第八章 假设检验
教育与心理统计学第八章:假设检验

临界值
H0值
样本统计量
左侧检验示意图
(显著性水平与拒绝域 )
抽样分布
置信水平
拒绝域
1- 接受域
临界值
H0值
样本统计量
观察到的样本统计量
右侧检验示意图 (显著性水平与拒绝域 )
抽样分布
置信水平
1- 接受域
拒绝域
H0值 观察到的样本统计量
临界值
样本统计量
双侧检验原假设与备择假设的确定
▪ 双侧检验属于决策中的假设检验。即不论是拒绝H0还 是接受H0,都必需采取相应的行动措施。
1、原假设真实, 并接受原假设,判断正确; 2、原假设不真实,且拒绝原假设,判断正确; 3、原假设真实, 但拒绝原假设,判断错误; 4、原假设不真实,却接受原假设,判断错误。
假设检验是依据样本提供的信息进行判断,有犯错误 的可能。所犯错误有两种类型:
第一类错误是原假设H0为真时,检验结果把它当成不 真而拒绝了。犯这种错误的概率用α表示,也称作α错 误(αerror)或弃真错误。
型错误
β错误(取伪错误) 1-β(正确决策)
要使犯这两类错误的概率α 和β都尽可能小, α也不能定
的过低 。
在一般研究中,我们总是控制犯型错误
为什么???
假设检验中人们普遍执行同一准则:首先控制弃真错误(α错 误)。假设检验的基本法则以α为显著性水平就体现了这一原
则。
两个理由: 统计推断中大家都遵循统一的准则,讨论问题会比较方便。
0.076mm。试问新机床加工零件 的椭圆度均值与以前有无显著差
异?(=0.05)
属于决策中 的假设!
解:已知:X0=0.081mm, =.25,n=200,
x 0.076
概率论第八章假设检验

8.1假设检验的基本思想与步骤
数理统计的主要任务是从样本出发,对总体的分布 作出推断。作推断的方法,主要有两种,一种是上一章 讲的参数估计,另一种是假设检验。
例7.1 某厂生产合金钢,其抗拉强度X(单位:kg/mm2) 可以认为服从正态分布N(μ,σ2)。据厂方说,抗拉强度的 平均值μ=48。现抽查5件样品,测得抗拉强度为
②.区间估计立足于大概率,通常以较大的把握程度(
置信水平)1-α去保证总体参数的置信区间。而假设
检验立足于小概率,通常是给定很小的显著性水平
α202去1/2/4检验对总体1 参数的先验假设是否成立。
19
(2)区间估计与假设检验的联系
①.区间估计与假设检验都是根据样本信息对总 体参数进行推断,都是以抽样分布为理论依据 ,都是建立在概率基础上的推断,推断结果都 有一定的可信程度或风险。
其平均重量为991克。已
知这种产品重量服从标
准差为50克的正态分布
。试确定这批产品的包
装 重 量 是 否 合 格 ? (α=
0.05)
2021/2/4
1
双侧检验!
香 脆 蛋 卷 22
用置信区间进行检验(例题分析)
解:提出假设:
置信区间为
H0: = 1000
H1: 1000
已知:n = 16,σ=50,
2
即能以95%的把握推断该地区青少年犯罪的平均年龄不是18岁。
2021/2/4
1
17
例7.7 食品罐头的细菌含量按规定标准必须小于62.0,现从一批罐 头中抽取9个,检验其细菌含量,经计算得样本均值为62.5,样本 标准差为0.3。问这批罐头的质量是否完全符合标准(α=0.05 )? (设罐头的细菌含量服从正态分布 )
第八章 假设检验

(一)问题的提出
例1.1 体重指数BMI是目前国际上常用的衡量人体胖 瘦程度以及是否健康的一个标准. 专家指出, 健康 成年人的BMI 取值应在 18.55- 24.99 之间.某种 减肥药广告宣称, 连续使用该种减肥药一个星期便 可达到减肥的效果.为了检验其说法是否可靠,随机 抽取9位试验者(要求BMI 指数超过25,年龄在20-25 岁女生),
x 0.522 0.465, 依然拒绝H0;
那么,拒绝H0的最小的值 是多少?最小的显 著水平又是多少?
(一)问题的提出
先让每位女生记录没有服用减肥药前的体重, 然后 让每位女生服用该减肥药, 服药期间, 要求每位女 生保持正常的饮食习惯, 连续服用该减肥药1周后, 再次记录各自的体重.测得服减肥药前后的体重差 值X(服药前体重-服药后体重) (单位: kg): 1.5,0.6,-0.3,1.1,-0.8,0,2.2,-1.0,1.4 设X~N(μ,0.36), μ未知,根据目前的样本资料能否 认为该减肥药广告中的宣称是可靠的?
n i1
Xi
~
N(,
1 ), n
H0 : 0, H1 : 1( 0 ), 拒绝域:X c.
P1 (X c)
P0 (X c)
0
c
1
犯两类错误的 概率相互制约
11
例1.1中,犯第I类错误的概率
(c) P{拒绝H0|H0是真的} P{X c| 0}
P{ X c | 0} / n / n
例1.2 一种饼干的包装盒上标注净重200g,假 设包装盒的重量为定值,且设饼干净重服从N (μ,σ2), μ, σ2均未知.现从货架上取来3盒,称 得毛重(单位:g)为 233,215,221,根据这 些数据是否可以认为这种包装饼干的标准差超 过6g?
统计学-第八章 假设检验

假设 原假设
双侧检验
单侧检验
左侧检验 右侧检验
H0 : m =m0 H0 : m m0 H0 : m m0
备择假设 H1 : m ≠m0 H1 : m <m0 H1 : m >m0
三、假设检验的程序---
4.例题分析
[例8.1] 某品牌洗衣粉在它的产品说明书中声称:平 均净含量不少于1250克。从消费者的利益出发,有关研 究人员要通过抽检其中的一批产品来验证该产品制造商 的说明是否属实。试写出用于检验的原假设与备择假设。
2.接受域:概率P>的区域,为大概率区域,称之 为原假设的接受区域。
3.拒绝域:概率P≤的区域,为小概率区域,称之 为原假设的拒绝区域。
三、假设检验的程序---
1.拒绝原假设H1 原则:临界值
2.接受原假设H0 原则:临界值
检验统计值的绝 对值大于临界值;
检验统计值的绝 对值小于临界值;
假设 H0为真实 H0为不真实
接受H0 判断正确
采伪错误()
拒绝H0 弃真错误()
判断正确
四、假设检验中的两类错误
第I类()错误和第II类()错误的关系
和的关系就像 翘翘板,小就 大, 大就小。
你要同时减少两类 错误的惟一办法是 增加样本容量!
关乎决策:三个与其
与其,人为地把显著性水平固定按某一水平上,不 如干脆选取检验统计量的P值;
第二节 一个正态总体的假设检验
二、均值m的假设检验
3.给出显著性水平(0.01、0.05或0.1)
4.确定接受域和拒绝域(以双侧检验为例)
2已知:当Z Z 2
,则拒绝原假设,反之则接受H0;
第八章 假设检验 (《统计学》PPT课件)

第二节 一个正态总体的假设检验
一、正态总体
设总体X ~ N(m, 2),抽取容量为n的样本 x1, x2, xn
样本均值 X 与方差S2 计算公式分别为:
2
1 n 1
n i1
(xi
X)
我们将利用上述信息,来检验关于未知参数均值 和方差的假设。
总体参数
均值
方差
总体方差已知
z 检验
(单尾和双尾)
总体方差已知
t 检验
(单尾和双尾)
2 检验
(单尾和双尾)
第二节 一个正态总体的假设检验
二、均值m的假设检验
1.H0:m=m0
2.选择检验统计量:
2已知: Z X m0 ~ N(0,1)
/ n
2未知:
小样本: t X m0 ~ t(n 1)
这个值不像我 们应该得到的 样本均值 ...
...因此我们拒绝 原假设μ=50
... 如果这是总 体的假设均值
60
μ=80
H0
样本均值
第一节 假设检验概述
三、假设检验的程序
一个完整的假设检验过程,通常包括以下几个步骤:
首先,设立原假设H0与备选假设H1; 第二步,构造检验统计量,并根据样本观察数据
小样本:当 t t
2
,则拒绝原假设,反之则接受H0;
5.得出结论。
二、均值m的假设检验
6.例题分析
[例8.3] 某广告公司在广播电台做流行歌曲磁带广告 ,它的插播广告是针对平均年龄为21岁的年轻人的,标 准差为16。这家广告公司经理想了解其节目是否为目标 听众所接受。假定听众的年龄服从正态分布,现随机抽 取400多位听众进行调查,得出的样本结果为x 25 岁S2,18 。以0.05的显著水平判断广告公司的广告策划是否符合 实际?
统计学第8章假设检验

市场调查中常用的假设检验方法包括T检验、Z检验和卡方 检验等。选择合适的检验方法需要考虑数据的类型、分布 和调查目的。例如,对于连续变量,T检验更为适用;对于 分类变量,卡方检验更为合适。
医学研究中假设检验的应用
临床试验
在医学研究中,假设检验被广泛应用于临床试验。研究 人员通过设立对照组和实验组,对不同组别的患者进行 不同的治疗,然后收集数据并使用假设检验来分析不同 治疗方法的疗效。
03 假设检验的统计方法
z检验
总结词
z检验是一种常用的参数检验方法,用于检验总体均值的假设。
详细描述
z检验基于正态分布理论,通过计算z分数对总体均值进行检验。它适用于大样本 数据,要求数据服从正态分布。z检验的优点是简单易懂,计算方便,但前提假 设较为严格。
t检验
总结词
t检验是一种常用的参数检验方法,用于检验两组数据之间的差异。
卡方检验
总结词
卡方检验是一种非参数检验方法,用于 比较实际观测频数与期望频数之间的差 异。
VS
详细描述
卡方检验通过计算卡方统计量来比较实际 观测频数与期望频数之间的差异程度。它 适用于分类数据的比较,可以检验不同分 类之间的关联性。卡方检验的优点是不需 要严格的假设前提,但结果解释需谨慎。
04 假设检验的解读与报告
详细描述
t检验分为独立样本t检验和配对样本t检验,分别用于比较两组独立数据和同一组数据在不同条件下的 差异。t检验的前提假设是小样本数据近似服从正态分布。t检验的优点是简单易行,但前提假设需满 足。
方差分析
总结词
方差分析是一种统计方法,用于比较两个或多个总体的差异。
详细描述
方差分析通过分析不同组数据的方差来比较各组之间的差异。它适用于多组数据的比较,可以检验不同因素对总 体均值的影响。方差分析的前提假设是各组数据服从正态分布,且方差齐性。
第八章 假设检验
第八章 假设检验第一节 假设检验的原理 一、假设与假设检验(一)备择假设就是实验人员希望证实的假设,也称研究假设。
从内容上看,备择假设是假设两个样本统计(或两个总体参数)之间,又或者是样本统计量与总体参数之间存在真实的差异,是一种有差假设。
表达方式有二,即μ≠X 或0≠-μX ; 21μμ≠或021≠-μμ。
(二)虚无假设是研究人员为了证实研究假设是真的而利用概率论的反证法所进行的假设,即从研究假设的反面进行假设,用符号0H 表示。
建立起虚无假设目的是希望通过检验说明虚无假设是假的,以此来证明研究假设是真的。
因此,假设检验都是从虚无假设开始的。
从内容上看,虚无假设是假设两个总体参数之间或样本统计量与总体参数之间不存在真正的差异,其现存的表面差异是由抽样所造成的误差,是一种无差假设,又称零假设或原假设。
表达方式有二,即μ=X 或0=-μX 表示; 21μμ=或021=-μμ。
二、显著性水平(一)显著性水平的意义显著性水平指拒绝虚无假设的小概率值。
从理论上说,显著性水平的理论依据来自小概率事件。
统计中一般认为概率小于或等于0.05的随机事件属小概率事件。
若随机样本统计量的数值在抽样分布上出现的概率等于或小于这些小概率值,就以小概率事件拒绝虚无假设。
从直观上看,当两个总体均数相等时,1μ和2μ会落在Z 轴的同一点上,即0=Z 处,当1μ和2μ有差异时,则会产生差距,其差距在Z 轴上达到或超出±1.96σ时,就被认为出现显著差异,因此±1.96σ之内称接受虚无假设的概率区,其包含的面积达95%。
只要两均数差异检验的Z 值落入该区域,就认为差异不显著,这时应接受虚无假设而拒绝研究假设。
而±1.96σ之外称则拒绝虚无假设的小概率区,其包含面积为5%,称小概率值,即05.0=α。
只要两均数差异检验的Z 值落入这一区域,就认为存在显著差异。
这时应拒绝虚无假设而接受研究假设。
(二)差异显著性的判断规则表8-1 Z 值、p 值与差异显著性的关系Z p 值显著性 符号表示<1.96 >0.05 不显著≥1.96 ≤0.05 显 著 * ≥2.58≤0.01极显著**值得注意的是,显著性水平的取值实际上是因事物的性质、统计的要求及研究者的需求不同确定的。
第八章 假设检验 - 副本解析
z n(x 0 ) 100(960 1000) 2 1.645
200
于是拒绝H0 ,认为这批灯泡的使用寿命低于
1000小时,批发商不应购买。
注:P值=P(Z≤z),若 P 值 < ,则拒绝 H0
第二节 一个总体参数的检验
• 总体均值的检验 (1)样本量大 a) 方差已知:(例8.2) 检验统计量为 Z n(X 0) ~N(0,1)
(2)确定检验统计量:t
n(X 0)
S
~t(n-1)
(3)求出拒绝域:
P(| t |
n(X 0)
S
t (n 1)) 2
(4)取样,根据样本观察值作出决策:
x 5.3, n 10, s 0.3, t0.05 (10 1) t0.025 (9) 2.2622 2
t n(x 0 ) 10(5.3 5) 3.16 2.2622
s
0.3
于是拒绝H0 ,认为该机器的性能不好。
0.01155
例8.8 一项统计结果声称,某市老年人口(年 龄在65岁以上) 所占的比例为14.7%,该 市老年人口研究会为了检验该项统计是否 可靠,随机抽取了400名居民,发现其中有 57 人年龄在65岁以上。调查结果是否支持 该市老年人口比例为14.7%的看法 ( 0.05) ?
解::(1)提出假设:
H0 : 14.7%支持
H1 : 14.7%不支持
• 总体比例的检验
二项分布当n很大时,与正态分布近似,
检验统计量 Z pˆ 0 ~ N(0,1), 0 (1 0 ) n
式中 pˆ 为样本比例; 0 为总体比例 的假设
值。
(2)确定检验统计量:Z
pˆ 0 0 (1 0 )
n(x 0 ) 200(0.076 0.081) 2.83 1.96
第8章 假设检验
例 孟德尔遗传理论断言,当两个品种的豆杂交时,圆的 和黄的、起皱的和黄的、圆的和绿的、起皱的和绿的豆的 频数将以比例9:3:3:1发生。在检验这个理论时,孟德 尔分别得到频数315、101、108、32、这些数据提供充分 证据拒绝该理论吗?
P PH0 | Z || z0 | 2PH0 Z | z0 | 2(1 (| z0 |))
(即z0代替了拒绝域式中的z 2 )
判断:当P小于显著水平时,拒绝原假设,
否则,接受: 0, H1 : 0 , 其中0是已知的常数
以X 作为的参考, 若H0为真,X比0大些,但
这个批次清漆的干燥时间构成的总体方差可设 2 0.36 而其均值是要求我们检验的!
经计算,现抽取的9个数据的平均值x 6.4小时,
现在的问题是,我们能否认为 "6.4 6.0 0" ?
即,接受以下哪个假设?
原假设 H0 : 0 6.0, 备择假设 H1 : 0 6.0
4
原假设 H0 : 0 6.0, 备择假设 H1 : 0 6.0
16
*另外方法:若给定显著性水平, 当原假设成立时
( 0),总体X ~ N (0, 2 ),因此,X ~ N (0, 2 n )
P0 ( X 0
k)
P 0
(
X
0
n
k
设
)
n
k
n z /2
k z/2 n
1
一般,H
的拒绝域写为:
数理统计 第八章 假设检验
量
渐近2 服从ik自1 (由fi度n为pni(pik)-21)的ik1 2nf分pi2i布. n
检验的拒绝域形为: W= 2 C
当显著性水平给定时,可得 C=2 (k 1).
12
如果根据所给的样本值 X1,X2, …,Xn算得
(2 n-1)
2 1
2 (n 1)
(n 1)S 2
2
t(n1 n2 2)
2 2 (n 1) (X Y ) (1 2 )
S 1 1 w n1 n2
t(n1 n2 2)
F1 2 (n1 1, n2 1)
F(n1 1,n2 1)
npi
近似服从 2(1)
按 0.05,查表得
2 0.05
(1)
3.841,拒绝域为
W= 2 3.841
这里,n=70+27=97, k=2,
实测频数为70,27.
理论频数为: np1=72.75, np2=24.25
由于统计量 2的实测值 2=0.4158<3.841,17
理论频数npˆi 217 149 51
12
3
22
战争次数x 实测频数 fi 概率估计 pˆi 理论频数npˆi
0
1
223 142
0.502 0.346
217 149
2 48 0.119 51
3 15 0.027
12
4
4
0.006
3
15
检验统计量的观察值为
2 k ( fi npi )2 k fi2 n
i 1
npi
i1 npˆi