七上绝对值竞赛专题
七年级数学上册专题提分精练绝对值的几何意义(解析版)

专题05 绝对值的几何意义1.阅读下面材料:点A 、B 在数轴上分别表示有理数a 、b ,在数轴上A 、B 两点之间的距离AB =|a ﹣b |.回答下列问题:(1)数轴上表示﹣3和1两点之间的距离是 ,数轴上表示x 和-2的两点之间的距离是 ;(2)数轴上表示a 和1的两点之间的距离为6,则a 表示的数为 ;(3)若x 表示一个有理数,则|x +2|+|x -4|有最小值吗?若有,请求出最小值;若没有,请说明理由.【答案】(1)4,2x +(2)7或5-(3)有最小值,6【解析】【分析】(1)根据在数轴上A 、B 两点之间的距离为AB =|a ﹣b |即可求解;(2)根据在数轴上A 、B 两点之间的距离为AB =|a ﹣b |即可求解;(3)根据绝对值的几何意义,即可得解.(1)解:()134--=,()2x x --=+故答案为:4,2x +.(2) 解:∵16a -=∴7a =或5a =-,故答案为:7或5-.(3) 在数轴上的24x x ++-几何意义是:表示有理数x 的点到﹣2及到4的距离之和,所以当24x -≤≤时,它的最小值为6.【点睛】本题考查了数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示是解题的关键.注意分类思想在解题中的运用.2.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示6和2的两点之间的距离为62-=______;表示-1和2两点之间的距离为()()1212--+=--=______;一般地,数轴上表示数m 和数n 的两点之间的距离等于m n -,如果表示数a 和-1的两点之间的距离是3,那么a =______.(2)若数轴上表示数a 的点位于-5与3之间,求53a a ++-的值;(3)当x =______时,45x x x +++-的值最小,最小值为______.【答案】(1)4,3,2或−4;(2)8;(3)0,9【解析】【分析】(1)根据绝对值的性质列式计算即可;(2)去绝对值即可求出答案;(3)根据绝对值的几何意义分析得出x 的值,进而计算即可.(1)解:数轴上表示6和2的两点之间的距离为62-=4;表示-1和2两点之间的距离为()()1212--+=--=3;∵表示数a 和−1的两点之间的距离是3,∴|a −(−1)|=3,解得a =2或−4,故答案为:4,3,2或−4;(2)∵表示数a 的点位于-5与3之间, ∴()53538a a a a ++-=++-=;(3) 由绝对值的几何意义可知:45x x x +++-的值就是数轴上表示数x 的点到0的距离与到-4的距离和到5的距离之和,∴当x =0时,45x x x +++-的值最小,最小值为9.【点睛】本题考查了绝对值的性质和绝对值的几何意义,正确理解数轴上表示数m 和数n 的两点之间的距离等于m n -是解题的关键.3.阅读下面的材料:我们知道,在数轴上,||a 表示有理数a 对应的点到原点的距离,同样的道理,|2|a -表示有理数a 对应的点到有理数2对应的点的距离,例如,|52|3-=,表示数轴上有理数5对应的点到有理数2对应的点的距离是3.请根据上面的材料解答下列问题:(1)数轴上有理数9-对应的点到有理数3对应的点的距离是_______;(2)|5|-a 表示有理数a 对应的点与有理数_______对应的点的距离;如果|5|2-=a ,那么有理数a 的值是_______;(3)如果|1||6|7-+-=a a ,那么有理数a 的值是_______.(4)代数式|1||6|-+-a a 的最小值是_________,此时有理数a 可取的整数值有______个.【答案】(1)12;(2)5,3或7;(3)0或7;(4)5,6.【解析】【分析】(1)根据题意可知,数轴上有理数9-对应的点到有理数3对应的点的距离是|93|--,计算即可;(2)根据题意进行解题即可;(3)式子代表的a 对应的点到1的距离与到6的距离的和为7,找到对应的点即可; (4)代数式|1||6|-+-a a 的最小值在数轴上1与6之间,最小值为5,符合条件的值有6个.(1)解:由题意得,|93|--=12,故答案为:12.(2)|5|-a 表示有理数a 对应的点与有理数5对应的点的距离;|5|2-=a ,表示到5所对应的点距离为2的点,即为:3或7.故答案为:5;3或7.(3)|1||6|7-+-=a a 表示:a 对应的点到1的距离与到6的距离的和为7,从数轴上观察得出a 的值为:0或7,故答案为:0或7.(4)代数式|1||6|-+-a a 表示的是a 对应的点到1的距离与到6的距离的和,最小值为1到6的距离,最小值为5,符合条件的整数值在1到6之间,共6个.故答案为:5,6.【点睛】本题主要考查的数材料阅读理解能力,考查知识点为绝对值的几何意义,灵活运用其几何意义是解题的关键.4.(1)数轴上表示4与2-的点之间的距离为_________,数轴上表示3与5的点之间的距离为_________(2)|4(2)|--=___________;|35|-=___________(3)观察(1)(2)两小题,若数轴上的点A 表示的数为x ,点B 表示的数为y ,则A 与B 两点间的距离可以表示为__________.A 与表示-2的点之间的距离可表示为__________ (4)结合数轴,求23x x -++的最小值为 ________【答案】(1)6;2;(2)6;2 ;(3)x y -,2x +;(4)5【解析】【分析】(1)根据两点间的距离公式,即可求出距离;(2)根据绝对值的性质即可求解;(3)根据两点间的距离公式,即可求解;(4)由绝对值的意义进行化简,即可求出答案;【详解】解:(1)数轴上表示4与−2的点之间的距离为()426--=,数轴上表示3与5的点之间的距离为352-=;故答案为:6,2;(2)|4−(−2)|=6;|3−5|=2;故答案为:6,2;(3)A 与B 两点间的距离可以表示为x y -,A 与表示-2的点之间的距离可表示为()22x x --=+; 故答案为:x y -,2x +;(4)∵|x -2|+|x +3|理解为:在数轴上表示点x 到2和-3的距离之和,∴当点x 在2与-3之间的线段上,即-3≤x ≤2时,|x -2|+|x +3|有最小值,最小值为:2-(-3)=5.故答案为:5.【点睛】本题考查了数轴在两点间的距离及绝对值化简中的应用,明确数轴上两点间的距离及绝对值之间的关系,是解题的关键.5.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.我们知道|4||40|=-,它的几何意义是数轴上表示4的点与原点(即表示0的点)之间的距离,又如式子|73|-,它的几何意义是数轴上表示数7的点与表示数3的点之间的距离.也就是说,在数轴上,如果点A 表示的数记为a ,点B 表示的数记为b ,则A ,B 两点间的距离就可记作||-a b .回答下列问题:(1)几何意义是数轴上表示数2的点与数3-的点之间的距离的式子是________;式子|5|+a 的几何意义是_______________________;(2)根据绝对值的几何意义,当|2|3-=m 时,m =________;(3)探究:|1||9|++-m m 的最小值为_________,此时m 满足的条件是________;(4)|1||9||16|++-+-m m m 的最小值为________,此时m 满足的条件是__________.【答案】(1)23+或2(3)--;数轴上表示数a 的点与数2的点之间的距离.(2)1-或5(3)10,19m -≤≤(4)17,9m =【解析】【分析】(1)根据距离公式及定义表示即可;(2)分点在2表示的数的点的左边和右边两种情形求解;(3)利用数形结合思想,画数轴求解即可;(4)利用数形结合思想,画数轴求解即可.(1)解:①在数轴上的意义是表示数2的点与表示数3-的点之间的距离的式子是()23-- , 故答案为:()2323--=+; ②∵5a +=|a -(-5)|, ∴5a +在数轴上的意义是表示数a 的点与表示数-5的点之间的距离.故答案为:表示数a 的点与表示数-5的点之间的距离.(2) 解:∵2m -表示数m 到2的距离,画数轴如下:当数在2的右边时,右数3个单个单位长,得到对应数是5,符合题意;当数在2的左边时,左数3个单个单位长,得到对应数是-1,符合题意;故答案为:-1或5;(3) 解:∵19m m ++-表示数m 与-1,9的距离之和,画数轴如下:根据两点之间线段最短,-1表示点与9表示点的最短距离为9-(-1)=10,此时动点m 在-1表示点与9表示点构成的线段上,∴19m -≤≤ ;故答案为:10、19m -≤≤;(4)解:根据题意,画图如下,根据两点之间线段最短,-1表示点与16表示点的最短距离为16-(-1)=17,此时动点m 在-1表示点与16表示点构成的线段上,且到9表示的点的距离为0, ∴9m = ;故答案为:17、 9m =.【点睛】本题考查了数轴上两点间的距离计算公式,线段最短原理,数轴的意义,解题的关键是利用数形结合思想,分类思想,结合数轴,运用数学思想解题.6.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=______.(2)若32x -=成立,则x =_________.(3)请你写出12x x -+-的最小值为________.并确定相应的x 的取值范围是______.【答案】(1)7;(2)5或1;(3)3,1≤x ≤2【解析】【分析】(1)根据5与-2两数在数轴上所对的两点之间的距离为7得到答案;(2)根据题意可得方程x -3=±2,再解即可;(3)分情况讨论,去绝对值化简,从而确定x 的最小值.【详解】解:(1)|5-(-2)|=|5+2|=7,故答案为:7;(2)∵|x -3|=2成立,∴x -3=±2,∴x =5或1,故答案为:5或1;(3)当x <1时,原式=-x +1-x +2=-2x +3>1;当1≤x ≤2时,原式=x -1-x +2=1;当x >2时,原式=x -1+x -2=2x -3>1,∴|x -1|+|x -2|的最小值是1,故答案为:3,1≤x ≤2.【点睛】本题主要考查了去绝对值和数轴相联系的综合试题以及去绝对值的方法,难度较大,去绝对值的关键是确定绝对值里面的数的正负性.7.先阅读,后探究相关的问题【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离:|5+2|可以看作|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.【探究】(1)如图,先在数轴上找出表示点2.5的相反数的点B ,再把点A 向左移动3个单位,得到点C ,则点B 和点C 表示的数分别为_______和_______,B ,C 两点间的距离是_______;(2)数轴上表示x 和﹣2的两点A 和B 之间的距离表示为_______;如果|AB |=3,那么x 为_______;(3)要使代数式|x +2|+|x ﹣3|取最小值时,则整数x 的值为_______.(4)当x 为_______时,|x +4|+|x ﹣2|=12.【答案】(1) 2.5-,0.5-,2 (2)2x +,1或5-(3)2-,1-,0,1,2,3(4)7-或5【解析】(1)根据相反数的定义求得点B表示的数,根据数轴上点的的位置,求得点A,C表示的数;(2)根据绝对值的意义,表示出|x+2|=3,解绝对值方程即可求解;(3)根据|x+2|+|x﹣3|取最小值,即数轴上表示数x的点到表示﹣2,3的距离之和最小,根据x为整数即可求解;(4)由(3)可知|x+4|+|x﹣2|的最小值为|﹣4﹣2|=6,要使|x+4|+|x﹣2|=12,则x<﹣4或x >2,根据题意得出方程,﹣x﹣4+2﹣x=12或x+4+x﹣2=12,解方程即可求解.(1)解:∴点B所表示的数与2.5互为相反数,∴点B所表示的数为﹣2.5,又∵点A向左移动3个单位,得到点C,点A所表示的数是2.5,∴点C所表示的数为2.5﹣3=﹣0.5,∴BC=|﹣2.5+0.5|=2,故答案为:﹣2.5,﹣0.5,2;(2)由题意可知,数轴上表示x和﹣2的两点A和B之间的距离表示为|x+2|,当AB=3,即|x+2|=3,解答x1=1,x2=﹣5,故答案为:|x+2|,1或﹣5;(3)∵|x+2|+|x﹣3|取最小值,即数轴上表示数x的点到表示﹣2,3的距离之和最小,∴当﹣2≤x≤3时,|x+2|+|x﹣3|的值最小,其最小值为|﹣2﹣3|=5,又∵x为整数,∴整数x为﹣2,﹣1,0,1,2,3,故答案为:﹣2,﹣1,0,1,2,3;(4)由(3)可知|x+4|+|x﹣2|的最小值为|﹣4﹣2|=6,要使|x+4|+|x﹣2|=12,因此x<﹣4或x>2,故有﹣x﹣4+2﹣x=12或x+4+x﹣2=12,解得x=﹣7或x=5,故答案为:﹣7或5【点睛】本题考查了绝对值的意义,数轴上的两点距离,一元一次方程,掌握绝对值的意义是解题的8.点A 、B 在数轴上分别表示有理数a 、b ,点A 与原点O 两点之间的距离表示为AO ,则0AO a a =-=,类似地,点B 与原点O 两点之间的距离表示为BO ,则BO b =,点A 与点B 两点之间的距离表示为AB a b .请结合数轴,思考并回答以下问题:(1)填空:①数轴上表示1和3-的两点之间的距离是______.②数轴上表示m 和1-的两点之间的距离是______.③数轴上表示m 和1-的两点之间距离是3,则有理数m 是______. (2)求满足246x x -++=的所有整数x 的和______. (3)已知31510412y x z x z y -+-+-=-+----.求x y z ++的最大值为______.【答案】(1)①4;②|m +1|;③2或-4(2)-7(3)9【解析】【分析】(1) ①根据题意即可求得;②根据题意即可求得;③根据题意可得|m +1|=3,解方程即可求得; (2)根据246x x -++=的几何意义是数轴上表示x 的点到表示2与-4的点的距离之和为6,可得42x -≤≤,可得x 可取的整数,据此即可求得;(3)由原式可得32145110-+-+-++-+-=y y x z z ,由321-+-≥y y ,145x x -++≥,514-+-≥z z ,可得23y ≤≤,41x -≤≤,15z ≤≤,据此即可求得.(1)解:①数轴上表示1和3-的两点之间的距离是|1-(-3)|=4;②数轴上表示m 和1-的两点之间的距离是|m -(-1)|=|m +1|;③由数轴上表示m 和1-的两点之间距离是3,得|m +1|=3,故m +1=3或m +1=-3,解得m =2或m =-4,故有理数m 是2或-4,故答案为:①4;②|m +1|;③2或-4;(2) 解:246x x -++=的几何意义是数轴上表示x 的点到表示2与-4的点的距离之和为6, ∵4-(-2)=4+2=6,∴42x -≤≤,∴x 可取的整数有-4,-3,-2,-1,0,1,2, 故满足246x x -++=的所有整数x 的和为:(-4)+(-3)+(-2)+(-1)+0+1+2=-7,故答案为:-7;(3) 解:∵31510412y x z x z y -+-+-=-+---- ∴32145110-+-+-+++-+-=y y x x z z , ∵321-+-≥y y ,145x x -++≥,514-+-≥z z , ∴32145110-+-+-+++-+-≥y y x x z z ,∴23y ≤≤,41x -≤≤,15z ≤≤,∴241315x y z -+≤++≤++,即19x y z -≤++≤,故答案是:9.【点睛】本题考查了数轴上两点间距离的求法,绝对值的几何意义,理解和掌握绝对值的几何意义是解决本题的关键.9.阅读下面一段文字:在数轴上点A ,B 分别表示数a ,b .A ,B 两点间的距离可以用符号AB 表示,利用有理数减法和绝对值可以计算A ,B 两点之间的距离AB .例如:当a =2,b =5时,AB =5-2=3;当a =2,b =-5时,AB =52--=7;当a =-2,b =-5时,AB =52---()=3,综合上述过程,发现点A 、B 之间的距离AB =b a -(也可以表示为a b -).请你根据上述材料,探究回答下列问题:(1)表示数a 和-2的两点间距离是6,则a = ;(2)如果数轴上表示数a 的点位于-4和3之间,则43a a ++-= (3)代数式123a a a -+-+-的最小值是 .(4)如图,若点A ,B ,C ,D 在数轴上表示的有理数分别为a ,b ,c ,d ,则式子||||||a x x b x c x d -+++-++的最小值为 (用含有a ,b ,c ,d 的式子表示结果)【答案】(1)4和-8;(2)7;(3)2;(4)c d b a +--【解析】【分析】(1)根据题意可得:26a --= ,解出即可求解;(2)根据题意可得:43a -<< ,从而得到40,30a a +>-< ,进而得到4a +=a +4,3a -=3-a ,即可求解;(3)根据题意可得:当a =2时,代数式存在最小值,化简即可求解;(4)根据题意可得:原式表示x 对应点到,,,a b c d -- 对应的点的距离之和,从而得到当d x c -≤≤ 时,||||||a x x b x c x d -+++-++有最小值,即可求解.【详解】解:(1)根据题意得:26a --= ,∴26a --= 或26a --=- ,解得:4a = 或-8;(2)∵表示数a 的点位于-4和3之间,∴43a -<< ,∴40,30a a +>-< , ∴4a +=a +4,3a -=3-a , ∴43a a ++-= a +4+3-a =7;(3) 当a =2时,代数式存在最小值, ∴123a a a -+-+-=1+0+1=2.所以,最小值是2;(4)根据题意得:()()||||||||||||a x x b x c x d a x x b x c x d -+++-++=-+--+-+--,∴原式表示x 对应点到,,,a b c d -- 对应的点的距离之和,如图所示,∴当d x c -≤≤ 时,||||||a x x b x c x d -+++-++有最小值,∴原式x a b x c x x d =---+-++c d b a =+-- .【点睛】本题主要考查了绝对值得几何意义,数轴上两点间的距离,利用数形结合思想解答是解题的关键.10.先阅读,后探究相关的问题【阅读】|52|-表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|52|+可以看做|5(2)|--,表示5与2-的差的绝对值,也可理解为5与2-两数在数轴上所对应的两点之间的距离.【探究】(1)如图,先在数轴上找出表示点2.5的相反数的点B ,再把点A 向左移动3个单位,得到点C ,则点B 和点C 表示的数分别为_____和_____,B ,C 两点间的距离是_____; (2)数轴上表示x 和2-的两点A 和B 之间的距离表示为_______;如果||3AB =,那么x 为______;(3)要使代数式|2||3|x x ++-取最小值时,则整数x 的值为_______.(4)当x 为______时,|4|x ++|2|x -=12.【答案】(1)B : 2.5-,C :3-,BC =0.5;(2)2x +,1或5-;(3)2,1,0,1,2,3--;(4)7-或5【解析】【分析】(1)根据相反数的定义,可得点B 所表示的数为-2.5,再由点A 向左移动3个单位,得到点C ,可得点C 所表示的数为-0.5,即可求解;(2)根据【阅读】可得|x +2|=3,即可求解;(3)|x +2|+|x -3取最小值,即数轴上表示数x 的点到表示-2,3的距离之和最小,可得到当-2≤x ≤3时,|x +2|+|x -3|的值最小,其最小值为|-2-3|=5,即可求解;(4)由(3)可知|x +4|+|x -2|的最小值为|-4-2|=6,从而得到x <-4或x >2时,|x +4|+|x -2|=12,即可求解.【详解】解:(1)∵点B 所表示的数与2.5互为相反数,∴点B 所表示的数为-2.5,又∵点A 向左移动3个单位,得到点C ,点A 所表示的数是2.5,∴点C 所表示的数为2.5-3=-0.5,∴BC =|-2.5+0.5|=2;(2)由题意可知,数轴上表示x 和-2的两点A 和B 之间的距离表示为|x +2|,当AB =3时, |x +2|=3,解得:x =1或-5;(3)|x +2|+|x -3取最小值,即数轴上表示数x 的点到表示-2,3的距离之和最小, ∴当-2≤x ≤3时,|x +2|+|x -3|的值最小,其最小值为|-2-3|=5,又∵x 为整数,∴整数x 为-2,-1,0,1,2,3;(4)由(3)可知|x +4|+|x -2|的最小值为|-4-2|=6,∵|x +4|+|x -2|=12,∴x<-4或x>2,∴-x-4+2-x=12或x+4+x-2=12,解得:x=-7或5.【点睛】本题主要考查了绝对值的几何意义,绝对值方程的应用,一元一次方程,数轴上的动点问题,熟练掌握绝对值的几何意义,利用数形结合思想解答是解题的关键.11.阅读下列内容:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.数轴上表示数a的点与表示数b的点的距离记作|a﹣b|,如|3﹣5|表示数轴上表示数3的点与表示数5的点的距离,|3+5|=|3﹣(﹣5)|表示数轴上表示数3的点与表示数﹣5的点的距离,|a﹣3|表示数轴上表示数a的点与表示数3的点的距离.根据以上材料回答下列问题:(将结果直接填写在答题卡相应位置,不写过程)(1)若|x﹣1|=|x+1|,则x=,若|x﹣2|=|x+1|,则x=;(3)若|x﹣2|+|x+1|=3,则x的取值范围是;(2)若|x﹣2|+|x+1|=5,则x的值是;(4)若|x﹣2|﹣|x+1|=3,则x能取到的最大值是.【答案】(1)0,12;(2)大于等于﹣1且小于等于2;(3)-2或3;(4)﹣1.【解析】【分析】(1)根据绝对值表示的意义和中点计算方法得出答案;(2)|x-2|+|x+1|=3表示的意义,得到x的取值范围,进而得到最大值和最小值;(3)若|x-2|-|x+1|=3,所表示的意义,确定x的取值范围,进而求出最大值;(4)根据|x-2|+|x+1|的意义,求出|x-2|+|x+1|的最小值为3,从而确定取值范围.【详解】(1)|x-1|=|x+1|表示数轴上表示x的点到表示1和-1的距离相等,因此到1和-1距离相等的点表示的数为1(1)2+-=,|x-2|=|x+1|表示数轴上表示x的点到表示2和-1的距离相等,因此到2和-1距离相等的点表示的数为2(1)122 +-=,故答案为:0,12;(2)|x-2|+|x+1|=3表示的意义是数轴上表示x的点到表示2和-1两点的距离之和为3,∵2和-1两点的距离之和为3∴表示x 的点在2和-1之间∴-1≤x ≤2,(3)|x ﹣2|+|x +1|=5表示的意义是数轴上表示数x 的点与表示数2的点距离比它到表示-1的点的距离等于5,∵2和-1两点的距离之和为3∴在2的右边多出(5-3)÷2=1,即表示数x =2+1=3;或者在-1的左边多出(5-3)÷2=1,即表示数x =-1-1=-2;故答案为-2或3;(4)|x -2|-|x +1|=3表示的意义是数轴上表示数x 的点与表示数2的点距离比它到表示-1的点的距离大3,根据数轴直观可得,x ≤-1,x 的最大值为-1,故答案为:-1;.【点睛】考查数轴表示数的意义,理解绝对值的意义和两点距离的计算方法是正确解答的关键. 12.阅读材料,回答下列问题:观察题中每对数在数轴上的对应点间的距离:4与2-,3与5,2-与6-,4-与3.并计算两个数的差的绝对值,回答问题:(1)所得距离与这两个数的差的绝对值的数量关系是_______;(2)若数轴上的点A 表示的数为x ,点B 表示的数为1-,则A 与B 两点间的距离可以表示为_____;(3)结合数轴可得23x x -++______,此时x 的取值范围是______; (4)若关于x 的方程115x x x a -+++-=无解,则a 的取值范围是_______.【答案】(1)相等;(2)|1|x +;(3)5,32x -≤≤;(4)6a <【解析】【分析】(1)根据数轴上两点之间的距离可得出结论;(2)根据数轴上两点之间的距离可得结果;(3)把x 的取值范围分成3x <-,32x -≤≤和2x >三类进行讨论,求出最小值及x 对应的取值范围即可;(4)把x 的取值范围分成1x <-,11x -≤<,15x ≤≤和5x >四类进行讨论,求出最小值,由于方程115x x x a -+++-=无解,则a 小于最小值即可得出答案.【详解】(1)由题可知,数轴上两点距离=两点表示的数的差的绝对值,故答案为:相等;(2)由(1)可知:(1)1AB x x =--=+, 故答案为:1x +;(3)①当3x <-时,20x -<,30x +<,23(2)(3)23215x x x x x x x ∴-++=---+=-+--=-->,②当32x -≤≤时,20x -<,30x +>,23(2)(3)235x x x x x x ∴-++=--++=-+++=,③当2x >时,20x ->,30x +>,23(2)(3)23215x x x x x x x ∴-++=-++=-++=+>,∴当32x -≤≤时,23x x -++有最小值为5,故答案为:5,32x -≤≤;(4)①当1x <-时,10x -<,10x +<,50x -<,115(1)(1)(5)358x x x x x x x ∴-+++-=---+--=-+>,②当11x -≤<时,10x -<,10x +>,50x -<,115(1)(1)(5)7x x x x x x x ∴-+++-=--++--=-+,61158x x x ∴<-+++-≤,③当15x ≤≤时,10x ->,10x +>,50x -<,115(1)(1)(5)5x x x x x x x ∴-+++-=-++--=+611510x x x ∴≤-+++-≤,④当5x >时,10x ->,10x +>,50x ->,115(1)(1)(5)3510x x x x x x x ∴-+++-=-+++-=->,115x x x ∴-+++-最小值为6, 方程115x x x a -+++-=无解,6a ∴<,故答案为:6a <.【点睛】本题考查数轴上两点的距离以及绝对值的意义,掌握分类讨论的思想方法求最值是解题的关键.13.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示1和4的两点之间的距离是_____________;数轴上表示a 与2的两点之间的距离可以表示为_____________;表示数a 和-2的两点之间的距离是3,那么=a _____________;一般地,数轴上表示数m 和数n 的两点之间的距离等于_______________.(2)同理31a a ++-表示数轴上有理数a 所对应的点到-3和1所对应的点的距离之和,请你找出所有符合条件的整数a ,使得314a a ++-=,这样的整数是_______________. (3)由以上探索猜想对于任何有理数a ,36a a -+-是否有最小值?如果有,直接写出最小值;如果没有,说明理由.(4)存在不存在数a ,使代数式324a a a ++-+-的值最小?如果存在,请写出数=a _____________,此时代数式324a a a ++-+-最小值是_______________.【答案】(1)3;2a ;-5或1;m n -;(2)-3,-2,-1,0,1;(3)存在,最小值为3;(4)存在,2,7【解析】【分析】(1)根据题意,结合数轴即可得到结果;(2)根据31a a ++-表示数轴上有理数a 所对应的点到-3和1所对应的点的距离之和即可求解;(3)根据两点间的距离的表示,数x 在3和6之间时,有最小值,然后求解即可;(4)分类讨论a 的范围,利用绝对值的代数意义化简,确定出最小值,以及此时a 的值即可.【详解】(1)数轴上表示1和4的两点之间的距离是3;数轴上表示a 与2的两点之间的距离可以表示为2a ;表示数a 和-2的两点之间的距离是3,则()223a a --=+= ,可得:a +2=3或a +2=-3,解得:=a -5或1;一般地,数轴上表示数m 和数n 的两点之间的距离等于m n -(2)因为31a a ++-表示数轴上有理数a 所对应的点到-3和1所对应的点的距离之和,314a a ++-=,所以数a 位于-3与1之间,所以符合条件的整数a 为-3,-2,-1,0,1;(3)当36a ≤≤时存在最小值,且最小值()()363a a =-+-= ;(4)存在数a ,使代数式324a a a ++-+-的值最小,①a ≤−3时,原式=−a −3+2−a +4−a =3−3a ,则a =−3;②−3≤a ≤2时,原式=a +3+2−a +4−a =9−a ,则a =2;③2≤a ≤4时,原式=a +3+a −2+4−a =a +5,则a =2;③a >4时,原式=a +3+a −2+a −4=3a −3>9,综上所述,当a =2时,原式有最小值7.【点睛】本题考查了一元一次方程的应用,数轴,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.14.同学们都知道:()32--表示3与-2之差的绝对值,实际上也可理解为3与-2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示x 与2的两点之间的距离可以表示为___________.(2)如果25x ,则x =__________. (3)同理21x x ++-表示数轴上有理数x 所对应的点到-2和1所对应的点的距离之和,请你找出所有符合条件的整数x ,使得213x x ++-=,这样的整数是___________. (4)由以上探索猜想对于任意有理数x ,321x x x -+-+-是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【答案】(1)2x -;(2)7或-3;(3)-2、-1、0、1;(4)有最小值,最小值为2【解析】【分析】(1)根据距离公式即可解答;(2)利用绝对值求解即可;(3)利用绝对值及数轴求解即可;(4)根据数轴及绝对值,即可解答.【详解】(1)数轴上表示x 与2的两点之间的距离可以表示为2x -,故答案为:2x -; (2)∵25x , ∴25x -=或25x -=-,解得:7x =或3x =-,故答案为:7或-3;(3) ∵21x x ++-表示数轴上有理数x 所对应的点到-2和1所对应的点的距离之和, 如图,当x 对应的数在2-与1之间(包含-2与1)213,AB BC x x ∴+=++-= 满足213x x ++-=∴这样的整数有-2、-1、0、1,故答案为:-2、-1、0、1;(4)有最小值,最小值为2,理由如下:如图,1,2,3AB x BC x BD x =-=-=-, 当321x x x -+-+-最小时,即,B C 重合时,则2x =, 所以321x x x -+-+-的值有最小值,最小值为1012++=.【点睛】本题考查整式的加减、数轴、绝对值,解答本题的关键是明确整式加减的计算方法,会去绝对值符号,利用数轴的特点解答.15.我们知道:如果点A 、B 在数轴上分别表示有理数a 、b ,那么在数轴上A 、B 两点之间的距离AB =|a -b |.所以式子|x -3|的几何意义是数轴上表示有理数x 的点与表示有理数3的点之间的距离.利用这个结论,请结合数轴解答下列问题:(1)数轴上表示0和3的两点之间的距离是 ;数轴上表示-1和-4的两点之间的距离是 ;数轴上表示1和-4的两点之间的距离是 .(2)数轴上表示x 和-1的两点之间的距离可以表示为|x -(-1)|,即:|x +1|.如果|x +1|=2,那么x = .(3)如果数轴上表示数x 的点位于2与-3之间,那么|x -2|+|x +3|的值为 . (4)当x 取 时,1x -=|x +3|;当x 取 时,|x -2|+|x +2|=6.(5)当x 取 时,|x +3|+|x -1|+|x -5|的值最小,最小值是【答案】(1)3,3,5;(2)-3或1;(3)5;(4)-1,-3,3;(5)1, 8【解析】【分析】(1)根据数轴的概念和性质以及两点间的距离即可解答;(2)根据绝对值的性质和方程的思想进行解;(3)利用绝对值的性质进行化简,即可求出答案;(4)根据绝对值的意义,进行分类讨论,由此可得到关于x 的方程,求出x 的值即可; (5)根据绝对值的意义,当x 为中间点时有最小值,依此即可求解.【详解】解:(1)根据题意,数轴上表示0和3的两点之间的距离是:303-=;数轴上表示-1和-4的两点之间的距离是:1(4)3---=;数轴上表示1和-4的两点之间的距离是:1(4)5--=;故答案为:3,3,5;(2)∵12x +=,∴12x +=±,∴3x =-或1x =;故答案为:3-或1;(3)由题意,则∵如果数轴上表示数x 的点位于2与-3之间,∴32x -<<,∴20x -<,30x +>, ∴23(2)35x x x x -++=--++=故答案为:5;(4)根据题意, ∵13x x -=+,∴x 的值在1和3-之间,∴10x ->,30x +<,∴1(3)x x -=-+,解得:1x =-; ∵226x x -++=,当2x <-时,20x -<,20x +<,原方程可化为:(2)(2)6x x ---+=,解得:3x =-;当22x -≤≤时,224x x -++=,不符合题意;当2x >时,20x ->,20x +>,原方程可化为:226x x -++=,解得:3x =;故答案为:1-,3-,3;(5)根据绝对值的意义和数轴的定义,当1x =时,|x +3|+|x -1|+|x -5|的值有最小值;∴原式4048=++=;故答案为:1,8;【点睛】考查数轴表示数的意义,理解绝对值的意义和两点距离的计算方法是正确解答的关键. 16.我们知道,在数轴上,a 表示数a 到原点的距离.进一步地,点A ,B 在数轴上分别表示有理数a ,b ,那么A ,B 两点之间的距离就表示为a b -;反过来,a b -也就表示A ,B 两点之间的距离.下面,我们将利用这两种语言的互化,再辅助以图形语言解决问题. 例.若52x +=,那么x 为: ①52x +=,即|(5)|2x --=.文字语言:数轴上什么数到5-的距离等于2.②图形语言:③答案:x 为7-和3-.请你模仿上题的①②③,完成下列各题:(1)若|4||2|x x +=-,求x 的值.①文字语言:②图形语言:③答案:(2)32x x --=时,求x 的值:①文字语言:②图形语言:③答案:(3)134x x -+->,求x 的取值范围:①文字语言:②图形语言:③答案:(4)求|1||2||3||4||5|x x x x x -+-+-+-+-的最小值.①文字语言:②图形语言:③答案:【答案】(1)①文字语言:数轴上什么数到4-的距离等于它到2的距离②图形语言:画图见解析③答案:1x =-.(2)①文字语言:数轴上什么数到3的距离减去它到0的距离等于2.②图形语言:画图见解析. ③答案:12x = (3)①文字语言:数轴上什么数到1的距离加上它到3的距离大于4.②图形语言:画图见解析③答案:4x >或0x <.(4)①文字语言:数轴上什么数到1,2,3,4,5五个数的距离之和最小,最小值是多少. ②图形语言:画图见解析.③答案:当3x =时,最小值为6.【解析】【分析】(1)根据数轴上两点之间的距离公式求解即可;(2)根据数轴上两点之间的距离公式求解即可;(3)根据数轴上什么数到1距离加上它到3的距离大于4,观察数轴求解即可;(4)根据绝对值的几何意义,数轴上什么数到1,2,3,4,5五个数的距离之和最小,最小值是多少求解.【详解】(1)文字语言:数轴上什么数到4-的距离等于它到2的距离图形语言:答案:1x =-.(2)文字语言:数轴上什么数到3的距离减去它到0的距离等于2.图形语言:答案:12x = (3)文字语言:数轴上什么数到1的距离加上它到3的距离大于4.图形语言:答案:4x >或0x <.(4)文字语言:数轴上什么数到1,2,3,4,5五个数的距离之和最小,最小值是多少 图形语言:答案:当3x =时,最小值为210126++++=.【点睛】本题考查了绝对值的性质,解题的关键是利用数形结合求解.17.【问题提出】1232021a a a a -+-+-+⋅⋅⋅+-的最小值是多少?【阅读理解】 为了解决这个问题,我们先从最简单的情况入手.a 的几何意义是a 这个数在数轴上对应的点到原点的距离,那么1a -可以看作a 这个数在数轴上对应的点到1的距离;12-+-a a 就可以看作a 这个数在数轴上对应的点到1和2两个点的距离之和.下面我们结合数轴研究12-+-a a 的最小值.我们先看a 表示的点可能的3种情况,如图所示:。
七年级数学上册专题提分精练绝对值、相反数、倒数综合(解析版)

专题06 绝对值、相反数、倒数综合1.已知、互为相反数且,、互为倒数,的绝对值是最小的正整数,求()220102011a b a m cd b +-+-的值. (注:cd =c d ⨯) 解:∵、互为相反数且, ∴a b += ,ab= ; 又 ∵、互为倒数, ∴cd = ;又 ∵的绝对值是最小的正整数, ∴m = ,∴2m = ;∴原式= . 【答案】见解析 【解析】 【详解】试题分析:根据相反数、倒数的性质及绝对值是最小的正整数即可得到结果. ∵、互为相反数且, ∴a b +=0,ab=1-; 又 ∵、互为 ∴cd =1;又 ∵的绝对值是最小的正整数, ∴m =1±,∴2m =1;∴原式=1(1)011--+-=. 考点:相反数,倒数,绝对值点评:解题的关键熟练掌握互为相反数的两个数的和为0,互为倒数的两个数的积为1. 2.若a 与b 互为相反数,x 与y 互为倒数,|m |=2,则式子2a b m m x xy+-+的值为多少? 【答案】6或2 【解析】 【分析】利用a 与b 互为相反数,x 与y 互为倒数可得a +b =0,xy =1,因为 |m |=2,所以分情况讨论当m =2时,当m =﹣2时,分别计算即可. 【详解】解:∵a 与b 互为相反数,x 与y 互为倒数,|m |=2, ∴a +b =0,xy =1,m =±2, 当m =2时,原式=2﹣0+4=6, 当m =﹣2时,原式=﹣2﹣0+4=2,综上可得:式子2||+-+a b m m x xy的值为6或2. 【点睛】本题考查相反数,倒数,绝对值,解题的关键是掌握相反数的性质,倒数的性质以及绝对值的性质.3.已知:a与b互为相反数且a、b均不为零,c是最大的负整数,d是倒数等于本身的数,x是平方等于9的数,试求x+ab+2c﹣a bd+【答案】0或﹣6##-6或0【解析】【分析】根据a与b互为相反数且a、b均不为零,c是最大的负整数,d是倒数等于本身的数,x是平方等于9的数,可以得到a+b=0,ab=﹣1,c=﹣1,d=±1,x=±3,然后代入所求式子计算即可.【详解】解:由题意得,a+b=0,ab=﹣1,c=﹣1,d=±1,x=±3,当x=3时,x+ab+2c﹣a bd+=3+(﹣1)+2×(﹣1)﹣0 d=3+(﹣2)+(﹣1)+0=0;当x=﹣3时,x+ab+2c﹣a bd+=﹣3+(﹣1)+2×(﹣1)﹣0 d=﹣3+(﹣1)+(﹣2)+0=﹣6;由上可得,x+ab+2c﹣a bd+的值是0或﹣6.【点睛】本题考查了相反数、倒数、乘方的意义,以及有理数的混合运算,解答本题的关键是求出a+b=0,ab=﹣1,c=﹣1,d=±1,x=±3.4.已知a,b互为相反数,c,d互为倒数,m的绝对值为4,,求式子a bm cdm+++的值.【答案】5或3-【解析】根据绝对值的意义,相反数的定义和倒数的定义可得0a b +=,1cd =,4m =±,然后分情况代入所求的式子计算即可 【详解】解:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4, 0a b ∴+=,1cd =,4m =±,当4m =时,04141054a b m cd m +++=++=++=; 当4m =-时,0-41-4103-4a b m cd m +++=++=++=-; 因此,a bm cd m+++的值是5或3-. 【点睛】本题考查了绝对值的意义,相反数的定义和倒数的定义以及代数式求值,掌握上述知识是解题的关键.5.已知a 与b 互为相反数,c 与d 互为倒数且x 的绝对值是5,求x -4cd +2a +2b 的值. 【答案】1或-9 【解析】 【分析】由题意易得a +b =0,cd =1,x =±5,进而代入求解即可. 【详解】解:∵a 与b 互为相反数,c 与d 互为倒数且x 的绝对值是5, ∴a +b =0,cd =1,x =±5,∴当x =5时,4225401x cd a b -++=-+=; 当x =-5时,则有4225409x cd a b -++=--+=-. 【点睛】本题主要考查代数式的值、相反数的意义及倒数,熟练掌握代数式的值、相反数及倒数是解题的关键.6.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,求式子243a b m cd m ++-的值.【答案】5或-11 【解析】 【分析】由a ,b 互为相反数,c ,d 互为倒数,可以知道0a b +=,1cd =;m 的绝对值为2可知2m =±,分别代入计算即可得到答案.解:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2 0a b ∴+=,1cd =,2m =±∴当2m =时,原式042315=⨯-⨯=+当2m =-时,原式()0423111=⨯--⨯=-+ 【点睛】本题考查互为相反数的两数的性质、互为倒数的两数的性质、以及绝对值的定义,牢记相关知识点并准确计算是解题关键.7.已知a ,b 互为相反数,c ,d 互为倒数,|x |=2,|y |=1,且x <y ,求(a +b )x 2+cd (x +y )的值. 【答案】-1和-3 【解析】 【分析】根据a ,b 互为相反数,c ,d 互为倒数,得a +b =0,cd =1,|x |=2,|y |=1,且x <y ,得x =-2,y =1或y =-1,代入计算即可. 【详解】∵a ,b 互为相反数,c ,d 互为倒数, ∴a +b =0,cd =1,∵|x |=2,|y |=1,且x <y , ∴x =-2,y =1或y =-1, 当x =-2,y =1时, (a +b )x 2+cd (x +y ) =0+(-2+1) =0+(-1) =-1当x =-2,y =-1时, (a +b )x 2+cd (x +y ) =0+(-2-1) =-3 【点睛】此题考查的知识点是代数式的化简求值,解答此题的关键是由已知a ,b 互为相反数,c ,d 互为倒数,得a +b =0,cd =1,|x |=2,|y |=1,且x <y ,得x =-2,y =1或y =-1.8.已知:a 、b 互为倒数,c 、d 互为相反数,|m |=5,n 是绝对值最小的数,求代数式5ab ﹣2021(c +d )+n +m 2的值.【解析】 【分析】根据倒数、相反数和绝对值的意义得到,1ab =,0c d +=,5m =±,0n =,则225m =,再代入252021()ab c d n m -+++计算即可得到答案. 【详解】由题可得:1ab =,0c d +=,5m =±,0n =, 225m ∴=,∴原式5120210025=⨯-⨯++,=30. 【点睛】本题考查绝对值、相反数、倒数和有理数的混合运算,解题的关键是掌握求绝对值、相反数、倒数和有理数的混合运算.9.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值为3,求a +b +x 2-cdx 的值. 【答案】6或12 【解析】 【分析】根据a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是3,可以得到a +b =0,cd =1,x =±3,然后利用分类讨论的方法即可求得所求式子的值. 【详解】解:∵a 、b 互为相反数,c 、d x 的绝对值是3, ∴a +b =0,cd =1,x =±3, 当x =3时,a +b +x 2-cdx =0+9-1×3=6; 当x =-3时,a +b +x 2-cdx =0+9-1×(-3)=12, ∴a +b +x 2-cdx 的值为6或12. 【点睛】本题考查有理数的混合运算,绝对值的意义,相反数和倒数的定义,解答本题的关键是求出a +b =0,cd =1,x =±3.10.若a ,b 互为相反数,c ,d 互为倒数,e 的绝对值为2.求3||a be cd e++-的值. 【答案】5 【解析】 【分析】根据互为相反数的两个数的和等于0可得a +b =0,互为倒数的两个数的乘积是1可得cd=1,根据绝对值的性质求出|e |,然后代入代数式进行计算即可得解. 【详解】解:若a ,b 互为相反数c ,d 互为倒数,e 的绝对值为2, ∴0,1,||2,a b cd e +===3||0321615a be cd e++-=+⨯-=-=. 【点睛】本题考查了代数式求值,主要利用了相反数的定义,绝对值的性质,倒数的定义,熟记概念与性质是解题的关键.11. 若a 、b 互为相反数,c 、d 互为倒数,n 的绝对值为2,求代数式2a bcd n m+-++的值. 【答案】3或-5 【解析】 【分析】利用相反数,倒数,绝对值的代数意义得到0a b +=,1cd =,n=2或-2,再整体代入原式计算即可得到结果. 【详解】根据题意得:0a b +=,1cd =,n=2或-2, 当2n =时,原式=1043-++=; 当n=-2时,原式=1045-+-=-. 【点睛】本题主要考查了求代数式的值以及,相反数,倒数,绝对值,熟练掌握运算法则是解本题的关键.12.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是5,求:22020()2021a b m cd +-+的值.【答案】26. 【解析】 【分析】由相反数,倒数,绝对值的含义求解,,a b cd m +的值,再整体代入即可得到答案. 【详解】解: a 、b 互为相反数, ∴ 0a b +=,c 、d 互为倒数,∴ 1cd =,m 的绝对值是5,∴ 5m =±,225,m =22020()202002512620212021a b m cd +⨯∴-+=-+=.【点睛】本题考查的是相反数,倒数,绝对值的含义,代数式的求值,掌握以上知识及整体代入求代数式的值是解题的关键.13.若m 、n 互为相反数,p 、q 互为倒数,且a =6,求2020()120212m n pq a +++的值.【答案】4或2- 【解析】 【分析】先根据相反数的定义,倒数的定义,绝对值的含义,求解,,m n pq a +的值,再整体代入即可得到答案. 【详解】解:,m n 互为相反数,0,m n ∴+=,p q 互为倒数,1,pq ∴=6,a = 6,a ∴=±当6a =时, 原式202001=16134,20212⨯++⨯=+= 当6a =-时, 原式()()202001=+1+6132,20212⨯⨯-=+-=- 综上:代数式的值为4或 2.- 【点睛】本题考查的是相反数的定义,倒数的定义,绝对值的含义,有理数的加减运算,掌握以上知识是解题的关键.14.已知a b 、互为倒数,、c d 互为相反数,n 的绝对值是2,m 是最大的负整数,求代数式2225242m c d mn ab +-++-的值.【答案】15-或11- 【解析】 【分析】根据倒数,相反数的定义,最大的负整数为-1,绝对值的意义,得ab =1,c +d =0,m =-1,n =±2,分别讨论n 的值进而代入求值即可得到答案. 【详解】解:∵a 、b 互为倒数,c 、d 互为相反数,n 的绝对值是2,m 是最大的负整数, ∴1,0,2,1ab c d n m =+===-, ∴2n,当2n =时,原式125(2)1522⎛⎫=-+-+-=- ⎪⎝⎭当2n =-时,原式12521122⎛⎫=-+-+=- ⎪⎝⎭∴代数式的值是15-或11-. 故答案为:-15或-11. 【点睛】本题主要考查代数式求值,掌握倒数,相反数的定义,最大的负整数为-1,绝对值的意义,正确理解倒数,相反数的定义,绝对值的意义,以及分类讨论思想是解题的关键.15.若a 、b 互为相反数,且ab≠0,c 、d 互为倒数,2x =,求()20202020202023-+⎛⎫⎛⎫++- ⎪⎪⎝⎭⎝⎭a b a cd x b 的值. 【答案】-2 【解析】 【分析】根据a 、b 互为相反数,且0ab ≠,c 、d 互为倒数,||2x =,可以得到0a b +=,1cd =,24x =,1ab=-,然后代入所求的式子,即可求得所求式子的值. 【详解】解:a 、b 互为相反数,且0ab ≠,c 、d 互为倒数,||2x =, 0a b ∴+=,1cd =,24x =,1ab=-, ∴2020202020202()()(3)a b acd x b++-+- 2019202020200()(1)(1)43=+-+-- 0114=++-2=-.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 16.已知a 与b 互为相反数,c 与d 互为倒数,m 的绝对值为2,求2||a b cd m m +-+的值. 【答案】当2m =时,原式1=,当2m =-时,原式3=- 【解析】 【分析】利用相反数,倒数,以及绝对值的代数意义求出a+b ,cd 以及m 的值,代入原式计算即可得到结果. 【详解】由题意得0a b +=,1cd =,2m =±; 当2m =时,2||0121a b cd m m +-+=-+=, 当2m =-时,2||0123a b cd m m +-+=--=-. 【点睛】本题考查了代数式求值,利用相反数,倒数,以及绝对值的代数意义求出a+b ,cd 以及m 的值是解本题的关键.17.已知a 、b 互为倒数,c 、d 互为相反数,m 为最大的负整数,n 的绝对值为2,试求3325242m c d mn ab +-++-的值. 【答案】-15或-11 【解析】 【分析】根据倒数,相反数的定义,最大的负整数为-1,绝对值的意义,得ab =1,c +d =0,m =-1,n =±2,进而代入求值即可得到答案.【详解】由题意得:ab =1,c +d =0,m =-1,n =±2,①当n =2时,原式=1-25-(-1)2-13-2-1522++⨯==, ②当n =-2时,原式=1-25-(-1)(-2)-132-1122++⨯=+=,∴3325242m c d mn ab +-++-=-15或-11. 【点睛】本题主要考查代数式求值,掌握倒数,相反数的定义,最大的负整数为-1,绝对值的意义,是解题的关键.18.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,求m 2﹣cd+||a bm +的值. 【答案】3 【解析】 【分析】根据相反数性质、倒数定义和绝对值的性质得出a+b=0、cd=1,m=2或m=-2,代入计算可得. 【详解】根据题意知a+b=0、cd=1,m=2或m=-2, 原式=0412-+ =4-1 =3 【点睛】本题主要考查有理数的混合运算,熟练掌握相反数性质、倒数定义和绝对值的性质及有理数的混合运算的顺序和法则是解题的关键19.如图,是一个“有理数转换器”(箭头是数进入转换器的路径,方框是对进入的数进行转换的转化器)(1)求当小明输入3-、95两个数时输出的结果;(2)当输出的结果为0时,求输入的数值(写两个即可);(3)在正数、0、负数中,试探究这个“有理数转化器”不可能输出的数.【答案】(1)当小明输入3-时,输出的结果为13;当小明输入95时,输出的结果为95;(2)输入的数值是0或5;(注:答案不唯一)(3)在正数、0、负数中,这个“有理数转化器”不可能输出的数是负数. 【解析】【分析】(1)根据有理数的大小比较法则、相反数、绝对值运算计算“有理数转换器”即可得; (2)根据输出结果为0,可推出这个数进入“相反数”和“绝对值”方框时是0,从而可推出进入“数大于2”方框时是0,由此即可得;(3)根据进入“相反数”方框后,有两个选择,即倒数和绝对值,再根据倒数和绝对值的运算即可得出答案.【详解】(1)32-<,进入“相反数”方框,结果为3,再进入“倒数”方框,结果为13,输出 925<,进入“相反数”方框,结果为95-,再进入“绝对值”方框,结果为95,输出 故当小明输入3-时,输出的结果为13;当小明输入95时,输出的结果为95; (2)当输入的数值是0时,02<,进入“相反数”方框,结果为0,再进入“绝对值”方框,结果为0,输出,符合要求当输入的数值是5时,52>,进入“加上5-”方框,结果为0,02<,进入“相反数”方框,结果为0,再进入“绝对值”方框,结果为0,输出,符合要求答:输入的数值是0或5;(注:答案不唯一)(3)由“有理数转换器”可知,进入“相反数”方框后,有两个选择:①当其为正数时,进入“倒数”方框,输出的结果仍是正数;②当其为非正数(即负数和0)时,进入“绝对值”方框,输出的结果是非负数(即正数和0)因此,在正数、0、负数中,这个有理数转化器”不可能输出的数是负数.【点睛】本题考查了新型程序图的有理数运算,读懂程序图,掌握相反数、倒数、绝对值运算是解题关键.20.如图是一个“有理数转换器”(箭头是表示输入的数进入转换器路径,方框是对进入的数进行转换的转换器).(1)你认为这个“有理数转换器”不可能输出 数.(2)当小羽输入6时,输出的结果是 ;当小羽输入﹣78时,输出的结果是 ;当小羽输入-2021时,输出的结果是 .(3)你认为当输入时,其输出结果是0.(4)有一次,小羽在操作的时候,输入有理数n,输出的结果是2,且知道|n|≤21,你判断一下,小羽可能输入的是什么数?请把它们都写出来,并说明理由.【答案】(1)负;(2)1;87;12021;(3)0或7n(n为正整数);(4)132或-12或2或412.【解析】【分析】(1)逆向观察转换器,从输出结果倒推求解;(2)将三个数分别代入转化器中进行计算;(3)结合绝对值和倒数的意义,从转化器倒推分析求解;(4)设输入的数为n,分4<n<7,0<n≤4,-21≤n<0,7<n≤21四种情况分析讨论,然后结合转换器中的运算程序计算求解.【详解】解:(1)观察转化器可得:当取到相反数环节后,为正数时取倒数输出,非正数时取绝对值输出,∴输出的结果一定是非负数,即这个“有理数转换器”不可能输出负数,故答案为:负;(2)当输入6时,6>4,∴6+(-7)=-1,-1<4,-1的相反数为1,1>0,∴输出1的倒数为1;当输入﹣78时,﹣78<4,∴﹣78的相反数为78,78>0,∴输出78的倒数为87;当输入-2021时,-2021<4,∴-2021的相反数为2021,2021>0,∴输出2021的倒数1 2021;故答案为:1;87;12021;(3)∵0没有倒数,0的相反数是0,0的绝对值是0,∴当输入的数小于等于4时,输入0时,输出的结果为0,当输入的数大于4时,输入7的倍数时,输出结果为0,综上,当输入0或7n(n为正整数)时,输出结果为0;(4)①当4<n<7时,n-7<0,则n-7的相反数为7-n,且7-n>0,由于输出结果为2,∴7-n=12,即n=132;②当-21≤n<0时,其相反数为-n,且-n>0,由于输出结果为2,∴-n=12,即n=-12;③当0<n≤4时,其相反数为-n,且-n<0,∴-n的绝对值为n,由于输出的结果为2,∴此时n=2;④当7<n≤21时,n-7×3=n-21,且n-21<0,n-21的相反数为21-n,且20-n>0,∵输出结果为2,∴21-n=12,即n=412,综上,小强可能输入的是132或-12或2或412.【点睛】本题考查的是倒数、绝对值及相反数的概念,解答此题的关键是弄清图表中所给的程序,在解(4)时要注意分类讨论.。
七年级数学上册绝对值专题复习

1、绝对值不大于4的整数有____4_,__3_,___2_,__1_,_0_.
2、判断:| 5 |=|-5| ( √ )
|a|=_a____,
|b|=__-_b___,
a+b
-(b-a)
|a+b|=______, |b-a|=______,
b0
a
例5、若x -1 (y 2)2 0,求- x2 3y的值
若 a 2 (b 2)2 0,求ba - ab的值 3
例6、 某检修小组乘一辆检修车沿铁路 检修,规定向东走为正,向西走为负, 小组的出发地记为0,某天检修完毕时, 行走记录(单位:千米)如下:
-| 5 | =|-5| ( × )
相等或互为相反数
3、 | a |=| b |,则a与5b的关系为___________
4、| a |=5,则a=________-_1
| a+1 | = 0 ,则 a=0_______
5、非绝对负值数最小的数是____,绝对值等于它本身非的正数数
是_比___较__大__,小绝对- 值4 等__于<_它_的- -相3反数的数是________
非负性 | a |≥0
绝对值专题复习
1单、一位数原、长轴点定度上的义,距表:|离示一-2叫-般|做2地=的数,_点_a2数_的到_轴_绝原上对点表值的示,距记数离作a是的:2 _点|_a2_与| _个 2、数轴上表示2的点2到原点的距离是____个单 位长二度、,互|为2相|反= 数__的__两_ 个数的绝对值相2 等 3、3在和数-3轴上到原即点|距a离|为=3|的-点a±|是3 有___个,是
七年级上册数学绝对值专项训练

人教版七年级上册数学绝对值专项训练一、绝对值的概念1. 定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|。
2. 性质:-绝对值具有非负性,即|a|≥0。
-互为相反数的两个数的绝对值相等,即若a 与b 互为相反数,则|a| = |b|。
二、典型例题1. 求一个数的绝对值-例1:求|-5|的值。
解:|-5| = 5。
-例2:求|0|的值。
解:|0| = 0。
-例3:求|3.5|的值。
解:|3.5| = 3.5。
2. 已知一个数的绝对值求这个数-例4:已知|a| = 4,求a 的值。
解:因为|a| = 4,所以 a = 4 或 a = -4。
-例5:已知|b| = -2,求b 的值。
解:因为绝对值具有非负性,所以不存在一个数的绝对值为负数,此题无解。
3. 绝对值的化简-例6:化简|2 - 5|。
解:|2 - 5| = |-3| = 3。
-例7:化简|x - 3|(x<3)。
解:因为x<3,所以x - 3<0,那么|x - 3| = 3 - x。
4. 绝对值的运算-例8:计算|3| + |-2|。
解:|3| + |-2| = 3 + 2 = 5。
-例9:计算|5 - 3| - |2 - 4|。
解:|5 - 3| - |2 - 4| = |2| - |-2| = 2 - 2 = 0。
三、专项练习1. 填空题- |-8| = ____。
-若|x| = 6,则x = ____。
-绝对值等于3 的数是____。
- |0 - 5| = ____。
2. 选择题-下列说法正确的是()。
A. 绝对值等于它本身的数只有0B. 绝对值等于它本身的数是正数C. 绝对值等于它本身的数是非负数D. 绝对值等于它本身的数是负数-若|a| = -a,则a 一定是()。
A. 正数B. 负数C. 非正数D. 非负数3. 解答题-已知|a - 2| + |b + 3| = 0,求a、b 的值。
-化简|x - 1| + |x - 3|(1<x<3)。
七年级数学--绝对值化简专题训练

七年级数学--绝对值化简专题训练
1.如图,数轴上的三点A、B、C分别表示有理数a、b、c。
则:
1)b-a < a-c < b+c
2)|b-a| - |a-c| + |b+c|
2.如图,数轴上的a、b、c分别表示有理数a、b、c。
1)①c或-c,②a或-a,③|a-b|
2)|b-a| + |a-b-c| - |a-c|
3.数a,b,c在数轴上的位置如图所示:
化简:|b-a| - |c-b| + |a+b|
4.已知:有理数a、b、c在数轴上如图所示。
化简:|a| +
3|c-a| + |b+c|
5.已知a、b、c这三个有理数在数轴上的位置如图所示。
化简:|b-c| - |a-b| + |a+c|
6.有理数在数轴上的位置如图所示,化简:|c-a| + |b-c| - |a-
b| + |a+b|
7.有理数a,b,c在数轴上如图所示,试化简|2c-b| + |a+b| - |2a-c|
8.已知有理数a、b、c在数轴上的位置如图所示。
化简:|a-b| - |a+c| - |c-a| + |a+b+c| + |b-c|
9.已知a,b,c在数轴上的位置如图所示,所对应的点分别为A,B,C。
1)填空:A、B之间的距离为|a-b|,B、C之间的距离为|b-c|,A、C之间的距离为|a-c|;
2)化简:|a+b| - |c-b| + |b-a|。
初一奥数竞赛绝对值

初一奥数竞赛第2讲绝对值例1 a,b为实数,以下各式对吗?假设不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)假设|a|=b,那么a=b;(5)假设|a|<|b|,那么a<b;(6)若a>b,那么|a|>|b|.例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.例3已知x<-3,化简:|3+|2-|1+x|||.例5假设|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.例8 化简:|3x+1|+|2x-1|.例9已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.例10设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.例11若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该知足的条件及此常数的值.练习二1.x是什么实数时,以劣等式成立:(1)|(x-2)+(x-4)|=|x-2|+|x-4|; ( 2)|(7x+6)(3x-5)|=(7x+6)(3x-5).2.化简以下各式: (2)|x+5|+|x-7|+|x+10|.3.假设a+b<0,化简|a+b-1|-|3-a-b|.4.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.5.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,关于知足p≤x≤15的x来讲,求T的最小值6.已知a<b,求|x-a|+|x-b|的最小值.7.不相等的有理数a,b,c在数轴上的对应点别离为A,B,C,若是|a-b|+|b-c|=|a-c|,那么B点应为( ).(1)在A,C点的右边;(2)在A,C点的左侧;(3)在A,C点之间;(4)以上三种情形都有可能答案解析:例1解 (1)不对.当a,b同号或其中一个为0时成立.( 2)对.(3)对.(4)不对.当a≥0时成立.(5)不对.当b>0时成立.6)不对.当a+b>0时成立.例2解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.依照有理数加减运算的符号法那么,有b-a<0,a+c<0,c-b<0.再依照绝对值的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.例3分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解原式=|3+|2+(1+x)||(因为1+x<0)=|3+|3+x||=|3-(3+x)|(因为3+x<0)=|-x|=-x例4解因为 abc≠0,因此a≠0,b≠0,c≠0.(1)当a,b,c均大于零时,原式=3;(2)当a,b,c均小于零时,原式=-3;(3)当a,b,c中有两个大于零,一个小于零时,原式=1;(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.说明本例的解法是采取把a,b,c中大于零与小于零的个数分情形加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很经常使用.例5解因为|x-y|≥0,因此y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.因此x+y的值为-1或-5.例6解 a,b,c均为整数,那么a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,因此只能是|a-b|19=0且|c-a|99=1,①或|a-b|19=1且|c-a|99=0.②由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b±1,于是|b-c|=|a-b|=1.不管①或②都有|b-c|=1且|a-b|+|c-a|=1,因此|c-a|+|a-b|+|b-c|=2.例7解依相反数的意义有|x-y+3|=-|x+y-1999|.因为任何一个实数的绝对值是非负数,因此必有|x-y+3|=0且|x+y-1999|=0.即由①有x-y=-3,由②有x+y=1999.②-①得 2y=2002, y=1001,因此例8分析此题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.假设别离去掉每一个绝对值符号,那么是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.那个地址咱们为三个部份(如图1-2所示),即如此咱们就能够够分类讨论化简了.原式=-(3x+1)-(2x-1)=5x;原式=(3x+1)-(2x-1)=x+2;原式=(3x+1)+(2x-1)=5x.即说明解这种题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,如此就将数轴分成几个部份,依照变数字母的这些取值范围分类讨论化简,这种方式又称为“零点分段法”.例9分析第一用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,选出最大者.解有三个分界点:-3,1,-1.(1)当x≤-3时, y=-(2x+6)-(x-1)+4(x+1)=x-1,由于x≤-3,因此y=x-1≤-4,y的最大值是-4.(2)当-3≤x≤-1时, y=(2x+6)-(x-1)+4(x+1)=5x+11,由于-3≤x≤-1,因此-4≤5x+11≤6,y的最大值是6.(3)当-1≤x≤1时, y=(2x+6)-(x-1)-4(x+1)=-3x+3,由于-1≤x≤1,因此0≤-3x+3≤6,y的最大值是6.(4)当x≥1时, y =(2x+6)+(x-1)-4(x+1)=-x+1,由于x≥1,因此1-x≤0,y的最大值是0.综上可知,当x=-1时,y取得最大值为6.例10分析此题也可用“零点分段法”讨论计算,但比较麻烦.假设能利用|x-a|,|x-b|,|x-c|,|x-d|的几何意义来解题,将显得加倍简捷便利.解设a,b,c,d,x在数轴上的对应点别离为A,B,C,D,X,那么|x-a|表示线段AX之长,同理,|x-b|,|x-c|,|x-d|别离表示线段BX,CX,DX之长.现要求|x-a|,|x-b|,|x-c|,|x-d|之和的值最小,确实是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.因为a<b<c<d,因此A,B,C,D的排列应如图1-3所示:因此当X在B,C之间时,距离和最小,那个最小值为AD+BC,即(d-a)+(c-b).例11分析与解要使原式对任何数x恒为常数,那么去掉绝对值符号,化简归并时,必需使含x的项相加为零,即x的系数之和为零.故此题只有2x-5x+3x=0一种情形.因此必需有|4-5x|=4-5x且|1-3x|=3x-1.故x应知足的条件是现在原式=2x+(4-5x)-(1-3x)+4=7.。
专题三:绝对值(基础专题);人教版七年级上学期培优专题讲练(含答案)
专题三:绝对值(基础专题)一.选择题1.若a=﹣5,|a|=|b|,则b的值等于()2.下列判断正确的是()A.若|a|=|b|,则a=b B.若|a|=|b|,则a=﹣bC.若a=b,则|a|=|b|D.若a=﹣b,则|a|=﹣|b|3.有下列结论:①|a|一定是正数;②只有两个数相等时,它们的绝对值才相等;③绝对值最小的数是0;④在数轴上表示﹣a的点一定在原点的左边;⑤有理数分为正有理数和负有理数;其中正确的结论的个数为()A.1个B.2个C.3个D.4个4.如图,四个有理数在数轴上的对应点分别为点M,P,N,Q,若点P,Q表示的有理数互为相反数,则图中表示绝对值最大的有理数的点是()A.点M B.点P C.点N D.点Q二.填空题5.若a>0,b<0,化简a+3b﹣|a|+|2b|得.6.绝对值不大于3的整数是______________.绝对值小于2015的所有整数之积为_____.7.数轴上到原点的距离小于3的整数的个数为x,不大于3的正整数的个数为y,绝对值等于3的整数的个数为z,则x+y+z=_____.三.解答题8.已知|x﹣4|+|y+2|=0,求x与y的值.9.已知|x﹣4|+|5﹣y|=0,求12(x+y)的值.10.若|a|=4,|b|=2,且a,b异号,求a与b的值.11.有理数a,b,c在数轴上的对应点如图所示.(1)在横线上填入“>”或“<”:a______0;b______0;c______0;|c|______|a|.(2)试在数轴上找出表示﹣a,﹣b,﹣c的点;(3)试用“<”将a,﹣a,b,﹣b,c,﹣c,0连接起来.12.已知数a ,b 表示的点在数轴上的位置如图所示.(1)在数轴上表示出a ,b 的相反数的位置,并将这四个数从小到大排列;(2)若数b 与其相反数相距16个单位长度,则b 表示的数是多少?(3)在(2)的条件下,若数a 与数b 的相反数表示的点相距4个单位长度,则a 表示的数是多少?【参考答案】1。
七年级数学竞赛 第02讲 绝对值
七年级数学竞赛第二讲绝对值绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题.下面我们先复习一下有关绝对值的基本知识,然后进行例题分析.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数.例1 a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)若|a|=b,则a=b;(5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.解 (1)不对.当a,b同号或其中一个为0时成立.(2)对.(3)对.(4)不对.当a≥0时成立.(5)不对.当b>0时成立.(6)不对.当a+b>0时成立.例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a<0,a+c<0,c-b<0.再根据绝对值的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.例3已知x<-3,化简:|3+|2-|1+x|||.分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解原式=|3+|2+(1+x)||(因为1+x<0)=|3+|3+x||=|3-(3+x)|(因为3+x<0)=|-x|=-x.解因为 abc≠0,所以a≠0,b≠0,c≠0.(1)当a,b,c均大于零时,原式=3;(2)当a,b,c均小于零时,原式=-3;(3)当a,b,c中有两个大于零,一个小于零时,原式=1;(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.解因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.所以x+y的值为-1或-5.例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.解 a,b,c均为整数,则a-b,c-a也应为整数,且|a-b|19,|c-a|1,所以只能是99为两个非负整数,和为|a-b|19=0且|c-a|99=1,①或|a-b|19=1且|c-a|99=0.②由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b ±1,于是|b-c|=|a-b|=1.无论①或②都有|b-c|=1且|a-b|+|c-a|=1,所以|c-a|+|a-b|+|b-c|=2.解依相反数的意义有|x-y+3|=-|x+y-1999|.因为任何一个实数的绝对值是非负数,所以必有|x-y+3|=0且|x+y-1999|=0.即由①有x-y=-3,由②有x+y=1999.②-①得2y=2002, y=1001,所以例8化简:|3x+1|+|2x-1|.分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们为三个部分(如图1-2所示),即这样我们就可以分类讨论化简了.原式=-(3x+1)-(2x-1)=5x;原式=(3x+1)-(2x-1)=x+2;原式=(3x+1)+(2x-1)=5x.即说明解这类题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数轴分成几个部分,根据变数字母的这些取值范围分类讨论化简,这种方法又称为“零点分段法”.例9已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.分析首先使用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,从中选出最大者.解有三个分界点:-3,1,-1.(1)当x≤-3时,y=-(2x+6)-(x-1)+4(x+1)=x-1,由于x≤-3,所以y=x-1≤-4,y的最大值是-4.(2)当-3≤x≤-1时,y=(2x+6)-(x-1)+4(x+1)=5x+11,由于-3≤x≤-1,所以-4≤5x+11≤6,y的最大值是6.(3)当-1≤x≤1时,y=(2x+6)-(x-1)-4(x+1)=-3x+3,由于-1≤x≤1,所以0≤-3x+3≤6,y的最大值是6.(4)当x≥1时,y=(2x+6)+(x-1)-4(x+1)=-x+1,由于x≥1,所以1-x≤0,y的最大值是0.综上可知,当x=-1时,y取得最大值为6.例10设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.分析本题也可用“零点分段法”讨论计算,但比较麻烦.若能利用|x-a|,|x-b|,|x-c|,|x-d|的几何意义来解题,将显得更加简捷便利.解设a,b,c,d,x在数轴上的对应点分别为A,B,C,D,X,则|x-a|表示线段AX之长,同理,|x-b|,|x-c|,|x-d|分别表示线段BX,CX,DX之长.现要求|x-a|,|x-b|,|x-c|,|x-d|之和的值最小,就是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.因为a<b<c<d,所以A,B,C,D的排列应如图1-3所示:所以当X在B,C之间时,距离和最小,这个最小值为AD+BC,即(d-a)+(c-b).例11若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.分析与解要使原式对任何数x恒为常数,则去掉绝对值符号,化简合并时,必须使含x的项相加为零,即x的系数之和为零.故本题只有2x-5x+3x=0一种情况.因此必须有|4-5x|=4-5x且|1-3x|=3x-1.故x应满足的条件是此时原式=2x+(4-5x)-(1-3x)+4=7.练习二1.x是什么实数时,下列等式成立:(1)|(x-2)+(x-4)|=|x-2|+|x-4|;(2)|(7x+6)(3x-5)|=(7x+6)(3x-5).2.化简下列各式:(2)|x+5|+|x-7|+|x+10|.3.若a+b<0,化简|a+b-1|-|3-a-b|.4.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.5.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,对于满足p ≤x≤15的x来说,T的最小值是多少?6.已知a<b,求|x-a|+|x-b|的最小值.7.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B点应为( ).(1)在A,C点的右边;(2)在A,C点的左边;(3)在A,C点之间;(4)以上三种情况都有可能.。
专题01绝对值中的四类最值模型(原卷版)七年级数学上册常见几何模型全归纳之模型解读与提分精练
专题01绝对值中的四类最值模型最值问题一直都是初中数学中的最难点,但也是高分的必须突破点,而绝对值中的最值模型是初中学生第一次接触最值类问题,该类最值模型解题的主要依据是绝对值的几何意义或代数意义。
本专题就绝对值中的四种最值模型进行梳理及对应试题分析,方便大家掌握。
绝对值的性质:①正数的绝对值是它本身,即a a =;②0的绝对值是0,即00=;③负数的绝对值是它的相反数,即a a -=;④绝对值具有非负性,即0≥a 。
模型1.b x a x -+-的最小值模型【模型解读】式子b x a x -+-在b x a ≤≤时,取得最小值为b a -。
【最值原理】b x a x -+-目的是在数轴上找一点x ,使x 到a 和b 的距离和的最小值:分类情况(x 的取值范围)图示b x a x -+-取值情况当a x <时无法确定当b x a ≤≤时b x a x -+-的值为定值,即为b a -当b x >无法确定另解:也可用绝对值的代数意义(即分类讨论思想)完成绝对值的最值问题。
例1.(2022秋·山东临沂·七年级统考期中)数轴上表示数5-的点与原点的距离可记作|50||5|5--=-=;表示数5-的点与表示数2-的点的距离可记作|5(2)||3|3---=-=.也就是说,在数轴上,如果A 点表示的数记为a B ,点表示的数记为b .则A B ,两点间的距离就可记作||-a b .回答下列问题:(1)数轴上表示3-和2的两点之间的距离是____,数轴上表示2-和3的两点之间的距离是____;(2)数轴上表示x 与2-的两点A 和B 之间的距离为5,那么x 为_________;(3)①找出所有使得|1||2|3x x ++-=的整数x ;②求|3||1|x x ++-的最小值.①如图2,点A、B都在原点的右边:∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;②如图3,点A、B都在原点的左边:∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a③如图4,点A、B在原点的两边:∣AB∣=∣OA∣+∣OB∣=∣a∣+∣b∣=a+(-b)=∣a-b(2)数轴上表示x 和-1的两点A 和B 之间的距离是________,如果∣AB ∣=2,那么x 为__________.(3)当代数式∣x +1∣+∣x -2∣取最小值时,相应的x 的取值范围是__________.变式2.(2022•思明区校级期末)同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=.(2)找出所有符合条件的整数x ,使得|x +5|+|x ﹣2|=7成立的整数是.(3)由以上探索猜想,对于任何有理数x ,|x ﹣3|+|x ﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.模型2.b x a x ---的最小值和最大值模型【模型解读】式子b x a x ---在a x ≤时,取得最小值为b a --;在b x ≥时,取得最大值b a -。
七年级上册数学绝对值必考八大经典题型pdf
七年级上册数学绝对值必考八大经典题型题型一:定义考查例1:|-2|的相反数是分析:负数的绝对值等于它的相反数。
答案:-2例2:绝对值大于等于1,小于4的所有正整数和为分析:符合题意的正整数有1、2、3。
答案:6例3:已知|x|=5,则x=,已知|-x|=3,则x=分析:绝对值等于5的数有±5,同理-x=±3,则x=±3。
答案:±5;±3例4:已知|x-2|=3,则x=;已知|2-x|=1,则x=分析:|x-2|=3表示x与2的距离是3,故x=-1或5。
|2-x|=1表示x与2的距离是1,故x=1或3。
答案:-1或5;1或3题型二:非负性例1:已知|a+3|+|b-1|=0,则a+b的值是分析:多个非负数的和为0,则每一个都是0,故a=-3,b=1。
答案:-2例2:已知|a-1|+|b-2|+2|c-3|=0,则a+b+c的值是分析:多个非负数的和为0,则每一个都是0,故a=1,b=2,C=3。
答案:6例3:已知|x|=x,则x0;已知|x|=-x,则x0分析:绝对值具有非负性,所以等式右边一定≥0。
答案:≥;≤例4:已知|x-2|=x-2,则x2;已知|x-2|=2-x,则x2分析:绝对值具有非负性,所以等式右边一定≥0。
答案:≥;≤题型三:去绝对值例1:|3-π|+|π-4|=分析:去绝对值,必须先判断绝对值内的正负,3-π和π-4均为负数,绝对值应取相反数,故原式=π-3+4-π=1答案:1例2:已知|≤x≤5,则||-x|+|x-5|=分析:因为|≤x≤5,所以1-x≤0,x-5≤0,故原式=x-1+5-x=4。
答案:4例3:如图所示,则|a-b|-|2c+b|+|a+c|=分析:由图可知:C,1a-b>0,2c+b<0,a+c<0,故原式=a-b-(-2c-b)+(-a-c)=C答案:C题型四:分类讨论例1:若|a|=5,|b|=7,且|a+b|=a+b,则a-b=分析:a=±5,b=±7,且a+b≥0(非负性);故a=5、b=7,或a=-5,b=7答案:-2或-12例2:若|a|=1,|b|=2,|c|=3,且a>b>c。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学培优专题讲解
绝对值培优
一、 绝对值的意义:
(1)几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。
(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;
③零的绝对值是零。
也可以写成: ||0aaaaaa当为正数当为0当为负数
二、 典型例题
例1.已知a、b、c在数轴上位置如图:
则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( )
A.-3a B. 2c-a C.2a-2b D. b
例2.已知:zx0,0xy,且xzy, 那么yxzyzx的值( )
A.是正数 B.是负数 C.是零 D.不能确定符号
例3.已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求
这两个数;若数轴上表示这两数的点位于原点同侧呢?
例4.方程xx20082008 的解的个数是( )A.1个 B.2个 C.3个 D.无穷多个
例5.已知|ab-2|与|a-1|互为相互数,试求下式的值:
1111
112220072007abababab
说明:(Ⅰ)|a|≥0即|a|是一个非负数;
(Ⅱ)|a|概念中蕴含分类讨论思想。
例6.(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2,3与5,2与6,4与3.
并回答下列各题:
(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:___ .
(2)若数轴上的点A表示的数为x,点B表示的数为―1,则A与B两点间的距离
可以表示为 ________________.
(3)结合数轴求得23xx的最小值为 ,取得最小值时x的取值范围为 ___.
(4) 满足341xx的x的取值范围为 ______ .
(5)若1232008xxxx的值为常数,试求x的取值范围.
例9.若245134xxx的值恒为常数,则x应满足怎样的条件?此常数的值为多少?
3
代数式的化简求值问题培优
一、知识链接
1.“代数式”是用运算符号把数字或表示数字的字母连结而成的式子。它包括整式、分式、二次根式等内容.
2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化
3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。
二、典型例题例1.若多项式xyxxxmx537852222的值与x无关,求mmmm45222的值.
例2.x=-2时,代数式635cxbxax的值为8,求当x=2时,代数式635cxbxax的值。
例3.当代数式532xx的值为7时,求代数式2932xx的值.
例4. 已知012aa,求2007223aa的值.
例5.(实际应用)A和B两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差异:
A公司,年薪一万元,每年加工龄工资200元;B公司,半年薪五千元,每半年加工龄工资50元。从收入的角度考虑,
选择哪家公司有利?
例6.三个数a、b、c的积为负数,和为正数,且bcbcacacababccbbaax,则 123cxbxax的值是
_______
例7.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线
上写出数字1,2,3,4,5,6,7,….
(1)“17”在射线 ____上, “2008”在射线___________上. (2)若n为正整数,则射线OA上数字的排列规律可以用含n的 代数式表示为__________________________. 例8. 将正奇数按下表排成5列: 第一列 第二列 第三列 第四列 第五列 第一行 1 3 5 7 第二行 15 13 11 9 第三行 17 19 21 23 第四行 31 29 27 25 根据上面规律,2007应在 A.125行,3列 B. 125行,2列 C. 251行,2列 D. 251行,5列 例9.定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为kn2(其中k是使kn2为奇数的正整数),并且运算重复进行.例如,取n=26,则: 若n=449,则第449次“F运算”的结果是__________. 练习题 1.已知a+b=0,a≠b,则化简ba(a+1)+ab(b+1)得( ). (第15届江苏省竞赛题)A.2a B.2b C.+2 D.-2 2.已知x=2,y=-4时,代数式ax3+12by+5=1997,求当x=-4,y=-12时,代数式3ax-24by3+4986的值. 3.已知关于x的二次多项式a(x3-x2+3x)+b(2x2+x)+x3-5,当x=2时的值为-17,•求当x=-2时,该多项式的值. (“希望杯”邀请赛培训题) ABDCEFO1 7 2 8
3
9
4
10
5
11
6
12
26 13 44 11
第一次 F② 第二次 F① 第三次
F②
…
5
4.已知,05322aa 求109124234aaa的值。
5.已知关于x的二次多项式5)2()3(3223xxxbxxxa,当x=2时的值为-17,求当x=-2时,该多项式的
值。
6.三个有理数a、b、c,其积是负数,其和是正数,当ccbbaax时,则代数式10289519xx的值是多少?
7.已知012mm,求1997223mm的值。
8已知0199101052)1(axaxaxaxx,则0910aaa的值是多少
9.把一个正方体的六个面分别标上字母A、B、C、D、E、F并展开如图所示,•已
知:A=x2-4xy+3y2,C=3x2-2xy-y2,B=12(C-A),E=B-2C,•若正方体相对的两个面上的多项式的和都相等,求D、F.