2019年北京市中考数学总复习课件:题型突破(07) 新定义问题
2019-2020年中考数学专题复习新定义问题

2019-2020年中考数学专题复习新定义问题【专题点拨】新定义运算、新概念问题一般是介绍新定义、新概念,然后利用新定义、新概念解题,其解题步骤一般都可分为以下几步:1.阅读定义或概念,并理解;2.总结信息,建立数模;3.解决数模,回顾检查.“新概念”试题,其设计新颖,构思独特,思维容量大,既能考查学生的阅读、分析、推理、概括等能力,又能考查学生知识迁移的能力和数学素养,同时还兼具了区分选拔的功能 .【解题策略】具体分析新颖问题→弄清问题题意→向已知知识点转化→利用相关联知识查验→转化问题思路解决【典例解析】类型一:规律题型中的新定义例题1:(2015•永州,第10题3分)定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是()A.[x]=x(x为整数) B.0≤x﹣[x]<1C.[x+y]≤[x]+[y]D.[n+x]=n+[x](n为整数)【解析】:根据“定义[x]为不超过x的最大整数”进行计算【解答】:解:A、∵[x]为不超过x的最大整数,∴当x是整数时,[x]=x,成立;B、∵[x]为不超过x的最大整数,∴0≤x﹣[x]<1,成立;C、例如,[﹣5.4﹣3.2]=[﹣8.6]=﹣9,[﹣5.4]+[﹣3.2]=﹣6+(﹣4)=﹣10,∵﹣9>﹣10,∴[﹣5.4﹣3.2]>[﹣5.4]+[﹣3.2],∴[x+y]≤[x]+[y]不成立,D、[n+x]=n+[x](n为整数),成立;故选:C.【点评】本题考查了一元一次不等式组的应用,解决本题的关键是理解新定义.新定义解题是近几年中考常考的题型.变式训练1:(2015•山东潍坊,第12题3分)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为( )A.(—2012,2) B.(一2012,一2)C. (—2013,—2)D. (—2013,2)类型二:运算题型中的新定义例题2:(2016·四川宜宾)规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log n a n=n.log N M=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000= .【解析】实数的运算.先根据log N M=(a>0,a≠1,N>0,N≠1,M>0)将所求式子化成以10为底的对数形式,再利用公式进行计算.【解答】解:log1001000===.故答案为:.变式训练2:(2016四川省乐山市第16题)在直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y′),给出如下定义:若(0)(0)y x y y x ≥⎧'=⎨-<⎩,则称点Q 为点P 的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数3y x =+图象上点M 的“可控变点”,则点M 的坐标为 ;(2)若点P 在函数216y x =-+(5x a -≤≤)的图象上,其“可控变点”Q 的纵坐标y′的取值范围是1616y '-≤≤,则实数a 的取值范围是 .类型三: 探索题型中的新定义例题3:(2016山西省第10题)宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH【解析】考点:黄金分割的识别【解答】:由作图方法可知DF=5CF ,所以CG=CF )15(-,且GH=CD=2CF ,从而得出黄金矩形CG=CF )15(-,GH=2CF ∴2152)15(-=-=CF CF GH CG ∴矩形DCGH 是黄金矩形。
浙江省2019年中考数学复习-难题突破题型(三)新定义问题课件浙教版

(1)概念理解:
如图Z3-1①,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是“等高底”三角形,请说明理由;
如图①,过点 A 作 AM⊥直线 BC 于点°.
1
∵∠ACB=30°,AC=6,∴AM= AC=3,
数,如:M{-2,-1,0}=-1,max{-2,-1,0}=0,max{-2,-1,a}=
( ≥ -1),
-1( < -1).
解决问题:
(1)填空:M{sin 45°,cos 60°,tan 60°}=
,如果 max{3,5-3x,2x-6}=3,则 x 的取值范围为
(2)如果 2·M{2,x+2,x+4}=max{2,x+2,x+4},求 x 的值;
∵“等高底”△ABC 的“等底”为 BC,l1∥l2,l1 与 l2 之间的距离为 2,AB= 2BC,
∴BC=AE=2,AB=2 2,∴BE=2,即 EC=4,∴AC=2 5.
∵△ABC 绕点 C 按顺时针方向旋转 45°得到△A'B'C,∴∠DCF=45°.
1
2
2
10.
设 DF=CF=x,∵l1∥l2,∴∠ACE=∠DAF,∴ = = ,即 AF=2x.
( ≥ -1),
-1( < -1).
类型1 新法则、新运算型
将 M{9,x2,3x-2}中的三个元素分别用三个函数表示,即 y=9,y=x2,y=3x-2,在同一个直角坐标系中表示如下,由
几个交点划分区间,分类讨论:
当 x≤-3 时,可知 M{9,x2,3x-2}=9,max{9,x2,3x-2}=x2,得 x2=9,∴x1=3(舍),x2=-3;
2019年【浙教版】中考数学难题突破:专题三-新定义问题(含答案)

数学精品复习资料难题突破专题三 新定义问题所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近 年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力.解决“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其解决问题的思想方法;二是根据问题情境的变化,通过认真思考,合理进行思想方法的迁移.类型1 新法则、新运算型1 [2017·枣庄] 我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ).在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n )=p q.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F (12)=34.(1)如果一个正整数m 是另外一个正整数n 的平方,我们称正整数m 是完全平方数,求证:对任意一个完全平方数m ,总有F (m )=1;(2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”;(3)在(2)所得的“吉祥数”中,求F (t )的最大值. 例题分层分析(1)对任意一个完全平方数m ,设m =n 2(n 为正整数),找出m 的最佳分解为________,所以F (m )=________=________;(2)设交换t 的个位上的数与十位上的数得到的新数为t ′,则t ′=________,根据“吉祥数”的定义确定出x 与y 的关系式为________,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F (t )的最大值即可.解题方法点析此类问题在于读懂新定义,然后仿照范例进行运算,细心研读定义,细致观察范例是解题的关键. 类型2 新定义几何概念型2 [2017·金华] 如图Z 3-1,将△ABC 纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰△BED 和等腰△DHC 的底边上的高线EF ,HG 折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.图Z 3-1(1)将▱ABCD 纸片按图Z 3-2①的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段________,________;S 矩形AEFG ∶S ▱ABCD =________.(2)▱ABCD 纸片还可以按图Z 3-2②的方式折叠成一个叠合矩形EFGH ,若EF =5,EH =12,求AD 的长.(3)如图Z 3-2③,四边形ABCD 纸片满足AD ∥BC ,AD <BC ,AB ⊥BC ,AB =8,CD =10.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出AD ,BC 的长.图Z 3-2例题分层分析(1)观察图形直接得到操作形成的折痕,根据矩形和平行四边形的面积公式与折叠的轴对称性质可得S 矩形AEFG ∶S ▱ABCD=________;(2)由矩形的性质和勾股定理可求得FH =________,再由折叠的轴对称性质可知HD =________,FC =______,∠AHE =12______,∠CFG =12________,从而可得∠________=∠________,再证得△AEH ≌△CGF ,可得________,进而求得AD 的长;(3)根据叠合矩形定义,画出叠合正方形,然后再求AD ,BC 的长.解题方法点析解决此类问题的关键在于仔细研读几何新概念,将新的几何问题转化为已知的三角形、四边形或圆的问题,从而解决问题.对于几何新概念弄清楚条件和结论是至关重要的.专 题 训 练1.[2017·潍坊] 定义[x ]表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y =[x ]的图象如图Z 3-3所示,则方程[x ]=12x 2的解为( )图Z 3-3A .0或 2B .0或2C .1或- 2D .2或- 22.[2017·莱芜] 对于实数a ,b ,定义符号min{a ,b },其意义为:当a ≥b 时,min{a ,b }=b :当a <b 时,min{a ,b }=a .例如min{2,-1}=-1.若关于x 的函数y =min{2x -1,-x +3},则该函数的最大值为( )A.23 B .1 C.43 D .533.[2017·成都] 在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点P (x ,y ),我们把点P ′(1x ,1y)称为点P 的“倒影点”.直线y =-x +1上有两点A ,B ,它们的倒影点A ′,B ′均在反比例函数y =kx的图象上.若AB =2 2,则k =________.4.[2017·齐齐哈尔] 经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图Z 3-4,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A =46°,则∠ACB 的度数为________.图Z 3-45.[2017·湖州] 对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a -b .例如:5⊗2=2×5-2=8,(-3)⊗4=2×(-3)-4=-10.(1)若3⊗x =-2011,求x 的值; (2)若x ⊗3<5,求x 的取值范围.6.[2017·义乌] 定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形. (1)如图Z 3-5①,等腰直角四边形ABCD 中,AB =BC ,∠ABC =90°. ①若AB =CD =1,AB ∥CD ,求对角线BD 的长. ②若AC ⊥BD ,求证:AD =CD .(2)如图Z 3-5②,在矩形ABCD 中,AB =5,BC =9,点P 是对角线BD 上一点,且BP =2PD ,过点P 作直线分别交边AD ,BC 于点E ,F ,使四边形ABFE 是等腰直角四边形.求AE 的长.图Z 3-57.[2017·宁波] 有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图Z 3-6①,在半对角四边形ABCD 中,∠B =12∠D ,∠C =12∠A ,求∠B 与∠C 的度数之和;(2)如图Z 3-6②,锐角三角形ABC 内接于⊙O ,若边AB 上存在一点D ,使得BD =BO ,∠OBA 的平分线交OA 于点E ,连结DE 并延长交AC 于点F ,∠AFE =2∠EAF ,求证:四边形DBCF 是半对角四边形;(3)如图Z 3-6③,在(2)的条件下,过点D 作DG ⊥OB 于点H ,交BC 于点G ,当DH =BG 时,求△BGH 与△ABC 的面积之比.图Z 3-6参考答案类型1 新法则、新运算型 例1 【例题分层分析】 (1)m =n ×n nn 1(2)10y +x y =x +4解:(1)证明:对任意一个完全平方数m , 设m =n 2(n 为正整数),∵|n -n |=0,∴n ×n 是m 的最佳分解,∴对任意一个完全平方数m ,总有F (m )=nn=1.(2)设交换t 的个位上的数与十位上的数得到的新数为t ′,则t ′=10y +x , ∵t 是“吉祥数”,∴t ′-t =(10y +x )-(10x +y )=9(y -x )=36, ∴y =x +4,∵1≤x ≤y ≤9,x ,y 为自然数,∴满足“吉祥数”的为15,26,37,48,59.(3)F (15)=35,F (26)=213,F (37)=137,F (48)=68=34,F (59)=159.∵34>35>213>137>159,∴所有“吉祥数”中,F (t )的最大值是34.类型2 新定义几何概念型 例2 【例题分层分析】 (1)1∶2(2)13 HN FN ∠AHF ∠CFH AHE CFG FC =AH 解:(1)AE ,GF ;1∶2.提示:由折叠的性质,得AD =2AG . ∵S 矩形AEFG =AE ·AG ,S ▱ABCD =AE ·AD , ∴S 矩形AEFG ∶S ▱ABCD =AE·AGAE·AD=1∶2.(2)∵四边形EFGH 是叠合矩形,∴∠FEH =90°, ∴FH =EF 2+EH 2=52+122=13.由折叠的性质可知,HD =HN ,FC =FN ,∠AHE =12∠AHF ,∠CFG =12∠CFH .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∠A =∠C ,∴∠AHF =∠CFH ,∴∠AHE =∠CFG . ∵EH =FG ,∴△AEH ≌△CGF ,∴FC =AH , ∴AD =AH +HD =FC +HN =FN +HN =FH =13. (3)本题有以下两种基本折法,如图①,图②.①按图①的折法的解法:由折叠的性质可知,AD =BF ,BE =AE =4,CH =DH =5,FG =CG .∵四边形EBGH 是叠合正方形,∴HG =BG =4, ∴CG =3,∴FG =CG =3,∴BF =BG -FG =1,BC =BG +CG =4+3=7, ∴AD =1,BC =7. ②按图②的折法的解法: 设AD =x .由折叠的性质可知,AE =EM =BE =4,MH =AD =x ,DN =HN ,HG =CG ,FC =FH . 由DN =HN ,HG =CG ,则GN =12CD =5.∵四边形EFGN 是叠合正方形, ∴EF =FG =GN =5,∴MF =BF =3, ∴FC =FH =x +3.∵∠B =∠EFG =∠CGF =90°,∴∠BEF +∠BFE =∠BFE +∠CFG =90°, ∴∠BEF =∠CFG ,∴△GFC ∽△BEF , ∴FG BE =FC EF ,即54=x +35,解得x =134, ∴AD =134,BC =BF +FC =3+134+3=374.专题训练1.A [解析] 由函数图象可知,当-2≤x <-1时,y =-2,即有[x ]=-2,此时方程无解;当-1≤x <0时,y =-1,即有[x ]=-1,此时方程无解;当0≤x <1时,y =0,即有[x ]=0,此时方程为0=12x 2,解得x =0;当1≤x<2时,y =1,即有[x ]=1,此时方程为1=12x 2,解得x =2或x =-2(不在x 的取值范围内,舍去).综上可知,方程[x ]=12x 2的解为0或 2.2.D [解析] 当2x -1≥-x +3时,x ≥43,y =min {2x -1,-x +3}=-x +3,最大值为53.当2x -1<-x +3时,x <43,y =min {2x -1,-x +3}=2x -1,y 的值都小于53.综上,该函数的最大值为53.3.-43 [解析] A ,B 两点在直线y =-x +1上,设A (a ,-a +1),B (b ,-b +1),∴AB 2=(a -b )2+(-a +1+b -1)2=2(a -b )2=(2 2)2,∴(a -b )2=4,∴a -b =±2.A ,B 两点的“倒影点”分别为A ′(1a ,11-a ),B ′(1b ,11-b). ∵点A ′,B ′均在反比例函数y =k x 的图象上,∴1a ·11-a =k =1b ·11-b ,∴a (1-a )=b (1-b ),变形得(a -b )(1-a -b )=0,∵a -b =±2,∴1-a -b =0.由⎩⎪⎨⎪⎧a -b =2,1-a -b =0解得⎩⎪⎨⎪⎧a =32,b =-12,∴k =1a ·11-a =23×(-2)=-43; 由⎩⎪⎨⎪⎧a -b =-2,1-a -b =0解得⎩⎪⎨⎪⎧a =-12,b =32,∴k =1a ·11-a =(-2)×23=-43.综上,k =-43.4.113°或92° [解析] ∵△CBD 和△ABC 相似, ∴∠BCD =∠A =46°.设∠ACB =x ,则∠ACD =x -46°.∵△ACD 是等腰三角形,又∠ADC >∠BCD ,∴∠ADC >∠A ,即AC ≠CD . ①若AC =AD ,则∠ACD =∠ADC =x -46°, ∵46°+x -46°+x -46°=180°, ∴x =113°.②若AD =CD ,则∠ACD =∠A , 即46°=x -46°, ∴x =92°.综上所述,∠ACB 的度数为113°或92°. 5.解:(1)根据题意,得2×3-x =-2011, 解这个方程,得x =2017. (2)根据题意,得2x -3<5, 解得x <4,即x 的取值范围是x <4.6.解:(1)①∵AB =CD =1且AB ∥CD ,∴四边形ABCD 是平行四边形, 又∵AB =BC ,∴四边形ABCD 是菱形. ∵∠ABC =90°,∴四边形ABCD 是正方形, ∴BD =AC =12+12= 2. ②证明:如图①中,连结AC ,BD . ∵AB =BC ,AC ⊥BD ,∴∠ABD =∠CBD , ∵BD =BD ,∴△ABD ≌△CBD ,∴AD =CD .(2)若EF ⊥BC ,则AE ≠EF ,BF ≠EF ,∴四边形ABFE 不表示等腰直角四边形,故不符合条件. 若EF 与BC 不垂直,①当AE =AB 时,如图②,此时四边形ABFE 是等腰直角四边形,∴AE =AB =5.②当BF =AB 时,如图③,此时四边形ABFE 是等腰直角四边形,∴BF =AB =5,∵DE ∥BF ,BP =2PD ,∴BF ∶DE =2∶1,∴DE =2.5,∴AE =9-2.5=6.5.综上所述,满足条件的AE 的长为5或6.5.7.解:(1)在半对角四边形ABCD 中,∠B =12∠D ,∠C =12∠A ,∵∠A +∠B +∠C +∠D =360°,∴3∠B +3∠C =360°,∴∠B +∠C =120°, 即∠B 与∠C 的度数之和为120°. (2)证明:在△BED 和△BEO 中, ⎩⎪⎨⎪⎧BD =BO ,∠EBD =∠EBO,BE =BE ,∴△BED ≌△BEO (SAS ), ∴∠BDE =∠BOE .又∵∠BCF =12∠BOE ,∴∠BCF =12∠BDE .如图,连结OC ,设∠EAF =α,则∠AFE =2α,∴∠EFC =180°-∠AFE =180°-2α. ∵OA =OC ,∴∠OAC =∠OCA =α, ∴∠AOC =180°-2α, ∴∠ABC =12∠AOC =12∠EFC ,∴四边形DBCF 是半对角四边形. (3)如图,作OM ⊥BC 交BC 于点M . ∵四边形DBCF 是半对角四边形,∴∠ABC +∠ACB =120°,∴∠BAC =60°,∴∠BOC =2∠BAC =120°. ∵OB =OC ,∴∠OBC =∠OCB =30°, ∴BC =2BM =3BO =3BD . ∵DG ⊥OB ,∴∠HGB =∠BAC =60°.∵∠DBG =∠CBA ,∴△DBG ∽△CBA , ∴△DBG的面积△ABC的面积=(BD BC )2=13. ∵DH =BG ,BG =2HG , ∴DG =3HG , ∴△BHG的面积△BDG的面积=13, ∴△BHG的面积△ABC的面积=19.。
中考数学 新定义题型专题01 数与式中的新定义问题(老师版)

专题01 数与式中的新定义问题一、考情分析"新定义"型问题是指在问题中定义了初中数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识进行理解,而后根据新定义进行运算、推理、迁移的一种题型。
它一般分为三种类型: (1)定义新运算;(2)定义初、高中知识衔接"新知识"; (3)定义新概念。
这类试题考查考生对"新定义"的理解和认识,以及灵活运用知识的能力,解题时需要将"新定义"的知识与已学知识联系起来,利用已有的知识经验来解决问题.利用的数学思想:(1)转化的思想,把未知的问题转化为学过的知识解决。
(2)对全新的概念,需要灵活的迁移运用。
二、精选考题1.定义新运算:对于任意实数a 、b ,都有13a b a b =-⊗,则12x x -⊗⊗的值为 1 . 【解答】解:13a b a b =-⊗, 12131(132)x x x x ∴-=---⊗⊗131132x x =--+1=.故答案为:1.2.定义新运算:对于任意实数a ,b ,都有a ⊕(1)b a b b =+-,等式右边是通常的加法、减法及乘法运算,比如:3⊕23(21)2927=⨯+-=-=. (1)2⊕(3)-= 1- .(2)若2-⊕x 等于5-,则x = . 【解答】解:(1)原式2(31)(3)=⨯-+-- 2(2)3=⨯-+ 43=-+1=-.故答案为:1-.(2)由题意可知:2(1)5x x -+-=-, 225x x ∴---=-, 33x ∴-=-, 1x ∴=,故答案为:1.3.对于任意实数a ,b ,定义关于“⊗”的一种运算如下:2a b a b =+⊗.例如3523511=⨯+=⊗;4(3)24(3)5-=⨯+-=⊗.若()2x y -=⊗,且21y x =-⊗,则20202020x y +=20203. 【解答】解:()2x y -=⊗,2()2x y ∴+-=①. 21y x =-⊗,41y x ∴+=-②.①+②得:331x y +=. 13x y ∴+=. 2020202020202020()3x y x y ∴+=+=. 故答案为:20203. 4.对于非零的两个实数m ,n ,定义一种新运算“&”,规定2&m n m n =-,若2&(3)7-=,则(3)&(2)--的值为 11 . 【解答】解:(3)&(2)--2(3)(2)=--- 92=+11=,故答案为:11.5.有一种用“☆”定义的新运算,对于任意实数a ,b ,都有a ☆221b b a =++.例如7☆24427131=+⨯+=.(1)已知m -☆3的结果是4-,则m = 7 .(2)将两个实数2n 和2n -用这种新定义“☆”加以运算,结果为9,则n 的值是多少? 【解答】解:(1)根据题意可得:m -☆233214m =-+=-, 解得:7m =; 故答案为:7;(2)根据题意可得:2n ☆(2)9n -=, 即2(2)419n n -++=, 解得:2n =或2-,(2)n -☆2242(2)19n n n =+-+=,解得:2n =-或32, 则2n =-或32或2. 6.规定:符号[]x 叫做取整符号,它表示不超过x 的最大整数,例如:[5]5=,[2.6]2=,[0.2]0=.现在有一列非负数1a ,2a ,3a ,⋯,已知110a =,当2n 时,11215([][])55n n n n a a ---=+--,则2022a 的值为 11 . 【解答】解:110a =, 21115([]0)115a a ∴=+--=,322115([][])1255a a =+--=,433215([][])1355a a =+--=,544315([][])1455a a =+--=,65415([1][])105a a =+--=,⋯1a ∴,2a ,3a ,⋯,每5个结果循环一次,202254042÷=⋯,2022211a a ∴==,故答案为:11.7.有一种用“☆”定义的新运算:对于任意实数a ,b 都有a ☆2b b a =+.例如7☆244723=+=.(1)已知m ☆2的结果是6,则m 的值是多少?(2)将两个实数n 和2n +用这种新定义“☆”加以运算,结果为4,则n 的值是多少? 【解答】解:(1)根据题中的新定义得:m ☆246m =+=, 解得:2m =;(2)根据题意得:n ☆(2)4n +=,即2(2)4n n ++=, 解得:0n =或5n =-; (2)n +☆224n n n =++=,解得:2n =-或1n =, 则0n =或5-或2-或1.8.请你阅读如图框内老师的新定义运算规定,然后解答下列各小题. (1)若x ⊕1y =,x ⊕22y =-,分别求出x 和y 的值; (2)若x 满足x ⊕20,且3x ⊕(8)0->,求x 的取值范围.【解答】解:(1)根据题意得4314322x y x y -=⎧⎨-⨯=-⎩,解得11x y =⎧⎨=⎩;(2)根据题意得4320433(8)0x x -⨯⎧⎨⨯-⨯->⎩,解得322x-<. 故x 的取值范围是322x-<. 9.用※定义一种新运算:对于任意实数m 和n ,规定m ※23n m n mn n =--,如:1※221212326=⨯-⨯-⨯=-.则(2)-( )A .B .-C .D .【解答】解:原式2(2)(2)=--==故选:A .10.定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如(a bi a +,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(3)(53)(35)(13)82i i i i -++=++-+=+;2(1)(3)1333(13)142i i i i i i i +⨯-=⨯-+⨯-=+-++=+. 根据以上信息,完成下列问题: (1)填空:3i = i - ,4i = ; (2)计算:(2)(34)i i +⨯-; (3)计算:2342022i i i i i ++++⋯+.【解答】解:(1)321i i i i i =⋅=-⋅=-,4221(1)1i i i =⋅=-⋅-=, 故答案为:i -,1; (2)(2)(34)i i +⨯-; 6834i i =-++105i =-;(3)2342022i i i i i ++++⋯+ 111i i i =--++⋯+-1i =-.11.阅读理解:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为(a bi a +,b 为实数),a 叫这个复数的实部,b 叫做这个复数的虚部,它的加、减、乘法运算与整式的加、减、乘法运算类似. 例如计算:2(1)(23)13234i i i i i i +⨯-=-+-=-. (1)填空:3i = i - ,4i = ; (2)(7)(7)i i +-; (3)计算:2(2)i +;(4化简成a bi +的形式. 【解答】解:(1)21i =-,32(1)i i i i i ∴=⋅=-⋅=-, 4222()(1)1i i ==-=, 3i i ∴=-,41i =,故答案为:i -,1; (2)(7)(7)i i +- 249i =- 49(1)=-- 50=;(3)2(2)i + 244i i =++ 34i =+;(4=====∴= 12.先阅读下列材料,再解答后面的问题:材料:一般地,若(0n a b a =>且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=.问题:(1)计算:2log 16= 4 ,2331(log 9)813log += .(2)5log 5、5log 25、5log 125之间满足怎样的关系式,请说明理由. (3)由(2)的结果,你能归纳出一个一般性的结论吗? log log a a M N += (0a >,且1a ≠,0M >,0)N >.根据幂的运算法则:n m n m a a a +⋅=以及对数的含义证明上述结论. 【解答】解:(1)4216=, 2log 164∴=,239=,4381=, 3log 92∴=,8143log =,2331(log 9)813log ∴+21243=+⨯443=+ 163=, 故答案为:4;163; (2)555log 5log 25log 125+=,理由如下: 根据题意,5log 51=,5log 252=,5log 1253=, 555log 5log 25log 125∴+=;(3)log log log ()a a a M N MN +=,证明如下:设1log a M b =,2log a N b = 则1b a M =,2b a N =,∴1212b b b b MN a a a +=⋅=,又n m n m a a a +⋅=,∴1212b b b b a a a +⋅=,即log log log ()a a a M N MN +=, 故答案为:log ()a MN .13.定义:如果4(0,1)a N a a =>≠,那么x 叫做以a 为底N 的对数,记作log a x N =.例如:因为2749=,所以7log 492=;因为3125s =,所以log 1253S =.则下列说法中正确的有()个.①6log 636=;②3log 814=;③若4log (14)4a +=,则50a =;④222log 128log 16log 8=+; A .4B .3C .2D .1【解答】解:166=, 6log 61∴=,故①不符合题意;4381=,3log 814∴=,故②符合题意;44256=, 14256a ∴+=,242a ∴=,故③不符合题意;72128=, 2log 1287∴=,4216=, 2log 164∴=,328=, 2log 83∴=,743=+,222log 128log 16log 8∴=+,故④符合题意;综上所述,符合题意的有2个, 故选:C .14.对a ,b ,c ,d 定义一种新运算:a c ad bcb d =-,如232413514=⨯-⨯=,计算2x yx x y=+ 22x xy + .【解答】解:原式2()x x y xy =+-222x xy xy =+- 22x xy =+,故答案为:22x xy +.15.阅读材料:对于任何有理数,我们规定符号a b c d 的意义是:a bad bc c d=-.例如:14232=⨯-⨯=-.按照这个规定,解决下列问题: (1)请你计算3574-的值. (2)求当3x =,1y =-时,2222332x xy yx xy y+--+的值.(3)如果2157353x x -=--,求x 的值.【解答】解:(1)原式345(7)=⨯-⨯- 1235=+47=;(2)原式222(32)3(2)x xy y x xy y =-+-+-22642633x xy y x xy y =-+--+ 75xy y =-+;当3x =,1y =-时, 原式73(1)5(1)=-⨯⨯-+⨯- 216=-16=;(3)(3)(21)5(35)7x x ----=, 6315257x x -+-+=, 6257153x x -+=+-, 1919x =, 1x =.16.材料1:对于一个四位自然数M ,如果M 满足各数位上的数字均不为0,它的百位上的数字比千位上的数字大1,个位上的数字比十位上的数字大1,则称M 为“满天星数”.对于一个“满天星数” M ,同时将M 的个位数字交换到十位、十位数字交换到百位、百位数字交换到个位,得到一个新的四位数N ,规定:()9M NF M -=. 例如:2378M =,因为321-=,871-=,所以2378是“满天星数”;将M 的个位数字8交换到十位,将十位数字7交换到百位,将百位数字3交换到个位,得到2783N =,23782783(2378)459F -==-.材料2:对于任意四位自然数100010010(abcd a b c d a =+++、b 、c 、d 是整数且19a ,0b ,c ,9)d ,规定:()G abcd c d a b =⋅-⋅.根据以上材料,解决下列问题:(1)请判断2467、3489是不是“满天星数”,请说明理由;如果是,请求出对应的()F M 的值;(2)已知P 、Q 是“满天星数”,其中P 的千位数字为(m m 是整数且17)m ,个位数字为7;Q 的百位数字为5,十位数字为(s s 是整数且28)s .若()()G P G Q +能被11整除且s m >,求()F P 的值.【解答】解:(1)2467不是“满天星数”,3489是“满天星数”,理由如下: 2467的百位数字为4,千位数字为2,4221∴-=≠,2467∴不是“满天星数”.3489的千位数字为3,百位数字为4,十位数字为8,个位数字为9,431∴-=,981-=,3489M ∴=是“满天星数”, 3894N ∴=,34893894(3489)459F -∴==-. (2)由题意可得:(1)67P m m =+,45(1)Q s s =+,则1000100(1)6071100167P m m m =++++=+,4000500101450111Q s s s =++++=+. 2()67(1)42G P m m m m ∴=⨯-+=--,2()(1)2020G Q s s s s =+-=+-,2222()()422022G P G Q m m s s s s m m ∴+=--++-=+--+.()()G P G Q +能被11整除且s m >,∴只要22()()()(1)s s m m s m s m s m s m s m +--=+-+-=-++能被11整除.28s ,17m ,s 、m 均为整数,s m >,4116s m ∴++,111s m ∴++=即10s m +=.∴876234s s s m m m ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩或或. 2367P ∴=或3467或4567.23672673(2367)349F -∴==-,34673674(3467)239F -==-,45674675(4567)129F -==-. 17.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数-- “好数”.定义:对于三位自然数n ,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n 为“好数”.例如:426是“好数”,因为4,2,6都不为0,且426+=,6能被6整除;643不是“好数”,因为6410+=,10不能被3整除.问百位数字比十位数字大5的所有“好数”有 7 个.【解答】解:611,617,721,723,729,831,941共7个,理由:设十位数数字为a ,则百位数字为5(04a a +<的整数),525a a a ∴++=+,当1a =时,257a +=,7∴能被1,7整除,∴满足条件的三位数有611,617,当2a =时,259a +=,9∴能被1,3,9整除,∴满足条件的三位数有721,723,729,当3a =时,2511a +=,11∴能被1整除,∴满足条件的三位数有831,当4a =时,2513a +=,13∴能被1整除,∴满足条件的三位数有941,即满足条件的三位自然数为611,617,721,723,729,831,941共7个.故答案为:7.18.阅读下列材料,解决问题.【材料1】对于任意一个多位数,如果它的各位数字之和除以一个正整数n 所得的余数与它自身除以这个正整数n 所得的余数相同,我们就称这个多位数是n 的“余同数”.例如:对于多位数2714,271439042÷=⋯,且(2714)342+++÷=⋯,则2714是3的“余同数”.【材料2】对于任意两个多位数A ,B ,若A 除以正整数n 所得的余数与B 除以正整数n 所得的余数相同,则A 与B 的差一定能被n 整除.(1)判断3142是否是5的“余同数”,并说明理由;(2)若一个三位数是7的“余同数”,它的百位数字与十位数字之和小于9,个位数字比百位数字大1,求所有符合条件的三位数.【解答】解:(1)不是,理由如下:31425628......2÷=,(3142)52+++÷=,3142∴不是5的同余数;(2)设这个三位数为10010a b c ++,则9a b +<,1c a =+,这个三位数是7的“余同数”,10010()a b c a b c ∴++-++能被7整除,10010()7a b c a b c ++-++ 100107a b c a b c ++---= 9997a b += 2147a b a b +=++, ∴27a b +是整数, 又18a ,09b ,9a b +<,1218a b ∴+<,27a b ∴+=或214a b +=,∴708a b c =⎧⎪=⎨⎪=⎩或516a b c =⎧⎪=⎨⎪=⎩或324a b c =⎧⎪=⎨⎪=⎩或132a b c =⎧⎪=⎨⎪=⎩或263a b c =⎧⎪=⎨⎪=⎩,综上,这个三位数为708或516或324或132或263.19.新定义题:小明在课外阅读中对有关“自定义型题”有了一定的了解,他也尝试着自定义了“颠倒数”的概念:从左到右写下一个自然数,再把它按从右到左的顺序写一遍,如果两数位数相同,这样就得到了这个数的“颠倒数”,如286的颠倒数是682.请你探究,解决下列问题:(1)请直接写出2022的“颠倒数”为 2202 .(2)能否找到一个数字填入空格,使由“颠倒数”构成的等式126⨯□=□621⨯成立? 请你用下列步骤探究“□”所表示的数字.①设这个数字为x ,将自然数“6□”和“□6”转化为用含x 的代数式表示分别为 和 ;②列出关于x 的满足条件的方程,并求出x 的值;③经检验,所求x 的值符合题意吗? (填“符合”或“不符合” )【解答】解:(1)由“颠倒数”的定义可得:2022的“颠倒数”为2202,故答案为:2202,;(2)①设这个数字为x ,自然数“6□”用含x 的代数式表示为:61060x x ⨯+=+,自然数“□6”用含x 的代数式表示为:106x +,故答案为:60x +,106x +;②由题意得:12(60)21(106)x x +=+,解得:3x =,x ∴的值为3;③检验:1263756⨯=,3621756⨯=,12633621∴⨯=⨯,3x ∴=符合题意,故答案为:符合.20.我们规定用(,)a b 表示一对数对,给出如下定义:记m=0,0)n a b =>>,将(,)m n 与(,)n m 称为数对(,)a b 的一对“对称数对”.例如:(4,1)的一对“对称数对”为1(2,1)与1(1,)2. (1)数对(25,4)的一对“对称数对”是 1(,2)5 和 ; (2)若数对(3,)y 的一对“对称数对”的两个数对相同,求y 的值;(3)若数对(,2)x 的一对“对称数对”的一个数对是1),求x 的值;(4)若数对(,)a b 的一对“对称数对”的一个数对是,求ab 的值.【解答】解:(1)由题意知:1,25m n ====, ∴数对(25,4)的一对“对称数对”是1(,2)5和1(2,)5, 故答案为:1(,2)5;1(2,)5.(2)数对(3,)y 的一对“对称数对”的两个数对相同,∴=,∴= ∴13y =.(3)数对(,2)x的一对“对称数对”是和,∴=,∴1=,1x∴=.(4)数对(,)a b的一对“对称数对”是和,∴====或,∴11327273a ab b⎧⎧==⎪⎪⎨⎨⎪⎪==⎩⎩或,∴199ab=或.21.若一个三位正整数m abc=(各个数位上的数字均不为0)满足9a b c++=,则称这个三位正整数为“长久数”.对于一个“长久数”m,将它的百位数字和个位数字交换以后得到新数n,记()9m nF m+=.如:216m=满足2169++=,则216为“长久数”,那么612n=,所以216612(216)929F+==.(1)求(234)F、(522)F的值;(2)对于任意一个“长久数”m,若()F m能被5整除,求所有满足条件的“长久数”.【解答】解:(1)当234m=时,2349++=,m是长久数,432n∴=,234432(234)749F+∴==.当522m=时,5229++=,m是长久数,225n∴=,522225(522)839F+∴==.(2)由题意得:10010m a b c=++,10010n c b a=++.1001010010()9a b c c b aF m+++++∴=101101209a c b ++= 101()209a cb ++=. 9a bc ++=,101(9)20()9b b F m -+∴= 901819b -= 1019b =-.又a 、b 、c 均为不为0的正整数,1b ∴=,2,3,⋯⋯,7. ∴当1b =时,()1019192F m =-⨯=,不能被5整除,舍去;当2b =时,()1019283F m =-⨯=,不能被5整除,舍去;当3b =时,()1019374F m =-⨯=,不能被5整除,舍去;当4b =时,()1019465F m =-⨯=,能被5整除,此时5a c +=,∴12344321a a a a c c c c ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩或或或. 144m ∴=或243或342或441.当5b =时,()1019556F m =-⨯=,不能被5整除,舍去;当6b =时,()1019647F m =-⨯=,不能被5整除,舍去;当7b =时,()1019738F m =-⨯=,不能被5整除,舍去.综上所述,所有满足条件的“长久数”有144或243或342或441.22.对于一个四位自然数N ,如果N 满足各数位上的数字不全相同且均不为0,它的千位数字减去个位数字之差等于百位数字减去十位数字之差,那么称这个数N 为“差同数”.对于一个“差同数” N ,将它的千位和个位构成的两位数减去百位和十位构成的两位数所得差记为s ,将它的千位和十位构成的两位数减去百位和个位构成的两位数所得差记为t ,规定:2()29s t F N +=.例如:7513N =,因为7351-=-,故:7513是一个“差同数”.所以:735122715318s t =-==-=,则:2236(7513)229F +==. (1)请判断2586、8734是否是“差同数”.如果是,请求出()F N 的值;(2)若自然数P ,Q 都是“差同数”,其中100010616P x y =++,1003042(19Q m n x =++,08y ,19m ,07n ,x ,y ,m ,n 都是整数),规定:()()F P k F Q =,当3()()F P F Q -能被11整除时,求k 的最小值.【解答】解:(1)对于2586,其各数位上的数字不全相同且均不为0,2658-≠-, 2586∴不是“差同数”, 对于8734,其各数位上的数字不全相同且均不为0,8473-=-,8734∴是“差同数”, 847311s ∴=-=,83749t =-=,1129(8734)129F +⨯∴==, 2586∴不是“差同数”,8734是“差同数”, (8734)1F =; (2)100010616100060010(1)6P x y x y =++=++++,P ∴的千位数字为x ,百位数字为6,十位数字为(1)y +,个位数字为6, 又自然数P 是差同数,66(1)x y ∴-=-+即11x y +=,(106)(61)1055p S x y x y ∴=+-+=--,(101)661065p t x y x y =++-=+-,10552(1065)()629y x y F P x --++-∴==-, 10030423000100402Q m n m n =++=++++,Q ∴的千位数字为3,百位数字为m ,十位数字为4,个位数字为(2)n +, 又自然数Q 是差同数,3(2)4n m ∴-+=-,即5m n +=,302(104)1028Q s n m n m ∴=++-+=-+,34(102)3210Q t m n m n =-++=--,10282(3210)()329n m m n F Q m -++--∴==-, 3()()3(6)(3)321F P F Q x m x m ∴-=---=+-,19x ,08y ,且11x y +=,39x ∴,19m ,07n ,且5m n +=,15m ∴,1132111x m ∴-+-,又321x m +-能被11整除,32111x m ∴+-=±或0,①当32111x m +-=-时,3x =,1m =,8y =,4n =, 此时,()363()312F P k F Q -===--; ②当32111x m +-=时,9x =,5m =,2y =,0n =, 此时,()963()352F P k F Q -===--; ③当3210x m +-=时,6x =,3m =,此时,()0F Q =,k ∴值不存在,综上,k 的最小值为32-.23.对于实数P ,我们规定:用的最小整数.2=,2=,现在对72进行如下操作: {}{}{}727299332===第一次第二次第三次,即对72只需进行3次操作后变为2.类比上述操作:对36只需进行 3 次操作后变为2;如果只需进行3次操作后变为2的所有正整数中最大的数为 .【解答】解:由题意得:现在对36进行如下操作: {}{}{}363666332===第一次第二次第三次,∴对36只需进行3次操作后变为2;现在对256进行如下操作: {}{}{}2562561616442===第一次第二次第三次,如果只需进行3次操作后变为2的所有正整数中最大的数为:256;故答案为:3,256.24.如果一个三位数满足各数位上的数字都不为0,且百位数字比十位数字大1,则称这个数为“阶梯数”.若s ,t 都是“阶梯数”,将组成s 的各数位上的数字中最大数字作为十位数字,组成t 的各数位上的数字中最小数字作为个位数字,得到一个新两位数m 叫做s ,t 的“萌数”,将组成s 的各数位上的数字中最小数字作为十位数字,组成t 的各数位上的数字中最大数字作为个位数字,得到一个新两位数n 叫做s ,t 的“曲数”,记(,)2F s t m n =+.例如:因为211-=,615-=,所以211和654都是“阶梯数”;211和654的“萌数” 24m =,“曲数” 16n =,(211,654)2241664F =⨯+=.(1)判断435 是 (填“是”或“否” )为“阶梯数”;(2)若(1)6s a a =-,(1)5t b b =+(其中25a <,69b <,且a ,b 都是整数),且(,)167F s t =,求满足条件的s 、t 的值;(3)若p 、q 都是“阶梯数”,其中100103p x y =++,20010q a b =++(其中23x ,18y ,28b 且a ,b ,x ,y 都是整数),当(F p ,132)(F q +,824)157=时,求(,)F p q 的值. 【解答】解:(1)435中,百位4比十位3大1,符号阶梯数定义.故答案为:是.(2)s 和t 的萌数为65,曲数为(1)(1)a b -+,(F s ∴,)265(1)(1)167t a b =⨯+-+=,解得4a =,6b =.436s ∴=,765b =.(3)p 、q 都是阶梯数,1y x ∴=-,1a =,又23x ,28b ,10010(1)3213p x x ∴=+-+=或323,212q =、213、214、215、216、217、218. (F p ∴、132)31210(1)3x =⨯+-+,(F q ,824)(102)218b =+⨯+,由(F p 、132)(F q +,824)157=,得102080x b +=,其中x 为偶数,2x ∴=,3b =,即213p =,213q =.(F p 、)2311375q =⨯+=.25.一个多位自然数分解为末三位与末三位以前的数,让末三位数减去末三位以前的数,所得的差能被13整除,则原多位数一定能被13整除.(1)判断266357 能 (选填“能”或“不能” )被13整除;(2)证明:任意一个多位自然数都满足上述规律;(3)将一个多位自然数分解为个位与个位之前的数,若让个位之前的数加上个位数的k 倍(k 为正整数),所得之和能被13整除,且原多位自然数也能被13整除,求当150k 时,所有满足条件的k 的值.【解答】(1)解:266357能被13整除;理由如下:266357的末三位数为357,末三位以前的数为266,35726691∴-=,91137÷=,266357∴能被13整除,故答案为:能;(2)证明:设这个多位数的末三位数为a ,末三位以前的数为b ,则这个多位数可表示为1000b a +,根据题意得:13(a b n n -=为整数),13a n b ∴=+,则1000100013100113b a b n b b n +=++=+,100113b n +可以被13整除,1000b a ∴+可以被13整除,∴任意一个三位以上的自然数都满足这个规律,即任意一个多位自然数都满足上述规律;(3)解:设个位之前及个位数分别为m 、n (出现的字母均为自然数),依题意不妨设13m kn t +=,则原多位数为10m n +,依题意不妨设1013m n s +=, 联立可得:3110(101)101313n k s t k t kn +=--=-+, 则31k +为13倍数,分别将1k =、2、3、4、550⋯代入可知,4k ∴=或17k =或30k =或43k =.26.一个三位自然数a ,满足各数位上的数字之和不超过10,并且个位数字与百位数字不同,我们称这个数为“完美数”.将a 的个位数字与百位数字交换得到一个新数a ',记G (a )11a a '-=.例如,当125a =时,521a '=,125521(125)3611G -==-;当370a =时,73a '=,37073(370)2711G -==. (1)判断236 不是 (选填“是”或“不是” )完美数,计算(321)G = ;(2)已知两个“完美数” m ,n ,满足10010m a b =++,100(09n c d b a =+<,09c ,09d ,a ,b ,c ,d 为整数),若()G m 能被7整除,且()()9(2)G m G n d +=+,求m n -的最小值.【解答】解:(1)2361110++=>,236∴不是完美数, 根据题意,321123(321)1811G -==; 故答案为:不是;18.(2)10010m a b =++,10010m b a '∴=++,100n c d =+,100n d c '∴=+,()()9(2)112m m n n G m G n d -'-'∴+=+=+, 22a b c d ∴-+=+,设()7G m x =,x 为整数, ∴9999711a b x -=,即9()7a b x -=, 09b a <,∴满足条件的a 只有7或8或9,当9a =时,m 不是完美数,故舍去,当8a =时,1b =,这个数是811,是完美数,此时,8122c d -+=+,即25c d =-,09c ,09d ,3d ∴=,1c =时,301n =,则510m n -=;4d =,3c =时,403n =,则811403408m n -=-=;5d =,5c =时,505n =,则811505306m n -=-=;6d =,7c =(舍去), ∴共有三种情况,最小的为306;当7a =时,0b =,这个数是710,是完美数,此时,7022c d -+=+,即25c d =-,09c ,09d ,3d ∴=,1c =时,301n =,则710301409m n -=-=;4d =,3c =时,403n =,则710403302m n -=-=;5d =,5c =时,505n =,则710505205m n -=-=;6d =,7c =(舍去), ∴共有三种情况,最小的为205;综上,m n -的最小值为205.27.阅读材料:我们知道,任意一个正整数k 都可以进行这样的分解:(k m n m =⨯,n 是正整数,且)m n ,在k 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m n⨯是k 的最佳分解,并规定:()m f k n=.例如:18可以分解成118⨯,29⨯或36⨯,因为1819263->->-,所以36⨯是18的最佳分解,所以31(18)62f ==. (1)计算:f (6)=23 ,f (4)= ,2()f x = .(其中x 为正整数) (2)若21010(2)1011f x x +=,其中x 是正整数,求x 的值. (3)若2(9)1f x -=,其中x 是正整数,求x 的值.【解答】解:(1)6的最佳分解为23⨯,所以f (6)23=;4的最佳分解为22⨯,所以f (4)1=;2x 的最佳分解为x x ⋅,所以2()1f x =. 故答案为:23;1;1. (2)22x x +的最佳分解为:(2)x x +, ∴2(2)2x f x x x +=+, 又21010(2)1011f x x +=, 所以101021011x x =+, 解得2020x =,经检验,2020x =符合题意.(3)由2(9)1f x -=,可设229(x t t -=为正整数),即2(3)(3)x x t +-=,33x t x ∴-<<+,有以下几种情况:①当2t x =-时,229(2)x x -=-,解得134x =(舍去); ②当1t x =-时,229(1)x x -=-,解得5x =;③当t x =时,229x x -=,无解;④当1t x =+时,229(1)x x -=+,解得5x =-;⑤当2t x =+时,229(2)x x -=+,解得134x =-; 综上所述,5x =.28.阅读下列材料:材料一:对于一个百位数字不为0的四位自然数M ,以它的百位数字作为十位,十位数字作为个位,得到一个两位数m ,若m 等于M 的千位数字与个位数字的平方差,则称数M 为“平方差数”.例如:7136是“平方差数”,因为227613-=,所以7136是“平方差数”;又如:4251不是“平方差数”,因为22411525-=≠,所以4251不是“平方差数”.材料二:我们有时可以利用分解因数的方法解决求整数解的问题,例如:若p ,q 为两个正整数()18p q pq >=,则p ,q 为18的正因数,又因为18可以分解为181⨯或92⨯或63⨯,所以方程18pq =的正整数解为181p q =⎧⎨=⎩或92p q =⎧⎨=⎩或63p q =⎧⎨=⎩. 根据上述材料解决问题:(1)判断9810,6361是否是“平方差数”?并说明理由;(2)若一个四位“平方差数” M ,将它的千位数字、个位数字及m 相加,其和为30,求所有满足条件的“平方差数” M .【解答】解:(1)9810是“平方差数”,229081-=,9810∴是“平方差数”; 6361不是“平方差数”,22613536-=≠,6361∴不是“平方差数”. (2)设M 的千位数字为a ,个位数字为b ,则22m a b =-,由题意得2230a b a b ++-=,即()(1)30a b a b +-+=.a b +>,11a b -+>且均为30的正因数,∴将30分解为215⨯或310⨯或56⨯.①()(1)215a b a b +-+=⨯,解得87a b =⎧⎨=⎩,即8157M =; ②()(1)310a b a b +-+=⨯,解得64a b =⎧⎨=⎩,即6204M =; ③()(1)56a b a b +-+=⨯,解得50a b =⎧⎨=⎩,即5250M =; 解得51a b =⎧⎨=⎩,即5241M =.8157∴=或6204或5250或5241.M29.【阅读】在数轴上,若点A表示数a,点B表示数b,则点A与点B之间的距离为AB a b=-.||例如:两点A,B表示的数分别为3,1AB=--=.-,那么|3(1)|4(1)若|3|2x-=,则x的值为1或5.(2)当x=(x是整数)时,式子|1||2|3-++=成立.x x(3)在数轴上,点A表示数a,点P表示数p.我们定义:当||1-=时,点P叫点A的1倍伴随点,p a当||2-=时,点P叫点A的2倍伴随点,p a⋯当||-=时,点P叫点A的n倍伴随点.p a n试探究下列问题:若点M是点A的1倍伴随点,点N是点B的2倍伴随点,是否存在这样的点A和点B,使得点M恰与点N重合,若存在,求出线段AB的长;若不存在,请说明理由.【解答】解:(1)|3|2x-=,表示到表示数x的点到表示数3的点的距离为2,当表示数x的点在表示数3的点的左侧时,321x=-=;当表示数x的点在表示数3的点的右侧时,325x=+=;故答案为:1或5;(2)|1||2|3-++=表示的是表示数x的点到表示数1的点的距离和表示数2x x-的点的距离之和,分下列三种情况:①当表示数x的点在2-到1之间时,如图1,此时|1||2|3-++=成立;x x满足条件的x的整数为2-,1-,0,1;②当表示数x的点在2-左侧时,如图2,此时|1||2|3-++>,不存在这样的点;x x③表示数x的点在1右侧时,如图3,此时|1||2|3-++>,不存在这样的点;x x故答案为:2-或1-或0或1;(3)存在,理由如下:设点M 所表示的数位m ,点A 所表示的数为a ,点B 所表示的数为b ,点M 和N 重合,∴点N 所表示的数为n ,点M 是点A 的1倍伴随点,点N 是点B 的2倍伴随点,||1m a ∴-=,||2m b -=,12m a b ∴=±=±,当12a b +=+时,1a b -=,此时1AB =;当12a b +=-时,3a b -=-,此时3AB =;当12a b -=+时,3a b -=,此时3AB =;当12a b -=-时,1a b -=-,此时1AB =;综上,存在,此时AB 的长为1或3.30.如果一个自然数M 能分解成A B ⨯,其中A 和B 都是两位数,且A 与B 的十位数字之和为10,个位数字之和为9,则称M 为“十全九美数”,把M 分解成A B ⨯的过程称为“全美分解”,例如:28384366=⨯,4610+=,369+=,2838∴是“十全九美数“;3912317=⨯,2110+≠,391∴不是“十全九美数”. (1)判断2100和168是否是“十全九美数”?并说明理由;(2)若自然数M 是“十全九美数“,“全美分解”为A B ⨯,将A 的十位数字与个位数字的差,与B 的十位数字与个位数字的和求和记为()S M ;将A 的十位数字与个位数字的和,与B 的十位数字与个位数字的差求差记为()T M .当()()S M T M 能被5整除时,求出所有满足条件的自然数M . 【解答】解:(1)2100是“十全九美数”,168不是“十全九美数”,理由如下: 21002584=⨯,2810+=,549+=,2100∴是“十全九美数”;1681412=⨯,10l l +≠,168∴不是“十全九美数“;(2)设A 的十位数字为m ,个位数字为n ,则10A m n =+, M 是“十全九美数”, M A B =⨯, B ∴的十位数字为10m -,个位数字为9n -,则10(10)910910B m n m n =-+-=--, 由题知:()109192S M m n m n n =-+-+-=-,()[10(9)]21T M m n m n m =+----=-, 根据题意,令()1925(()21S M n k k T M m -==-为整数), 由题意知:19m ,09n ,且都为整数,119219n ∴-,12117m -,当k l =时,192521n m -=-, ∴1925211n m -=⎧⎨-=⎩或19210212n m -=⎧⎨-=⎩或19215213n m -=⎧⎨-=⎩, 解得17m n =⎧⎨=⎩或3292m n ⎧=⎪⎪⎨⎪=⎪⎩(舍去)或22m n =⎧⎨=⎩; 17921564M A B ∴=⨯=⨯=或22871914M A B =⨯=⨯=;当2k =时,1921021n m -=-, ∴19210211n m -=⎧⎨-=⎩, 解得192m n =⎧⎪⎨=⎪⎩(舍去); 当3k =时,1921521n m -=-, ∴19215211n m -=⎧⎨-=⎩, 解得12m n =⎧⎨=⎩; 12971164M A B ∴=⨯=⨯=,综上,满足“十全九美数”条件的M 有:1564或1914或1164.31.一个自然数能分解成A B ⨯,其中A ,B 均为两位数,A 的十位数字比B 的十位数字大1,且A ,B 的个位数字之和为10,则称这个自然数为“分解数”.例如:48197961=⨯,7比6大1,1910+=,4819∴是“分解数”;又如:14964434=⨯,4比3大1,4410+≠,1496∴不是“分解数”.(1)判断325,851是否是“分解数”,并说明理由;(2)自然数M A B =⨯为“分解数”,若A 的十位数字与B 的个位数字的和为()P M ,A 的个位数字与B 的十位数字的和()F M ,令()()()P M G M F M =,当()G M 为整数时,则称M 为“整分解数”.若B 的十位数字能被2整除,求所有满足条件的“整分解数” M .【解答】解:(1)3252513=⨯,2比1大1,5310+≠,325∴不是“分解数”; 68513723=⨯,3比2大l ,7310+=,851∴是“分解数”. (2)令10B x y =+,10(1)10A x y =++-,(8l x <<,19y ,且x ,y 为整数), ()1P M x y =++,()10F m x y =-+,1()10x y G M x y ++∴=-+,2x 为整数, 2x ∴=,4,6,8,当2x =时,315()11212y G M y y +==-+-+-+,为整数, 12y ∴-+的值为3或5,解得9y =或7,13129899M ∴=⨯=,23327891M =⨯=;当4x =或6x =时,不存在()G M 为整数,∴舍去;当8x =时,927()11818y G M y y +==-+-+-+为整数, 189y ∴-+=,解得9y =,391898099M ∴=⨯=.综上所述,M 的值为899,891,8099.32.对于任意一个四位数N ,如果N 满足各个位上的数字互不相同,且个位数字不为0,N的百位上的数字与十位上的数字之差是千位上的数字与个位上的数字之差的2倍,则称这个四位数N 为“双减数”.对于一个“双减数” N abcd =,将它的千位和百位构成的两位数为ab ,个位和十位构成的两位数为dc ,规定;()12ab dc F N -=. 例如:7028N =.因为2(78)02⨯-=-,故7028是一个“双减数”,则7082(7028)112F -==-. (1)判断9527,6713是否是“双减数”,并说明理由,如果是,并求出()F N 的值;(2)若自然数A 为“双减数”, F (A )是3的倍数,且A 各个数位上的数字之和能被13整除,求A 的值.【解答】解:(1)9527:523-=,972-=,不满足“双减数”的定义,故9527不是双减数;6713:716-=,633-=,满足623=⨯,且满足各个位上的数字互不相同,且个位数字不为0,故6713是双减数;6731(6713)312F -==. 9527∴不是双减数,6713是双减数,(6713)3F =.(2)设A abcd =,由题意可知,F (A )是3的倍数,且A 各个数位上的数字之和能被13整除且百位数与十位数之差是千位数与个位数之差的两倍.()312ab dc F A k -∴==. 13a b c d n +++=②(n 为正整数,能被13整除说明是13的倍数), 2()b c a d -=-③,由③式可得知,ab dc -的结果中,个位数是十位数的两倍,而且()312ab dc F A k -==①. ∴36ab dc k -=,(说明ab dc -是36的倍数), 根据“双减数“各位数不重复与0d ≠的性质,ab 最大为98,dc 最小为10,ab dc ∴-最大为88, ∴36ab dc -=或36-或72(舍去)或72-(舍去),(根据“双减数“百位上的数字与十位上的数字之差是千位上的数字与个位上的数字之差的2倍排除),3a d ∴-=,6b c -=或3a d -=-,6b c -=-,即3a d =+④,6b c =+⑤或3a d =-⑥,6b c =-⑦,将④⑤代入②可得,(3)(6)13d c c d n ++-++=, 将⑥⑦代入②可得,(3)(6)13d c c d n -+-++=, 同理,根据“双减数“的性质可得a b c d +++的最大值为987630+++=,最小值为01236+++=,630a b c d ∴+++,a b c d ∴+++是13的倍数,a b c d ∴+++只能取13或26.Ⅰ、当13a b c d +++=时,可得2d c +=或11d c +=;当2d c +=时,d 与c 的值可能为20d c =⎧⎨=⎩,02d c =⎧⎨=⎩(舍去),11d c =⎧⎨=⎩(舍去),(根据双减数个位数不能为0,且每位数不相等排除), 即20d c =⎧⎨=⎩; 当11d c +=时,2a b +=,则20a b =⎧⎨=⎩,02a b =⎧⎨=⎩(舍去),11a b =⎧⎨=⎩(舍去), 即20a b =⎧⎨=⎩,此时,6c =,5d =. Ⅱ、当26a b c d +++=时,可得2()17d c +=,2()35d c +=. 172d c +=(舍去)或352d c +=(由于d ,c 不为整数,与题意不符,故舍去), 3235a d ∴=+=+=,66b c =+=5602A ∴=或2065.33.对于一个四位自然数(R abcd a =,b ,c ,d 不全相同且均不为0),如果a d b c -=-,那么称这个数R 为“天平数”,对于一个“天平数” R ,将它的千位和个位构成的两位数减去百位和十位构成的两位数所得差记为s ,将它的千位和十位构成的两位数减去百位和个位构成的两位数所得差记为t ,规定:()10s t f R +=;例如:8734R =,因为8473-=-,故:8734是一个“天平数”.所以:847311s =-=,83749t =-=,则:119()210f R +==. (1)请判断7513是否是“天平数”,如果是,请求出()f R 的值;如果不是,请说明理由;(2)若自然数M ,N 都是“天平数”,其中1007051M x y =++,100010512(19N m n x =++,08y ,19m ,08n ,x ,y ,m ,n 都是整数),规定:()()f M k f N =,当()()4f N f M -=时,求k 的值. 【解答】解:(1)是,且(7513)4f =,理由如下:7351-=-,7513∴是一个“天平数”. 735122s ∴=-=,715318t =-=,2218(7513)410f +∴==; (2)1007051700010050(1)M x y x y =++=++++,M ∴的前位数字是7,百位数字是x ,十位数字是5,个位数字是1y +, M 是“天平数”, 7(1)5y x ∴-+=-,即11x y +=,(701)(105)6610Ms y x x y ∴=++-+=-+,75(101)7410Mt x y x y =-++=--,66107410()1421010s t x y x y f M x +-++--∴===-, 100010512100050010(1)2N m n m n =++=++++,N ∴的前位数字是m ,百位数字是5,十位数字是(1)n +,个位数字是2, N 是“天平数”, 25(1)m n ∴-=+,即6m n +=,(102)(501)1049Ns m n m n ∴=+-++=--,(101)521051Nt m n m n =++-=+-,10491051()2101010s t m n m n f N m +--++-∴===-, 19x ,08y 且11x y +=,39x ∴,19m ,08n ,且6m n +=,16m ∴,()()(210)(142)22244f N f M m x x m -=---=+-=,14x m ∴+=,14x m ∴=-,56m ∴, 此时,()142721()21055f M x m k f N m m m --====----, 当5m =时,k 值不存在;当6m =时,1k =-,综上,k 的值为1-.34.如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为8,则称数M 为“团圆数”,并把数M 分解成M A B =⨯的过程,称为“欢乐分解”.例如:5722226=⨯,22和26的十位数字相同,个位数字之和为8,572∴是“团圆数”. 又如:2341813=⨯,18和13的十位数字相同,但个位数字之和不等于8,234∴不是“团圆数”.(1)最小的“团圆数”是 187 ;(2)判断195,621是否是“团圆数”?并说明理由;(3)把一个“团圆数” M 进行“欢乐分解”,即M A B =⨯,A 与B 之和记为()P M ,A 与B 差的绝对值记为()Q M ,令()()()P M G M Q M =,当()G M 能被8整除时,求出所有满足条件的M 的值. 【解答】解:(1)由题意可知,最小的“团圆数”十位数字是1,个位数字分别为1和7, ∴最小的“团圆数”是1117187⨯=,故答案为:187;(2)1951315=⨯,且358+=,195∴是“团圆数”, 6212327=⨯,378+≠,621∴不是“团圆数”; (3)设10A a b =+,则108B a b =+-,208A B a ∴+=+,|||28|A B b -=-,()()()||P M A B G M Q M A B +==-能被8整除, ∴2088|28|a kb +=-,k 为整数, 52(|4|)4a b k ∴+=-,52a ∴+是4的倍数,∴满足条件的a 有2,6,若2a =,则488|28|k b =-,k 为整数, ∴3|4|k b =-, |4|b ∴-是3的因数,43b ∴-=-,1-,1,3,∴满足条件的b 有1,3,5,7,21A ∴=,27B =或23A =,25B =或25A =,23B =或27A =,21B =,567A B ∴⨯=或575,若6a =,则1288|28|k b =-,k 为整数, ∴8|4|k b =-, |4|b ∴-是8的因数,48b ∴-=-,4-,2-,1-,1,2,4,8,∴满足条件的b 有2,3,5,6,62A ∴=,66B =或63A =,65B =或65A =,63B =或66A =,62B =,62664092A B ∴⨯=⨯=或4095,综上,M 的值为567或575或4092或4095.35.对于任意一个四位数m ,若m 满足各数位上的数字都不为0,且千位与百位上的数字不相等,十位与个位上的数字不相等,那么称这个数为“智慧数”.将一个“智慧数” m 的任意一个数位上的数字去掉后可以得到四个新三位数,把这四个新三位数的和与3的商记为()F m .例如“智慧数” 1234m =,去掉千位上的数字得到234,去掉百位上的数字得到134,去掉十位上的数字得到124,去掉个位上的数字得到123.这四个新三位数的和为234134124123615+++=,6153205÷=,所以(1234)205F =.(1)计算:(2131)F = 262 ;(5876)F = ;(2)若“智想数” 780010(15n x y x =++,19y ,x ,y 都是正整数),()F n 也是“智慧数”,且()F n 能被12整除,求满足条件的n 的值.【解答】解:(1)(2131)(213211231131)3262F =+++÷=;(5876)(587586576876)3875F =+++÷=;故答案为:262;875;(2) “智慧树” 78001071000810010n x y x y =++=⨯+⨯++, ∴数n 的千位上的数为7,百位上的数为8,十位上的数为x ,个位上的数为y , ()(7807807001080010)310207F n x y x y x y x y ∴=+++++++++÷=++, 15x ,19y ,()F n 也是“智慧数”,且()F n 能被12整除, ∴可设()1020712F n x y k =++=,即()F n 是3的倍数,也是4的倍数, ()743403402333F n x y x y k x ++∴==+=++,且()3F n 是4的倍数, 当1x =时,y 可取2,5,8,此时()3433F n =(舍)或344或345(舍),此时()1032F n =,符合定义,7815n =;当2x =时,y 可取1,4,7,此时()3453F n =(舍)或346(舍)或347(舍),无符合题意的n ;当3x =时,()340733F n y =++,y 可取3,6,9,此时()3483F n =或349(舍)或350(舍),此时()7833F n =,不符合题意;当4x =时,y 可取2,5,8,此时()3503F n =(舍)或351(舍)或352,此时()1056F n =,7848n =, 当5x =时,y 可取1,4,7,此时()3523F n =或353(舍)或354(舍),此时()1056F n =,7851n =, 综上,符合题意的点n 值为7815或7848或7851.。
2019北京中考数学专题训练-4.“新定义“代数与几何综合应用(10道)

“新定义”代数与几何综合应用 类型一 新定义函数的综合题1.对于关于x 的一次函数y =kx +b (k ≠0),我们称函数y [m ]=()()kx b x m kx b x m +≤⎧⎨-->⎩,为它的m 分函数(其中m 为常数).例如,y =3x +2的4分函数为:当x ≤4时,y [4]=3x +2;当x >4时,y [4]=-3x -2. (1)如果y =-x +1的2分函数为y [2],①当x =4时,y [2]= ;②当y [2]=3时,x = .(2)如果y =x +1的-1分函数为y [-1],求双曲线y =2x与y [-1]的图象的交点坐标;(3)设y =-x +2的m 分函数为y [m ],如果抛物线y =x 2与y [m ]的图象有且只有一个公共点,直接写出m 的取值范围.解:(1)y =-x +1的2分函数为:当x ≤2时,y [2]=-x +1;当x >2时,y [2]=x -1. 当x =4时,y [2]=4-1=3, 当y [2]=3时,如果x ≤2,则有,-x +1=3, ∴x =-2,如果x >2,则有,x -1=3, ∴x =4;(2)当y =x +1的-1分函数为y [-1], ∴当x ≤-1时,y [-1]=x +1①, 当x >-1时,y [-1]=-x -1②, ∵双曲线y =2x③, 联立①③解得,12x y =⎧⎨=⎩(舍),21x y =-⎧⎨=-⎩, ∴双曲线y =2x 与y [-1]的交点坐标为(-2,-1), 联立②③时,方程无解,∴双曲线y=2x与y[-1]的图象的交点坐标(-2,-1);(3)∵y=-x+2的m分函数为y[m],∴x≤m时,y[m]=-x+2①,当x>m时,y[m]=x-2②,∵抛物线y=x2③与y[m]的图象有且只有一个公共点,联立①③,则有x2=-x+2,∴x=-2,或x=1,∵只有一个公共点,∴-2≤m<1,联立②③,则有x2=x-2,∴此方程无解;综上,m的取值范围为-2≤m<1.2.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=(0)(0)y xy x≥⎧⎨-<⎩,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(-1,3)的“可控变点”为点(-1,-3).(1)点(-5,-2)的“可控变点”坐标为;(2)若点P在函数y=-x2+16的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数y=-x2+16(-5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是-16≤y′≤16,求实数a的值.解:(1)∵-5<0,∴y′=-y=2,即点(-5,-2)的“可控变点”坐标为(-5,2);(2)如解图①,第2题解图①由题意,得y =-x 2+16的图象上的点P 的“可控变点”必在函数y ′=2216(0)16(0)x x x x ⎧-+≥⎪⎨-<⎪⎩的图象上, ∵“可控变点”Q 的纵坐标y ′是7, ∴当x >0,即-x 2+16=7时,解得x =3, 当x <0,即x 2-16=7时,解得x =-23. 综上,“可控变点”Q 的横坐标为3或-23;(3)由题意,得 y =-x 2+16的图象上的点P 的“可控变点”必在函数y ′=2216(0)16(0)x x x x ⎧-+≥⎪⎨-<⎪⎩的图象上,如解图②,第2题解图②当x =-5时,x 2-16=9, ∵y ′=x 2-16>-16(x <0), ∴y ′=-16在y ′=-x 2+16(x ≥0)上, ∴-16=-x 2+16, ∴x =42,∴实数a 的值为42.3.平面直角坐标系xOy 中,点1(A x ,1)y 与2(B x ,2)y ,如果满足120x x +=,120y y -=,其中12x x ≠,则称点A 与点B 互为反等点.已知:点C(3,4)(1)下列各点中,点与点C互为反等点;D(-3,-4) E(3,4)F(-3,4)(2)已知点G(-5,4),连接线段CG,若在线段CG上存在两点P,Q 互为反等点,求点P的横坐标x的取值范围;p(3)在平面直角坐标系中,已知⊙O的半径为r,若⊙O与(2)中线段CG的两个交点互为反等点,求r的取值范围.第3题图解:(1)F(-3,4);【解法提示】∵3+(-3)=0,4-4=0∴点(-3,4)与点(3,4)互为相反等点.(2)由于点C与点F互为反等点.又∵点P,Q是线段CG上的反等点,∴点P的横坐标x P的取值范围为:-3≤x P≤3,且x p≠0.(3)①当⊙O与CG相离时,此时r<4,⊙O与线段CG没有交点;②当⊙O与CG相切时,如解图①,此时r=4,⊙O与线段CG只有一个交点;③当⊙O与CG相交于点C时,如解图②,此时r=32+=5.⊙O与线段34CG有交点;图①图②第3题解图当r >5,时,⊙O 与线段CG 有一个交点或者没有交点, 所以没有互为反等点.综上当4<r ≤5时,⊙O 与线段CG 有两个交点,这两个交点互为反等点的两个交点.4.在平面直角坐标系xOy 中,过y 轴上一点A 作平行于x 轴的直线交某函数图象于点D ,点P 是x 轴上一动点,连接D P ,过点P 作DP 的垂线交y 轴于点E (E 在线段OA 上,E 不与点O 重合),则称∠DPE 为点D ,P ,E 的“平横纵直角”.图①为点D ,P ,E 的“平横纵直角”的示意图.如图②,在平面直角坐标系xOy 中,已知二次函数图象与y 轴交于点(0,)F m ,与x 轴分别交于点B (3-,0),C (12,0). 若过点F 作平行于x 轴的直线交抛物线于点N .(1)点N 的横坐标为 ;(2)已知一直角为点,,N M K 的“平横纵直角”,若在线段OC 上存在不同的两点1M 、2M ,使相应的点1K 、2K 都与点F 重合,试求m 的取值范围; (3)设抛物线的顶点为点Q ,连接BQ 与FN 交于点H ,当4560QHN ︒≤≤︒∠时,求m 的取值范围.第4题图解:(1)9; (2)∵0m >,∴点K 在x 轴的上方. 如解图①,过N 作NW ⊥OC 于点W ,设OM x =,OK y =, 则 NW =OF =m ,WM =9x -. 由△MOK ∽△NWM ,得,∴9y x x m=-. ∴x mx m y 912+-=. 当m y =时,219m x x m m=-+, 化为0922=+-m x x . 当Δ=0,即22(9)40m --=, 解得92m =,线段OC 上有且只有一点M ,使相应的点K 与点F 重合.∴ 线段OC 上存在不同的两点M 1、M 2,使相应的点K 1、K 2都与点F 重合时,且m 的取值范围为290<<m .图① 图②第4题解图(3)设抛物线的表达式为:)12)(3(-+=x x a y (a ≠0), 又∵抛物线过点F (0,m ), ∴36m a =-,136a m =-. ∴抛物线的表达式化为:21925()36216y m x m =--+. 如解图②,过点Q 做QG ⊥x 轴与FN 交于点R ∵FN ∥x 轴 ∴∠QRH =90°∵tan BGBQG QG ∠=,2516QG m =,152BG =.又∵4560QHN ︒≤∠≤︒, ∴3045BQG ︒≤∠≤︒∴当30BQG ∠=︒时,可求出3524=m , 当45BQG ∠=︒时,可求出524=m .m ∴的取值范围为2424355m ≤≤. 5.以点P 为端点竖直向下的一条射线PN ,以它为对称轴向左右对称摆动形成了射线PN 1,PN 2,我们规定:12N PN ∠为点P 的“摇摆角”, 射线PN 摇摆扫过的区域叫作点P 的“摇摆区域”(含PN 1,PN 2). 在平面直角坐标系xOy 中,点(2,3)P .(1)当点P 的摇摆角为60︒时,请判断(0,0)O 、(1,2)A 、(2,1)B 、(23,0)C +属于点P 的摇摆区域内的点是______________________(填写字母即可); (2)如果过点(1,0)D ,点(5,0)E 两点连线的线段完全在点P 的摇摆区域内,那么点P 的摇摆角至少为_________°;(3)⊙W 的圆心坐标为(,0)a ,半径为1,如果⊙W 上的所有点都在点P 的摇摆角为60︒ 时的摇摆区域内,求a 的取值范围.第5题图解:(1)根据“摇摆角”作出图形,如解图①所示,第5题解图①将O 、A 、B 、C 四点在平面直角坐标系中标出后,可以发现,B 、C 在点P 的摇摆区域内, 故属于点P 的摇摆区域内的点是B 、C (2)如解图②所示,当射线PN 1过点D 时,图② 图③第5题解图由对称性可知,此时点E 不在点P 的摇摆区域内, 当射线PN 2过点E 时,设点P 在x 轴的投影点为Q , 由对称性可知,此时点D 在点P 的摇摆区域内, 易知:此时PQ =QE , ∴∠EPQ =45°,∴如果过点D (1,0),点E (5,0)的线段完全在点P 的摇摆区域内,那么点P 的摇摆角至少为90°(3)∵⊙W 上的所有点都在点P 的摇摆角为60°时的摇摆区域内,此时⊙W 与射线PN 1相切,设直线PN 1与x 轴交于点M ,⊙W 与射线PN 1相切于点N ,Q 为P 点竖直向下的一条射线PN 与x 轴的交点, 由定义可知:∠PMW =60°, ∵NW =1,PQ =3, ∴sin ∠PMW =NWMW,tan ∠PMW =PQ MQ ,∴MW =233,MQ =3, ∴OM =2-3,∴OW=OM+MW=2-3+233=2-33,∴此时W的坐标为:(2-33,0)由对称性可知:当⊙W与射线PN2相切时,此时W的坐标为:(2+33,0)∴a的范围为:2-33≤a≤2+33.类型二新定义函数与圆的综合题6.对于平面上的两点A,B,给出如下定义:以点A或点B为圆心,AB长为半径的圆称为点A,B的“确定圆”.如图为点A,B的“确定圆”的示意图.(1)已知点A的坐标为(-1,0),点B的坐标为(3,3),则点A,B的“确定圆”的面积为;(2)已知点A的坐标为(0,0),若直线y=x+b上只存在一个点B,使得点A,B的“确定圆”的面积为9π,求点B的坐标;(3)已知点A在以P(m,0)为圆心,以1为半径的圆上,点B在直线y=-33x+3上,若要使所有点A,B的“确定圆”的面积都不小于9π,直接写出m的取值范围.第6题图解:(1)25π;【解法提示】由勾股定理,得AB=5,点A,B的“确定圆”的面积为52π=25π.(2)∵直线y =x +b 上只存在一个点B ,使得点A ,B 的“确定圆”的面积为9π, ∴⊙A 的半径AB =3且直线y =x +b 与⊙A 相切于点B 且直线y =x +b 分别与x 轴相交于点C,D ,如解图①, ∴AB ⊥CD ,∠DCA =45°.第6题解图①①当b >0时,则点B 在第二象限, 过点B 作BE ⊥x 轴于点E ,∵在Rt △BEA 中,∠BAE =45°,AB =3, ∴BE =AE =322, ∴B 3232(,)22-, ②当b <0时,则点B '在第四象限. 同理可得B ′3232(,)22-. 综上所述,点B 的坐标为3232(,)22-或3232(,)22-. (3)如解图②,第6题解图②直线y =-33x +3当y =0时,x =3,即C (3,0). ∵tan ∠BCP =33,∴∠BCP=30°,∴PC=2PB.x+3的距离最小是PB=4,由题意可知,点P到直线y=-33∴PC=8.∵3-8=-5,∴P1(-5,0),∵3+8=11,∴P2(11,0),当p≤-5或p≥11时,PD的距离大于或等于4时,点A,B的“确定圆”的面积都不小于9π.综上所述,当点A,B的“确定圆”的面积都不小于9π时,m的范围是m≤-5或m≥11.7.P是半径为1的⊙C外一点,若射线..PC交⊙C于点A,B两点,则给出如下定义:若0<P A PB≤3,则点P为⊙C的“特征点”.(1)当⊙O的半径为1时.①在点P1(2,0)、P2(0,2)、P3(4,0)中,⊙O的“特征点”是;②点P在直线y=x+b上,若点P为⊙O的“特征点”.求b的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=x+1与x轴,y轴分别交于点M,N,若线段MN上的所有点都不是...⊙C的“特征点”,直接写出点C的横坐标的取值范围.第7题图解:(1)①P1(2,0)、P2(0,2)②如解图,在y=x+b上,若存在⊙O的“特征点”点P,点O到直线y=x+b 的距离m≤2.直线y =x +b 1交y 轴于点E ,过O 作OH ⊥直线y 1=x +b 1于H . ∵OH =2,在Rt △DOE 中,可知OE =22. 可得b 1=22.同理可得b 2=-22. ∴b 的取值范围是:22-≤b ≤22.第7题解图(2)x>3或 3-<x .8.在平面直角坐标系xOy 中,点M 的坐标为11(,)x y ,点N 的坐标为22(,)x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使△MNP 是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的 “和谐点”. (1)已知点A 的坐标为)3,1(,①若点B 的坐标为)3,3(,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标;②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式. (2)⊙O 的半径为r ,点D (1,4)为点E (1,2)、F ),(n m 的“和谐点”,若使得△DEF 与⊙O 有交点,画出示意图...并.直接..写出半径r 的取值范围.第8题图解: (1)①)5,3()5,1(21C C 或 ;②由解图①可知,B )3,5( ∵A (1,3) ,∴AB =4, ∵ABC ∆为等腰直角三角形, ∴BC =4.∴)1,5()7,5(21-C C 或.设直线AC 的表达式为(0)y kx b k =+≠, 当直线过点1(5,7)C 时,得⎩⎨⎧=+=+753b k b k ,解得12k b =⎧⎨=⎩ , 直线AC 的表达式为 2y x =+; 当直线过点)1,5(2-C 时,得⎩⎨⎧-=+=+153b k b k ,解得14k b =-⎧⎨=⎩ ,直线AC 的表达式为 4y x =-+ ; ∴综上所述,直线AC 的表达式是2+=x y 或4+-=x y;第8题解图①(2)①当点F 在点E 左侧时,如解图②:第8题解图②217r ∴≤≤ .②当点F 在点E 右侧时,如解图③:第8题解图③517r ∴≤≤ ,综上所述:r 的取值范围为217r ≤≤ .9.在平面直角坐标系xOy 中,点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2),且x 1≠x 2,y 1≠y 2,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”.(1)已知点A (2,0),B (0,23),则以AB 为边的“坐标菱形”的最小内角为 ;(2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O 的半径为2,点P 的坐标为(3,m ).若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.第9题图解:(1)60°;【解法提示】如解图①∵点A (2,0),B (0,23), ∴OA =2,OB =23,在Rt △AOB 中,由勾股定理得:AB =222+23()=4,∴∠ABO =30°,∵四边形ABCD 是菱形, ∴∠ABC =2∠ABO =60°, ∵AB ∥CD ,∴∠DCB =180°-60°=120°,∴以AB 为边的“坐标菱形”的最小内角为60°.图① 图②第9题解图(2)如解图②,∵以CD 为边的“坐标菱形”为正方形, ∴直线CD 与直线y =5的夹角是45°. 过点C 作CE ⊥DE 于E . ∴D (4,5)或(-2,5).∴直线CD 的表达式为:y =x +1或y =-x +3; (3)分两种情况:①设直线x =3与x 轴交于点B ,先作直线y =x ,再作圆的两条切线1l 、2l ,切点分别为'Q Q 、,1l 与x 轴交于点A ,且与x =3交于点P ,2l 与x 轴交于点D ,且与x =3交于点'P ,且平行于直线y =x ,如解图③,图③ 图④第9题解图∵⊙O 的半径为2,且△OQ´D 是等腰直角三角形,∴OD=2OQ´=2,∴BD=3-2=1,∵△P´DB是等腰直角三角形,∴P´B=BD=1,∴P´(3,1),同理可得:OA=2,∴AB=3+2=5,∵△ABP是等腰直角三角形,∴PB=5,∴P(3,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;②先作直线y=-x,再作圆的两条切线,且平行于直线y=-x,如解图④,∵⊙O的半径为2,且△OQ´D是等腰直角三角形,∴OD=2OQ´=2,∴BD=3-2=1,∵△P´DB是等腰直角三角形,∴P´B=BD=1,∴P´(3,-1),同理可得:OA=2,∴AB=3+2=5,∵△ABP是等腰直角三角形,∴PB=5,∴P(3,-5),∴当-5≤m≤-1时,以QP为边的“坐标菱形”为正方形;综上所述,m的取值范围是1≤m≤5或-5≤m≤-1.10.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若PQ为某个等腰三角形的腰,且该等腰三角形的底边与x轴平行,则称该等腰三角形为点P,Q的“相关等腰三角形”.下图为点P,Q的“相关等腰三角形”的示意图.(1)已知点A的坐标为(0,1),点B的坐标为(-3,0),则点A,B的“相关等腰三角形”的顶角为;(2)若点C的坐标为(0,3),点D在直线y=43上,且C,D的“相关等腰三角形”为等边三角形,求直线CD的表达式;(3)⊙O的半径为2,点N在双曲线y=-3上.若在⊙O上存在一点M,x使得点M、N的“相关等腰三角形”为直角三角形,直接写出点N的横坐标x N的取值范围.第10题图解:(1)120°;【解法提示】如解图①,第10题解图①∵A的坐标为(0,1),点B的坐标为(-3,0),∴点A,B的“相关等腰三角形”△ABC的顶点C的坐标为(3,0)或(-23,1),∵tan∠BAO=3=3,1∴∠BAO=∠CAO=60°,∴∠BAC=∠ABC′=120°.(2)如解图②中,设直线y=43交y轴于F(0,43),第10题解图②∵C (0,3),∴CF =33,∵且C ,D 的“相关等腰三角形”为等边三角形, ∴∠CDF =∠CD ′F =60°,∴DF =FD ′=33tan 60o=3, ∴D (3,43),D ′(-3,43),∴直线CD 的解析式为y =3x +3,或y =-3x +3. (3)如解图③中,第10题解图③∵点M 、N 的“相关等腰三角形”为直角三角形, ∴直线MN 与x 轴的夹角为45°, 设直线MN 的解析式为y =-x +b ,当直线与⊙O 相切于点M 时,易知M (1,1)或M ′(-1,-1). ∴直线MN 的解析式为y =-x +2或y =-x -2,由23y x y x =-+⎧⎪⎨=-⎪⎩,解得13x y =-⎧⎨=⎩或31x y =⎧⎨=-⎩, ∴N (-1,3),N ′(3,-1),由23y x y x =--⎧⎪⎨=-⎪⎩,解得13x y =⎧⎨=-⎩或31x y =-⎧⎨=⎩, ∴N 1(-3,1),N 2(1,-3),观察图象可知满足条件的点N 的横坐标的取值范围为:-3≤x N ≤-1或1≤x N ≤3.。
中考数学总复习 题型突破(04)阅读理解型问题数学课件

第八页,共四十五页。
类型1
关于定义新函数的阅读理解(lǐjiě)题(针对2018 24题,2017 26题,2016 26题,2015 26题)
1
2.[2018·昌平二模] 有这样一个问题:探究函数 y= x3-2x 的图象与性质.小彤根据学习函数的经验,对函数
6
1
y= x3-2x 的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:
6
x
…
-4
y
…
-
-3.5
-3
-2
-1
0
7
3
2
8
3
11
6
0
(3)方程 x3-2x=-2 实数根的个数为
3个
1
6
8
3
-
48
1
-
2
11
-
6
8
3
3
3.5
4
…
m
7
48
8
3
…
;
(4)观察图象,写出该函数的一条性质 图象关于原点中心对称;x>2 时,y 随 x 的增大而增大等(答案不唯一) ;
1
1
1
(5)在第(2)问的平面直角坐标系中画出直线 y= x,根据图象写出方程 x3-2x= x 的一个正数根约为 3.87
为
(1,1)
;
②小文分析函数 y=
2
2-2
最高点的坐标为
(0,0)
的表达式发现:当 x<1 时,该函数的最大值为 0,则该函数图象在直线 x=1 左侧的
.
第十三页,共四十五页。
类型1
关于(guānyú)定义新函数的阅读理解题(针对2018 24题,2017 26题,2016 26题,2015 26题)
中考数学:新定义创新型综合压轴问题真题+模拟(原卷版北京专用)
中考数学新定义创新型综合压轴问题【方法归纳】新定义"型问题是指在问题中定义了初中数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识进行理解,而后根据新定义进行运算、推理、迁移的一种题型。
它一般分为三种类型:(1)定义新运算;(2)定义初、高中知识衔接"新知识";(3)定义新概念.这类试题考查考生对"新定义"的理解和认识,以及灵活运用知识的能力,解题时需要将"新定义"的知识与已学知识联系起来,利用已有的知识经验来解决问题。
解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。
北京中考最后一题的新定义主要涉及函数与圆的有关新定义问题,属于函数的范畴,已经考过“对应点”、“关联线段”、“平移距离”“闭距离”、“相关矩形”、“反称点”、“有界函数”、“关联点”等新定义。
在平时的教学过程中要从细节中挖掘出数学的本质特征,引领学生找到解决问题的思想方法。
解答这类问题的关键是要读懂题目提供的新知识,理解其本质,把它与已学的知识联系起来,把新的问题转化为已学的知识进行解决。
【典例剖析】【例1】(2022·北京·中考真题)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P′关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上,若点P(−2,0),点Q为点P的“对应点”.①在图中画出点Q;OM;②连接PQ,交线段ON于点T.求证:NT=12(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t(1<t<1),若P为⊙O外2一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时直接写出PQ长的最大值与最小值的差(用含t的式子表示)【例2】(2021·北京·中考真题)在平面直角坐标系xOy中,⊙O的半径为1,对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B′C′(B′,C′分别是B,C的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,的横、纵坐标都是整数.在线段B1C1,B2C2,B3C3中,⊙O 的以点A为中心的“关联线段”是______________;(2)△ABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O的以点A为中心的“关联线段”,求t的值;(3)在△ABC中,AB=1,AC=2.若BC是⊙O的以点A为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC长.【真题再现】1.(2020·北京·中考真题)在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦A′B′(A′,B′分别为点A,B的对应点),线段AA′长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦P 1P 2和P 3P 4,则这两条弦的位置关系是 ;在点P 1,P 2,P 3,P 4中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =√3x +2√3上,记线段AB 到⊙O 的“平移距离”为d 1,求d 1的最小值;(3)若点A 的坐标为(2,32),记线段AB 到⊙O 的“平移距离”为d 2,直接写出d 2的取值范围.2(2019·北京·中考真题)在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE⌢上的所有点都在△ABC 的内部或边上,则称DE⌢为△ABC 的中内弧.例如,下图中DE ⌢是△ABC 的一条中内弧.(1)如图,在Rt △ABC 中,AB =AC =2√2,D ,E 分别是AB ,AC 的中点.画出△ABC 的最长的中内弧DE⌢,并直接写出此时DE ⌢的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t >0),在△ABC 中,D ,E 分别是AB ,AC 的中点.①若t =12,求△ABC 的中内弧DE⌢所在圆的圆心P 的纵坐标的取值范围;②若在△ABC 中存在一条中内弧DE⌢,使得DE ⌢所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.3.(2018·北京·中考真题)对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ).已知点A (−2,6),B (−2,−2),C (6,−2).(1)求d (点O ,△ABC );(2)记函数y =kx (−1≤x ≤1,k ≠0)的图象为图形G ,若d (G ,△ABC )=1,直接写出k 的取值范围;(3)⊙T 的圆心为T (t ,0),半径为1.若d (⊙T ,△ABC )=1,直接写出t 的取值范围. 4.(2017·北京·中考真题)在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 存在一点Q ,使得P 、Q 两点间的距离小于或等于1,则称P 为图形M 的关联点.(1)当⊙O 的半径为2时,①在点P 1(12,0),P 2(12,√32),P 3(52,0) 中,⊙O 的关联点是_______________. ②点P 在直线y=-x 上,若P 为⊙O 的关联点,求点P 的横坐标的取值范围.(2)⊙C 的圆心在x 轴上,半径为2,直线y=-x+1与x 轴、y 轴交于点A 、B .若线段AB 上的所有点都是⊙C 的关联点,直接写出圆心C 的横坐标的取值范围.5.(2016·北京·中考真题)在平面直角坐标系xOy 中,点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2),且x 1≠x 2,y 1≠y 2,若P ,Q 为某个矩形的两个顶点,且该矩形的边均与,Q 的“相关矩形”.下图为点P ,Q 的“相关矩形”的示意图.(1)已知点A 的坐标为(1,0).①若点B 的坐标为(3,1)求点A ,B 的“相关矩形”的面积;②点C 在直线x=3上,若点A ,C 的“相关矩形”为正方形,求直线AC 的表达式;(2)⊙O 的半径为,点M 的坐标为(m ,3).若在⊙O 上存在一点N ,使得点M ,N 的“相关矩形”为正方形,求m 的取值范围.6.(2015·北京·中考真题)在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.,0),T(1,√3)关于⊙O的反称点是否存在?若存在,求①分别判断点M(2,1),N(32其坐标;②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;x+2√3与x轴、y轴分别交于点A,B,若(2)⊙C的圆心在x轴上,半径为1,直线y=﹣√33线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.7.(2014·北京·中考真题)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足−M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(x>0)和y=x+1(−4<x≤2)是不是有界函数?若是有界函数,(1)分别判断函数y=1x求其边界值;(2)若函数y=−x+1(a⩽x⩽b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(−1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值≤t≤1?是t,当m在什么范围时,满足348.(2013·北京·中考真题)对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得∠APB=60°,则称P 为⊙C 的关联点.已知点D (,),E (0,-2),F (,0)(1)当⊙O 的半径为1时,①在点D ,E ,F 中,⊙O 的关联点是 ;②过点F 作直线交y 轴正半轴于点G ,使∠GFO=30°,若直线上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r 的取值范围.【模拟精练】一、解答题1.(2022·北京朝阳二模)在平面直角坐标系xOy 中,⊙O 的半径为1,AB =1,且A ,B 两点中至少有一点在⊙O 外.给出如下定义:平移线段AB ,得到线段A ′B ′(A ′,B ′分别为点A ,B 的对应点),若线段A ′B ′上所有的点都在⊙O 的内部或⊙O 上,则线段AA ′长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图1,点A 1,B 1的坐标分别为(-3,0),(-2,0),线段A 1B 1到⊙O 的“平移距离”为___,点A 2,B 2的坐标分别为(-12,√3),(12,√3),线段A 2B 2到⊙O 的“平移距离”为___;(2)若点A,B都在直线y=√3x+2√3上,记线段AB到⊙O的“平移距离”为d,求d的最小值;(3)如图2,若点A坐标为(1,√3),线段AB到⊙O的“平移距离”为1,画图并说明所有满足条件的点B形成的图形(不需证明).2.(2022·北京北京·二模)在平面直角坐标系xOy中,⊙O的半径为1.对于线段PQ给出如下定义:若线段PQ与⊙O有两个交点M,N,且PM=MN=NQ,则称线段PQ是⊙O的“倍弦线”.(1)如图,点A,B,C,D的横、纵坐标都是整数.在线段AB,AD,CB,CD中,⊙O的“倍弦线”是_____________;(2)⊙O的“倍弦线”PQ与直线x=2交于点E,求点E纵坐标y E的取值范围;(3)若⊙O的“倍弦线”PQ过点(1,0),直线y=x+b与线段PQ有公共点,直接写出b的取值范围.3.(2022·北京大兴·二模)在平面直角坐标系xOy中,对于点P和直线y=1,给出如下定义:若点P在直线y=1上,且以点P为顶点的角是45°,则称点P为直线y=1的“关联点”.(1)若在直线x=1上存在直线y=1的“关联点”P.则点P的坐标为_____;(2)过点P(2,1)作两条射线,一条射线垂直于x轴,垂足为A;另一条射线、交x轴于点B,若点P为直线y=1的“关联点”.求点B的坐标;(3)以点O为圆心,1为半径作圆,若在⊙O上存在点N,使得∠OPN的顶点P为直线y=1的“关联点”.则点P的横坐标a的取值范围是________.4.(2022·北京东城·二模)在平面直角坐标系xOy中,对于图形G及过定点P(3,0)的直线l,有如下定义:过图形G上任意一点Q作QH⊥l于点H,若QH+PH有最大值,那么称这个最大值为图形G关于直线l的最佳射影距离,记作d(G,l),此时点Q称为图形G关于直线l的最佳射影点.(1)如图1,已知A(2,2),B(3,3),写出线段AB关于x轴的最佳射影距离d(AB,x轴)=____________;(2)已知点C(3,2),⊙C的半径为√2,求⊙C关于x轴的最佳射影距离d(⊙C,x轴),并写出此时⊙C关于x轴的最佳射影点Q的坐标;(3)直接写出点D(0,√3)关于直线l的最佳射影距离d(点D,l)的最大值.5.(2022·北京·清华附中一模)在平面直角坐标系xOy中,对于两个点P,Q和图形W,如果在图形W上存在点M,N(M,N可以重合)使得PM=QN,那么称点P与点Q是图形W的一对平衡点.(1)如图1,已知点A(0,3),B(2,3);①设点O与线段AB上一点的距离为d,则d的最小值是______,最大值是______;,0),P2(1,4),P3(−3,0)这三个点中,与点O是线段AB的一对平衡点的是______.②在P1(32(2)如图2,已知⊙O的半径为1,点D的坐标为(5,0).若点E(x,2)在第一象限,且点D 与点E是⊙O的一对平衡点,求x的取值范围;(3)如图3,已知点H(−3,0),以点O为圆心,OH长为半径画弧交x的正半轴于点K.点C(a,b)(其中b≥0)是坐标平面内一个动点,且OC=5,⊙C是以点C为圆心,半径为2的圆,若HK上的任意两个点都是⊙C的一对平衡点,直接写出b的取值范围.6.(2022·北京丰台·一模)在平面直角坐标系xOy中,⊙O的半径为1,T(0,t)为y轴上一点,P为平面上一点.给出如下定义:若在⊙O上存在一点Q,使得△TQP是等腰直角三角形,且∠TQP=90°,则称点P为⊙O的“等直点”,△TQP为⊙O的“等直三角形”.如图,点A,B,C,D的横、纵坐标都是整数.(1)当t=2时,在点A,B,C,D中,⊙O的“等直点”是;(2)当t=3时,若△TQP是⊙O“等直三角形”,且点P,Q都在第一象限,求CP的值.OQ 7.(2022·北京市第一六一中学分校一模)在平面直角坐标系xOy中,对于点P和图形W,如果线段OP与图形W无公共点,则称点P为关于图形W的“阳光点”;如果线段OP与图形W有公共点,则称点P为关于图形W的“阴影点”.(1)如图1,已知点A(1,3),B(1,1),连接AB.①在P1(1,4),P2(1,2),P3(2,3),P4(2,1)这四个点中,关于线段AB的“阳光点”是;②线段A1B1∥AB,A1B1上的所有点都是关于线段AB的“阴影点”,且当线段A1B1向上或向下平移时,都会有A1B1上的点成为关于线段AB的“阳光点”,若,A1B1的长为4,且点A1在B1的上方,则点A1的坐标为.(2)如图2,已知点C(1,√3),⊙C与y轴相切于点D,若⊙E的半径为3,圆心E在直线2l:y=−√3x+4√3上,且⊙E的所有点都是关于⊙C的“阴影点”,求点E的横坐标的取值范围;(3)如图3,⊙M的半径为3,点M到原点的距离为5,点N是⊙M上到原点距离最近的点,点Q和T是坐标平面的两个动点,且⊙M上的所有点都是关于△NQT的“阴影点”直接写出△NQT的周长的最小值.8.(2022·北京市第五中学分校模拟预测)定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的“冰雪距离”,已知O(0,0),A(1,√2),B (m,n),C(m,n+2)是平面直角坐标系中四点.(1)根据上述定义,完成下面的问题:①当m=2√2,n=√2时,如图1,线段BC与线段OA的“冰雪距离”是;②当m=2√2时,线段BC与线段OA的“冰雪距离”是√2,则n的取值范围是;(2)如图2,若点B落在圆心为A,半径为√2的圆上,当n≥√2时,线段BC与线段OA的“冰雪距离”记为d,结合图象,求d的最小值;(3)当m的值变化时,动线段BC与线段OA的“冰雪距离”始终为√2,线段BC的中点为M.直接写出点M随线段BC运动所走过的路径长.9.(2022·北京市师达中学模拟预测)如果一个圆上所有的点都在一个角的内部或边上,那么称这个圆为该角的角内圆.特别地,当这个圆与角的至少..一边相切时,称这个圆为该角的角内相切圆.在平面直角坐标系xOy中,点E,F分别在x轴的正半轴和y轴的正半轴上.(1)分别以点A(1,0),B(1,1),C(3,2)为圆心,1为半径作圆,得到⊙A,⊙B和⊙C,其中是∠EOF的角内圆的是;(2)如果以点D(t,2)为圆心,以1为半径的⊙D为∠EOF的角内圆,且与直线y=x有公共点,求t的取值范围;(3)点M在第一象限内,如果存在一个半径为1且过点P(2,2√3)的圆为∠EMO的角内相切圆,直接写出∠EOM的取值范围.10.(2021·北京朝阳·二模)在平面直角坐标系xOy中,对于图形Q和∠P,给出如下定义:若图形Q上的所有的点都在∠P的内部或∠P的边上,则∠P的最小值称为点P对图形Q的可视度.如图1,∠AOB的度数为点O对线段AB的可视度.(1)已知点N(2,0),在点M1(0,2√3),M2(1,√3),M3(2,3)中,对线段ON的可视度为360º的点是______.(2)如图2,已知点A(-2,2),B(-2,-2),C(2,-2),D(2,2),E(0,4).①直接写出点E对四边形ABCD的可视度为______°;②已知点F(a,4),若点F对四边形ABCD的可视度为45°,求a的值.11.(2022·北京四中模拟预测)在平面内,对点组A1,A2,...,An和点P给出如下定义:点P与点A1,A2,...,An的距离分别记作d1,d2,...,dn,数组d1,d2,...,dn的中位数称为点P对点组A1,A2,...,An的中位距离.例如,对点组A1(0,0),A2(0,3),A3(4,1)和点P(4,3),有d1=5,d2=4,d3=2,故点P对点组A1,A2,A3的中位距离为4.(1)设Z1(0,0),Z2(4,0),Z304),Y(0,3),直接写出点Y对点组Z1,Z2,Z3的中位距离;(2)设C1(0,0),C2(8,0),C3(6,6),则点Q1(7,3),Q2(3,3),Q3(4,0),Q4(4,2)中,对点组C1,C2,C3的中位距离最小的点是,该点对点组C1,C2,C3的中位距离为;(3)设M(1,0),N(0,√3),T1(t,0),T2(t+2,0),T3(t,2),若线段MN上任意一点对点组T1,T2,T3的中位距离都不超过2,直接写出实数t的取值范围.12.(2020·北京·人大附中模拟预测)在平面直角坐标系xOy中,对于平面中的点P,Q和图形M,若图形M上存在一点C,使∠PQC=90°,则称点Q为点P关于图形M的“折转点”,称△PCQ为点P关于图形M的“折转三角形”(1)已知点A(4,0),B(2,0)①在点Q1(2,2),Q2(1,−√3),Q3(4,−1)中,点O关于点A的“折转点”是______;②点D在直线y=−x上,若点D是点O关于线段AB的“折转点”,求点D的横坐标x D的取值范围;(2)⊙T的圆心为(t,0),半径为3,直线y=x+2与x,y轴分别交于E,F两点,点P为⊙T 上一点,若线段EF上存在点P关于⊙T的“折转点”,且对应的“折转三角形”是底边长为2的等腰三角形,直接写出t的取值范围.13.(2020·北京市陈经纶中学分校三模)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”的对于图形W1和图形W2,若图形W1和图形W2分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形W1和图形W2是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点A(1,0),点C(2,1),①下列四个点P1(0,1),P2(2,2),P3(−12,0),P4(−12,−√32)中,与点A是“中心轴对称”的是________;②点E在射线OB上,若点E与正方形ABC D是“中心轴对称”的,求点E的横坐标x E的取值范围;(2)四边形GHJK的四个顶点的坐标分别为G(−2,2),H(2,2),J(2,−2),K(−2,−2),一次函数y=√3x+b图象与x轴交于点M,与y轴交于点N,若线段与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.14.(2022·北京房山·二模)对于平面直角坐标系xOy中的图形G和点Q,给出如下定义:将图形G绕点Q顺时针旋转90°得到图形N,图形N称为图形G关于点Q的“垂直图形”,例如,图1中线段OD为线段OC关于点O的“垂直图形”.(1)线段MN关于点M(1,1)的“垂直图形”为线段MP.①若点N的坐标为(1,2),则点P的坐标为__________;②若点P的坐标为(4,1),则点N的坐标为__________;(2)E(−3,3),F(−2,3),H(a,0).线段EF关于点H的“垂直图形”记为E′F′,点E的对应点为E′,点的对应点为F′.①求点E′的坐标(用含a的式子表示);②若⊙O的半径为2,E′F′上任意一点都在⊙O内部或圆上,直接写出满足条件的EE′的长度的最大值.15.(2022·北京丰台·xOy中,⊙O的半径为1,A为任意一点,B 为⊙O上任意一点,给出如下定义:记A,B两点间的距离的最小值为p(规定:点A在⊙O上时,p=0),最大值为q,那么把p+q的值称为点A与⊙O的“关联距离”,记作d(A,2⊙O)(1)如图,点D,E,F的横、纵坐标都是整数①d(D,⊙O)=__________;②若点M在线段EF上,求d(M,⊙O)的取值范围;(2)若点N在直线y=√3x+2√3上,直接写出d(N,⊙O)的取值范围;(3)正方形的边长为m,若点P在该正方形的边上运动时,满足d(P,⊙O)的最小值为1,最大值为√10,直接写出m的最小值和最大值.16.(2022·北京平谷·二模)对于平面直角坐标系xOy中的图形P,Q,给出如下定义:M为图形P上任意一点,N为图形Q上任意一点,如果M,N两点间的距离有最小值,那么称这个最小值为图形P,Q间的“非常距离”,记作d(P,Q).已知点A(−2,2),B(2,2),连接AB.(1)d(点O,AB)=;(2)⊙O半径为r,若d(⊙O,AB)=0,直接写出r的取值范围;(3)⊙O半径为r,若将点A绕点B逆时针旋转α°(0°<α<180°),得到点A′.①当α=30°时d(⊙O,A′)=0,求出此时r的值;②对于取定的r值,若存在两个α使d(⊙O,A′)=0,直接写出r的范围.17.(2022·北京密云·二模)对于平面直角坐标系xOy中的点P(2,3)与图形T,给出如下定义:在点P与图形T上各点连接的所有线段中,线段长度的最大值与最小值的差,称为图形T关于点P的“宽距”.(1)如图,⊙O的半径为2,且与x轴分别交于A,B两点.①线段AB关于点P的“宽距”为______;⊙O关于点P的“宽距”为______.②点M(m,0)为x轴正半轴上的一点,当线段AM关于点P的“宽距”为2时,求m的取值范围.(2)已知一次函数y=x+1的图象分别与x轴、y轴交于D、E两点,⊙C的圆心在x轴上,且⊙C的半径为1.若线段DE上的任意一点K都能使得⊙C关于点K的“宽距”为2,直接写出圆心C的横坐标x C的取值范围.18.(2022·北京门头沟·二模)我们规定:如图,点H在直线MN上,点P和点P′均在直线MN的上方,如果HP=HP′,∠PHM=∠P′HN,点P′就是点P关于直线MN的“反射点”,其中点H为“V点”,射线HP与射线HP′组成的图形为“V形”.在平面直角坐标系xOy中,(1)如果点P(0,3) ,H(1.5,0),那么点P关于x轴的反射点P′的坐标为;(2)已知点A(0,a) ,过点A作平行于x轴的直线l.①如果点B(5,3) 关于直线l的反射点B′和“V点”都在直线y=−x+4上,求点B′的坐标和a的值;②⊙W是以(3,2) 为圆心,1为半径的圆,如果某点关于直线l的反射点和“V点”都在直线y=−x+4上,且形成的“V形”恰好与⊙W有且只有两个交点,求a的取值范围.19.(2022·北京东城·一模)对于平面直角坐标系xOy中的点C及图形G,有如下定义:若图形G上存在A,B两点,使得△ABC为等腰直角三角形,且∠ABC=90°,则称点C为图形G的“友好点”.(1)已知点O(0,0),M(4,0),在点C1(0,4),C2(1,4),C3(2,−1)中,线段OM的“友好点”是_______;(2)直线y=−x+b分别交x轴、y轴于P,Q两点,若点C(2,1)为线段PQ的“友好点”,求b 的取值范围;(3)已知直线y=x+d(d>0)分别交x轴、y轴于E,F两点,若线段EF上的所有点都是半径为2的⊙O的“友好点”,直接写出d的取值范围.20.(2022·北京顺义·二模)在平面直角坐标系xOy中,对于点R和线段PQ,给出如下定义:M为线段PQ上任意一点,如果R,M两点间的距离的最小值恰好等于线段PQ的长,则称点R为线段PQ的“等距点”.(1)已知点A(5,0).①在点B1(−3,4),B2(1,5),B3(4,−3),B4(3,6)中,线段OA的“等距点”是______;②若点C在直线y=2x+5上,并且点C是线段OA的“等距点”,求点C的坐标;(2)已知点D(1,0),点E(0,−1),图形W是以点T(t,0)为圆心,1为半径的⊙T位于x轴及x 轴上方的部分.若图形W上存在线段DE的“等距点”,直接写出t的取值范围.21.(2022·北京市十一学校模拟预测)在平面直角坐标系xOy中,给出如下定义:点P为图形G上任意一点,将点P到原点O的最大距离与最小距离之差定义为图形G的“全距”.特别地,点P到原点O的最大距离与最小距离相等时,规定图形G的“全距”为0.(1)已知,点A(−4√2,2),B(2√2,2).①原点O到线段AB上一点的最大距离为_______,最小距离为_______;②当点C的坐标为(0,m)时,且△ABC的“全距”为4,求m的取值范围;(2)已知OM=7,等边△DEF的三个顶点均在半径为3的⊙M上.求△DEF的“全距”d的取值范围.22.(2022·北京房山·二模)对于平面直角坐标系xOy中的图形W1和图形W2.给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N,(点M、N 可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系(1)如图1,点C(√3,0),D(0,−1),E(0,1),点P在线段CE上运动(点P可以与点C,E重合),连接OP,DP.①线段OP的最小值为__________,最大值为__________;线段DP的取值范围是__________;②在点O,点D中,点__________与线段EC满足限距关系;(2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点F横坐标的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,2为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r的取值范围.23.(2022·北京昌平·二模)在平面直角坐标系xOy中,⊙O的半径为1,对于△ABC和直线l给出如下定义:若△ABC的一条边关于直线l的对称线段PQ是⊙O的弦,则称△ABC是⊙O 的关于直线l的“关联三角形”“关联轴”.(1)如图1,若△ABC是⊙O的关于直线l的“关联三角形”,请画出△ABC与⊙O的“关联轴”(至少画两条);(2)若△ABC中,点A坐标为(2,3),点B坐标为(4,1),点C在直线y=−x+3的图像上,存在“关联轴l”使△ABC是⊙O的关联三角形,求点C横坐标的取值范围;(3)已知A(√3,1),将点A向上平移2个单位得到点M,以M为圆心MA为半径画圆,B,C为⊙M 上的两点,且AB=2(点B在点A右侧),若△ABC与⊙O的关联轴至少有两条,直接写出OC 的最小值和最大值,以及OC最大时AC的长.24.(2022·北京市十一学校二模)对于平面直角坐标系xOy中的图形W,给出如下定义:点P是图形W上任意一点,若存在点Q,使得∠OQP是直角,则称点Q是图形W的“直角点”.(1)已知点A(6,8),在点Q1(5,0),Q2(−2,4),Q3(9,5)中,________是点A的“直角点”;(2)已知点B(-4,4),C(3,4),若点Q是线段BC的“直角点”,求点Q的横坐标n的取值范围;(3)在(2)的条件下,已知点D(m-1,0),E(m,0),以线段DE为边在x轴上方作正方形DEFG.若正方形DEFG上的所有点均为线段BC的“直角点”,求m的取值范围.25.(2022·北京通州·一模)在平面直角坐标系xOy中,给出如下定义:点P为图形G上任意―点,将点P到原点O的最大距离与最小距离之差定义为图形G的“全距”.特别地,点P 到原点O的最大距离与最小距离相等时,规定图形G的“全距”为0.(1)如图,点A(−√3,1),B(√3,1).①原点O到线段AB上一点的最大距离为______,最小距离为______;②当点C的坐标为(0,m)时,且△ABC的“全距”为1,求m的取值范围;(2)已知OM=2,等边△DEF的三个顶点均在半径为1的⊙M上.请直接写出△DEF的“全距”d 的取值范围.26.(2022·北京石景山·一模)在平面直角坐标系xOy中,点P不在坐标轴上,点P关于x 轴的对称点为P1,点P关于y轴的对称点为P2,称△P1PP2为点P的“关联三角形”.(1)已知点A(1,2),求点A的“关联三角形”的面积;(2)如图,已知点B(m,n),⊙T的圆心为T(2,2),半径为2.若点B的“关联三角形”与⊙T 有公共点,直接写出m的取值范围;(3)已知⊙O的半径为r,OP=2r,若点P的“关联三角形”与⊙O有四个公共点,直接写出∠PP1P2的取值范围.27.(2022·北京一七一中一模)已知平面直角坐标系xOy中,对于线段MN及P、Q,若∠MPN= 45°且线段MN关于点P的中心对称线段M′N′恰好经过点Q,则称Q是点P的线段MN−45°对经点.(1)设点A(0,2),①Q1(4,0),Q2(2,2),Q3(2+√7,1),其中为某点P的线段OA−45°对经点的是___________.②选出①中一个符合题意的点Q,则此时所对应的对称中心P的坐标为.③已知B(0,1),设⊙B的半径是r,若⊙B上存在某点P的线段OA−45°对经点,求r的取值范围.(2)已知C(0,t),D(0,−t)(t>0),若点Q(4,0)同时是相异两点P1,P2的线段CD−45°对经点,直接写出t的取值范围.28.(2022·北京大兴·一模)在平面直角坐标系xOy中,⊙O的半径为1,已知点A,过点A 作直线MN.对于点A和直线MN,给出如下定义:若将直线MN绕点A顺时针旋转,直线MN与⊙O有两个交点时,则称MN是⊙O的“双关联直线”,与⊙O有一个交点P时,则称MN是⊙O的“单关联直线”,AP⊙O的“单关联线段”.(1)如图1,A(0,4),当MN与y轴重合时,设MN与⊙O交于C,D两点.则MN是⊙O的“______的值为______;关联直线”(填“双”或“单”);ACAD(2)如图2,点A为直线y=−3x+4上一动点,AP是⊙O的“单关联线段”.①求OA的最小值;②直接写出△APO面积的最小值.29.(2022·北京市燕山教研中心一模)对于平面直角坐标系xOy中的线段PQ,给出如下定义:若存在△PQR使得S△PQR=PQ2,则称△PQR为线段PQ的“等幂三角形”,点R称为线段PQ 的“等幂点”.(1)已知A(2,0).①在点P1(2,4),P2(1,2),P3(−4,1),P4(1,−4)中,线段OA的“等幂点”是____________;②若存在等腰△OAB是线段OA的“等幂三角形”,求点B的坐标;(2)已知点C的坐标为C(2,−1),点D在直线y=x−3上,记图形M为以点T(1,0)为圆心,2为半径的⊙T位于x轴上方的部分.若图形M上存在点E,使得线段CD的“等幂三角形”△CDE 为锐角三角形,直接写出点D的横坐标x D的取值范围.30.(2022·北京平谷·一模)在平面直角坐标系xOy中,⊙O的半径为r,对于平面上任一点P,我们定义:若在⊙O上存在一点A,使得点P关于点A的对称点点B在⊙O内,我们就称点P为⊙O的友好点.(1)如图1,若r为1.①已知点P1(0,0),P2(﹣1,1),P3(2,0)中,是⊙O的友好点的是;②若点P(t,0)为⊙O的友好点,求t的取值范围;(2)已知M(0,3),N(3,0),线段MN上所有的点都是⊙O的友好点,求r取值范围.。
中考数学复习方案 题型突破03定义问题数学课件
5.[2017·厦门思明区二模] 平面直角坐标系 xOy 中,对于点 P(a,b)和点 Q(a,b'),
给出如下定义:
, ≥ 1,
若 b'=
则称点 Q 为点 P 的限变点.例如:点(2,3)的限变点的坐标是(2,3),
-, < 1,
点(-2,5)的限变点的坐标是(-2,-5).
(1)①点( 3,1)的限变点的坐标是 ( ,1) ;
−
4 - 2
2
,
4
,对称轴 x=−
2
图Z3-1
.
第十二页,共四十五页。
(3)存在美丽抛物线.由抛物线的对称性可知,所构成的直角三角形必是以抛物线
顶点为直角顶点的等腰直角三角形,∴此等腰直角三角形斜边上的高等于斜边的
一半.又∵0<d<1,∴等腰直角三角形斜边的长小于 2.
∴等腰直角三角形斜边上的高必小于 1,即抛物线的顶点的纵坐标必小于 1.
整数),设 x1=d(0<d<1).
(3)定义:若抛物线的顶点与 x 轴的两个交点构成的三角形是直角三角形,则这种
抛物线就称为:“美丽抛物线”.
探究:当 d(0<d<1)的大小变化时,这组抛物线中是
否存在美丽抛物线?若存在,请你求出相应的 d 的值.
参考公式:抛物线 y=ax2+bx+c(a≠0)的顶点坐标为
2
②在点 A(-2,-1),B(-1,2)中有一个点是函数 y= 图象上某一个点的限变点,这个
点是
B
;
第十九页,共四十五页。
(2)若点 P 在函数 y=-x+3(-2≤x≤k,k>-2)的图象上,其限变点 Q 的纵坐标 b'的取值范围
2020北京市中考数学专题复习---新定义问题
2020北京市中考数学专题复习---新定义问题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN二、重难专题突破专题九新定义问题(必考)类型一新定义点与函数问题(8年4考:2017.29、2015.29、2014.25、2013.25)1. (2019房山区一模)在平面直角坐标系xOy中,⊙C的半径为r,给出如下定义:若点P的横、纵坐标均为整数,且到圆心C的距离d≤r,则称P为⊙C的关联整点.(1)当⊙O的半径r=2时,在点D(2,-2),E(-1,0),F(0,2)中,为⊙O的关联整点的是;(2)若直线y=-x+4上存在⊙O的关联整点,且不超过7个,求r的取值范围;(3)⊙C的圆心在x轴上,半径为2,若直线y=-x+4上存在⊙C的关联整点.求圆心C的横坐标t的取值范围.第1题图2. (2019丰台区二模)对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得点P 在射线BC 上,且∠APB =14∠ACB (0°<∠ACB <180°),则称P 为⊙C 的依附点.(1)当⊙O 的半径为1时,①已知点D (-1,0),E (0,-2),F (2.5,0),在点D ,E ,F 中,⊙O 的依附点是 ;②点T 在直线y =-x 上,若T 为⊙O 的依附点,求点T 的横坐标t 的取值范围;(2)⊙C 的圆心在x 轴上,半径为2,直线y =-x +2与x 轴、y 轴分别交于点M ,N .若线段MN 上的所有点都是⊙C 的依附点,直接写出圆心C 的横坐标m 的取值范围.3. (2019西城区一模)在平面直角坐标系xOy中,对于两个点P,Q和图形W,如果在图形W上存在点M,N(M,N可以重合)使得PM=QN,那么称点P与点Q是图形W的一对平衡点.第3题图①(1)如图①,已知点A (0,3),B (2,3).①设点O 与线段AB 上一点的距离为d ,则d 的最小值是 ,最大值是 ;②在P 1(32,0),P 2(1,4),P 3(-3,0)这三个点中,与点O 是线段AB 的一对平衡点的是 ; (2)如图②,已知⊙O 的半径为1,点D 的坐标为(5,0).若点E (x ,2)在第一象限,且点D 与点E 是⊙O 的一对平衡点,求x 的取值范围;(3)如图③,已知点H (-3,0),以点O 为圆心,OH 长为半径画弧交x 轴的正半轴于点K .点C (a ,b )(其中b ≥0)是坐标平面内一个动点,且OC =5,⊙C 是以点C 为圆心,半径为2的圆.若HK ︵上的任意两个点都是⊙C 的一对平衡点,直接写出b 的取值范围.第3题图② 第3题图③4. (2019朝阳区二模)M (-1,-12),N (1,-12)是平面直角坐标系xOy 中的两点,若平面内直线MN 上方的点P 满足:45°≤∠MPN ≤90°,则称点P 为线段MN 的可视点.(1)在点A 1(0,12),A 2(12,0),A 3(0,2),A 4(2,2)中,线段MN 的可视点为 ; (2)若点B 是直线y =x +12上线段MN 的可视点,求点B 的横坐标t 的取值范围; (3)直线y =x +b (b ≠0)与x 轴交于点C ,与y 轴交于点D ,若线段CD 上存在线段MN 的可视点,直接写出b 的取值范围.第4题图类型二 新定义距离与函数问题(8年2考:2018.28、2012.25)1. (2012北京)在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|;若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图①中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点).第1题图①(1)已知点A (-12,0),B 为y 轴上的一个动点, ①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值;(2)已知C 是直线y =34x +3上的一个动点, ①如图②,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标; ②如图③,E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 和点C 的坐标.第1题图2. (2019东城区一模)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.第2题图(1)已知点A的坐标为(-3,1),①在点E(0,3),F(3,-3),G(2,-5)中,为点A的“等距点”的是;②若点B在直线y=x+6上,且A,B两点为“等距点”,则点B的坐标为;(2)直线l:y=kx-3(k>0)与x轴交于点C,与y轴交于点D,①若T1(-1,t1),T2(4,t2)是直线l上的两点,且T1与T2为“等距点”,求k的值;②当k=1时,半径为r的⊙O上存在一点M,线段CD上存在一点N,使得M,N两点为“等距点”,直接写出r的取值范围.备用图3.(2018北京)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q 为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离”,记作d(M,N).已知点A(-2,6),B(-2,-2),C(6,-2).(1)求d(点O,△ABC);(2)记函数y=kx(-1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.4.(2019石景山一模)在平面直角坐标系xOy中,正方形ABCD的顶点分别为A(0,1),B(-1,0),C(0,-1),D(1,0).对于图形M,给出如下定义:P为图形M上任意一点,Q为正方形ABCD边上任意一点,如果P,Q两点间的距离有最大值,那么称这个最大值为图形M的“正方距”,记作d(M).(1)已知点E(0,4),①直接写出d(点E)的值;②直线y=kx+4(k≠0)与x轴交于点F,当d(线段EF)取最小值时,求k的取值范围;(2)⊙T的圆心为T(t,3),半径为1,若d(⊙T)<6,直接写出t的取值范围.类型三新定义图形与函数问题(仅2016.29考查)1.(2019石景山区二模)对于平面直角坐标系xOy中的点P,Q,给出如下定义:若P,Q为某个三角形的顶点,且边PQ上的高h,满足h=PQ,则称该三角形为点P,Q的“生成三角形”.(1)已知点A(4,0).①若以线段OA为底的某等腰三角形恰好是点O,A的“生成三角形”,求该三角形的腰长;②若Rt△ABC是点A,B的“生成三角形”,且点B在x轴上,点C在直线y=2x-5上,则点B的坐标为;(2)⊙T的圆心为点T(2,0),半径为2,点M的坐标为(2,6),N为直线y=x+4上一点,若存在Rt△MND,是点M,N的“生成三角形”,且边ND与⊙T有公共点,直接写出点N的横坐标x N的取值范围.2.(2018平谷区一模)在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.(1)已知点A(2,0),B(0,23),则以AB为边“坐标菱形”的最小内角为°;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD表达式;(3)⊙O的半径为2,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.图①图②第2题图类型四 新定义几何问题(2019.28新考查)1. (2019北京)在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE ︵上的所有点都在△ABC 的内部或边上,则称DE ︵为△ABC 的中内弧.例如,如图①中DE ︵是△ABC 的一条中内弧.第1题图① 第1题图②(1)如图②,在Rt △ABC 中,AB =AC =22,D ,E 分别是AB ,AC 的中点,画出△ABC 的最长的中内弧DE ︵,并直接写出此时DE ︵的长;(2)在平面直角坐标系中,已知点A (0,2),B (0,0),C (4t ,0)(t >0).在△ABC 中,D ,E 分别是AB ,AC 的中点.①若t =12,求△ABC 的中内弧DE ︵所在圆的圆心P 的纵坐标的取值范围; ②若在△ABC 中存在一条中内弧DE ︵,使得DE ︵所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.2.P是⊙O内一点,过点P作⊙O的任意一条弦AB,我们把P A·PB的值称为点P关于⊙O的“幂值”.第2题图(1)⊙O的半径为6,OP=4.①如图,若点P恰为弦AB的中点,则点P关于⊙O的“幂值”为;②判断当弦AB的位置改变时,点P关于⊙O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙O的“幂值”的取值范围;(2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于⊙O的“幂值”或“幂值”的取值范围;(3)在平面直角坐标系xOy中,C(1,0),⊙C的半径为3,已知点M(t,0),N(0,-t),若在直线MN 上存在点P,使得点P关于⊙C的“幂值”为6,请直接写出t的取值范围.参考答案类型一新定义点与函数问题1. 解:(1)E,F;【解法提示】∵D(2,-2),E(-1,0),F(0,2),O(0,0),∴OD=22+22=22>2,OE=1<2,OF=2,∴E,F为⊙O的关联整点;(2)如解图①,当⊙O与直线y=-x+4相切时,切点为G(2,2),则r=OG=22+22=22.当⊙O过点Q(-2,6)时,则r=OQ=22+62=210,结合图象,当直线y=-x+4上存在⊙O的关联整点,且不超过7个时,r的取值范围为22≤r<210;第1题解图①(3)如解图②,当⊙C过点M(3,1)时,CM=2,ME=1,则CE=3,此时点C的横坐标t=3-3,当⊙C′过点N(5,-1)时,则FC′=3,此时点C′的横坐标t=5+3,结合函数图象,圆心C的横坐标t的取值范围为3-3≤t≤5+3.第1题解图②2. 解:(1)①E、F;【解法提示】如解图①,根据P为⊙O的依附点,可知:当r<OP<3r(r为⊙O的半径)时,点P为⊙O的依附点.第2题解图①∵D(-1,0),E(0,-2),F(2.5,0),∴OD=1,OE=2,OF=2.5,∴1<OE<3,1<OF<3,∴点E,F是⊙O的依附点,故答案为:E、F;②如解图②,第2题解图②当点T 在第四象限,OT ′=1时,作T ′N ⊥x 轴于点N ,易知N (22,0),OT =3时,作TM ⊥x 轴于点M ,易知M (322 ,0),∴满足条件的点T 的横坐标t 的取值范围为22 <t <322. 当点T 在第二象限时,同理可得满足条件的t 的取值范围为-322 <t <-22, 综上所述,满足条件的t 的值的范围为22 <t <322 或-322 <t <-22. (2)4<m <42 或-4<m <2-22 .【解法提示】如解图③,当点C 在点M 的右侧时,第2题解图③由题意M (2,0),N (0,2),当CN =6时,OC =CN 2-ON 2 =42 ,此时C (42 ,0),当CM =2时,此时C (4,0),∴满足条件的m 的值的范围为4<m <42 .如解图④,当点C 在点M 的左侧时,第2题解图④当⊙C 与直线MN 相切时,易知C ′(2-22 ,0),当CM =6时,C (-4,0),∴满足条件的m 的值的范围为-4<m <2-22 ,综上所述,满足条件的m 的值的范围为:4<m <42 或-4<m <2-22 . 3. 解:(1)① 3,13 ;【解法提示】d 的最小值=OA =3,d 的最大值=OB =22+32 =13 . ②P 1;【解法提示】由题图①可知,P 1到线段AB 的最小距离=OA =3,最大距离=P 1A =(32)2+32 =352,则线段AB 上存在点M ,N ,使得P 1M =ON ;P 2到线段AB 的最大距离=12+12 =2 ,∵2 <3,∴P 2不符合题意;P 3到线段AB 的最小距离=32+32 =32 ,∵32 >13 ,∴P 3不符合题意.(2)第3题解图①由题意得,点D 到⊙O 的最近距离是4,最远距离是6,点D 与点E 是⊙O 的一对平衡点,此时需要满足E 1到⊙O 的最大距离是4,即OE 1=3,根据OE 1=3解出此时x =5 ;同理当E 2到圆O 的最小距离是6,即OE 2=7, 根据OE 2=7,解得此时x =35 , ∴5 ≤x ≤35 ; (3)4143≤b ≤5.【解法提示】点C 在以O 为圆心,半径为5的上半圆上运动,以C 为圆心,半径为2的圆刚好与弧HK 相切,此时要想弧HK 上的任意两点都是⊙C 的平衡点,需要满足CK ≤6,如解图②,当CK =6,此时a =-13 ,b =4143 ,同理,当CH =6时,a =13 ,b =4143 .在两者中间时,如解图③所示,此时a =0,b =5,∴4143≤b ≤5.第3题解图②第3题解图③4. 解:(1)A 1,A 3;【解法提示】如解图①,以MN 为直径的半圆交y 轴于点E ,以E 为圆心,EM 长为半径的⊙E 交y 轴于点F ,∵MN 是⊙G 的直径,M (-1,-12 ),N (1,-12 ),∴∠MA 1N =90°,MN ⊥EG ,EG =1,MN =2.∴EF =EM =2 ,∴∠MFN =12 ∠MEN =45°,∵45°≤∠MPN ≤90°,∴点P 应落在⊙E 内部,且落在⊙G 外部(包含边界),且不与点M 、N 重合.∴线段MN 的可视点为A 1,A 3.第4题解图①(2)如解图②,以(0,-12 )为圆心,MN 为直径作⊙G ,以(0,12 )为圆心,2 为半径作⊙E ,两圆在直线MN 上方的部分与直线y =x +12分别交于点E ,F .如解图②,过点F 作FQ ⊥x 轴于点Q ,过点E 作EH ⊥FQ 于点H ,∵FQ ⊥x 轴, ∴FQ ∥y 轴,∴∠EFH =∠MEG =45°. ∵∠EHF =90°,EF =2 , ∴EH =FH =1. ∵E (0,12 ),∴F (1,32).只有当点B 在线段EF 上时,满足45°≤∠MBN ≤90°,点B 是线段MN 的可视点. ∴点B 的横坐标t 的取值范围是0≤t ≤1;第4题解图②(3)-32 <b ≤-32 或12 ≤b ≤52;【解法提示】如解图③,⊙G 与x 轴交于点H ,与y 轴交于点E ,连接GH ,OG =12 ,GH =1,∴OH =GH 2-OG 2 =12-(12)2 =32,∴H (32 ,0),E (0,12). 当直线y =x +b (b ≠0)与x 轴交于点C ,与y 轴交于点D ,若线段CD 上存在线段MN 的可视点, ①当直线y =x +b 与y 轴交点在y 负半轴上,将H (32 ,0)代入y =x +b 得32 +b =0,解得b 1=-32, 将N (1,-12 )代入y =x +b 得1+b =-12 ,解得b 2=-32 ,∴-32 <b ≤-32;②当直线y =x +b 与y 轴交点在y 正半轴上, 将 E (0,12 )代入得b =12,当直线y =x +b 与⊙E 相切于T 时交y 轴于Q ,连接ET ,则ET ⊥TQ , ∵∠EQT =45°, ∴TQ =ET =EM =2 ,∴EQ =ET 2+TQ 2 =(2)2+(2)2 =2. ∴OQ =OE +EQ =12 +2=52 .∴12 ≤b ≤52. 综上所述:-32 <b ≤-32 或12 ≤b ≤52.第4题解图③类型二 新定义距离与函数问题1. 解:(1)①B (0,2)或B (0,-2)(写出一个答案即可); ②12; (2)①设C 点坐标为(m ,34m +3),D (0,1);于是当非常距离最小时有|m |=|34 m +3-1|,解得 m 1=-87 ,m 2=8(舍去),于是点C 的坐标为(-87 ,157);②平移直线y =34 x +3与⊙O 相切,切点为点E ,与x 轴、y 轴交点分别为点A 、B ,由切线的性质可知点E 即为最接近直线y =34x +3的点,亦为题中所求的点.第1题解图如解图,过点E 作EF ⊥x 轴于点F . 设点E 的坐标为E (x 0,y 0),x 0<0; 易知:Rt △EFO ∽ Rt △AOB , ∴FO EF =OB AO =34 ,即-x 0y 0 =34, 又∵点E 为⊙O 上的点,∴可得方程组:⎩⎪⎨⎪⎧x 20 +y 20 =1,4x 0+3y 0=0,解得:x 0=-35 ,y 0=45 ,∴点E 的坐标为(-35 ,45).设点C 的坐标为C (a ,34 a +3),由①可知:当|-35 -a |=|(34 a +3)-45 |时有最小值,∴a =-85 或325(舍去),∴点C 的坐标为C (-85 ,95 ),此时最小值为-35 -(-85 )=1.2. 解:(1)①E ,F ;【解法提示】点A 到x ,y 轴的距离中的最大值等于3,点E 到x ,y 轴的距离中的最大值等于3,点F 到x ,y 轴的距离中的最大值等于3,点G 到x ,y 轴的距离中的最大值等于5;∴点E ,F 是点A 的“等距点”.②(-3,3);【解法提示】∵点A 到x ,y 轴的距离中的最大值等于3,A ,B 两点为“等距点”,∴点B 到x ,y 轴的距离中的最大值等于3,∵点B 在直线y =x +6上,∴设B (a ,a +6),当a =3时,a +6=9,不符合题意,当a +6=3时,a =-3,符合题意,∴B (-3,3).(2)①∵T 1(-1,t 1),T 2(4,t 2)是直线l 上的两点, ∴t 1=-k -3,t 2=4k -3. ∵k >0,∴|-k -3|=k +3>3,4k -3>-3, 依题意可得:当-3<4k -3<4时,k +3=4,解得k =1; 当4k -3≥4时,k +3=4k -3,解得k =2. 综上所述,k 的值为1或2; ②32≤r ≤32 . 【解法提示】当k =1时,y =x -3,则点C 的坐标为(3,0),点D 的坐标为(0,-3);如解图,过点O 作OE ⊥CD 于点E ,过点E 作EF ⊥x 轴于点F ,∵CD =32+32 =32 ,∴OE =CE =322 .∴EF =22×322 =32 .则线段CD 上的点到x ,y 轴的距离中的最小值等于32 ,∴半径r 的最小值为32;线段CD 到x ,y 轴的距离中的最大值等于3,∴半径为r 的⊙O 上存在一点M ,使得点M 到x ,y 轴的距离中的最大值等于3,如解图,过点G (3,3)作x 轴的垂线,垂足为点C ,连接OG ,则OG =32+32 =32 ,∴⊙O 的半径r 的最大值为32 ;综上所述,r 的取值范围是32≤r ≤32 .第2题解图3. 解:(1)如解图①,d (点O ,△ABC )=2; (2)-1≤k ≤1且k ≠0;【解法提示】如解图①,y =kx (k ≠0)经过原点,在-1≤x ≤1范围内,函数图象为线段.第3题解图①当y =kx (-1≤x ≤1,k ≠0)经过(1,-1)时,k =-1, 此时d (G ,△ABC )=1,当y =kx (-1≤x ≤1,k ≠0)经过(-1,-1)时,k =1, 此时d (G ,△ABC )=1, ∴-1≤k ≤1, ∵k ≠0,∴-1≤k≤1且k≠0.(3)如解图②,⊙T与△ABC的位置关系分三种情况:①⊙T在△ABC的左侧时,d(⊙T,△ABC)=1,此时,t=-4;②⊙T在△ABC的内部时,d(⊙T,△ABC)=1,此时,0≤t≤4-22;③⊙T在△ABC的右侧时,d(⊙T,△ABC)=1,此时,t=4+22;综上,t=-4或0≤t≤4-22或t=4+22.第3题解图②4. 解:(1)①5;【解法提示】∵正方形ABCD的顶点分别为A(0,1),B(-1,0),C(0,-1),D(1,0),点E(0,4)在y轴上,∴点E到正方形ABCD边上C点间的距离有最大值,EC=5,即d(点E)的值为5.②如解图①所示:∵d(点E)=5,∴d(线段EF)的最小值是5,∴符合题意的点F满足d(点F)≤5,当d(点F)=5时,BF1=DF2=5,∴点F1的坐标为(4,0),点F2的坐标为(-4,0),将点F1的坐标代入y=kx+4得:0=4k+4,解得:k=-1,将点F2的坐标代入y=kx+4得:0=-4k+4,解得:k=1,∴k=-1或k=1.∴当d(线段EF)取最小值时,EF1直线y=kx+4中k≤-1,EF2直线y=kx+4中k≥1,∴当d(线段EF)取最小值时,k的取值范围为:k≤-1或k≥1;(2)t的取值范围为-3<t<3.【解法提示】⊙T的圆心为T(t,3),半径为1,当d(⊙T)=6时,如解图②所示:CM=CN=6,OH=3,∴T1C=TC=5,CH=OC+OH=1+3=4,∴T1H=T1C2-CH2=52-42=3,TH=TC2-CH2=52-42=3,∴d(⊙T)<6,t的取值范围为-3<t<3.图①图②第4题解图类型三 新定义图形与函数问题1. 解:(1)①如解图①,不妨设满足条件的三角形为等腰△OAR ,则OR =AR .过点R 作RH ⊥OA 于点H ,∴OH =HA =12OA =2,∵以线段OA 为底的等腰△OAR 恰好是点O ,A 的“生成三角形”, ∴RH =OA =4.∴OR =OH 2+RH 2 =25 . 即该三角形的腰长为25 ;第1题解图①②(1,0),(3,0)或(7,0)【解法提示】如解图②所示:若A 为直角顶点时,点B 的坐标为(1,0)或(7,0); 若B 为直角顶点时,点B 的坐标为(1,0)或(3,0). 综上,点B 的坐标为(1,0),(3,0)或(7,0).第1题解图②(2)如解图③可得:若N 为直角顶点:-1-2 ≤x N ≤0;第1题解图③如解图④可得:若M 为直角顶点:-6≤x N ≤-2;第1题解图④综上,点N 的横坐标x N 的取值范围为:-6≤x N ≤0. 2. 解:(1)60;【解法提示】如解图①所示,∵点A (2,0),B (0,23 ), ∵OA =2,OB =23 ,在Rt △AOB 中,由勾股定理得:AB =22+(23)2 =4, ∵OA =12 AB ,∠AOB =90°,∴∠ABO =30°, ∵四边形ABCD 是菱形,∴∠ABC=2∠ABO=60°,∵AB∥CD,∴∠DCB=180°-60°=120°,∴以AB为边的“坐标菱形”的最小内角为60°;第2题解图①(2)如解图②,第2题解图②∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.过点C作CE⊥DE于点E.∴D(4,5)或(-2,5).∴直线CD的表达式为:y=x+1或y=-x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如解图③,第2题解图③∵⊙O的半径为2,且△OQ′D是等腰直角三角形,∴OD=2 OQ′=2,∴BD=3-2=1,∵△P′DB是等腰直角三角形,∴P′B=BD=1,∴P′(3,1),同理可得:OA=2,∴AB=3+2=5,∵△ABP是等腰直角三角形,∴PB=5,∴P(3,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;②先作直线y=-x,再作圆的两条切线,且平行于直线y=-x,如解图④,∵⊙O的半径为2,且△OQ′D是等腰直角三角形,∴OD=2 OQ′=2,∴BD=3-2=1,∵△P′DB是等腰直角三角形,∴P′B=BD=1,∴P′(3,-1),同理可得:OA=2,∴AB=3+2=5,∵△ABP是等腰直角三角形,∴PB=5,∴P(3,-5),∴当-5≤m≤-1时,以QP为边的“坐标菱形”为正方形;综上所述,m的取值范围是1≤m≤5或-5≤m≤-1.第2题解图④类型四 新定义几何问题1. 解:(1)画出DE ︵如解图①所示,DE ︵与BC 相切时,△ABC 的中内弧最长.此时DE ︵的长为以DE 长为直径的半圆.∵在Rt △ABC 中,AB =AC =22,∴BC =2AB =2·22=4.∵D 、E 分别为AB 、AC 的中点,∴DE =12BC =12×4=2.∴lDE ︵=180π360×2=π;第1题解图①(2)①当t =12时,C (2,0).连接DE ,当DE ︵在DE 的下方时,点P 的纵坐标最小时点P 为DE 的中点,如解图②所示.∵A (0,2),∴BA =2.∵点D 是BA 的中点,∴BD =1.∵点D 、E 分别为AB 、AC 的中点,∴DE =12BC =12×2=1.∴⊙P 的半径PD =12.∵12<1,∴DE ︵是△ABC 的中内弧.∴y P ≥1.第1题解图②第1题解图③当DE ︵在DE 的上方时,点P 的纵坐标最大时,⊙P 与AC 相切于点E .如解图③所示,作DE 的垂直平分线FG 交DE 于点F ,交x 轴于点G ,则四边形DBGF 是矩形,圆心P 在FG 上.∵C (2,0),A (0,2),∴BC =BA =2.∴Rt △ABC 是等腰直角三角形.∴∠ACB =45°.∵点D 、E 分别为AB 、AC 的中点,∴DE ∥BC .∴∠AED =∠ACB .∴∠AED =45°.连接PE ,∵⊙P 与AC 相切于点E ,∴PE ⊥AC .∴∠PEA =90°.∴∠PEF =∠PEA -∠AED =45°.∵PF ⊥DE ,∴∠FPE =45°.∴∠PEF =∠FPE .∴PF =EF .∵FG 平分DE ,∴DF =EF =12DE =12×1=12.∴PF =12.∵FG =BD =1,∴PG =FG -PF =1-12=12.∴P (12,12).∴y P ≤12.综上,圆心P 的纵坐标y P 的取值范围为y P ≥1或y P ≤12 ;②0<t ≤2 .【解法提示】ⅰ. 当P 在DE 上方时,如解图④所示,圆心P 在边AC 上且DE ︵与边BC 相切于点F 时,符合题意.∵C (4t ,0),∴BC =4t .∵D 、E 分别为AB 、AC 的中点,∴DE ∥BC ,DE =12 BC =12 ×4t =2t .连接PF .∵⊙P 与BC 相切于点F ,∴PF ⊥BC .∵DE ∥BC ,∴DE ⊥PF .∴DG =12 DE =12 ×2t =t .∵PF ⊥BC ,∴PF ∥y 轴.∴△EPG ∽△EAD .∴PG AD =EG ED =12 .∴PG =12 AD =12 ×1=12.又∵GF =BD =1,∴PF =PG +GF =12 +1=32 .∴DP =32 .在Rt △PDG 中,由勾股定理得DP 2=DG 2+GP 2,即(32 )2=t 2+(12 )2.解得t =±2 .∵t >0,∴t =2 .∴t 的取值范围是0<t ≤2 .第1题解图④ⅱ. 当P 在DE 下方时,如解图⑤.⊙P 与AC 相切于点E 为临界状态,过P 作PM ⊥DE 于点M ,DE 为△ABC 的中内弧,只需PM ≤1即可.此时易得△EMP ∽△ABC ,∴PM CB =EM AB ,即PM 4t =t2 .得PM =2t 2,故0<t ≤22.第1题解图⑤综上,t 的取值范围为0<t ≤2 .2. 解:(1)①20;【解法提示】如解图①所示:连接OA、OB、OP.∵OA=OB,P为AB的中点,∴OP⊥AB.∵在Rt△PBO中,由勾股定理得:PB=OB2-OP2=62-42=25,∴P A=PB=25.∴⊙O的“幂值”=25×25=20.第2题解图①②当弦AB的位置改变时,点P关于⊙O的“幂值”为定值.证明:如解图②,AB为⊙O中过点P的任意一条弦,且不与OP垂直.过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′,OA′.第2题解图②∵在⊙O中,∠AA′P=∠B′BP,∠AP A′=∠BPB′,∴△AP A′∽△B′PB.∴P APB′=P A′PB.∴P A·PB=P A′·PB′=20.∴当弦AB的位置改变时,点P关于⊙O的“幂值”为定值.(2)r2-d2;【解法提示】如解图③所示,连接OP,过点P作AB⊥OP,交圆O与A、B两点,连接OA,OB.第2题解图③∵AO=OB,PO⊥AB,∴AP=PB.∴点P关于⊙O的“幂值”=AP·PB=P A2.在Rt△APO中,AP2=OA2-OP2=r2-d2.∴点P关于⊙O的“幂值”=r2-d2.(3)1-6≤t≤6+1.【解法提示】如解图④所示:过点C作CP⊥AB交AB于点P.第2题解图④∵点P关于⊙C的“幂值”为6,若⊙O半径为r,CP=d,则由(2)可知r2-d2=6.∴d2=3,即d=3.如解图⑤,以点C为圆心,3为半径作辅助圆⊙C′,∵点P在直线MN上,∴当直线MN与⊙C′相交即可满足条件.当点M在x轴正半轴时,直线MN与⊙C′相切如解图⑤,∵M(t,0)、N(0,-t),∴ON=OM=t,∵OM=ON,∴∠OMN=45°.∴在直角三角形CPM中,PM=CP=3.则CM=CP2+PM2=6,∴OM=6+1.∴t=6+1.同理当点M在x轴负半轴时,解得t=1-6,结合函数图象,t的取值范围为1-6≤t≤6+1.第2题解图⑤。
最新中考数学热点冲刺1 新定义型问题
最新中考数学热点专题1 新定义型问题综观2019年中考“新定义”问题的解答,效果并不是很理想,普遍出现“题没看清、没看懂”、“理解错了”等状况,究其原因是阅读理解能力太弱.这就要求我们在平时关注理解能力的培养,从而使学生综合分析解决问题的能力得到提升.1.“新定义”问题的概念及特征“新定义”问题其主要特征是以初中生已学过的知识为出发点,通过类比、引申、拓展给出新的数学概念(数学公式);或将一些能与初中知识相衔接的高中“新知识”,通过阅读材料呈现给初中学生,让他们将这些“新知识”与已学知识联系起来,正确理解其内容、思想和方法,把握其本质,通过类比、猜想、迁移来运用新知识解决实际问题,通过分析近年来中考试卷中出现的这类“新定义”型试题大致分为三种类型:(1)定义“新规则,新运算”型;(2)定义数学新概念型;(3)定义新函数、新知识型.2.“新定义”问题类型和常用解题方法(1)定义“新规则,新运算”型“新规则,新运算”型一般是先通过阅读示例的解题过程,理解方法要点,并体会蕴含其中的数学思想;再由特殊到一般对新方法加以应用,特别是在解决一般情况时要注意题目中看似不经意的限制条件.(2)定义数学新概念型定义数学新概念型在中考试题中一般以中档题出现,能较好的考查学生领悟定义的性质与判定的功能,认真审题、缜密思维的习惯以及对数学知识的综合运用能力、迁移能力和发现探究能力.(3)定义新函数,新知识型定义新函数,新知识型主要考查学生的阅读理解能力,应变能力和创新能力.解这类试题的关键是:正确理解新定义,并将此定义作为解题的依据,同时熟练掌握教学中的基本概念和基本的性质.3. “新定义”问题类型应对策略数学教学也就是数学语言的教学,这是因为数学语言是数学知识和数学思想的载体,数学知识与数学思想最终要通过数学语言表达出来并获得理解、掌握、交流和应用.因此,在平时的教学过程中要从细节中挖掘出数学的本质特征,引领学生找到解决问题的思想方法.在中考复习中,要关注初、高中内容的衔接,对与初中数学知识密切相关,或简单的高中数学问题要尽量关注,适当进行“一题多变”、“一题多解”、“一法多用”的教学活动.考向1定义新概念1.(2019·岳阳)对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y=x 2+2x+c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <-3B .c <-2C .14c <D .c <1 【答案】B【解析】 当y=x 时,x=x 2+2x+c ,即为x 2+x+c=0,由题意可知:x 1,x 2是该方程的两个实数根,所以12121x x x x c +=-⎧⎨⋅=⎩,∵x 1<1<x 2,∴(x 1-1)(x 2-1)<0,即x 1x 2-(x 1+x 2) +1<0,∴c -(-1)+1<0,∴c <-2.又知方程有两个不相等的实数根,故Δ>0,即12-4c >0,解得:c <14∴c 的取值范围为c <-2 . 2.(2019•山东临沂)一般地,如果x 4=a (a≥0),则称x 为a 的四次方根,一个正数a 的四次方根有两个.它们互为相反数,记为=10,则m=__________.【答案】±10=10,∴m 4=104,∴m=±10.故答案为:±10. 3.(2019•湖北十堰)对于实数a ,b ,定义运算“◎”如下:a ◎b=(a+b )2﹣(a ﹣b )2.若(m+2)◎(m ﹣3)=24,则m=__________.【答案】﹣3或4【解析】根据题意得[(m+2)+(m ﹣3)]2﹣[(m+2)﹣(m ﹣3)]2=24,(2m ﹣1)2﹣49=0,(2m ﹣1+7)(2m ﹣1﹣7)=0,2m ﹣1+7=0或2m ﹣1﹣7=0,所以m 1=﹣3,m 2=4.故答案为:﹣3或4.4.(2019·常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,-1),P 是二次函数y=x 2的图象上在第一象限内的任意一点,PQ 垂直直线y=-1于点Q ,则四边形PMNQ 是广义菱形.其中正确的是 .(填序号)【答案】①④【解析】正方形和菱形满足一组对边平行,一组邻边相等,故都是广义菱形,故①正确;平行四边形虽然满足一组对边平行,但是邻边不一定相等,因此不是广义菱形,故②错误;对角线互相垂直,且两组邻边分别相等的四边形的对边不一定平行,邻边也不一定相等,因此不是广义菱形,故③错误;④中的四边形PMNQ 满足MN ∥PQ ,设P(m ,0)(m >0),∵=+1,PQ=-(-1)=+1,∴PM=PQ ,故四边形PMNQ 是广义菱形.综上所述正确的是①④.5.(2019·陇南)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A=80°,则它的特征值k= .【答案】85或14. 【解析】当∠A 是顶角时,底角是50°,则k=808505=o o ;当∠A 是底角时,则底角是20°,k=201804=o o ,故答案为:85或14. 6. (2019·重庆A 卷)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”.定义:对于自然数n ,在计算n +(n +1)+(n +2)时,各数位都不产生进位,则称这个自然数n 为“纯数”, 例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.【答案】(1)2019不是“纯数”,2020是“纯数”,理由如下:∵在计算2019+2020+2021时,个位产生了进位,而计算2020+2021+2022时,各数位都不产生进位,∴2019不是“纯数”,2020是“纯数”. 14214m 214m 214m(2)由题意可知,连续三个自然数的个位不同,其他位都相同,并且连续的三个自然数个位为0、1、2时,不会产生进位;其他位的数字为0、1、2、3时,不会产生进位.现分三种情况讨论如下:①当这个数为一位自然数时,只能是0、1、2,共3个;②当这个数为二位自然数时,十位只能为1、2、3,个位只能为0、1、2,即10、11、12、20、21、22、30、31、32共9个;③当这个数为100时,易知100是“纯数”.综上,不大于100的“纯数”的个数为3+9+1=13.7.(2019·宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC 中,AB=AC,AD 是△ABC 的角平分线,E,F 分别是BD,AD 上的点.求证:四边形ABEF 是邻余四边形;(2)如图2,在5×4的方格纸中,A,B 在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F 在格点上;(3)如图3,在(1)的条件下,取EF 中点M,连接DM 并延长交AB 于点Q,延长EF 交AC 于点N.若N 为AC 的中点,DE=2BE,求邻余线AB 的长.【答案】:(1)∵AB=AC,AD 是△ABC 的角平分线,∴AD ⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°, ∴∠FAB 与∠EBA 互余.∴四边形ABEF 是邻余四边形;(2)如图所示,四边形ABEF 即为所求.(答案不唯一)(3)∵AB=AC,AD 是△ABC 的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE.∵∠EDF=90°,M 为EF 的中点,∴DM=ME.∴∠MDE=∠MED.∵AB=AC,∴∠B=∠C,∴△DBQ ∽△ECN,∴35QB BD NC CE ==,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.8.(2019·达州)箭头四角形模型规律,如图1,延长CO 交AB 于点D ,则∠BOC=∠1+∠B=∠A+∠C+∠B. 因为凹四边形ABOC 形似箭头,其四角具有“∠BOC=∠A+∠C+∠B”这个规律,所以我们把这个模型叫做“箭头四角形”模型应用:.(1)直接应用:①如图2,∠A+∠B+∠C+∠D+∠E+∠F=________②如图3,∠ABE 、∠ACE 的2等分线(即角平分线)BF 、CF 交于点F ,已知∠BEC=120°∠BAC=50°,则∠BFC=__________.③如图4,BO 1、CO 2分别为∠ABO 、∠ACO 的2019等分线(i=1,2,3,…,2017,2018),它们的交点从上到下依次为O 1,O 2,O 3,…,O 2018. 已知∠BOC=m°,∠BAC=n°,则∠BO 1000C=______度 (2)拓展应用:如图5,在四边形ABCD 中,BC=CD ,∠BCD=2∠BAD. O 是四边形ABCD 内的一点,且OA=OB=OD. 求证:四边形OBCD 是菱形.【答案】(1)①∵∠A+∠B+∠C=α∠,∠D+∠E+∠F=α∠∴∠A+∠B+∠C+∠D+∠E+∠F=2α∠ ②∵∠BEC=∠A+∠ABC+∠ACB ∠BFC=∠A+21∠ABC+21∠ACB ,∠BEC=120°∠BAC=50° ∴21∠BEC=21∠A+21∠ABC+21∠ACB ∴60°=25°+21∠ABC+21∠ACB ∴21∠ABC+21∠ACB=35°∴∠BFC=∠A+21∠ABC+21∠ACB=50°+35°=85°∴∠BFC=85° ③οοn m 2019101920191000+ (2)证明:(1)如图,延长AO 到E ,∵OA =OB ,∴∠ABO =∠BAO .又∵∠BOE =∠ABO +∠BAO ,∴∠BOE =2∠BAO ,同理∠DOE =2∠DAO ,∴∠BOE +∠DOE =2∠BAO +2∠DAO =2(∠BAO +∠DAO ),即∠BOD =2∠BA D.又∵∠BCD =2∠BAD ,∴∠BOD =∠BC D.(2)如图,连接OC ,∵OB =OD ,CB =CD ,OC =OC ,∴△OBC ≌△ODC ,∴∠OBC =∠OD C.又∵∠BOD =∠BCD ,∴四边形OBCD 是平行四边形.又∵OB =OD ,∴四边形OBCD 是菱形.9.(2019 ·扬州)如图,平面内的两条直线1l 、2l ,点A ,B 在直线1l 上,点C 、D 在直线2l 上,过A 、B 两点分别作直线2l 的垂线,垂足分別为1A ,1B ,我们把线段11A B 叫做线段AB 在直线2l 上的正投影,其长度可记作(,)AB AD T 或2(,)AB l T ,特别地线段AC 在直线2l 上的正投影就是线段1A C .请依据上述定义解决如下问题: (1)如图1,在锐角ABC ∆中,5AB =,(,)3AC AB T =,则(,)BC AB T = ;(2)如图2,在Rt ABC ∆中,90ACB ∠=︒,(,)4AC AB T =,(,)9BC AB T ==,求ABC ∆的面积;(3)如图3,在钝角ABC ∆中,60A ∠=︒,点D 在AB 边上,90ACD ∠=︒,(,)2AD AC T =,(,)6BC AB T =,求(,)BC CD T ,【答案】(1)如图1中,作CH AB ⊥.(,)3AC AB T =Q ,3AH ∴=,5AB =Q ,532BH ∴=-=,(,)2BC AB T BH ∴==,故答案为2.(2)如图2中,作CH AB ⊥于H .(,)4AC AB T =Q ,(,)9BC AB T ==,4AH ∴=,9BH =,90ACB CHA CHB ∠=∠=∠=︒Q ,90A ACH ∴∠+∠=︒,90ACH BCH ∠+∠=︒,A BCH ∴∠=∠,ACH CBH ∴∆∆∽,∴CH AH BH CH=,∴49CH CH =, 6CH ∴=,111363922ABC S AB CH ∆∴==⨯⨯=g g . (3)如图3中,作CH AD ⊥于H ,BK CD ⊥于K .90ACD ∠=︒Q ,(,)2AD AC T =,2AC ∴=,60A ∠=︒Q ,30ADC BDK ∴∠=∠=︒,CD ∴==,24AD AC ==,112AH AC ==,3DH AD AH =-=, (,)6BC AB T =Q ,CH AB ⊥,6BH ∴=,3DB BH DH ∴=-=,在Rt BDK ∆中,90K ∠=︒Q ,3BD =,30BDK ∠=︒,cos30DK BD ∴=︒g ,CK CD DK ∴=+==,(,)BC CD T CK ∴==考向2 定义新运算1.(2019·济宁)=−1,-1的差倒数么a 1+a 2+…+a 100的值是()A .-7.5B .7.5C .5.5D .-5.5【答案】A2. (2019·深圳)定义一种新运算:a b n ò=n n a b -,例如:132ò=2213-=1-9=-8,若51m m -ò=-2,则m=( )A .-2B .52-C .2D .52【答案】B【解析】由题意得1m --()15m -=1m -15m=-2,则m=52-,故选B . 3. (2019·襄阳)定义:a*b=a b ,则方程2*(x +3)=1*(2x)的解为________.【答案】x=1【解析】本题考查了可化为一元一次的分式方程的解法.按新定义可知:32)3(2+=+*x x ,x x 21)2(1=*,可得方程xx 2132=+,解得x=1,经检验此解为方程的根. 4.(2019·枣庄)对于实数a 、b ,定义关于的一种运算:a ⊗b=2a+b.例如3⊗4=2×3+4=10. (1)求4⊗(-3)的值;(2)若x ⊗(-y)=2,(2y)⊗x=-1,求x+y 的值.【答案】(1)根据题意得:4⊗(-3)=2×4+(-3)=5.(2)∵x ⊗(-y)=2,(2y)⊗x=-1, ∴2x+(-y)=2,2×2y+x=-1,解这个二元一次方程组,得,x=79,y=49-,∴x+y=135.(2019·毕节)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a ,b ,c ,用{M a ,b ,}c 表示这三个数的平均数,用{min a ,b ,}c 表示这三个数中最小的数.例如:{1M ,2,1299}43++==,{1min ,2,3}3-=-,{3min ,1,1}1=.请结合上述材料,解决下列问题:(1)①2{(2)M -,22,22}-= ; ②{sin30min ︒,cos60︒,tan 45}︒= ;(2)若{2M x -,2x ,3}2=,求x 的值;(3)若{32min x -,13x +,5}5-=-,求x 的取值范围.【答案】(1)①43;②12; (2)1x =-或3;(3)-2≤x≤4 【解析】解:(1)①2{(2)M -,22,2222(2)2242}33-+--==; ②{sin30min ︒,cos60︒,1tan 45}2︒=; (2)){2M x -Q ,2x ,3}2=,∴22323x x -++=,解得1x =-或3; (3){32min x -Q ,13x +,5}5-=-,解得: -2≤x≤4.6.(2019·随州)若一个两位数十位、个位上的数字分别为m ,n ,我们可将这个两位数记为mn ,易知mn =10m+n ,同理,一个三位数、四位数等均可以用此记法,如abc=100a+10b+c.(1)解方程填空:①若2x+3x=45,则x=;②若7y-8y=26,则y=;③若93t+58t=131t,则t= ;(2)交换任意一个两位数mn的个位数字与十位数字,可得到一个新数nm,则mn+nm一定能被整除,mn -nm一定能被整除,mn·nm-mn一定能被整除;(请从大于5的整数中选择合适的数填空)(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚,数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532-235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数” .①该“卡普雷卡尔黑洞数”为;②设任选的三位数为abc(不妨设a>b>c),试说明其均可产生该黑洞数.【答案】(1)t=7;(2)mn+一定被11整除;mn-nm一定被9整除;mn·nm-mn一定能被10整除;(3)①反复运算可得495;②证明过程见解析.【解析】解:(1)∵mn=10m+n,∴2x+3x=45=20+x+10x+3=11 x+23=45,得x=2,同理可得y=4,t=7;(2)mn+nm=10m+n+10n+m=11(m+n)故一定被11整除;同理mn-nm一定被9整除;mn·nm-mn一定能被10整除;(3)①反复运算可得495;②∵a>b>c,∴第一次运算得到100a+10b+c-(100c+10b+a)=99(a-c),可以看出结果必为99的倍数,∵a>b>c,∴a≥b+1,b≥c+1,即a≥b+1≥c+2,∴a-c≥2,9≥a >c,∴a-c≤9,则a-c=2,3,4,5,6,7,8,9,∴第一次运算得到99(a-c)可以是198,297,396,495,594,693,792,891,再让这些数字依据“卡普雷卡尔黑洞数”的推算规则进行运算,分别可以得到:981-198=792,972-279=693,963-369=594,954-459=495,954-459=495,以后均重复运算,故可以得到该黑洞数为495.考向3 定义新函数1.(2019 ·荆州)若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c (a≠0)为y=kx+t(k≠0)的伴随函数,如:y=x2+1是y=x+1的伴随函数.(1)若y=x2﹣4是y=﹣x+p的伴随函数,求直线y=﹣x+p与两坐标轴围成的三角形的面积.(2)若函数y=mx﹣3(m≠0)的伴随函数y=x2+2x+n与x轴两个交点间的距离为4,求m,n的值.【答案】(1)∵y=x 2﹣4,∴其顶点坐标为(0,﹣4),∵y=x 2﹣4是y=﹣x+p 的伴随函数,∴(0,﹣4)在一次函数y=﹣x+p 的图象上,∴﹣4=0+p .∴p=﹣4,∴一次函数为:y=﹣x ﹣4,∴一次函数与坐标轴的交点分别为(0,﹣4),(﹣4,0),∴直线y=﹣x+p 与两坐标轴围成的三角形的两直角边都为|﹣4|=4,∴直线y=﹣x+p 与两坐标轴围成的三角形的面积为:12×4×4=8.(2)设函数y=x 2+2x+n 与x 轴两个交点的横坐标分别为x 1,x 2,则x 1+x 2=﹣2,x 1x 2=n ,∴|x 1−x 2|=√(x 1+x 2)2−4x 1x 2=√4−4n ,∵函数y=x 2+2x+n 与x 轴两个交点间的距离为4,∴√4−4n =4,解得,n=﹣3,∴函数y=x 2+2x+n 为:y=x 2+2x ﹣3=(x+1)2﹣4,∴其顶点坐标为(﹣1,﹣4),∵y=x 2+2x+n 是y=mx ﹣3(m≠0)的伴随函数,∴﹣4=﹣m ﹣3,∴m=1.2.(2019·济宁)阅读下面材料:如果函数y=f(x)满足:对于自变量x 的取值范围内的任意x 1,x 2,(1)若x 1<x 2,都有f(x 1) <f(x 2),则称f(x)是增函数;(2)若x 1<x 2,都有f(x 1) >f(x 2),则称f(x)是减函数.例题:证明函数f(x)=6x(x >0)是减函数. 证明:设0<x 1<x 2,f(x 1) -f(x 2)=1266x x -=()21211212666.x x x x x x x x --= ∵0<x 1<x 2,∴x 2-x 1>0,x 1x 2>0. ∴()21126x x x x ->0,即f(x 1) — f(x 2)>0.∴f(x 1) >f(x 2),∴函数f(x)=6x(x >0)是减函数.根据以上材料,解答下面的问题: 已知函数()21f x x x=+(x <0),()()()()()()22117110,22412f f -=+-=-=+-=--- (1)计算:f(-3)=________,f(-4)=________; (2)猜想:函数()21f x x x =+(x <0)是________函数(填“增”或“减”); (3)请仿照例题证明你的猜想. 【答案】(1)()()()()()()2212616333,4491634f f -=+-=--=+-=--- (2)增;(3)证明:设x 1<x 2<0,f(x 1) -f(x 2)=22211212122222221212121111x x x x x x x x x x x x x x ⎛⎫⎛⎫-+-+=-+-=+- ⎪ ⎪⎝⎭⎝⎭()()()()()2121212121222212121x x x x x x x x x x x xx x+--+-=--=.∵x 1<x 2<0,∴x 2—x 1>0,x 12x 22>0,x 2+x 1-1<0, ∴()()212122121x x x x x x -+-<0,即f(x 1)-f(x 2)<0.∴f(x 1) <f(x 2),∴函数()21f x x x =+是增函数. 3.(2019·金华)如图,在平面直角坐标系中,正方形OABC 的边长为4,边OA ,OC 分别在x 轴,y 轴的正半轴上,把正方形OABC 的内部及边上,横、纵坐标均为整数的点称为好点.点P 为抛物线y=-(x -2)2+m +2的顶点.(1)当m=0时,求该抛物线下放(包括边界)的好点个数. (2)当m=3时,求该抛物线上的好点坐标.(3)若点P 在正方形OABC 内部,该抛物线下方(包括边界)恰好存在8个好点,求m 的取值范围.【答案】(1)当m=0时,二次函数的表达式为y=-x 2+2,画出函数图象(图1), ∵当x=0时,y=2;当x=1时,y=1; ∴抛物线经过点(0,2)和(1,1).∴好点有:(0,0),(0,1),(0,2).(1,0)和(1,1)共5个.(2)当m=3时,二次函数的表达式为y=-(x -3)2+5,画出函数图象(图2). ∵当x=1时,y=1;当x=4时,y=4.∴抛物线上存在好点,坐标分别是(1,1)和(4,4).(3)∵抛物线顶点P 的坐标为(m ,m +2),∴点P 在直线y=x +2上.由于点P 在正方形内,则0<m<2.如图3,点E (2,1),F (2,2).∴当顶点P 在正方形OABC 内,且好点恰好存在8个时,抛物线与线段EF 有交点(点F 除外).当抛物线经过点E (2,1)时,-( 2-m )2+m +2=1,解得m 1m 2.当抛物线经过点F (2,2)时,-( 2-m )2+m +2=2,解得m 1=1,m 2=4(舍去).m <1时,点P 在正方形OABC 内部,该抛物线下方(包括边界)恰好存在8个好点. 4. 城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点A (x1,y1)和B (x2,y2),用以下方式定义两点间距离:d (A ,B )=|x1﹣x2|+|y1﹣y2|.(1)①已知点A (﹣2,1),则d (O ,A )= .②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B 是图象上一点,d (O ,B )=3,则点B 的坐标是 .(2)函数y =4x (x >0)的图象如图②所示.求证:该函数的图象上不存在点C ,使d (O ,C )=3. (3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D 是图象上一点,求d (O ,D )的最小值及对应的点D 的坐标.(4)某市要修建一条通往景观湖的道路,如图④,道路以M 为起点,先沿MN 方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)【答案】解:(1)①由题意得:d (O ,A )=|0+2|+|0﹣1|=2+1=3; ②设B (x ,y ),由定义两点间的距离可得:|0﹣x|+|0﹣y|=3, ∵0≤x≤2,∴x+y=3,∴{x +y =3y =−2x +4,解得:{x =1y =2,∴B (1,2),故答案为:3,(1,2);(2)假设函数y =4x (x >0)的图象上存在点C (x ,y )使d (O ,C )=3,根据题意,得|x −0|+|4x −0|=3, ∵x >0,∴4x >0,|x −0|+|4x −0|=x +4x , ∴x +4x =3,∴x 2+4=3x ,∴x 2﹣3x+4=0, ∴△=b 2﹣4ac=﹣7<0,∴方程x 2﹣3x+4=0没有实数根,∴该函数的图象上不存在点C ,使d (O ,C )=3. (3)设D (x ,y ),根据题意得,d (O ,D )=|x ﹣0|+|x 2﹣5x+7﹣0|=|x|+|x 2﹣5x+7|, ∵x 2−5x +7=(x −52)2+34>0,又x≥0,∴d (O ,D )=|x|+|x 2﹣5x+7|=x+x 2﹣5x+7=x 2﹣4x+7=(x ﹣2)2+3, ∴当x=2时,d (O ,D )有最小值3, 此时点D 的坐标是(2,1).(4)如图,以M 为原点,MN 所在的直线为x 轴建立平面直角坐标系xOy ,将函数y=﹣x 的图象沿y 轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E ,过点E 作EH ⊥MN ,垂足为H ,修建方案是:先沿MN 方向修建到H 处,再沿HE 方向修建到E 处.理由:设过点E 的直线l 1与x 轴相交于点F .在景观湖边界所在曲线上任取一点P ,过点P 作直线l 2∥l 1,l2与x 轴相交于点G .∵∠EFH=45°,∴EH=HF ,d (O ,E )=OH+EH=OF ,同理d (O ,P )=OG , ∵OG≥OF ,∴d (O ,P )≥d (O ,E ),∴上述方案修建的道路最短.5.(2019·衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满是x=3a c+,y=3b d +,那么称点T 是点A ,B 的融合点.例如:A (-1,8),B (4,一2),当点T (x.y )满是x=143-+=1,y=8(2)3+-=2时.则点T (1,2)是点A ,B 的融合点. (1)已知点A (-1,5),B (7,7).C (2,4).请说明其中一个点是另外两个点的融合点.(2)如图,点D (3,0).点E (t ,2t+3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点.①试确定y 与x 的关系式.②若直线ET 交x 轴于点H ,当△DTH 为直角三角形时,求点E 的坐标. 【答案】(1)∵173-+=2,573+=4,∴点C (2,4)是点A.B 的融合点。