八年级数学上册 2.1 认识无理数(第2课时)教学课件 (新版)北师大版
合集下载
北师大版数学八年级上册《认识无理数》教学课件

. < < .
. < < .
. < < .
. < < .
. < < .
想一想:可以继续算下去吗?是有限小数吗?
数
教学过程——新知探究
第二章
北师大版 ∙ 八年级上册
教学课件
第二章
实
1. 认识无理数
数
教学内容
第二章
1.1
认识无理数
实
数
教学目标——重点难点
第二章
1.知道非有理数的存在,认识无理数.
2.理解无理数的概念,掌握无理数与有理数的区别,并
能判断一个数是有理数还是无理数.(重点)
3.能用“夹逼法”确定无理数的近似值(难点)
实
数
教学目标——温故知新
实
活动探究3
认识无理数
有理数与无理数区别:
因为整数都可以看着小数部分为0的小数,而分数都可以化为有限小数或无限循
环小数,所以有理数总可以用有限小数或无限循环小数表示;反过来,任何有限
小数或无限循环小数也都是有理数. 但无理数是无限不循环小数,所以有理数和
无理数的根本区别就在于无理数不能化为有限小数或无限循环小数.
第二章
知识储备
1.什么是有理数?
整数和分数统称为有理数.
2.有理数有哪些分类方法?
正整数
整数
负整数
分数
正分数
负分数
正整数
正数
正分数
负整数
负数
负分数
实
数
教学过程——新课引入
第二章
议一议
有两个正方形,一个正方形的面积为4,一个正方形的面积为
. < < .
. < < .
. < < .
. < < .
想一想:可以继续算下去吗?是有限小数吗?
数
教学过程——新知探究
第二章
北师大版 ∙ 八年级上册
教学课件
第二章
实
1. 认识无理数
数
教学内容
第二章
1.1
认识无理数
实
数
教学目标——重点难点
第二章
1.知道非有理数的存在,认识无理数.
2.理解无理数的概念,掌握无理数与有理数的区别,并
能判断一个数是有理数还是无理数.(重点)
3.能用“夹逼法”确定无理数的近似值(难点)
实
数
教学目标——温故知新
实
活动探究3
认识无理数
有理数与无理数区别:
因为整数都可以看着小数部分为0的小数,而分数都可以化为有限小数或无限循
环小数,所以有理数总可以用有限小数或无限循环小数表示;反过来,任何有限
小数或无限循环小数也都是有理数. 但无理数是无限不循环小数,所以有理数和
无理数的根本区别就在于无理数不能化为有限小数或无限循环小数.
第二章
知识储备
1.什么是有理数?
整数和分数统称为有理数.
2.有理数有哪些分类方法?
正整数
整数
负整数
分数
正分数
负分数
正整数
正数
正分数
负整数
负数
负分数
实
数
教学过程——新课引入
第二章
议一议
有两个正方形,一个正方形的面积为4,一个正方形的面积为
北师大版数学八年级上册 2.1 认识无理数 课件

1 1
1 1
思考:无论以什么样的方式拼接,你所得到的大正方形的面积是 多少?
11 11
1
1
1
1
1
1
2
2
1
1
2
2
11 11
11 11
11 11
问题1 设大正方形的边长为a,则a满足什么条件?
∵ S大正方形=2,∴ a2=2。
问题2:a是一个什么样的数?a可能是整数吗? 从“数”的角度:
∵ a2=2, 而12=1, 22=4 , ∴ 12<a2<22 , ∴ 1< a< 2,a不是整数。
教学重难点
1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数。2.会判断一 个数是否为有理数。 1.把两个边长为1的正方形拼成一个大正方形的动手操作过程。2.判断一个数是否为有理 数。
约公元前500年的希腊,毕达哥拉斯是当时希腊学术界 的权威,辉煌的毕达哥拉斯学派的掌门人。毕氏开创的 学术信条是“万物皆数”,即任何事物都可以用整数或 者两个整数之比来表示。可惜好景不长,学派的小弟子 希伯索斯“偶然间”发现了一个惊人的事实,为了保持 学派的地位和真理的尊严,毕氏决定封锁消息,追杀叛 徒。最后可怜的希伯索斯被无情的抛入大海,数学的又 一巨大进步就这样拉开了序幕!
归纳:a既不是整数,也不是分数,所以a不是有理数。
质疑问题 a 究竟是多少?
面积为2 1
a 2
a的整数部分是几?十分位是几?百分位呢?
交流讨论
1、小组内讨论如何确定a的个位数、十分位、百分位、千分位 的大小,总结方法; 2、组长带领组员交流讨论在预习过程中遇到的问题并订正导案 中的内容; 3、把未解决问题贴到黑板上;
认识无理数课件北师大版八年级数学上册

C.是有理数
D.不是有理数
(2)如图,在Rt△ABC中,AC=2 cm,BC=2 cm,那么AB 的长是有理数吗?
AB的长不是有理数
3.【例1】边长为2的正方形的对角线长( D )
A.是整数
B.是分数
C.是有理数 D.不是有理数
C
5.【例3】(北师8上P21改编)如图,在Rt△ABC中,两直角边 长分别为a=2,b=3,斜边长为c. (1)c满足什么关系式? (2)c是整数吗? (3)c是有理数吗?
解:(1)根据勾股定理,得c2=a2+b2=22+32=13, ∴c满足c2=13的关系式. (2)c不是整数. (3)c不是有理数.
6.【例4】(新题速递)如图,阴影部分是正方形,求出此正方 形的面积.此正方形的边长是有理数吗?为什么? 解:设正方形的边长为a, 根据勾股定理得 a2=152-82=161. 因为a不是整数也不是分数,所以a不是有理数.
教学反思:这节课的内容是无理数的概念以及判断一个数是有 理数还是无理数.是数的范围的又一次扩充,是很重要的一节.培 养了学生分类归纳的思想.但对概念的理解掌握一些同学还不是 很好,只能在以后的教学过程中不断的完善.
教学重难点
1.无理数的探索过程. 2.了解无理数与有理数的区别,并能正确判断. 3把两个边长为1的正方形拼成一个大正方形的动手操作过程.
1.通过拼图活动,感受无理数产生的实际背景和引入的必要 性. 2.从实际背景中发现“不可比的数”,感受到这样的数的广泛 性.
知识点一:有理数(复习) 整数和分数都可以化成有限小数或无限循环小数.
-5,3,0 -5,3,0
知识点二:无理数的产生 (1)用边长为1的两个小正方形剪拼成一个面积为2的大正方形, 大正方形的边长a应满足的条件是 a2=2 ;a 不是 整数,
认识无理数.PPT课件(北师大版)

A、面积为3的正方形的边长 B、体积是8的正方体的棱长 C、两直角边分别为2和3的直角三角形的斜边长 2.面积为3的正方形的边长_不__是___有理数;面积为4 的正方形的边长__是___有理数.(填“是”或“不是”)
级:快乐提升 ——练能力: 3.加固一个高2米、宽1米的大门,需 要在对角线位置加固一条木板,设木板 长为a米,则 a的值大约是多少?这个值 可能是分数吗?
必做题:如图,在△ABC中,
CD⊥AB,垂足为D,AC=6,AD=5,
问:CD可能是整数吗?可能是分
数吗?可能是有理数吗?
选做题: B,C是一个生活小区的两个路口,
BC长为2千米,A处是一个花园,从A到B,C两路口 的距离都是2千米,现要从花园到生活小区修一条 最短的路,这条路的长可能是整数吗?可能是分 数吗?说明理由.
视察下图后回答下面问题, (1)如图:以直角三角形的斜边为边的正 方形的面积是多少?
(2)设该正方形的边长为b,b满足什么条 件?
(3)b是有理数吗?
活动五:了解数学史,体会数学文化
请阅读下面材料,并说出自己的感受:
公元前500年,古希腊的毕达哥拉斯( Pythagoras) 学派认为“宇宙间的一切现象都能归结为整数或整 数之比,即都可用有理数来描述。
(一)知识上的总结:
教师提问:本节课你学到了什么知识? (二)数学方法上的总结
教师提问:在讨论大正方形的边长是否为有理数 时,我们是怎样讨论的 ?
总结: “分类讨论”的数学说理方法 教师提问:在研究大正方形的边长是否为分数时,
我们从哪里开始研究的?
总结: “特殊到一般”的研究方法
级:轻松过关 ——打基础: 1.下列各数中,是有理数的是( B )
义务教育教科书(北师大版)数学 八年级上册
级:快乐提升 ——练能力: 3.加固一个高2米、宽1米的大门,需 要在对角线位置加固一条木板,设木板 长为a米,则 a的值大约是多少?这个值 可能是分数吗?
必做题:如图,在△ABC中,
CD⊥AB,垂足为D,AC=6,AD=5,
问:CD可能是整数吗?可能是分
数吗?可能是有理数吗?
选做题: B,C是一个生活小区的两个路口,
BC长为2千米,A处是一个花园,从A到B,C两路口 的距离都是2千米,现要从花园到生活小区修一条 最短的路,这条路的长可能是整数吗?可能是分 数吗?说明理由.
视察下图后回答下面问题, (1)如图:以直角三角形的斜边为边的正 方形的面积是多少?
(2)设该正方形的边长为b,b满足什么条 件?
(3)b是有理数吗?
活动五:了解数学史,体会数学文化
请阅读下面材料,并说出自己的感受:
公元前500年,古希腊的毕达哥拉斯( Pythagoras) 学派认为“宇宙间的一切现象都能归结为整数或整 数之比,即都可用有理数来描述。
(一)知识上的总结:
教师提问:本节课你学到了什么知识? (二)数学方法上的总结
教师提问:在讨论大正方形的边长是否为有理数 时,我们是怎样讨论的 ?
总结: “分类讨论”的数学说理方法 教师提问:在研究大正方形的边长是否为分数时,
我们从哪里开始研究的?
总结: “特殊到一般”的研究方法
级:轻松过关 ——打基础: 1.下列各数中,是有理数的是( B )
义务教育教科书(北师大版)数学 八年级上册
北师大版八年级数学上册第二章实数2.1认识无理数课件(共23张PPT)

,-3.5,…
回顾 & 思考☞
有理数:整数和分数统称为有理数。
分数与有限小数和无限循环小数可以互化 所以我们把有限小数和无限循环小数都看作分数
有限小数 分数
无限循环小数
例如:
1 3
0.3333
•
0.3
1 32 0.03125
4 5
0.8
拼图活动
有两个边长为1的小正方形,剪一剪,拼一拼,设法得到一 个大的正方形。看看能有几种拼法?
1.如图,正三角形的边长为2,高为h,h可能 是整数吗?可能是分数吗?
解:因为ABC是正三角形,且AD BC
A
所以BD DC,则BD 1 AB 1
2
由勾股定理得 : h2 22 12 3
h
h不可能是整数; h也不可能是分数。
B
D
C
生活中真的有很多不是有理数 的数吗?
1:右图是由16个边长 为1的小正方形拼成的, 任意连接这些小正方形 的若干个顶点,可得到 一些线段。试分别找出 两条长度是有理数的线 段和两条长度不是有理 数的线段。
q 为整数且互质),而无理数不能.
数学家寄语 是不 在 我是数 们我学 怎们天 么知地 毕 知道里 达 道什, 哥 么重 拉 ,要 斯 而的
——
无理数(1)
回顾 & 思考☞
什么叫有理数?
整数
有 理 数
分数
正整数:如:1,2,3,…
零:0
负整数:如-1,-2,-3,…
正分数:如 1 , 1 ,5.2, … 23
负分数如
1 5
,
5 6
越来越大,
所以a不可能是整数
a可能是以2为分母的分数吗?
期八年级数学上册2.1认识无理数课件(新版)北师大版

1 认识无理数
• 我们已经学习过哪些数?
小学学过自然数、小数、分数 初一我们学过负数
“数”发展史
• 我们在小学学了非负数,在初一发现数不够 用了,引入了负数,即把小学学过的正数、 零扩充到有理数的范围,有理数包括整数和 分数,那么有理数范围是否能满足我们实际 生活的需要呢?
• 请大家先准备两个边长为1的正方形,然后 再剪一剪,拼一拼,设法得到一个大的正 方形。
有理数集合
无理数集合
• 通过本节课的学习,你是如何判断一个数 是有理数还是无理数?还有哪些困难?
• 1.习题2.2 1、2、3题. • 2.完成创优作业中本课时的习题
• 1.
(1)有理数与无理数的差都是有理数.( )
(2)无限小数都是无理数.
()
(3)无理数都是无限小数.
()
(4)两个无理的和不一定是无理数. ( )
2.下列各数中,哪些是有理数?哪些是无理数?
0.315,- 2,4.96,3.14159,- 5.2323332, 3
123456789101112(由相继的正整数组成)111 Nhomakorabea11
1
1
1
思考:假设拼成的大正方形的边长为a,则a应满足 什么条件?
我发现
因为12 1,22 4,32 9,整数的平方
差越来越大,所以a应该在1和2之间,故
a不可能是整数,又(1 2
)
2
1 ,(1 )2 43
1, 9
(2 )2 3
94,两个相同因数的乘积都为分数,
所以a不可能是分数.
那么a到底是什么数呢?
做一做
2 a 面积为2 1
1
a
• 我们已经学习过哪些数?
小学学过自然数、小数、分数 初一我们学过负数
“数”发展史
• 我们在小学学了非负数,在初一发现数不够 用了,引入了负数,即把小学学过的正数、 零扩充到有理数的范围,有理数包括整数和 分数,那么有理数范围是否能满足我们实际 生活的需要呢?
• 请大家先准备两个边长为1的正方形,然后 再剪一剪,拼一拼,设法得到一个大的正 方形。
有理数集合
无理数集合
• 通过本节课的学习,你是如何判断一个数 是有理数还是无理数?还有哪些困难?
• 1.习题2.2 1、2、3题. • 2.完成创优作业中本课时的习题
• 1.
(1)有理数与无理数的差都是有理数.( )
(2)无限小数都是无理数.
()
(3)无理数都是无限小数.
()
(4)两个无理的和不一定是无理数. ( )
2.下列各数中,哪些是有理数?哪些是无理数?
0.315,- 2,4.96,3.14159,- 5.2323332, 3
123456789101112(由相继的正整数组成)111 Nhomakorabea11
1
1
1
思考:假设拼成的大正方形的边长为a,则a应满足 什么条件?
我发现
因为12 1,22 4,32 9,整数的平方
差越来越大,所以a应该在1和2之间,故
a不可能是整数,又(1 2
)
2
1 ,(1 )2 43
1, 9
(2 )2 3
94,两个相同因数的乘积都为分数,
所以a不可能是分数.
那么a到底是什么数呢?
做一做
2 a 面积为2 1
1
a
北师大版数学八年级上册2.1《认识无理数》课件 (共18张PPT)
探究活动二
以小组为单位,共同探讨以下问题。
1.以直角三角形的斜边为边的正方形的面 积是多少? 面积S=5 2.设该正方形的边长为b,b满足什么条件?
b2=5
3Байду номын сангаасb是有理数吗?
b不是有理数
提升认知
前面探讨到的a2=2和b2=7中a,b究竟
是什么样的数? a,b都不是整数、分数,所以不是有 理数。
根据你的拼图试着回答问题:
1.设大正方形的边长是a,a满足什么条 件? a2=2 2.a可能是整数吗?尝试说明理由。 因为12=1, 22=4, 32=9...越来越大, 所以a不是整数。
探究活动一
根据你的拼图试着回答问题:
3.a可能是分数吗?尝试说明理由。 (1)a可能是以2为分母的分数吗? 2 因为 1 1 ,
2 4 9 3 ,... 4 2
2
结果都是分数,所以a不可能是以2 为分母的分数
探究活动一
根据你的拼图试着回答问题:
3.a可能是分数吗?尝试说明理由。 (2)a可能是以3为分母的分数吗? 2 2 4 2 因为 1 1 , ,
3 9 3 9 4 16 , 9 3
2
25 5 ,... 9 3
2
结果都是分数,所以a不可能是以3 为分母的分数。
探究活动一
根据你的拼图试着回答问题:
4.a可能是分数吗?尝试说明理由。 两个相同的最简分数的乘积仍然是分 数,所以a不可能是分数。
探究活动一
根据你的拼图试着回答问题:
5.a可能是有理数吗? a既不是整数又不是分数,所以a一 定不是有理数。
那么a,b是什么数呢?
新北师大版八年级数学上册《认识无理数》精品教学课件
第二章 实数
认识无理数
Hale Waihona Puke 1.通过拼图活动,感受无理数产生的实际背景和引入 的必要性. 2.能判断给出的数是否为有理数,并能说出理由.
1.一个整数的平方一定是整数吗?
2.一个分数的平方一定是分数吗?
3 . 整 数和 分 数统称为有理数.
整数分为 正整数、0、负整数
;
分数分为 正整数、负整数
.
把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形, 大的正方形的面积是多少呢?
B.面积为 9的正方形
16
C.面积为27的正方形
D.面积为1.44的正方形
1.在数轴上表示满足 x2 2(x>0) 的x
2.在数轴上表示满足 x2 5(x>0)的x
解:1. 2.
-2
-1
0
1
-4
-2
0
1x 2
x
2
4
3.如图是由五个单位正方形组成的纸片,请你把它剪成三块,然 后拼成一个正方形,你会吗?试试看!
1
1
1
1
大正方形的面积是2,大正方形的边长该如何表示呢?
(1)大正方形的面积是2,设边长是a,则a满足:
a是有理数吗?
(2)b2=___5____,b是有理数吗?
b
a、b既不是整数,也不是分数,所以a 、b都不是有理数,但
是它们是确实存在的数,目前还没有掌握它们的表示方法
在勾股定理的计算中感知无理数
1.在Rt△ABC中,∠C=90°,回答下列问题: 若a=3,b=4,则c= 5 若a=5,c=13,则b= 12
若a=2,b=3,则c²= 13 ,c可能是整数吗? 可能是分数吗? 不可能 若a=2,c=3,则b²= 5 ,b可能是整数吗? 可能是分数吗? 不可能
认识无理数
Hale Waihona Puke 1.通过拼图活动,感受无理数产生的实际背景和引入 的必要性. 2.能判断给出的数是否为有理数,并能说出理由.
1.一个整数的平方一定是整数吗?
2.一个分数的平方一定是分数吗?
3 . 整 数和 分 数统称为有理数.
整数分为 正整数、0、负整数
;
分数分为 正整数、负整数
.
把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形, 大的正方形的面积是多少呢?
B.面积为 9的正方形
16
C.面积为27的正方形
D.面积为1.44的正方形
1.在数轴上表示满足 x2 2(x>0) 的x
2.在数轴上表示满足 x2 5(x>0)的x
解:1. 2.
-2
-1
0
1
-4
-2
0
1x 2
x
2
4
3.如图是由五个单位正方形组成的纸片,请你把它剪成三块,然 后拼成一个正方形,你会吗?试试看!
1
1
1
1
大正方形的面积是2,大正方形的边长该如何表示呢?
(1)大正方形的面积是2,设边长是a,则a满足:
a是有理数吗?
(2)b2=___5____,b是有理数吗?
b
a、b既不是整数,也不是分数,所以a 、b都不是有理数,但
是它们是确实存在的数,目前还没有掌握它们的表示方法
在勾股定理的计算中感知无理数
1.在Rt△ABC中,∠C=90°,回答下列问题: 若a=3,b=4,则c= 5 若a=5,c=13,则b= 12
若a=2,b=3,则c²= 13 ,c可能是整数吗? 可能是分数吗? 不可能 若a=2,c=3,则b²= 5 ,b可能是整数吗? 可能是分数吗? 不可能
2.1 认识无理数 第2课时 北师大版数学八年级上册教学课件
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
归纳
定义
像0.585无88限588不858循888环5…小(数相邻称两为个无5之理间数8的.个数逐次加1)
π=3.14159265,1.41421356…,-2.2360679…
等这些数判的断小一数位个数数都是是无不限是的无,,理又数不,是循关环键的就,而是看它能不 能写成无限不循环的小数.
合作探究
(2) a的整数部分是几?十分位是几?百分位呢?千分位呢?
借助计算器探索,用表格的形式整理.
a 1.5 1.4 1.45
1.44 1.43 1.42 1.41
1.415 1.414 1.4145
1.4144 1.4143
a的平方 2.25 1.96 2.1025 2.0736 2.0449 2.0164 1.9881
2.002225 1.999396
2.00081025 2.00052736 2.00024449
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
合作探究
(2) a的整数部分是几?十分位是几?百分位呢?千分位呢? 借助计算器探索,用表格的形式整理.
边长a
面积S
1< a <2
1< S <4
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
归纳
无理数的常见形式
主要有三种: ①无限不循环小数,如1.414 213 56…是无理数. 像看π0.=5似38.518循4815环589828而6558,8实818质.54…1不4(21相循35邻环6…两的,个-小5之2数.间238,6的06如个79数0….逐10次1加010)1 000 1…(相邻 等两这些个数1的之小间数0位的数个都是数无逐限次的,增,加又1不)是是循无环理的数,而. ②圆周率π以及含π的数,如π,2π,π+5都是无理数. ③开方开不尽的数(下一节学到).
北师大版数学八上认识无理数(第2课时)课件
b平方 4.8841 4.9284 4.9729 5.0176 5.0625 5.1076 5.1529 5.1984 5.2441
做一做
怎样确定b的千分位呢?
b 2.231 2.232 2.233 2.234 2.235 2.236 2.237 2.238 2.239 b平方 4.977361 4.981824 4.986289 4.990756 4.995225 4.999696 5.004169 5.008644 5.013121
怎样确定a的整数部分呢?
探究新知一
怎样确定a的十分位呢?
1<a<2 a平方
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.21 1.44 1.69 1.96 2.25 2.56 2.89 3.24 3.61
探究新知一
怎样确定a的百分位呢?
1.41<a<1.42 1.41
事实上,b=2.2360……,它是一个无限不循环小数。
探究新知二
使用计算器计算,把下列有理数写成小数的情势, 你有什么发现?
-485 =-0.1ሶ 7ሶ
事实上,任何一个有理数都可以写成有限小数或无限循环小 数。 反过来,任何有限小数或无限循环小数也都是有理数。
探究新知二
定4 1.96<S<2.25 1.988 1<S<2.016 4 1.999 396<S<2.002 225 1.999 961 64<S<2.000 244 49
…
猜想:还可以继续算下去吗?a可能是有限小数吗?
事实上,a=1.41421356……,它是一个无限不循环小数。
做一做
估计面积为5的正方形的边长b的值,结果