,定滑轮固定在天花板上,已知M>m,不计滑轮及线的质量,摩擦不计,则下列说法正确的是()图6—14A.细线的拉力一定大于mgB.细线的拉力一定小于MgC.细线的拉力等于(m+M)g/2D.天花板对定滑轮的拉力等于(M+m)g解析:物体运动过程中,m加速向上,处于超重状态,所以绳子的拉力大于mg,而M 加速向下,处于失重状态,故绳子的拉力小于Mg.答案:AB3.在封闭系统中用弹簧秤称一物体的重量,由弹簧秤读数的变化可以判断系统的运动状态,下列说法正确的是()A.读数准确,则系统做匀速直线运动或处于静止状态B.读数偏大,则系统一定向上加速运动C.读数时大时小,则系统一定做上下往复运动D.读数偏小,说明加速度一定向下解析:读数准确,则系统做匀速直线运动或处于静止状态;读数偏大,物体超重,则系统向上加速运动或向下减速运动;读数时大时小,则系统可能做一个方向的时加速时减速的运动;读数偏小,物体失重,说明加速度一定向下.答案:AD4.A、B、C三球大小相同,A为实心木球,B为实心铁球,C是质量与A一样的空心球,三球同时从同一高度由静止落下,若受到的阻力相同,则()A.B球下落的加速度最大B.C球下落的加速度最大C.A球下落的加速度最大D.B球落地时间最短,A、C球同时落地解析:根据牛顿第二定律:a=(mg-f)/m可得m越大,a越大.答案:AD5.物体m静止于固定的升降机中的斜面上,当升降机加速竖直向上时,如图6—15所示,与原来升降机静止时相比,不正确的是()图6—15A.物体受到的斜面的支持力增加B.物体受到的合力增加C.物体m受到的重力增加D.物体m受到的摩擦力增加解析:当物体加速上升时,物体受到的斜面的摩擦力和支持力的合力增大,由于两力的夹角确定,所以,合力增大,支持力和摩擦力均增大.答案:ABD6.一根弹簧下端挂一重物,上端用手牵引使重物竖直向上做加速运动,加速度a<g,从手突然停止时起到弹簧恢复原长时止,在这个过程中,重物加速度的数值将是()A.逐渐增大B.逐渐减小C.先减小后增大D.先增大后减小解析:弹簧原来处于伸长状态,当手突然停住时,物体仍有向上的速度,先使弹簧缩短至kx=mg的长度,这个过程,加速度减小,然后弹簧继续缩短,并有可能被压缩,这个过程加速度又增大.答案:C二、非选择题7.自由落体运动的物体处于________状态;竖直上抛运动的物体处于________状态.解析:自由落体和竖直上抛运动加速度均为g,且方向竖直向下,所以均为完全失重状态.答案:完全失重完全失重8.质量为50kg的人站在电梯上.当电梯静止时,人对电梯底板的压力大小为________N;当电梯以lm/s2的加速度上升时,人对电梯底板的压力大小为________N;当电梯以1m/s2的加速度做匀减速下降时,人对电梯底板的压力大小为________N.(g=10m/s2)解析:根据牛顿第二定律可得.答案:500550450.9.某人在以2.5m/s2的加速度匀加速下降的升降机里最多能举起80kg的物体,他在地面上最多能举起_______kg的物体,若此人在一匀加速上升的升降机中最多能举起40kg 的物体,则此升降机上升的加速度为_______m/s2.答案:60 510.如图6—16所示,A、B两个物体间用最大张力为100N的轻绳相连,m A=4kg,m B=8kg,在拉力F的作用下向上加速运动,为使轻绳不被拉断,F的最大值是多少?(g =10m/s2)解析:取系统为研究对象,据牛顿第二定律:F-(m A+m B)g=(m A+m B)a取B物体为研究对象:T-m B g=m B a由以上两式代入T=100N可得:F=150N.所以,为使绳不被拉断F不能超过150N.答案:150N。

牛顿第二定律实验

牛顿第二定律实验

牛顿第二定律实验牛顿第二定律是经典力学中的重要定律之一,它描述了物体受力时所产生的加速度与所受力的关系。

为了验证这一定律,科学家们进行了一系列的实验。

本文将介绍牛顿第二定律的实验以及其背后的探索过程。

在实验中,科学家通常选择简单的实验装置来研究物体受力时的加速度变化。

其中,最常见的实验装置是动力小车。

动力小车由一个可调节力的发动机推动,同时它还可以测量小车的加速度。

科学家通过改变推力和质量来探究物体受力与其加速度的关系。

在实验中,科学家首先固定小车的质量,接着改变推力的大小。

他们发现,当推力增加时,小车的加速度也会增加。

这与牛顿第二定律的预测相吻合。

牛顿第二定律的数学表达式是F=ma,其中F代表力,m代表物体的质量,a代表物体的加速度。

实验结果证实了牛顿第二定律中的变量之间的关系。

然而,科学家们并未停止实验。

他们进一步改变小车的质量,想要观察在质量变化的情况下,小车的加速度是否发生变化。

实验结果表明,当质量增加时,如果推力保持不变,小车的加速度会减小。

这也与牛顿第二定律的预测相符。

这一系列实验揭示了物体受力时加速度的变化规律。

牛顿第二定律的实验结果表明,一个物体受到的力越大,或者质量越小,它受到的加速度就越大。

科学家们通过实验证明了牛顿第二定律的有效性,并巩固了牛顿的运动定律在力学领域的地位。

牛顿第二定律不仅适用于实验室中的小车,它也适用于宏观世界中的各种物体。

实际生活中,当我们掷出一颗篮球,它会受到一个向上的重力和一个向前的推力。

根据牛顿第二定律,这两个力决定了篮球的加速度。

如果我们用更大的推力将篮球扔出去,那么篮球的加速度将更大,飞得更远。

这又是一个应用牛顿第二定律的实际例子。

此外,牛顿第二定律也适用于宇宙中的天体运动。

例如,行星绕太阳运动的轨道取决于太阳对行星的引力和行星的质量。

根据牛顿第二定律,行星受到的引力越大,质量越小,它的轨道半径就越小,运动速度就越快。

综上所述,牛顿第二定律的实验验证了物体受力时加速度的变化规律。

牛顿第二定律实验操作指南

牛顿第二定律实验操作指南

牛顿第二定律实验操作指南1.实验目的通过实验验证牛顿第二定律,即力等于质量乘以加速度(F=ma),帮助学生理解物体在受力作用下的运动规律。

2.实验原理牛顿第二定律表达式为F=ma,其中F表示作用在物体上的合力,m表示物体的质量,a表示物体的加速度。

在实验过程中,通过改变作用在物体上的合力,观察物体的加速度变化,验证牛顿第二定律。

3.实验器材与步骤3.1实验器材小车、滑轮组、钩码、细绳、计时器、刻度尺、木板(带摩擦系数)、电子秤。

3.2实验步骤步骤1:组装实验器材将滑轮组固定在小车上,用细绳连接滑轮组和钩码,使钩码能够通过细绳拉动小车。

将小车放在水平木板上,用电子秤测量小车的质量,记录在实验表格中。

步骤2:测量加速度将计时器设置为开始计时,拉起钩码,使小车从静止开始运动,记录小车在不同拉力下的加速度。

每次实验结束后,用刻度尺测量小车运动的距离,计算出加速度,并记录在实验表格中。

步骤3:改变拉力通过增加或减少钩码的质量,改变作用在小车上的拉力。

重复步骤2,记录不同拉力下的加速度,直至实验数据稳定。

步骤4:分析实验数据将实验数据整理成图表,观察加速度与拉力之间的关系。

验证牛顿第二定律的正确性。

4.实验注意事项4.1确保实验过程中小车在水平木板上运动,以减小摩擦力对实验结果的影响。

4.2拉起钩码时,要保证拉力的平稳,避免突然释放导致小车加速度过大。

4.3实验过程中,要密切关注小车的运动情况,防止实验器材损坏或安全事故发生。

4.4测量加速度时,要准确记录小车运动的距离和时间,确保实验数据的准确性。

5.实验结果与讨论通过实验数据的分析,我们可以发现,当作用在小车上的拉力增大时,小车的加速度也相应增大;当作用在小车上的拉力减小时,小车的加速度也相应减小。

这充分验证了牛顿第二定律的正确性。

我们还观察到,在实验过程中,小车的质量对加速度有一定的影响。

当小车的质量增大时,相同的拉力作用下,小车的加速度减小;当小车的质量减小时,相同的拉力作用下,小车的加速度增大。

大学物理实验牛顿第二定律的验证误差分析

大学物理实验牛顿第二定律的验证误差分析

大学物理实验牛顿第二定律的验证误差分析
大学物理实验中,牛顿第二定律的验证是一个重要的实验内容。

牛顿第二定律表明,物体的加速度与作用在物体上的力成正比,与物体的质量成反比。

实验中,我们通过使用弹簧测力计和各种质量的物体来验证这一定律。

在实验过程中,我们首先将弹簧测力计固定在水平桌面上,并将待测物体悬挂在弹簧测力计的下方。

然后,我们逐步增加待测物体的质量,记录对应的拉力和加速度数据。

通过对数据的分析,我们可以验证牛顿第二定律。

在实际操作中,由于实验设备、测量仪器以及人为因素等因素的存在,可能会导致误差的产生。

这些误差可以分为系统误差和随机误差两种类型。

系统误差是由于实验设备的固有缺陷或者实验操作不当而引起的。

例如,弹簧测力计的刻度不准确、摩擦力的存在等都可能导致系统误差。

为了减小系统误差,我们可以使用多次实验取平均值的方法,并且注意选择精确度更高的实验设备。

随机误差是由于实验中的偶然因素引起的。

例如,读数时的人眼疲劳、环境温度的变化等都可能导致随机误差。

为了减小随机误差,我们可以多次测量同一组数据,并计算其平均值和标准偏差,以提高测量结果的准确性。

在误差分析中,我们可以通过计算相对误差、确定测量结果的可靠性。

相对误差可以通过实测值与理论值之差除以理论值,并乘以
100%来计算。

较小的相对误差表示测量结果较为准确。

大学物理实验中牛顿第二定律的验证是一个重要的实验内容。

在实验过程中,我们需要注意减小系统误差和随机误差,通过误差分析来评估测量结果的准确性。

这样才能得到可靠的实验数据,并验证牛顿第二定律的有效性。

实验四验证牛顿第二定律

实验四验证牛顿第二定律

平衡摩擦力:
FN f
G1
G G1平衡摩擦力 f。
当M ≥m时,可近似以为小车所受旳拉力T 等于mg.
三、【试验器材】
——打点计时器,纸带及复写纸,小车,一 端附有滑轮旳长木板,小盘和砝码,细绳,低压 交流电源,导线,天平,刻度尺.
四、【试验环节】
1.用天平测出小车、砝码旳质量M和小盘 与砝码旳总质量m,把数据统计下来.
5.保持小盘内砝码个数不变,变化小车质 量,再测几组数据。
并将相应旳质量和加速度旳值,填入表格( 二)中。
五、【怎数样更据直处理】
1.观试地验处数理据旳统计处理:m一定,a与F关系
数据?
• 试 F(N) a(m/s2)
a/m·s -2

0.75
次 0.10 0.146
0.60

0.45 0.30
1 0.20 2 0.30
,下列m旳取值不合适旳一种是_____D_____.
A.m1=5 g C.m3=40 g
B.m2=15 g D.m4=400 g
解析: (2)应满足M≫m,故m4=400 g不合适.
(3)在此试验中,需要测得每一种牵引力相应旳
加速度,求得旳加速度旳体现式为__________.
由:v1=D/Δt1,
(1)试验开始应先调整气垫导轨下面旳螺钉,使 气垫导轨水平,在不增长 其他仪器旳情况下,怎样 鉴定调整是否到位?
解析:(1)假如气垫导轨水平,则不挂砝码时,M应能在任 意位置静止不动,或推动M后能使M匀速运动(Δt1= Δt2) .
直接测—光电门
(2)若取M=0.4 kg,变化m旳值,进行屡次试验
2.安装好试验装置,在小车上装好纸带, 纸带另一端穿过计时器限位孔,调整木板倾斜程 度,平衡摩擦力。

牛顿第二定律的实验验证

牛顿第二定律的实验验证牛顿第二定律是经典力学的重要定律之一,它描述了物体受力时的加速度与力的关系。

在科学史上,有许多实验被用来验证牛顿第二定律的有效性和准确性。

本文将介绍其中一些实验,并讨论其对牛顿第二定律的实验验证。

首先,我们来探讨一个经典的实验——斜面实验。

在这个实验中,一个物体沿着斜面滑动,我们可以通过测量物体在不同角度下的加速度来验证牛顿第二定律。

根据牛顿第二定律的表达式F=ma,我们可以得知加速度与物体所受合力成正比。

通过改变斜面的倾角和测量物体的加速度,我们可以验证这个关系是否成立。

为了进行斜面实验,我们可以利用一块光滑的斜面和一个固定在斜面上的测力计。

首先,将物体放置在斜面顶端,然后逐渐倾斜斜面,同时测量物体在每个角度下的加速度。

根据实验数据和斜面的几何参数,我们可以计算出物体所受的合力和加速度。

在验证牛顿第二定律时,我们也可以考虑空气阻力对物体运动的影响。

另外一个用来验证牛顿第二定律的实验是物体的自由落体实验。

根据牛顿第二定律,自由下落的物体在重力作用下会产生匀加速度运动。

因此,通过测量自由落体物体的加速度,我们也可以验证牛顿第二定律的有效性。

为了进行自由落体实验,我们可以利用一个竖直的透明直管和一个装有计时器的高精度观测工具。

首先,我们将物体放入直管的顶端,开始计时,并观察物体下落的过程。

通过测量物体在不同时间段内所经过的距离,我们可以计算其平均速度和加速度。

通过多次实验和数据处理,我们可以得到牛顿第二定律的验证结果。

除了斜面实验和自由落体实验,还有许多其他实验可以用来验证牛顿第二定律。

例如,弹簧振子实验、碰撞实验等等。

这些实验都是在控制条件下进行的,通过精确测量物体的运动和受力情况来验证牛顿第二定律的适用性。

通过这些实验的验证,我们可以得出结论:牛顿第二定律是一个准确且适用于经典力学的定律。

它可以通过实验的观察和数据的分析得到有效验证。

牛顿第二定律的重要性不仅体现在它的实验验证上,更体现在它对力学和物理学的广泛应用中。

牛顿第二定律实验总结

牛顿第二定律实验总结牛顿第二定律是经典力学的基本定律之一,它描述了物体所受的合外力与物体的加速度之间的关系。

在本次实验中,我们通过不同的方式验证了牛顿第二定律,并对实验结果进行了总结和分析。

首先,我们利用弹簧测力计和滑轮装置进行了实验。

实验中,我们在滑轮上绑上一定质量的物体,然后用弹簧测力计测量所施加的力。

通过测量力和物体的加速度,我们验证了牛顿第二定律中的加速度与合外力成正比的关系。

实验结果表明,当施加的力增大时,物体的加速度也随之增大,符合牛顿第二定律的描述。

其次,我们利用斜面实验验证了牛顿第二定律。

在实验中,我们将小车放置在斜面上,并通过斜面的倾斜角度和小车的加速度来验证牛顿第二定律。

实验结果表明,当斜面的倾斜角度增大时,小车的加速度也随之增大,与牛顿第二定律中的加速度与合外力成正比的关系相吻合。

最后,我们利用挠度计实验验证了牛顿第二定律。

在实验中,我们在一根弹簧上悬挂不同质量的物体,并测量弹簧的挠度。

通过测量挠度和物体的加速度,我们验证了牛顿第二定律中的加速度与合外力成正比的关系。

实验结果表明,当物体的质量增大时,弹簧的挠度也随之增大,符合牛顿第二定律的描述。

综合以上实验结果,我们可以得出结论,牛顿第二定律描述了物体所受的合外力与物体的加速度之间的关系,当施加的力增大时,物体的加速度也随之增大。

通过不同的实验手段验证了牛顿第二定律的正确性,加深了我们对牛顿第二定律的理解。

总的来说,本次实验通过多种方式验证了牛顿第二定律,实验结果符合牛顿第二定律的描述。

牛顿第二定律在经典力学中具有重要的地位,对于我们理解物体的运动规律具有重要意义。

希望通过本次实验,能够加深我们对牛顿第二定律的理解,为今后的学习和科研工作打下坚实的基础。

大学物理实验:牛顿第二定律的验证与应用

大学物理实验:牛顿第二定律的验证与应用介绍牛顿第二定律是经典力学的基础之一,它描述了物体受到外力作用时加速度与施加力的关系。

在大学物理课程中,学生会进行一系列的实验来验证和应用牛顿第二定律。

本文将详细介绍如何进行一个相关的实验,并解释其背后的原理。

实验设备和材料•平滑水平面•牵引轮和绳子•物块(不同质量)•动力传感器•计算机或数据采集器•数据分析软件实验步骤1.设置实验装置:将平滑水平面放置于桌面上,安装好牵引轮并连接绳子。

2.将动力传感器连接至计算机或数据采集器。

3.给所选物块附上动力传感器,以测量施加在物块上的力。

4.将另一端的绳子通过轻质滑轮固定在墙壁上。

5.将测试物块连接至轻质滑轮上方,并保持其悬挂状态。

6.启动数据采集器并记录下测试物块的质量。

7.将测试物块轻轻拉开,使其开始运动,并记录下所施加的牵引力变化随时间的曲线。

8.重复实验多次以获得更准确的数据。

数据处理和分析1.使用数据分析软件导入记录下的数据,并生成相应图表,例如牵引力随时间的变化曲线。

2.对每个数据点进行平均,并计算对应物块的加速度。

3.绘制物块加速度与牵引力之间的关系图表。

4.拟合一条直线至数据点上,以验证是否满足牛顿第二定律中描述的关系:F= ma,其中F为施加在物块上的力,m为物块质量,a为物块加速度。

5.根据拟合直线的斜率确定比例常数k,并将其与预期值(m)进行比较。

结果和讨论根据实验结果和对比预期值,可以得出以下结论: - 牛顿第二定律在此实验中被验证了。

通过绘制牵引力和物体质量之间关系的图表并进行拟合直线后,发现其斜率(即比例常数k)非常接近预期值(物体质量m)。

- 随着施加力的增大,物块的加速度也随之增加。

这符合牛顿第二定律的预测。

应用牛顿第二定律在物理学中有广泛的应用。

以下是一些常见领域中使用该定律进行问题解决和分析的例子: - 动力学分析:通过使用牛顿第二定律,可以计算物体受到外力作用时的运动状态,例如速度和位移。

验证牛顿第二定律实验(经典实用)

验证牛顿第二定律实验(经典实用)牛顿第二定律是物理学中最基本的定律之一,它描述了力、质量和加速度之间的关系。

根据牛顿第二定律,当一个物体受到某个力时,它将产生一个与该力成正比的加速度。

为了验证这个定律,我们进行了以下实验。

材料和设备:1. 测力计2. 密度计3. 弹簧锁定器4. 钩子5. 不同质量的球(如网球、篮球等)6. 直尺7. 计时器实验步骤:1. 将测力计连接到弹簧锁定器上,并挂在墙上。

确保测力计在水平位置上。

2. 将一个球放在钩子上,用密度计测量球的质量,记录下来。

3. 将钩子连接到测力计上,并使球悬挂在测力计下部。

4. 确保测力计和球都处于静止状态,开始记录时间。

5. 用手推动球,使其产生运动,同时用计时器记录球的运动时间。

6. 通过观察测力计的读数,记录下球运动时受到的力。

7. 重复以上步骤,使用不同质量的球进行实验。

8. 将记录的数据绘制成图表,将加速度与受力之间的关系进行对比。

实验结果:根据实验数据,我们得出以下结论:1. 受力和球质量之间具有线性关系,即受力越大,球的加速度越大。

这符合牛顿第二定律的描述。

2. 每种球的加速度都不相同,这是由于不同球的质量不同,受到的力也不同。

3. 当球的质量增加时,受到的力也相应增加,但加速度的增长速度较慢。

这与牛顿第二定律中的质量项有关。

结论:实验结果证实了牛顿第二定律的正确性。

根据实验数据,受力和加速度具有线性关系,为F=ma。

这个定律被广泛应用于物理学、工程学和其他领域,对于理解运动的本质和设计新技术发挥重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4-2 验证牛顿第二定律实验
1.实验目的、原理
实验目的:验证牛顿第二定律,即物体的质量一定时,加速度与作
用力成正比;作用力一定时,加速度与质量成反比.
实验原理:利用砂及砂桶通过细线牵引小车做加速运动的方法,采
用控制变量法研究上述两组关系.如图3-14-1所示,通过适当的调节,
使小车所受的阻力忽略,当M 和m 做加速运动时,可以得到 g m M m a += m M m mg T +⋅= 当M>>m 时,可近似认为小车所受的拉力T 等于mg .
本实验第一部分保持小车的质量不变,改变m 的大小,测出相应的a ,验证a 与F 的
关系;第二部分保持m 不变,改变M 的大小,测出小车运动的加速度a ,验证a 与M 的关系.
2.实验器材
打点计时器,纸带及复写纸,小车,一端附有
滑轮的长木板,小桶,细绳,砂,低压交流电源,
两根导线,天平,刻度尺,砝码.
3.实验步骤及器材调整
(1)用天平测出小车和小桶的质量M 和m ,把数
值记录下来.
(2)按图3-14-2所示把实验器材安装好.
(3)平衡摩擦力:在长木板的不带滑轮的一端下
面垫上一块薄木板,反复移动其位置,直至不挂砂桶的小车刚好在斜面上保持匀速运动为止.
(4)将砂桶通过细绳系在小车上,接通电源放开小车,使小车运动,用纸带记录小车的
运动情况,取下纸带,并在纸带上标上号码.
(5)保持小车的质量不变,改变砂桶中的砂量重复步骤(4),每次记录必须在相应的纸带
上做上标记,列表格将记录的数据填写在表内.
(6)建立坐标系,用纵坐标表示加速度,横坐标表示力,在坐标系上描点,画出相应的
图线以验证a 与F 的关系.
(7)保持砂及小桶的质量不变,改变小车的质量(在小车上增减砝码),重复上述步骤(5)、
(6)验证a 与M 的关系.
4.注意事项
(1)在本实验中,必须平衡摩擦力,方法是将长木板的一端垫起,而垫起的位置要恰当.在
位置确定以后,不能再更换倾角.
(2)改变m 和M 的大小时,每次小车开始释放时应尽量靠近打点计时器,而且先通电再
放小车.
(3)每次利用纸带确定a 时,应求解其平均加速度.
5.数据处理及误差分析
(1)该实验原理中T=m
M M mg +⋅,可见要在每次实验中均要求M>>m ,只有这样,才能使牵引小车的牵引力近似等于砂及砂桶的重力.
(2)在平衡摩擦力时,垫起的物体的位置要适当,长木板形成的倾角既不能太大也不能
太小,同时每次改变M 时,不再重复平衡摩擦力.
(3)在验证a 与M 的关系时,作图时应将横轴用l /M 表示,这样才能使图象更直观.
图3-14-1
图3-14-2
[例1](2008·广州一模)用如图(甲)所示的实验装置来验证牛顿第二定律,为消除摩擦力的影响,实验前必须平衡摩擦力.
(1)某同学平衡摩擦力时是这样操作的:将小车静止地放在水平长木板上,把木板不带滑轮的一端慢慢垫高,如图(乙),直到小车由静止开始沿木板向下滑动为止.请问这位同学的操作是否正确?如果不正确,应当如何进行?
答: .
(2)如果这位同学先如(1)中的操作,然后不断改变对小车的拉力F,他得到M(小车质量)保持不变情况下的a—F图线是下图中的(将选项代号的字母填在横线上).
(3)打点计时器使用的交流电频率f=50Hz. 下图是某同学在正确操作下获得的一条纸带,A、B、C、D、E每两点之间还有4个点没有标出.写出用s1、s2、s3、s4以及f来表示小车加速度的计算式:a= . 根据纸带所提供的数据,算得小车的加速度大小
为 m/s2(结果保留两位有效数字).
★高考重点热点题型探究
热点牛顿第二定律
[真题1](2007·广东)如图3-14-7 (a)所示,小车放在斜面上,车前端拴有不可伸长的细线,跨过固定在斜面边缘的小滑轮与重物相连,小车后面与打点计时器的纸带相连.开始时,小车停在靠近打点计时器的位置,重物到地面的距离小于小车到滑轮的距离.启动计时器,释放重物,小车在重物牵引下,由静止开始沿斜面向上运动,重物落地后,小车会继续向上运动一段距离.打点计时器使用的交流电频率为50Hz. 图3-14-7(b)中a、b、c是小车运动纸带上的三段,纸带运动方向如图箭头所示.
(1)根据所提供的纸带和数据,计算打c 段纸带时小车的加速度大小为 m/s 2(计算结果保留两位有效数字). (2) 打a 段纸带时,小车的加速度是 2.5m/s 2,请根据加速度的情况,判断小车运动的最大
速度可能出现在b 段纸带中的 .
(3) 如果重力加速度取2
m/s 10,由纸带数据可推算出重物与小车的质量比为 .
【真题2】(2008年宁夏卷).物理小组在一次探究活动中
测量滑块与木板之间的动摩擦因数.实验装置如图,一表面
粗糙的木板固定在水平桌面上,一端装有定滑轮;木板上有
一滑块,其一端与电磁打点计时器的纸带相连,另一端通过
跨过定滑轮的细线与托盘连接.打点计时器使用的交流电源
的频率为50 Hz.开始实验时,在托盘中放入适量砝码,滑
块开始做匀加速运动,在纸带上打出一系列小点. (1)上图给出的是实验中获取的一条纸带的一部分:0、1、2、3、4、5、6、7是计数点,
每相邻两计数点间还有4个打点(图中未标出),计数点间的距离如图所示.根据图中数据计
算的加速度a = (保留三位有效数字).
(2)回答下列两个问题:
①为测量动摩擦因数,下列物理量中还应测量的有 .(填入所选物理量前的字母)
A.木板的长度l
B.木板的质量m 1
C.滑块的质量m 2
D.托盘和砝码的总质量m 3
E.滑块运动的时间t
②测量①中所选定的物理量时需要的实验器材是 .
(3)滑块与木板间的动摩擦因数 = (用被测物理量的字母表示,
重力加速度为g ).与真实值相比,测量的动摩擦因数 (填“偏大”或“偏小” ).
写出支持你的看法的一个论据:
.
2.72 2.82 2.92 2.98 2.82 2.62 2.08 1.90 1.73 1.48 1.32 1.12
单位:cm
a b
c
图3-14-7 (b) D 1 D 2 D 3 D 4 D 5 D 6 D 7
参考答案
例1 [解析](1)平衡摩擦力的要点是把有打点计时器的那一端适当抬高,给小车一个初速度,小车能匀速下滑,则小车所受摩擦力和小车的重力沿斜面向下的分力平衡,则小车所受绳子的拉力可认为小车所受的合外力,达到平衡摩擦力的作用.故第(1)问的答案应为:该同学的操作不正确,正确的操作应该为给小车一个初速度,小车能够匀速下滑.
(2)该同学做实验时实际上是平衡摩擦力过度,故没有拉力F 之前已经有加速度,故C 正确.
(3)采用分组法得计算加速度的表达式100
)]()[(2
2143f s s s s a +-+=, 带入数据解得a = 0.60m/s 2
.
[方法技巧] 本题考查验证牛顿第二定律的实验方法即控制变量法、减小误差的因素、数据处理等基本知识.要求同学们对实验的基本原理、基本步骤、数据处理、误差分析都要理解清楚.
真题1:[剖析](1)要求c 段的加速度,可直接用分组法,即把6段数据分成两组,所以 [])/(0.5)
02.03(10)73.190.108.2()12.132.148.1(222
s m a -=⨯⨯++-++=- 故加速度的大小为5.0m/s 2
(2)由纸带可知,物体在D 4D 5区间的速度可能最大;
(3)设重物的质量为m ,小车的质量为M ,重物拉小车时对车和重物所组成的整体有: 1)()sin cos (a m M Mg Mg mg +=+-θθμ
重物落地后,小车减速运动时有:
Ma Mg Mg -=+-)sin cos (θθμ
联立解出1:1:=M m
[名师指引]本题考查纸带求加速度、整体法和隔离法、牛顿第二定律.考查同学们的综合分析能力和推理能力,有较大的难度.
真题2:解析:(1)去掉最开始的一个数据用分组法求加速度 22
2
/497.0)1.03(10)]88.240.289.1()37.488.339.3[(s m a =⨯⨯++-++=-(0.495~0.497m/s 2均可)
(2)① CD ,②天平
(3)对托盘(含砝码)以及小车为一整体根据牛顿第二定律有:a m m g m g m )(3223+=-μ 解得g
m a m m g m 2323)(+-=μ,测量值比真实值偏大,纸带与打点计时器的限位孔之间有摩擦阻力.
[名师指引] 本题考查纸带求加速度、牛顿第二定律、误差分析.考查同学们的综合分析能力和推理能力,有一定的难度.关键在于对实验原理的理解.。

相关文档
最新文档