基于改进参考点的快速非支配排序遗传算法研究

合集下载

非支配排序遗传算法的改进

非支配排序遗传算法的改进

遗传算法 ( G [及其改进算法 N G - 。 Ns A) S A H[等 ]
等。
人 类生 活 的各个 领域 。 遗 传算 法 l出现 以来 , _ 2 ] 已经 在各 个领 域 得 到 了 广 泛 的应 用 , 在解 决 简单 的单 目标 优 化 问题 方 面 取 得 了很好 的成果 。然 而 , 面对 复 杂 的多 目标 优 化 问 题, 传统 的遗 传 算 法 就 显 得 力 不 从 心 了 。于 是 , 对
( c o lo mp tr S h o fCo u e ,Chn ie st fGe s in e ,W u a 4 0 7 ) iaUnv r i o o ce c s y hn 3 0 4
A src NS A-I( nd miae rigGe ei Aloi m) sd i l—bet eo t zt n po l b tat G I No -o ntd S t nt g r h ,ue n mut ojci pi ai rbe Is o n c t i v mi o m. t
1 引 言
在 实 际应 用 中人 们 经 常 遇 到 多 目标 优 化 _ 问 1 ] 题 , 投资 问题 , 资者 一般 希 望 投入 的 资 金 量 最 如 投 少 , 险最 小 , 风 且获得 的收益 最 大 , 这就 是 一个 典 型 的多 目标优 化 问题 。对 多 目标 优 化 问 题 的研 究 和 对 优化 方法 的改 进 是 当今 的一 个 热 点 。随 着 理 论
v ri .T i p prl r n eerhtepicpe fh GA 1 a oi m, t el et eerha o n bod est y hs ae ana drsac h r il o eNS - l r h wi t ts rsac t meada ra , e n t g t hh a h

一种改进的非支配排序遗传算法

一种改进的非支配排序遗传算法

一种改进的非支配排序遗传算法王青松;谢兴生;周光临【摘要】提出了一种改进的非支配排序遗传算法.通过扩大第一代种群规模,在初期加速种群的进化;对选择算子引入概率操作来提高种群的多样性;同时引入混合交叉算子,动态调节算法的搜索空间.最后以收敛性和分布性作为性能指标,使用公开的多目标测试函数对其进行测试,并与基本的非支配排序遗传算法和改进的多目标粒子群算法进行比较.实验结果表明,改进后的非支配排序遗传算法在收敛性和分布性两方面均有提升.【期刊名称】《微型机与应用》【年(卷),期】2019(038)005【总页数】6页(P28-32,36)【关键词】多目标优化;非支配排序遗传算法;收敛性;分布性【作者】王青松;谢兴生;周光临【作者单位】中国科学技术大学信息科学技术学院,安徽合肥230026;中国科学技术大学信息科学技术学院,安徽合肥230026;中国科学技术大学信息科学技术学院,安徽合肥230026【正文语种】中文【中图分类】TP1810 引言在实际生活以及工程应用中,经常要求在给定的资源下,同时满足多个目标最优化,即多目标优化[1]。

比如在部署虚拟机时,需要同时满足高利用率、低延迟以及高吞吐量等[2];在交通信号配时中,需同时使得延误时间最小、通行能力最大以及停车次数最少[3]。

对于多目标优化问题,传统的处理方法大多是加权法,即通过对不同的优化目标分配不同的权重,把多目标优化问题转化为单目标优化问题来求解。

加权法的缺点主要有两点,一方面权重的设置具有主观性,需要对优化问题有充分的了解;另外一方面,优化目标之间通常不是线性相关的,因此求得的解通常来说不是全局最优解。

对于多目标优化问题,由于几乎不存在单个全局最优解,因此通常是求解一系列非支配解[4](Pareto解集)。

非支配排序遗传算法[5](Non-dominated Sorting Genetic Algorithm II,NSGA-II)是DEB K等人提出的一种元启发式算法,由于NSGA-II算法在低维优化问题中表现优良,并且算法实现相对容易,因此被广泛使用。

快速非支配排序遗传算法

快速非支配排序遗传算法

快速非支配排序遗传算法1 算法介绍快速非支配排序遗传算法(Fast Non-dominated Sorting Genetic Algorithm,NSGA-II)是非常常用的多目标优化算法之一,由Deb等人于2002年提出,是对原有NSGA算法的改进。

NSGA-II算法主要通过多层快速非支配排序、拥挤距离计算和遗传操作来实现对多目标问题的优化。

2 多层快速非支配排序NSGA-II算法采用了多层快速非支配排序策略,以便更加有效地找到劣支配解与非劣解。

其中,快速非支配排序算法用于将输入集合中的一组解归类为劣支配、非劣解中的哪一类。

3 拥挤距离计算为了维护传代中解的多样性,NSGA-II算法采用了拥挤距离来保证不同种群之间解的区别性。

该算法通常采用欧氏距离等数学公式计算解之间的距离。

4 遗传操作对于多目标优化问题,一个优秀的遗传算法必须采用一组有效的遗传操作,包括选择、交叉和变异。

在NSGA-II算法中,采用了二元锦标赛选择和模拟二进制交叉技术,以及多项式变异。

5 算法实现NSGA-II算法实现过程中,主要要完成以下几个步骤:1. 初始化种群集合。

2. 对种群集合进行快速非支配排序。

3. 计算每个种群个体集合的拥挤距离。

4. 通过选择、交叉和变异操作产生下一代种群集合。

5. 重复以上步骤,直到达到指定迭代次数或优化目标达到预期效果。

6 算法优缺点NSGA-II算法具有较强的适应能力、求解速度快、算法有效性高等优点,在许多多目标优化问题中都得到了良好的应用效果。

但该算法的缺点也是显而易见的,主要表现在其计算复杂度较高、可能陷入局部最优等方面。

7 算法应用NSGA-II算法广泛应用于多目标优化问题中,例如在交通规划、建筑设计、环境保护等领域中的实际应用。

其中,NSGA-II算法在空气污染防治研究中的应用更是引人注目。

以年平均浓度、年最大日平均浓度和总排放量为目标,对于全国37个城市的空气质量进行优化,得到了广泛的认可。

基于改进非支配排序遗传算法的含DG配电网优化配置

基于改进非支配排序遗传算法的含DG配电网优化配置

基于改进非支配排序遗传算法的含DG配电网优化配置孟佳;周峰;朴在林【摘要】分布式电源的接入对配电网中潮流分布、有功损耗和电压分布有很大影响.针对含DG配电网运行优化问题,建立了以DG最大出力、有功网损最小及电压偏差最小的多目标优化模型,提出一种改进的非支配排序遗传算法求解分布式电源的最优化有功出力.在NSGA-Ⅱ算法基础上改进了非支配排序策略、选择截断策略,采用改进的NSGA-Ⅱ算法求解含DG配电网优化控制问题.通过IEEE33节点算例分析,结果表明该模型可以在分布式电源最大出力、有功网损最小及电压偏差最小方面,较为全面地实现配电网分布式电源的优化控制.【期刊名称】《可再生能源》【年(卷),期】2014(032)009【总页数】5页(P1301-1305)【关键词】分布式电源;优化配置;多目标优化;INSGA-Ⅱ算法【作者】孟佳;周峰;朴在林【作者单位】沈阳农业大学信息与电气工程学院,辽宁沈阳 110161;沈阳农业大学信息与电气工程学院,辽宁沈阳 110161;沈阳农业大学信息与电气工程学院,辽宁沈阳 110161【正文语种】中文【中图分类】TM7150 引言近年来,随着电力需求的大幅增加,与新能源紧密连接的分布式电源应运而生。

分布式电源(Distributed Generation,DG)具有可靠性高、污染少、安装灵活、能源利用率高等优点。

在环境问题日益严重的当代,分布式电源接入配电网是可持续发展的重要趋势[1]~[3]。

分布式电源接入配电网,使原本无源的配电网变成了遍布中小型电源的有源网络,随着分布式电源在配电网渗透率的提高,对配电网的规划运行、潮流计算、电能质量、继电保护、有功网损等方面都带来了一系列不利的影响。

因此合理地对接入配电网的分布式电源进行优化控制显得尤为重要。

文献[4]针对于分布式电源的多目标规划数学模型加入经济技术优化目标,提高了计算精度、收敛速度;文献[5]从电力系统静态安全约束角度出发,建立数学模型,并验证了方法的正确性和有效性;文献[6]提出改进的非支配遗传算法,更为全面地对分布式电源进行配置;文献[7]提出一种带差分局部搜索的改进型非支配算法,在解群分布方面有所改善。

基于改进非支配排序遗传算法的复合材料身管多目标优化

基于改进非支配排序遗传算法的复合材料身管多目标优化
d sg r c s .Th u d me t l r q e c n t u t r i h fb r e r e i e s t p i ia ein po es e f n a n a e u n y a d s r c u e we t a r l e d f d a wo o t z — f g o a n m
t no jcie .Th n ig a ge a d t ik eso h o o i a es ae d f e sd sg a i i be t s o v e widn n l n hc n s fte c mp st ly r r ei d a ein v r— e n
中图分 类号 : J0 .; J0 文献 标志码 : T 33 1 T 34 A 文章编 号 :10—0320 )40 1—5 0019(060—670
M ut o j cieOp i z t n o o oi a r l a e n t e l -b e t tmia i fC mp st B r e B sd o h i v o e
A src :A li bet eo t z t n mo e o o o i a rlwa e eo e ae n t e f i bt t a mut o jci p i ai d l fc mp st b re s d v lp d b s d o h i t — v mi o e ne ee n d l a d o t z t n meh d f r t e mut o jcie d sg rq i me t u ig b re lme tmo e n p i a i to o h li be t e in e ur n s r arl mi o — v e d n
I pr v d No - o i t d S r i n tc Al o ih m o e n d m na e o tng Ge e i g r t m

非支配排序遗传算法(NSGA)的研究与应用

非支配排序遗传算法(NSGA)的研究与应用

浙江大学
硕士学位论文
非支配排序遗传算法(NSGA)的研究与应用
姓名:高媛
申请学位级别:硕士
专业:控制理论与控制工程
指导教师:卢建刚
20060301
浙江丈学礤士学位论文
直至01只+。

I+IE肾N
son(F,,<。


只+。

=只+luE【1:(N一}只“|)】
Qf+.=new(P,+,)\\通过遗传算子产生新种群
如图3.3所示I射,首先将第r代产生的新种群Q与父代只合并组成R。

,种群大小为2N。

然后R。

进行非支配排序,产生一系列非支配集只并计算拥挤度。

由于子代和父代个体都包含在胄,中,则经过非支配排序以后的非支配集E中包含的个体是置中最好的,所以先将E放入新的父代种群£+。

中。

如果E的大小小于N,则继续向#+。

中填充下一级非支配集E,直到添加E时,种群的大小超出N,对只中的个体进行拥挤度排序(sort(F;,<。

)),取前N-L只。

{个个体,使只+.个体数量达到Ⅳ。

然后通过遗传算子(选择、交叉、变异)产生新的予代种群Q。

图3.3NSGA-II流程
算法的整体复杂性为O(mN2),由算法的非支配排序部分决定。

当排序产生。

非支配排序遗传算法ii

非支配排序遗传算法ii

非支配排序遗传算法II简介在搜索和优化问题中,非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm,NSGA)是一种有效的多目标优化算法。

本文将深入探讨非支配排序遗传算法的原理、应用和改进。

一、非支配排序遗传算法概述非支配排序遗传算法是根据生物进化的思想设计出来的一种启发式搜索算法。

它通过不断地进化和优胜劣汰的策略,从一个初始种群中逐步生成出一组优质的解,这些解构成了一个称为“非支配解集合”(Non-dominated Set)的前沿。

1.1 基本原理非支配排序遗传算法的基本原理如下:1.初始化种群:随机生成一组个体作为初始种群。

2.评估个体适应度:计算每个个体的适应度值,适应度函数常用于衡量个体在目标空间的性能。

3.非支配排序:根据个体之间的支配关系,将种群划分为不同的非支配层次。

4.拥挤度计算:为每个个体计算其在非支配层次内的拥挤度,用于维持种群的多样性。

5.选择操作:根据非支配排序和拥挤度计算,选择优质的个体进入下一代种群。

6.交叉和变异:对选择出的个体进行交叉和变异,生成新的个体。

7.更新种群:将新生成的个体与原种群合并,形成新的种群。

8.终止条件:根据预设的停止条件,判断是否终止算法。

1.2 算法特点非支配排序遗传算法具有以下特点:•能够处理多目标优化问题,得到一组在目标空间上均衡分布的解。

•通过非支配排序和拥挤度计算维护种群的多样性,避免陷入局部最优解。

•采用进化策略,能够逐步优化种群,逼近全局最优解。

•算法的计算复杂度相对较高,但在实际应用中具有较好的效果。

二、NSGA-II算法改进NSGA-II是非支配排序遗传算法的一种改进版本,它在保留NSGA原有特点的基础上,加入了一些优化手段,提高了算法性能。

2.1 快速非支配排序算法为了减少排序的时间复杂度,NSGA-II使用了一种称为“快速非支配排序算法”(Fast Non-dominated Sorting Algorithm)的方法。

《NSGA-Ⅱ多目标优化算法的改进及应用研究》

《NSGA-Ⅱ多目标优化算法的改进及应用研究》

《NSGA-Ⅱ多目标优化算法的改进及应用研究》篇一一、引言随着现代科学技术的快速发展,多目标优化问题在众多领域中显得愈发重要。

NSGA-Ⅱ(非支配排序遗传算法II)作为一种经典的多目标优化算法,已在多个领域得到广泛应用。

然而,NSGA-Ⅱ算法仍存在一些问题,如计算效率、解的多样性以及解的收敛性等。

本文旨在探讨NSGA-Ⅱ多目标优化算法的改进策略,并探讨其在实际应用中的效果。

二、NSGA-Ⅱ算法概述NSGA-Ⅱ算法是一种基于遗传算法的多目标优化算法,其核心思想是通过非支配排序和适应度共享策略,使得在多目标优化问题中,可以同时考虑多个目标函数,从而得到一组均衡解。

该算法具有较好的全局搜索能力和解的多样性,但在处理复杂问题时仍存在一定局限性。

三、NSGA-Ⅱ算法的改进策略针对NSGA-Ⅱ算法存在的问题,本文提出以下改进策略:1. 引入局部搜索策略:通过在每一代中引入局部搜索策略,提高算法的局部寻优能力,从而提高解的精度和收敛速度。

2. 动态调整种群大小:根据问题的复杂度和求解过程,动态调整种群大小,以平衡全局搜索和局部寻优之间的关系。

3. 引入多层次进化策略:通过在不同层次上同时进行进化,提高算法的并行性和计算效率。

4. 适应度函数优化:针对具体问题,对适应度函数进行优化,以更好地反映问题的实际需求。

四、改进后的NSGA-Ⅱ算法应用研究本文以某实际工程问题为例,对改进后的NSGA-Ⅱ算法进行应用研究。

通过将改进后的算法应用于该问题,并与原始NSGA-Ⅱ算法进行对比,验证了改进策略的有效性。

实验结果表明,改进后的NSGA-Ⅱ算法在计算效率、解的多样性和收敛性等方面均有所提高,能够更好地解决实际问题。

五、结论本文针对NSGA-Ⅱ多目标优化算法存在的问题,提出了引入局部搜索策略、动态调整种群大小、多层次进化策略和适应度函数优化等改进策略。

通过将改进后的算法应用于实际工程问题,验证了其有效性。

实验结果表明,改进后的NSGA-Ⅱ算法在多目标优化问题中具有更好的计算效率、解的多样性和收敛性,能够更好地解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近年来,高 维 多 目 标 优 化 问 题 成 为 进 化 计 算 的 研 究 热点及 难 点。为 改 善 高 维 多 目 标 优 化 问 题,1980 年, WierzbickiAP最先提出了一种参考点方法,其目的是通 过求解一个成就标量问题得到一个最接近理想参考点的 Pareto最优 解[1]。Deb K 等 在 Evolutionary Multiobjec tiveOptimization(EMO)中 使 用 参 考 点 方 法,结 合 决 策 者 偏好信息找到了一组 Pareto最优解集[2]。MohammadiA 等结 合 分 解 策 略 与 参 考 点 方 法 来 搜 索 优 选 区 域[3]。 FigueiraJR 等通过近似 Pareto前沿的并行策略来生成参 考点,使用多 个 参 考 点 将 目 标 空 间 均 匀 地 分 割 成 不 同 的 区域,对于每 个 参 考 点,独 立 地 找 到 一 组 近 似 有 效 的 解, 以便同时计算[4]。WangR 等提出了一种偏好启发共同 进化 算 法 (PreferenceinspiredCoevolutionary Algorithm, PICEA),以便在进化过程中同时优化候选解决方案和参 考点,即通过 较 少 的 候 选 解 决 方 案 使 参 考 点 获 得 更 高 的 适应度,通过 满 足 尽 可 能 多 的 参 考 点 使 候 选 解 决 方 案 获 得适应性[5]。DebK 等根据当前种群获得了覆盖整个目 标空间的超 平 面,并 在 超 平 面 上 生 成 一 系 列 分 布 均 匀 的 参考点[6]。本文 对 参 考 点 的 策 略 进 行 了 改 进,并 将 其 与 快速非支配排序遗传算法(NSGAⅡ)相结合,形成了基于 改进参考点的快速非支配排序遗传算法。
第 29 卷 第 3 期 2018 年 6 月
中原工学院学报 JOURNAL OFZHONGYUAN UNIVERSITY OFTECHNOLOGY
Vol.29 No.3 Jun.,2018
文 章 编 号 :1671-6906(2018)03-0081-05
基于改进参考点的快速非支配排序遗传算法研究
大大降低。目前存在 以 下 问 题:① 有 限 规 模 的 最 优 解
无法近似高维目标空间中 的 Pareto前 沿,算 法 的 复 杂
度随目标空间维度的 增 加 而 变 大;② 在 解 决 高 维 多 目
标问题时,算法的分 布 性 能 不 佳;③ 优 化 较 多 目 标 时,
非支配解的可视化十分困难。
主 要 包 括 三 方 面 :① 采 用 快 速 非 支 配 排 序 的 方 法 ,使 计
算复杂度大大降低;② 定 义 了 拥 挤 度 和 拥 挤 度 比 较 算
子,替代了需 要 指 定 的 共 享 半 径,使 准 Pareto 域 中 的
个体能扩展 到 整 个 Pareto 域,且 均 匀 分 布,保 持 了 种
群的多样性;③引入 了 精 英 策 略,扩 大 了 采 样 空 间,防
止了最佳个体的丢失,提 高 了 算 法 的 运 算 速 度 和 鲁 棒
性。NSGAⅡ在处理较 少 目 标 (2 个 或 3 个 )时,优 化
效 果 很 好 ,但 在 优 化 高 维 多 目 标 问 题 时 ,其 优 化 效 果 将
目标函数向量。当目 标 维 数 犿≥4 时,犉(狓)即 为 高 维
多目标函数,此问题即为高 维多 目 标 优 化 问 题(Many objectiveOptimizationProblem)MaOP[8-9]。
DebK 等在非支配排序遗传算法(Nondominated
SortingGeneticAlgorithm,NSGA)的 基 础 上 提 出 了 快速非支配 排 序 遗 传 算 法 (NSGAⅡ )[10]。 它 的 改 进
基 金 项 目 :国 家 自 然 科 学 基 金 面 上 项 目 (61673404);河 南 省 高 校 创 新 人 才 支 持 计 划 项 目 (16HASTIT033)
· 82 ·
中原工学院学报
2018 年 第 29 卷
2 参 考 点 策 略 的 改 进
LiuY 等 提 出 了 基 于 参 考 点 的 多 目 标 进 化 算 法 (ManyobjectiveEvolutionaryoptimizationbasedon ReferencePoints,RPEA)。 该 算 法 重 新 定 义 了 参 考 点 的 选 择 方 法 ,并 加 强 了 对 Pareto 前 沿 的 选 择 压 力 , 同 时 保 持 了 解 个 体 广 泛 和 均 匀 的 分 布 。 [11] 在 RPEA 算 法 中 ,根 据 当 前 群 体 生 成 了 具 有 良 好 收 敛 性 和 分 布 性 的 一 系 列 参 考 点 ,以 指 导 个 体 进 化 。 此 外 ,算 法 通 过 计 算 目 标 空 间 中 参 考 点 和 个 体 之 间 的 Tcheby
肖俊明,刘凯松,朱永胜,谢 亮,高洪洋
(中原工学院 电子信息学院,河南 郑州 450007)
摘 要: 快速非支配排序遗传算法(NSGAⅡ)是解决多目标 优 化 问 题 的 经 典 算 法,然 而 在 解 决 高 维 多 目 标 问 题 时,算 法的优化效果不佳。本文改进了参考点策略中参考点 的 生 成 方 式,并 将 改 进 后 的 参 考 点 策 略 与 NSGAⅡ 相 结 合,使 其 在优化高维多目标问题时的求解性能有了较大的提高。利用 DTLZ标准测试函数对4种算法进行了对比,结果 表 明,改 进 后 的 算 法 在 有 效 解 决 高 维 多 目 标 问 题 的 同 时 ,保 证 了 良 好 的 分 布 性 能 。 关 键 词 : NSGAⅡ ;参 考 点 ;高 维 多 目 标 中 图 分 类 号 : TP301 文 献 标 志 码 : A DOI:10.3969/j.issn.1671-6906.2018.03.015
1 快 速 非 支 配 排 序 遗 传 算 法
以最小化为例,假设一个具有 犿 维目标函数、狀 维
决策变量的多目标优化问题,其表达式为 : [7]
烄min犉(狓)= (犳1(狓),…,犳犻(狓),…,犳犿 (狓))
烅(1≤犻≤ 犿)
(1)
烆狊.狋.பைடு நூலகம் ∈ 犡狀
其中:狓 是决策变量,犡 是狀 维决策空间,犉(狓)为 犿 维
相关文档
最新文档