第2章 连续系统的数学模型
合集下载
第2章多智能体机器人系统的控制原理

( ) =
=
() 0 + 1 −1 + ⋯ + −1 +
(2-13)
13
2.1.1 线性连续系统
性质 :系统的传递函数 () 具有以下性质:
1. 传递函数是复变量 的有理真分式函数,具有复变函数的所有性质。
2. 传递函数是一种用系统参数表示输出量和输入量之间关系的表达式,
1. 线性性质
ℒ 1 () ± 2 () = 1 () ± 2 () (2-4)
2. 微分定理
ℒ () = ⋅ () − (0)
(2-5)
3. 积分定理(右上角-1表示1次积分运算)
ℒ 1 () ± 2 () = 1 () ± 2 ()
工作特性。当系统微分方程列写出来后,只要给定输入量和初始条件,
便可对微分方程求解,并由此知道系统输出量随时间变化的特性。
线性定常微分方程的求解方法有两种:
(1) 经典法;
(2) 拉普拉斯变换法(简称为拉氏变换)。
4
2.1.1 线性连续系统
(1)经典法求解
在数学上,线性微分方程的解由特解和齐次微分方程的通解组成。
为了克服这个障碍,需要采用 变换法建立离散系统的数学模型。
利用 变换法研究离散系统,可以把连续系统中的许多概念和方法,推
广应用于线性离散系统。
与连续系统的数学模型类似,线性离散系统的数学模型有差分方程、
脉冲传递函数和离散状态空间表达式 (state-space representation) 三
对于一般的线性定常离散系统, 时刻的输出 () 不但与 时刻
的输入 () 有关,而且与 时刻以前的输入 − 1 , − 2 , ⋯ 有关,
=
() 0 + 1 −1 + ⋯ + −1 +
(2-13)
13
2.1.1 线性连续系统
性质 :系统的传递函数 () 具有以下性质:
1. 传递函数是复变量 的有理真分式函数,具有复变函数的所有性质。
2. 传递函数是一种用系统参数表示输出量和输入量之间关系的表达式,
1. 线性性质
ℒ 1 () ± 2 () = 1 () ± 2 () (2-4)
2. 微分定理
ℒ () = ⋅ () − (0)
(2-5)
3. 积分定理(右上角-1表示1次积分运算)
ℒ 1 () ± 2 () = 1 () ± 2 ()
工作特性。当系统微分方程列写出来后,只要给定输入量和初始条件,
便可对微分方程求解,并由此知道系统输出量随时间变化的特性。
线性定常微分方程的求解方法有两种:
(1) 经典法;
(2) 拉普拉斯变换法(简称为拉氏变换)。
4
2.1.1 线性连续系统
(1)经典法求解
在数学上,线性微分方程的解由特解和齐次微分方程的通解组成。
为了克服这个障碍,需要采用 变换法建立离散系统的数学模型。
利用 变换法研究离散系统,可以把连续系统中的许多概念和方法,推
广应用于线性离散系统。
与连续系统的数学模型类似,线性离散系统的数学模型有差分方程、
脉冲传递函数和离散状态空间表达式 (state-space representation) 三
对于一般的线性定常离散系统, 时刻的输出 () 不但与 时刻
的输入 () 有关,而且与 时刻以前的输入 − 1 , − 2 , ⋯ 有关,
第2章 自动控制系统的数学模型

二、一阶惯性环节(一阶滞后环节)
1、数学表达式 :
2、特点 一阶惯性环节含有一个储能元件,输入 量的作用不能立即在输出端全部重现出来, 而是有一个延缓,即有惯性。 3、实例
例2-2 如图2-2所示的RC串联电路,以总电压ur 为输入,电容上电压uC为输出,试建立其微分方程。
图2-2 RC网络
解(1)确定系统的输入、输出变量,如图已知ur为输入,电 容电压uC为输出; (2)列微分方程组: 由基尔霍夫第二定律有: uR +uC =ur ① 由欧姆定律有: uR=R i ② 1 由电容充放电特性,有:uC= ∫idt ③ c (3)消去中间变量
n υ 他激直流电动
五、振荡环节(二阶滞后环节)
1、自动控制原理的研究对象是自动控制系统 的基本结构,这是本章的重点,要求通过实例掌 握自动控制系统各组成部分及其功能。 2、经典控制理论讨论的是按偏差进行控制的 反馈控制系统,应该了解其控制的目的、控制的 对象和控制的过程;熟悉对控制系统动态性能的 基本要求,即稳、快、准;为进一步掌握控制系 统的性能指标打好基础。
d n c(t ) d n 1c(t ) dc(t ) a0 a1 a n 1 a n c(t ) n n 1 dt dt dt d m r (t ) d m 1 r (t ) dr (t ) b0 b1 bm 1 bm r (t ) m m 1 dt dt dt
第2章 线性系统的数学模型
第2章 线性系统的数学模型
六、纯滞后环节(纯延迟环节)
表达式: c(t)=r(t-τ) 特点:输出比输入滞后一个时间τ。 实例:延时继电器。
2-2 传递函数
传递函数是线性定常连续系统最重要的数 学模型之一,是数学模型在复频域内的表示形 式。利用传递函数,不必求解微分方程就可以 求取初始条件为零的系统在任意形式输入信号 作用下的的输出响应,还可以研究结构和参数 的变化对控制系统性能的影响。经典控制理论 的主要研究方法——根轨迹分析法和频域分析 法都是建立在传递函数基础上的。
信号与系统第二章第一讲

i
则相应于1的k阶重根,有k项:
( A1t k 1 A2t k 2 Ak 1t Ak )e1t ( Ai t k i )e1t
i 1
k
例2-3
信 号 与 系 统
求如下所示的微分方程的齐次解。
Hale Waihona Puke d3 d2 d r (t ) 7 2 r (t ) 16 r (t ) 12r (t ) e(t ) 3 dt dt dt
等式两端各对应幂次的系数应相等,于是有:
信 号 与 系 统
特解为: 联立解得:
3B1 1 4 B1 3B2 2 2 B 2 B 3 B 0 2 3 1
统
线性时不变系统
线性的常系数微分方程
按照元件的约束特性及 系统结构的约束特性
也即:
具体系统物理模型
常系数微分方程建立
(1)元件端口的电压与电流约束关系
iR (t ) R
信 号 与 系 统
vR (t )
C
vR (t ) iR (t ) R
dvC (t ) iC (t ) C dt
vR (t ) Ri R (t )
与
时域经典法就是直接求解系统微分方程的方法。这种方 系 法的优点是直观,物理概念清楚,缺点是求解过程冗繁,应 用上也有局限性。所以在20世纪50年代以前,人们普遍喜欢 统 采用变换域分析方法(例如拉普拉斯变换法),而较少采用时 域经典法。20世纪50年代以后,由于δ(t)函数及计算机的普 遍应用,时域卷积法得到了迅速发展,且不断成熟和完善, 已成为系统分析的重要方法之一。时域分析法是各种变换域 分析法的基础。
信 号 与 系 统
is (t )
则相应于1的k阶重根,有k项:
( A1t k 1 A2t k 2 Ak 1t Ak )e1t ( Ai t k i )e1t
i 1
k
例2-3
信 号 与 系 统
求如下所示的微分方程的齐次解。
Hale Waihona Puke d3 d2 d r (t ) 7 2 r (t ) 16 r (t ) 12r (t ) e(t ) 3 dt dt dt
等式两端各对应幂次的系数应相等,于是有:
信 号 与 系 统
特解为: 联立解得:
3B1 1 4 B1 3B2 2 2 B 2 B 3 B 0 2 3 1
统
线性时不变系统
线性的常系数微分方程
按照元件的约束特性及 系统结构的约束特性
也即:
具体系统物理模型
常系数微分方程建立
(1)元件端口的电压与电流约束关系
iR (t ) R
信 号 与 系 统
vR (t )
C
vR (t ) iR (t ) R
dvC (t ) iC (t ) C dt
vR (t ) Ri R (t )
与
时域经典法就是直接求解系统微分方程的方法。这种方 系 法的优点是直观,物理概念清楚,缺点是求解过程冗繁,应 用上也有局限性。所以在20世纪50年代以前,人们普遍喜欢 统 采用变换域分析方法(例如拉普拉斯变换法),而较少采用时 域经典法。20世纪50年代以后,由于δ(t)函数及计算机的普 遍应用,时域卷积法得到了迅速发展,且不断成熟和完善, 已成为系统分析的重要方法之一。时域分析法是各种变换域 分析法的基础。
信 号 与 系 统
is (t )
自控原理课件 第2章-自动控制系统的数学模型

第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
2.2.2 传递函数 建立数学模型的目的是为了对系统进行性能分析。分析 自动控制系统最直接的方法是求解微分方程,求得被控 量在动态过程中的时间函数,然后根据时间函数的曲线 对系统性能进行分析。求解的方法有经典法、拉氏变换 法等。 拉氏变换法是求解微分方程的简便方法,当采用这一方 法时。微分方程的求解就成为象函数的代数方程和查表 求解,使计算大为简化。更重要的是,采用拉氏变换法 能把以线性微分方程描述的数学模型转换成复数域中代 数形式的数学模型——传递函数。传递函数不仅可以表 征系统的性能,而且可以用来分析系统的结构和参数变 化对系统性能的影响。经典控制理论中应用最广泛的频 率特性法和根轨迹法就是以传递函数为基础建立起来的, 传递函数是经典控制理论中最基本最重要的概念。
解:(1)确定输入和输出量。网络的输入量为 电压ur(t),输出量为电压uc(t) (2)根据电路理论,列出原始微分方程。
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
1.信号线 信号线是带有箭头的直线,箭头表示信号的流向,在直线旁标 记信号的象函数,如图2.20(a)所示。 2.引出点 引出点表示信号引出或测量的位置。从同一位置引出的信号在 数值和性质上完全相同, 图2.20(b)所示。 3.比较点 比较点表示多个信号在此处叠加,输出量等于输入量的代数和。 因此在信号输入处要标明信号的极性,如图2.20(c)所示。 4.功能框 功能框表示一个相对独立的环节对信号的影响。框左边的箭头 处标以输人量的象函数,框右边的箭头处标以输出量的象函数, 框内为这一单元的传递函数。输出量等于输入量与传递函数的 乘积,即
连续系统的数学模型

Y (s) b1s n1 b2 s n2 bn1s bn num(s) G( s ) n n 1 n2 U ( s) s a1s a2 s an1 den(s)
(2 2)
在MATLAB 语言中,可以利用分别定义的传递函数分子、分母多项式系数 向量方便地加以描述。例如对于(2-2 )式,系统可以分别定义传递函数的 分子、分母多项式系数向量为:
第四章 补充
连续系统常用的数学模型及其转换
1.微分方程及传递函数的多项式模型
d ( n ) y (t ) d ( n 1) y (t ) dy(t ) d ( n 1)u (t ) d ( n 2)u (t ) du(t ) a a a y ( t ) b b b bnu (t ) 1 n 1 n 1 2 n 1 n n 1 n 1 n2 dt dt dt dt dt dt (2 1)
[例4] 已知系统的状态空间描述为
2.25 5 2.25 4.25 x 0.25 0.5 1.25 1.75 y 0 2 0 2x 0 .5 4 2 1.25 0.25 x u 2 1.25 1 0.25 0.75 0 1.25
num b1 b2 bn1 bn den 1 a1 a2 an1
an
sys tf (num, den)
[例1] 已知系统传递函数为
G(s)
2s 9 s 4 3s 3 2s 2 4s 6
利用MATLAB将上述模型表示出来,并将其建立在工作空间中。 解:
在 MATLAB 中,用函数 ss( ) 来建立控制系统的状态空间模 型,或者将传递函数模型与零极点增益模型转换为系统状态空 间模型。ss( )函数的调用格式为: sys=ss(a,b,c,d)
控制工程基础_第二章(2017)

时,
R F (s) s
18
例 求单位斜坡函数f(t)=t的拉氏变换。 f (t )
单位斜坡函数如图(b) 所示,定义为
0 t 0 f (t ) t t 0
解:利用定义式,可得
O
t
(b)单位斜坡函数
F (s)
0
1 1 st 1 1 st 1 st t e dt t ( e ) e dt 0 e 2 0 0 s s s s 0 s
12
二.举例
1.机械系统的微分方程式
机械系统设备大致分两类:平移的和旋转的。它们之间的区 别在于前者施加的力而产生的是位移,而后者施加的是扭矩产生 的是转角。
牛顿定律和虎克定律等物理定律是建立机械系统数学模型的基础
c1 m c2 xo xi
例1(1)如图所示机械系统。求其微分方程,图中Xi 表示输入位移,Xo 表示输出位移,假设输出端无负 载效应。(c、c1、c2为阻尼系数,k1、k2为弹性系数) 由牛顿定律有: 化为标准式得:
st
例 求单位脉冲函数的拉氏变换。 单位脉冲函数如图(c)所示。定义为
0 t 0 且 (t ) t 0
0
f (t )
(t )
O
0
(t )dt 1
0
t
F ( s) (t )e st dt (t )e st dt (t )e st dt f (0) e st
图c
14
(4)机械旋转系统 图中所示转动惯量为J的转子与弹性系数为k的弹性轴和阻尼 系数为B的阻尼器连接。假设外部施加扭矩m(t),则系统产生一个 偏离平衡位置的角位移(t) 。研究外扭矩m(t)和角位移(t)的关系。
自动控制原理课件 第二章 线性系统的数学模型

c(t ) e
dt Leabharlann t
c( s )
g ( ) r ( ) d e s ( ) d 0 0 g ( )e s r ( )e s d d 0 0
0
g ( )e
5) 闭环系统传递函数G(s)的分母并令其为0,就是系统的特征方 程。
• 涉及的是线性系统 非线性系统必须 进行线性化处理
§2-6 信号流程图
系统很复杂,为方便研究,也为了与 实际对应,通常将复杂系统分解为 若干典型环节的连接
数学模型的定义 数学模型: 描述系统变量间相互关系的动态性能的运动方程 建立数学模型的方法:
解析法: 依据系统及元件各变量之间所遵循的物理或化学规律列写出相 应的数学关系式,建立模型。 自动控制系统的组成可以是电气的,机械的,液压的,气动的等等,然 而描述这些系统的数学模型却可以是相同的。因此,通过数学模型来研 究自动控制系统,就摆脱了各种类型系统的外部关系而抓住这些系统的 共同运动规律,控制系统的数学模型是通过物理学,化学,生物学等定 律来描述的,如机械系统的牛顿定律,电气系统的克希霍夫定律等都是 用来描述系统模型的基本定律。 实验法: 人为地对系统施加某种测试信号,记录其输出响应,并用适当 的数学模型进行逼近。这种方法也称为系统辨识。 数学模型的形式 时间域: 复数域: 频率域: 微分方程 差分方程 传递函数 结构图 频率特性 状态方程
1 例1 : F ( s) ( s 1)(s 2)(s 3) c c c 1 2 3 s 1 s 2 s 3
1 1 c1 [ ( s 1)]s 1 ( s 1)(s 2)(s 3) 6 1 1 c2 [ ( s 2)]s 2 ( s 1)(s 2)(s 3) 15 1 1 c3 [ ( s 3)]s 3 ( s 1)(s 2)(s 3) 10 1 1 1 1 1 1 F ( s) 6 s 1 15 s 2 10 s 3 1 1 1 f (t ) e t e 2t e 3t 6 15 10
信号与系统讲义-2

f (t) u 3 10
p
u pf (t) 2p 10
u(t) (Ae5t B)U(t)
2 du(t) 10u(t) df (t)
dt
dt
u(t) 5Ae5t U(t) (A B)(t)
2(A B) 1 B0
u(t) 1 e5tU(t)V 2
H
(
p)
2p2 8p 3 ( p 1)( p 3)2
求系统的响应 y(t)。
解: D(p) (p 1)(p 3)2 0 p1 1 p2 p3 3
y0 (t) K1e t K 2e3t K 3te3t
y0 (0 ) K1 K2 =2 y0 (0 ) K1 3K 2 K3=1
3、共轭复根:(欠阻尼) 即 R 2 L C
uc Aet cos(dt ) Us
R 2L
,
d
02 2 , 0
1 LC
4
三、 RLC串联电路全响应
d 2uc dt 2
R L
duc dt
1 LC
uc
1 LC Us
(二阶常系数线性非齐次微分方程)
t<0 , K在2,有 uc (0 ) U0
C
uc Aep1t Be p2t Us
2、重根:(临界阻尼) 即
R2
L C
(自然频率、固有频率)
uc (A Bt)ept Us
3、共轭复根:(欠阻尼) 即 R 2 L C
uc Aet cos(dt ) Us
R 2L
d 02 2