地铁工程盾构开仓管理细则

地铁工程盾构开仓管理细则
地铁工程盾构开仓管理细则

盾构开仓管理细则

1 总则

1.1 为加强盾构开仓(常压或带压)过程中施工安全管理,确保盾构开仓(常压或带压)过程中不出现安全事故,特制定本管理细则。

1.2 本细则仅适用于地铁公司所建设管理的地铁工程和枢纽工程。

2 审批程序

2.1 在盾构开仓前,施工单位项目经理(或总工程师)应组织对安全条件进行自检,检查

内容详见附表《盾构开仓施工前验收条件》,自检合格后,需填报《施工前条件验收申请表》,经施工单位项目经理(或总工程师)签字后,向监理单位提出盾构开仓申请。2.2 监理单位接到施工单位提交盾构开仓申请,按照《盾构开仓施工前验收条件》规定,由总监理工程师(或总监代表)组织施工单位(必要时请设计单位参加)对盾构开仓安全条件进行核实验收,必要时应组织施工、设计及专家对盾构开仓施工方案进行论证。

2.3 监理单位验收合格后,填写《施工前条件验收记录表》,经总监监理工程师(或总监

代表)签字后,施工单位方可盾构开仓作业。

3 开仓的要求

3.1 进入开挖面内时请确认开挖面内的气体浓度,然后再进去。否则会发生缺氧、气体

中毒,这时要注意充分换气。

3.2 进入开挖面内时,如忘记切断电源,会因误动作等伤及开挖面内的作业人员,造成

人身事故,因此一定切断电源。

3.3 进入开挖面时,有因塌陷造成伤害的危险,所以,作业负责人应监视开挖面的状态,含水以及有无涌水,明确作出指示。

3.4 进入开挖面时,必须用安全帽,长靴或安全鞋,高处作业请用安全带。

3.5 在机内,有被凸出物挂住而负伤、疼痛、跌倒、坠落的可能,所以必须用不易挂的工作服。

3.6 如在没有确认土舱内有无出水的情况下,卸下人闸挡板的螺栓时,会因出水造成人员躲避困难而受伤。打开挡板前,请务必使用球阀等确认开挖面有无出水。

3.7 在开挖面部分,不得已动火时,会因火灾、缺氧、危及生命,所以请遵守以下事项。

a)事先接受作业指挥的指示;

b)事前确认有无可燃性气体及其状态;

c)不将可燃物带进开挖面内。不得已带入的可燃物需用阻燃物覆盖;

d)在附近配备灭火器、水、沙子;

e)设置送风、换气设备;

f)确认并确保逃离通道。

3.8 从人闸进入开挖面内时,如不遵守压气作业的注意事项,会发生高压障碍,故必须遵守以下事项。

a)遵守加减压时间;

b)遵守作业负责人指示的压气压力;

c)在开挖面不使用火(禁止带入火柴、打火机);

d)不带入可燃物;

e)减压中不停止呼吸;

f)断气减压后的开挖面内,有时缺氧空气会回来,务必测定氧气浓度后再进入。

3.9 人孔开放前,请充分处置、确认无出水、坍塌危险性后,在监视员在场的情况下,小心操作。

3.10 开仓前,必须按照规定组织条件验收。

3.11 开仓前,施工单位必须编制专项施工方案和应急预案,方案必须按照相关规定,组织专家论证,并经总监理工程师审批同意。

3.12 施工单位必须对施工人员进行安全技术交底和培训。

3.13 开仓前,监理单位应编制开仓旁站实施细则,安排监理工程师现场旁站监督。

3.14 开仓时,施工单位必须有项目部主要领导在工作面值班指挥,并做好工作面、地面指挥部的通讯联络工作,确保通讯畅通。

4 附则

4.1 本细则由地铁公司质量安全部负责解释。

4.2 本细则自颁布之日起执行。

附表1

盾构开仓施工前验收条件

附表02

施工前条件验收记录表

注:本表监理单位组织填写,建设单位、监理单位、施工单位各存一份。

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技 术方案 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技术方案 1.施工流程图 1.1盾构法隧道施工流程图 图1盾构隧道施工流程图 1.2盾构始发流程图 图2 始发流程 图 2.盾构机下井 盾构机从盾构工作井吊入,每台盾构机本身自重约200t ,分解为 5 块,最大块重约60t 。综合考虑吊机的起吊 能力和工作半径,安排1 台200t 和一台40t 汽车吊机进行吊入任务。盾构机下井拼装顺序见图3。 图3盾构机下井拼装示意图 在吊入盾构机之前,依次完成以下几项工作: 1.将测量控制点从地面引到井下底板上; 2.铺设后续台车轨道; 3.依次吊入后续台车并安放在轨道上; 4.安装始发推进反力架,盾构管片反力架示意图见图4; 5.安装盾构机始发托架,盾构始发托架示意图见图5。 图4盾构管片反力架示意图 掘进

图5 盾构始发托架示意图 3.盾构机安装调试 3.1盾构机的安装主要工作 1.盾构机各组成块的连接; 2.盾构机与后续设备及后续台车之间各种线路、管线和机械结构的连接。 3.盾构机内管片安装器、螺旋输送器、保园器的安装; 4.台车顶部皮带机及风道管的连接; 5.刀盘上各种刀具的安装。 3.2盾构机的检测调试主要内容 1.刀盘转动情况:转速、正反转; 2.刀盘上刀具:安装牢固性、超挖刀伸缩; 3.铰接千斤顶的工作情况:左、右伸缩; 4.推进千斤顶的工作情况:伸长和收缩; 5.管片安装器:转动、平移、伸缩; 6.保园器:平移、伸缩; 7.油泵及油压管路; 8.润滑系统; 9.冷却系统; 10.过滤装置; 11.配电系统; 12.操作控制盘上各项开关装置、各种显示仪表及各种故障显示灯的工作情况。 盾构机在完成了上述各项目的检测和调试后(具体应遵照盾构机制造厂家提供的操作手册进行),即可判定该盾构机已具备工作能力。 4.盾构进洞 1.盾构进洞前50 环进行贯通测量,以确定盾构机的实际位置和姿态。此后的掘进不允许有大的偏差发生,逐渐按偏差方位调整盾构机姿态和位置,满足盾构进洞尺寸要求。这一调整应在盾构刀盘进入洞前加固土前完成,以避免盾构进洞发生意外。

地铁隧道测量施工方案

?地铁隧道测量施工方案 盾构隧道监测的对象主要为土体介质、隧道结构和周围环境,监测的部位包括地表、土体内、盾构隧道结构、以及周围道路、建筑物等,监测类型主要是地表和土体深层的沉降和水平位移、地层水土压力和水位变化、建筑物及其基础等的沉降和水平位移、盾构隧道结构内力、外力和变形等。 1 监测项目的确定 盾构法隧道施工监测项目的选择主要考虑如下因素: 1. 工程地质和水文地质情况; 2. 隧道埋深、直径、结构型式和盾构施工工艺; 3. 双线隧道的间距或施工隧道与旁边大型及重要公用管道的间距; 4. 隧道施工影响范围内现有房屋建筑及各种构筑物的结构特点、形状尺寸及其与隧道轴线的相对位置; 5. 设计提供的变形及其其他控制值及其安全储备系数。各种盾构隧道基本监测项目确定的原则参见表2。

根据本工程的具体情况、人员安排及经费投入等因素综合考虑,本工程的盾构隧道施工监测内容主要为地面沉降监测、隧道沉降监测、建筑物沉降(裂缝)监测和过江段地形变化监测。在盾构推进起始段100米范围内进行以土体变形和隧道结构为主的监测,土体变形监测包括土体深层垂直和水平位移、地下水位监测,隧道结构监测主要为隧道收敛位移。 2 监测点的布设和监测方法 2.1 地面沉降监测点的布设和监测方法 在位于隧道推进方向上,在30m范围内沿隧道中心线每3m布置1个沉降监测点,同时距井壁6m及15m处各布置1条沉降监测断面,此断面在轴线左右各布4点,间距分别为距离隧道中轴线2m、5m、8m、12m;在进洞段20m~100m范围内沿隧道中心线每4m布置1个沉降监测点;在100m以后范围内沿隧道中心线每5m布置1个沉降监测点, 距井壁30m、50m、75m处各布置1条沉降监测断面,断面点间距同上;以后每50m布置1个断面。轴线点编号,左线以AZ001为轴线起点编号,右线为AY001作为起点编号;断面测点编号,根据断面测点所处轴线的方向,由N(北)向S(南)编号。地面沉降测点如遇到江河或水塘,则采用水深测量方法;如周围无建筑物或场地比较空旷,则横剖面间隔可加大至50m。地面沉降测点的埋设采用标准地表桩,必须将其埋入原状土,并做好井圈和井盖。在坚硬的道面上埋设地表桩,应凿出道面和路基,将地表桩埋入原状土,或钻孔打入1m以上的螺纹钢筋做地表观测桩,并同时打入保护钢管套。 为布设轴线点,沿隧道轴线附近布设一条闭合平面控制导线,将轴线点放样到地面上。由于移交的水准点比较分散,所以在沿途较稳定地区埋设5~10个水准控制点。测量仪器采用SDZ2水准仪+铟钢尺。观测方法采用精密水准测量方法。基点和附近水准点联测取得初始高程。观测时各项限差宜严格控制,每测点读数高差不宜超过0.3mm,对不在水准路线上的观测点,一个测站不宜超过3个,如超过时,应重读后视点读数,以作核对。首次观测应对测点进行连续两次观测,两次高程之差应小于±1.0mm,取平均值作为初始值。 在条件许可的情况下,尽可能的布设导线网,以便进行平差处理,提高观测精度,水准线路闭合差应小于±0.3(mm)(N为测站数),然后按照测站进行平差,求得各点高程。施工前,由基点通过水准测量测出隆陷观测点的初始高程H0,在施工过程中测出的高程为Hn。则高差△H=Hn-H0即为隆陷值。 2.2 隧道沉降监测点的布设和监测方法 隧道沉降由衬砌环的沉降反映出来,衬砌环的沉降监测是通过在各衬砌环

盾构施工控制测量方案

杭州市地铁2号线一期工程SG2-3标 杭发厂站—人民广场站 盾构施工控制测量方案 编制: 审核: 批准: 中铁隧道集团有限公司 杭州市地铁2号线一期工程SG2-3标项目经理部 二○一一年七月

一、编制依据 1、杭州市地铁2号线工程杭发厂站~人民广场站区间施工设计图及有关说明; 2、《地下铁道、轻轨交通工程测量规范》GB50308—2002; 3、《城市测量规范》CJJ8—99; 4、《新建铁路工程测量技术规范》TB10101—99; 5、《城市轨道交通工程测量规范》GB50308-2008; 6、《建筑变形测量规范》JGJ8-2007; 7、《工程测量规范》GB50026-93; 8、《市政地下工程施工及验收规程》DGJ08-236-1999; 9、《盾构法隧道施工及验收规范》GB50446-2008; 10、杭州地铁公司发布的地铁工程施工测量管理细则。 二、工程概况 2.1、工程位置 本工程位于杭州市萧山区,其中杭发厂站-人民广场站区间为2号线全地下盾构区间,盾构从人民广场南端头井始发沿市心中路下掘进,先后旁穿北河上的泰安桥和长廊顶河上的华荣桥,抵达杭发厂站北端头后调头,再次始发掘进至人民广场南端头。盾构区间平面位置详见图1.1《工程平面位置图》。

图1.1 工程平面位置 2.2、设计情况 【杭~人】区间起讫里程为上行线SDK5+665.328~SDK6+350.666(下行线XDK5+665.328~XDK6+350.666),区间上行线长685.338m(下行线长685.863m)。区间上行线及下行线由直线段和二组缓和曲线组成,曲线半径均为1000m、1500m、。区间上行线及下行线隧道均以0坡出站后以22‰的下坡到达区间最低点后,上行线以21.6‰的上坡(下行线线以21.56‰的上坡),最后以2‰的上坡进站。线路呈节能V型。本区间竖曲线半径最大为5000m,最小为3000m。隧道拱顶埋深为10.2~15.6m。 2.3、技术标准 1)结构设计使用年限为100年。 2)结构的安全等级为一级。 3)结构按7度抗震设防。 4)结构设计按6级人防验算。 5)衬砌结构变形验算:计算直径变形≤2‰D(D为隧道外径)。 6)管片结构允许裂缝开展,但裂缝宽度≤0.2mm。 7)结构抗浮安全系数不得小于1.05。 8)盾构区间隧道防水等级为二级。 三、施工测量流程 仪器检测→交桩及控制点复测→测量方案及审批→机载仪器测量→人工复测→监理、建设方复测→施工过程中复测→竣工测量。 四、施工平面控制测量 4.1、施工平面控制网的布置原则 (1)、工程测量放样的程序,遵守由总体达到局部的原则; (2)、控制点应满足整体控制要求; (3)、控制点应埋设在牢固不易破坏的位置; (4)、控制点相互之间必须通视,不能满足通视要求应合理设置工作点; (5)、控制点数据采集后需进行闭合,并进行平差计算; (6)、严格控制限界要求,满足设备安装要求,放样时需掌握“宁大勿小”

地铁隧道盾构法施工中的地面沉降问题探析

地铁隧道盾构法施工中的地面沉降问题探析 摘要:随着我国经济的高速发展,我国地铁高速发展,盾构法具有不影响地面 交通、对周围建(构)筑物影响小、适应复杂地质条件、施工速度快等众多优点而 在地铁工程建设中广泛应用。但盾构法隧道工程是在岩土体内部进行的,无论其埋深大小,开挖施工都不可避免地会对周围土层产生扰动,从而引起地面沉降(或隆起),危机邻近建筑物或地下管道等设施的安全。因此,施工能产生多大的沉降或隆起, 会不会影响相邻建筑物的安全,是地铁隧道盾构施工中最关键的问题。要在地铁工程施工前对工程可能引起的地面沉降问题有所估计,就首先需要了解盾构法施工引起的地面沉降的一般规律和机理,进而提出相应的安全判别标准和控制原则,达到 事先防控的目的。 关键词:地铁隧道;盾构法;地面沉降 引言 随着城市交通事业的高速发展,在地铁施工中盾构施工最为普遍,地铁施工引发的地面 沉降问题逐渐受到了人们的重视,怎样对盾构施工中的地面沉降问题进行合理的预测和防范,成为了地铁盾构施工亟需解决的重要问题。本文主要阐述了有关地铁隧道盾构法施工中的地 面沉降问题研究。 1地铁隧道盾构施工引起地面沉降主要影响因素分析 1.1覆土厚度H和盾构外径D的影响 在地铁施工过程中隧道盾构技术非常重要,盾构外径越大,由盾构施工引起的单位长度的 地层损失就越大,在相同地面沉降槽宽度下,最大地面沉降也随着增大;而隧道覆土厚度越大,则 最大地面沉降值就会越小,但地面沉降槽宽度会越大。最大地面沉降随覆土厚度H与盾构外径 D的比值即H/D的增大而减小。 1.2盾构到达时的地层沉降,开挖面前的沉降或隆起 在地铁隧道施工过程中,沉降是非常重要的,自开挖面距观测点约3m-10m时起,直至开 挖面位于观测点正下方之间所产生的隆起或沉降现象。实际施工过程中设定的盾构土压舱压 力很难与开挖面土体原有土压力达到完全的平衡,多因土体应力释放或盾构反向土仓压力引起 的土层塑性变形所引起。 1.3盾构穿越土层性质 隧道开挖在软土层中,主要的土层性质有砂质粉土、淤泥质粘性土、砂土层以在不同的 土层穿越中对地面沉降也有不同的影响。在保持其他工艺条件都不变的情况下,穿越砂土层 相对于黏土层来说,其沉降槽宽度的系数也更小,因此沉降量也是最大的。设地层损失率为2%,盾构埋深为 10m,盾构半径为 3.2m,计算分析穿越不同土层的宽度系数与沉降量的关系。通过计算分析后可知,在穿越不同土质时地面沉降效应也不同,穿越黏土时的沉降槽宽 系数最大,对地面沉降影响的范围也最大,穿越砂质粉土层,宽度系数比黏土层小,沉降量 显著,在穿越砂土地面时沉降量最大。 1.4盾尾间隙沉降 隧道施工过程中,地表沉降是由于地铁盾尾通过测点后产生的,一般的范围约在后尾通过 测点后0-20m范围。由于盾构外径大于管片外径,管片外壁与周围土体间存在空隙,往往因注 浆不及时和注浆量不足,管片周围土体向空隙涌入,造成土层应力释放而引起地表变形,这一期 间的地表沉降约占总沉降的40%-45%。 2盾构隧道的地面沉降机理 在盾构隧道施工开挖的过程中,地面沉降是由于面的附加应力、应力释放等引起地层产 生的弹塑性变形。隧道施工所引起的地面沉降,主要包括开挖卸载时开挖面周围土体向隧道内 涌入所引起的地面沉降,支护结构背后的空隙闭合所引起的地面沉降,管片衬砌结构本身变形 所引起的地面沉降以及隧道结构因整体下沉所引起的地面沉降,可称为开挖地面沉降。盾构法 隧道在施工期的地面沉降可认为主要由开挖沉降、固结沉降和次固结沉降组成,而次固结沉降

XX地铁施工测量方案

青岛地铁测量施工方案 目录 第一章.工程概况 第二章.测量作业任务和内容 第三章.作业依据第四章.施工测量技术方案第五章.测量人员组织第六章.使用仪器设备第七章.测量精度质量保证措施

第一章、工程概况 本标段主要工程内容有清江路站、清江路站?双山站区间,1站 1 区间。清江路站位于清江路与哈尔滨路交汇附近,是 3 号线的中间 站,车站主体位于哈尔滨路下方,车站为地下二层10 米岛式暗挖车站,地下一层为站厅层,站厅由中部的公共区及两端的设备管理用房两部分组成;地下二层为站台层,由设备管理用房区、乘车区及轨道区三部分组成。车站中心里程为 K12+395.000,车站规模189.00 X 20.158m。车站共设3处出入口、2处风亭、1处无障碍出入口、1处消防专用出入口。 区间起讫里程K12+516.350?K13+480.500,区间长964.15米,区间隧道采用矿山法施工,断面形式为马蹄形,复合衬砌暗挖结构,区间沿哈尔滨路转入黑龙江路,穿福州路莱钢立交桥,地面为商业、商务办公、居住和商住用地,沿黑龙江路进入双山站。该区间地面覆土9.3m?22.6m,区间线间距13m?18m 区间在 K12+899.765处设施工竖井(兼做活塞风道和联络通道)一座,向清江路站和双山站两个方向左右线四个工作面同时施工;在轨面高程最低处设置排水泵房及横通道,在靠近双山站附近右线设停车线一处, 停车线为单洞双线马蹄形断面,长228.435 米,其他断面为单洞单线隧道,在靠近清江路站附近设置人防门。 第二章、测量作业任务和内容 测量工作是土建工程的重要组成部分,为工程施工提供准确的定

南京地铁施工测量管理制度

测量 管理制度 编制人: 审核人: 中铁电气化局南京地铁四号线T A06标项目部

施工测量管理制度 一、施工测量的目的,是按设计精度的要求,对工程构筑物的位置进行定位,保证施工建筑物的结构形式和几何尺寸满足设计要求。施工测量工作贯穿于从工程交接桩起至工程竣工交付的全过程,是开展工程施工的基础工作,也是保证工程质量的重要过程。 二、施工测量应以施工承包合同、设计文件、行业测量技术规范(规则)为依据。(附表一) 三、施工测量管理的内容 3.1测量组织机构 测量工作必须坚持复核制,必须遵循测量仪器操作的基本规程,并认真执行,故在开始测量各项工作前,先成立测量工作小组,由项目总工任测量总指挥、专业测量工程师任测量组长,测量过程由测量组长总体负责,组员认真配合。同时,工程部编制各种测量方案、测量制度、技术培训资料等,确保测量工作能顺利进行。

3.2测量组织人员职责(附人员配置表二) 3.2.1项目总工程师 应针对工程项目自身特点,制定施工测量质量目标、测量内外业工作标准、测量仪器管理制度、测绘资料管理制度、测量技术人员工作职责,并监督实施,确保测量人员各尽其责,使测量工作能按规定按要求有条理的实施。 应充分重视测量技术人员的培训工作,组织测量技术人员进行测量技能的培训、学习施工测量规范和施工技术规范,对拟实施的测量方案进行审核。 3.2.2测量主管工程师 项目总工程师应任命一名责任心强,测量技术水平较高的技术人员担任测量主管工程师。测量主管工程师应负责施工测量方案的具体实施、测量仪器的年检、日常检校与维护,及时向项目总工程师汇报工作中出现的问题。 3.2.3测量员 具有胜任测量工作的能力,具备良好的职业道德和能够吃苦奉献的精神;重视和加强自身专业技能的提高,积极认真地学习专业理论,在测量过程中能够按照规范要求进行作业;加强测量仪器的操作训练,以提高测量的精度和作业效率。 3.3测量仪器管理 3.3.1测量仪器的保管和维护 测量仪器应由测量主管工程师指定专人负责保管和维护。在潮湿

浅论上海地铁盾构法施工的隧道后期变形

浅论上海地铁盾构法施工的隧道后期变形 摘要文章以上海市轨道交通M8线淮海路站~复兴路站区间隧道的施工为例,对引起隧道施工后期变形的多种因素进行分析,并阐述了防治措施。 关键词盾构法隧道后期变形影响因素防治措施 1 概述 在上海地铁隧道施工过程中,经常发现已拼装成环的隧道在刚离开盾尾或脱离盾尾3~4环后,就发生环面不平整现象,即D块管片滞后于B1、B2块管片,B1、B2块管片滞后于L1、L2块管片,从而产生管片角部碎裂,影响隧道的施工质量。 通过对环缝错位现象的分析,认为这种现象是由于成环管片在出盾尾后发生了隧道的后期变形(上浮或沉降)而导致的。以上海轨道交通M8线复兴路站~淮海路站区间隧道施工的有关数据为依据,阐述影响隧道后期变形的各种因素,并介绍相应的防治措施。 2 工程概况 上海轨道交通M8线复兴路站~淮海路站区间隧道起始于复兴路站北端头井,止于淮海路站南端头井,推进里程为SK20+236.595~SK19+409.846,全长826.749 m,在SK19+785.640处设有1条联络通道。土压平衡盾构机由复兴路站北端头井下井,出洞后上行线沿西藏南路往北推进,途径自忠路、方浜路、浏河路、会稽路、寿宁路、桃源路、淮海路,穿越众多管线后到淮海路站南端头井。盾构机在淮海路站端头井内调头后,下行线沿西藏南路往南推进到复兴路站北端头井(见图1)。 图1 区间隧道示意图 3 工程地质 工程地质是影响隧道后期变形的主要因素之一。 本工程隧道穿越的土层为④淤泥质粘土层、⑤1粉质粘土层,各土层性能指标及特征见表1。

4 影响隧道后期变形的主要原因及分析 4.1 设计轴线 复兴路站~淮海路站区间隧道最大坡度为-11.675‰,隧道顶覆土厚9.0~16.3 m。上、下行线隧道推 进竖向轴线坡度见表2。

地铁隧道盾构法施工

地铁隧道盾构法施工 导语:盾构法施工是一种机械化和自动化程度较高的隧道掘进施工方法,从20世纪60年代开始,西方发达国家大量将这种技术应用于城市地铁和大型城市排水隧道施工。我国近年来也开始在城市地铁隧道、越江越海隧道、取排水隧道施工中采用此项技术,以替代原来落后的开槽明挖或浅埋暗挖等劳动密集型施工方法。 关键词:地铁盾构施工盾构施工技术盾构施工测量点击进入VIP充值通道 地铁盾构机分类及组成 地铁盾构机根据其适用的土质及工作方式的不同主要分为压缩空气式、泥浆式,土压平衡式等不同类型。盾构机主要由开挖系统、推进系统排土系统管片拼装系统、油压、电气、控制系统、资态控制装置、导向系统、壁后注浆装置、后方台车、集中润滑装置、超前钻机及预注浆、铰接装置、通风装置、土碴改良装置及其他一些重要装置如盾壳、稳定翼、人闸等组成。海瑞克公司在广州地铁使用的典型土压平衡式盾构机为主机结构(盾体及刀盘结构)断面形状:圆形、用钢板成型制成,材料为:S335J2G3。主要由已下部分构成:刀盘、主轴承、前体、中体、推进油缸、

铰接油缸、盾尾、管片安装机。主机外形尺寸:7565mm(L)X6250(前体)X6240(中体)X6230(盾尾)。 ①压缩空气式盾构 1886 年Greatbhad 首次在盾构掘进隧道中引了这种工法,该工法利用压缩空气使整个盾构都防止地下水的侵入, 它可在游离水体下或地下水位下运作。其工作原理是利用用压缩空气来平衡水压和土压。传统的压缩空气式盾构要求在隧道工作面和止水隧道之间封闭一个相对较大的工作腔,大部分工人经常处于压缩空气下, 这会对掘进隧道和衬砌造成干扰,为了解决这些问题,又出现了用无压工作腔及全断面开挖的压缩空气式盾构和带有无压工作腔及部分断面开挖的压缩空气式盾构等。 ②土压平衡式盾构 20 世纪70 年代日本就开发土压平衡式盾构,不用辅助的支撑介质,切割轮开挖出的材料可作为支撑介质。该法用旋转的刀盘开挖地层,挖下的渣料通过切割轮的开口被压入开挖腔,然后在开挖腔内与塑性土浆混合。推力由压力舱壁传递到土浆上。当开挖腔内的土浆不再被当地的土和水压固化时就达到平衡。如果土浆的支撑压增大超过了平衡,开挖腔的土浆和在工作面的地层将进一步固化。与泥浆式盾构相比优点在于:无分离设备在淤泥或粘土地层中使用,覆盖层浅时无贯穿浆化的支撑泥浆泄露的危险。 ③泥浆式盾构 1912 年,Grauel 首次建造了泥浆式盾构。该法可以适用于各种松

地铁施工测量技术方案

第15章施工测量 施工测量是标定和检查施工中线方向、测设坡度和放样建筑物,测量是施工的导向,是确保工程质量的前提和基础。地铁工程施工测量的施测环境和条件复杂,要求的施测精度又相当高,必须精心施测和进行成果整理,工程测量成果必须符合相关规范的要求。 15.1 施工测量技术要求 1、施工测量按招标文件和施工图纸、《城市测量规范》CJJ8、《地下铁道、轻轨交通工程测量规范》GB50308及《工程测量规范》GB50026的有关规定执行。 2、对甲方提供的控制点进行检测,符合精度要求后再进行工程的施工测量。 3、对整个工程场区按施工需要布设精密导线平面控制网(如采用原有控制网作为场区控制网时,要先复核检查,符合精度要求后方能取用)。 4、场区内按施工需要布设高程控制网,并应采用城市二等水准测量的技术要求施测,其路线高程闭合差应在±8L mm(L为线路长度,以km计)之内。 5、北京地铁工程隧道开挖的贯通中误差规定为:横向±50mm、竖向±25mm,极限误差为中误差的2倍,即纵向贯通误差限差为L/5000(L为贯通距离, 以km计)。 北京地铁工程平面与高程贯通误差分配表15-1 15.2 施工测量特点 1、车站包括主体结构、出入口、换乘通道和风道。采用明、暗挖相结合的施工方法,施工工艺复杂,工序转换快,地下施测条件差,测量工作量大。 2、地面导线控制网和高程控制网由地面传递到地下,必须保证精度,且要布设形成检测条件并经常复测控制点。 3、对于车站主体结构,净宽尺寸在建筑限界之外,还应考虑如下的加宽量:50mm综合施工误差+H/150钻孔灌注桩施工误差及水平位移。 4、车站钢管柱的位置,其测设允许误差为±3mm。钢管柱安装过程应检测其垂直度,安装

地铁施工测量技术方案

第15章施工测量 施工测量是标定和检查施工中线方向、测设坡度和放样建筑物,测量是施工的导向,是确保工程质量的前提和基础。地铁工程施工测量的施测环境和条件复杂,要求的施测精度又相当高,必须精心施测和进行成果整理,工程测量成果必须符合相关规范的要求。 15.1 施工测量技术要求 1、施工测量按招标文件和施工图纸、《城市测量规范》CJJ8、《地下铁道、轻轨交通工程测量规范》GB50308及《工程测量规范》GB50026的有关规定执行。 2、对甲方提供的控制点进行检测,符合精度要求后再进行工程的施工测量。 3、对整个工程场区按施工需要布设精密导线平面控制网(如采用原有控制网作为场区控制网时,要先复核检查,符合精度要求后方能取用)。 4、场区内按施工需要布设高程控制网,并应采用城市二等水准测量的技术要求施测,其路线高程闭合差应在±8L mm(L为线路长度,以km计)之内。 5、北京地铁工程隧道开挖的贯通中误差规定为:横向±50mm、竖向±25mm,极限误差为中误差的2倍,即纵向贯通误差限差为L/5000(L为贯通距离, 以km计)。 北京地铁工程平面与高程贯通误差分配表15-1 Array 15.2 施工测量特点 1、车站包括主体结构、出入口、换乘通道和风道。采用明、暗挖相结合的施工方法,施工工艺复杂,工序转换快,地下施测条件差,测量工作量大。 2、地面导线控制网和高程控制网由地面传递到地下,必须保证精度,且要布设形成检测条件并经常复测控制点。 3、对于车站主体结构,净宽尺寸在建筑限界之外,还应考虑如下的加宽量:50mm 综合施工误差+H/150钻孔灌注桩施工误差及水平位移。 4、车站钢管柱的位置,其测设允许误差为±3mm。钢管柱安装过程应检测其垂直度,

地铁隧道测量施工方案

盾构隧道监测的对象主要为土体介质、隧道结构和周围环境,监测的部位包括地表、土体内、盾构隧道结构、以及周围道路、建筑物等,监测类型主要是地表和土体深层的沉降和水平位移、地层水土压力和水位变化、建筑物及其基础等的沉降和水平位移、盾构隧道结构内力、外力和变形等。 1 监测项目的确定 盾构法隧道施工监测项目的选择主要考虑如下因素: 1. 工程地质和水文地质情况; 2. 隧道埋深、直径、结构型式和盾构施工工艺; 3. 双线隧道的间距或施工隧道与旁边大型及重要公用管道的间距; 4. 隧道施工影响范围内现有房屋建筑及各种构筑物的结构特点、形状尺寸及其与隧道轴线的相对位置; 5. 设计提供的变形及其其他控制值及其安全储备系数。各种盾构隧道基本监测项目确定的原则参见表2。

根据本工程的具体情况、人员安排及经费投入等因素综合考虑,本工程的盾构隧道施工监测内容主要为地面沉降监测、隧道沉降监测、建筑物沉降(裂缝)监测和过江段地形变化监测。在盾构推进起始段100米范围内进行以土体变形和隧道结构为主的监测,土体变形监测包括土体深层垂直和水平位移、地下水位监测,隧道结构监测主要为隧道收敛位移。 2 监测点的布设和监测方法 2.1 地面沉降监测点的布设和监测方法 在位于隧道推进方向上,在30m范围内沿隧道中心线每3m布置1个沉降监测点,同时距井壁6m及15m处各布置1条沉降监测断面,此断面在轴线左右各布4点,间距分别为距离隧道中轴线2m、5m、8m、12m;在进洞段20m~100m范围内沿隧道中心线每4m布置1个沉降监测点;在100m以后范围内沿隧道中心线每5m布置1个沉降监测点, 距井壁30m、50m、75m处各布置1条沉降监测断面,断面点间距同上;以后每50m布置1个断面。轴线点编号,左线以AZ001为轴线起点编号,右线为AY001作为起点编号;断面测点编号,根据断面测点所处轴线的方向,由N(北)向S(南)编号。地面沉降测点如遇到江河或水塘,则采用水深测量方法;如周围无建筑物或场地比较空旷,则横剖面间隔可加大至50m。地面沉降测点的埋设采用标准地表桩,必须将其埋入原状土,并做好井圈和井盖。在坚硬的道面上埋设地表桩,应凿出道面和路基,将地表桩埋入原状土,或钻孔打入1m以上的螺纹钢筋做地表观测桩,并同时打入保护钢管套。 为布设轴线点,沿隧道轴线附近布设一条闭合平面控制导线,将轴线点放样到地面上。由于移交的水准点比较分散,所以在沿途较稳定地区埋设5~10个水准控制点。测量仪器采用SDZ2水准仪+铟钢尺。观测方法采用精密水准测量方法。基点和附近水准点联测取得初始高程。观测时各项限差宜严格控制,每测点读数高差不宜超过0.3mm,对不在水准路线上的观测点,一个测站不宜超过3个,如超过时,应重读后视点读数,以作核对。首次观测应对测点进行连续两次观测,两次高程之差应小于±1.0mm,取平均值作为初始值。 在条件许可的情况下,尽可能的布设导线网,以便进行平差处理,提高观测精度,水准线路闭合差应小于±0.3(mm)(N为测站数),然后按照测站进行平差,求得各点高程。施工前,由基点通过水准测量测出隆陷观测点的初始高程H0,在施工过程中测出的高程为Hn。则高差△H=Hn-H0即为隆陷值。 2.2 隧道沉降监测点的布设和监测方法 隧道沉降由衬砌环的沉降反映出来,衬砌环的沉降监测是通过在各衬砌环

广州轨道交通施工测量管理细则(第三版)

广州轨道交通施工控制测量管理细则 §1 施工测量质量管理目标和基本质量指标 1.1 施工测量质量管理目标是确保全线建筑物、构筑物、设备、管线安装按设计准确就位,在线路上不产生因施工控制测量、放样测量超差而引起修改线路设计从而降低行车运营标准。 1.2 质量指标 1.2.1在任何贯通面上,地下测量控制网的贯通中误差,横向不超过±50mm,竖向不超过±25mm。 1.2.2 隧道衬砌不侵入建筑限界,设备不侵入设备限界。 1.2.3建(构)筑物,装修和设备、管线的竣工形(体)位(置)误差满足《城市轨道交通工程测量规范》GB50308—2008、《地下铁道工程施工及验收规范》GB50299—1999和广州轨道交通施工验收标准规定。 §2主要使用的测量规范 轨道交通施工测量主要参照以下规范执行: ●《城市轨道交通工程测量规范》GB50308—2008 ●《城市测量规范》CJJ8—99 ●《新建铁路工程测量规范》TB10101—99 ●《工程测量规范》GB50026—93 ●《建筑变形测量规程》JGJ/T 8—97 ●《全球定位系统(GPS)测量规范》GB/T 18314—2001 ●国家其他测量规范、强制性标准 §3轨道交通施工测量主要内容 轨道交通施工测量按服务性质分类可以分为施工控制测量、细部放样测量(高架工程的桩基础、墩<柱>位、明挖基坑角点测量及铺轨基标测量)、竣工测量和其它测量等作业。 3.1施工控制测量可分为三部分: 3.1.1地面控制测量:维护施工期间地面的平面、高程主控制网完整,维持其可靠、可用;为施工方便加密地面控制点(包括高架工程、地面工程、明挖工程的地面中桩)并维持其可靠、可用。

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技术方案

艮丿丿架安■ 苗沟机就位调试 --------- A 丿- 达- 止加掘逬 洒门螯封陽住妓 盾构札托歆- iVt 汕 涧门处牟站) 1 隆护舞曲除1 头 再次琥程啊试 期门篷刘圈安寢 — "L J V 割门处牢站 再就解1 側护堆凿陈■ 图1盾构隧道施工流程图 地铁盾构法隧道施工技术方案 1.施工流程图 1.1盾构法隧道施工流程图 初蜡掘it 到ii 终点

1.2盾构始发流程图 图2始发流程图 2.盾构机下井 盾构机从盾构工作井吊入,每台盾构机本身自重约 200t ,分解为5块,最 大块重约60t 。综合考虑吊机的起吊能力和工作半径,安排 1台200t 和一台 40t 汽车吊机进行吊入任务。盾构机下井拼装顺序见图 3。 始 发 准 备 拆 除 临 时 墙 掘 进

图3盾构机下井拼装示意图 在吊入盾构机之前,依次完成以下几项工作: 1.将测量控制点从地面引到井下底板上; 2.铺设后续台车轨道; 3.依次吊入后续台车并安放在轨道上; 4.安装始发推进反力架,盾构管片反力架示意图见图4; 5.安装盾构机始发托架,盾构始发托架示意图见图5。

8储口F诧 5*注腿諜 >—£ L27KW 图4盾构管片反力架示意图 3盾构机安装调试 3.1盾构机的安装主要工作 1?盾构机各组成块的连接; 2.盾构机与后续设备及后续台车之间各种线路、管线和机械结构的连接 3.盾构机内管片安装器、螺旋输送器、保园器的安装; 4?台车顶部皮带机及风道管的连接; 5?刀盘上各种刀具的安装。 3.2盾构机的检测调试主要内容 1?刀盘转动情况:转速、正反转; 2?刀盘上刀具:安装牢固性、超挖刀伸缩; 3.铰接千斤顶的工作情况:左、右伸缩;

地铁测量方案

第一章工程概况 本工程段为地铁号线站~ 站区间工程,设计范围为K3+582.820~K4+975.405m,总长1392.585m,左右双线均采用矿山法施工,区间隧道沿造甲街和丰台东大街下方设置,整体呈南北走向,隧道覆土10~19.5m,周边房屋密集;由于单线隧道较长在区间内拟开3个竖井施工,因地面条件的制约每个施工场区都比较狭小,而隧道埋深又较深,给施工中的测量工作带来很大的困难。施工工作面多,测量工作量大,施工期间需要更好的安排测量工作,满足施工需要。

第二章施工测量准备 2.1 施工测量仪器准备 施工测量使用仪器表详见表2-1。 表2-1 施工测量使用仪器表 所有测量仪器必须经过计量检测部门检测并且具有检定合格证方可使用。 2.2 施工测量人员组织 公司拟设专业测量队,具体人员配备(所有测量人员必须持有效证件上岗): 测量工程师2名 高级测量放线工2名 测量放线工4名 2.3 施工测量技术要求 1)测量计算工作的要求 依据正确(对原始数据要认真仔细地逐项审阅与校核)、方法科学(各项计算要在规定的表格中进行)、计算有序(各项计算前后有联系时,前者经校核无误后,后者方可开始)、步步校核(各项计算应由不同的人用不同的方法独立进行,结果正确后方可进行下一步工作)、结果可靠(计算中所用的数据应与观测精度相适应,在满足精度的前提下,应及时合理地删除多余数字,以便提高计算速度,多余数字的删除应遵循“四舍、六入、五凑偶”的原则)。 2)测量记录工作的要求 原始真实(不允许抄录)、数字正确(不允许有涂改现象)、内容完整(表头填齐,附有草图和点志记图等)、字体工整。 3)测量观测的精度要求 工程自始至终保持等精度观测,观测人员、记录人员、仪器、测量方法和测量路线等基本保持不变。

地铁施工测量样本

一、 工程概况 本标段为昆明市轨道交通首期工程十三标段, 包括2座车站和3个盾构区间, 分别是金星站、 白云路站、 北辰小区站~金星站区间、 金星站~白云路站区间、 白云路站~昆明北站区间。金星站与白云路车站的主体结构采用明挖法施工, 围护结构采用地下连续墙+内支撑的支护体系。主体结构外侧设全包防水层, 与连续墙一起组成复合墙体系。 本标段工程范围示意见图如下。 二、 工程地质与水文地质概况 1) 地形地貌 昆明市区内地址构造复杂, 但大部分隐伏于盆地松散岩层下, 根据基底构 造图资料, 本区构造地质景观是以经向构造为骨干构造。纬向构造长期活动, 受区域构造应力场中南北向力偶的作用, 同时发育了北东、 北西南构造。 2) 地层岩性描述 本次勘察揭露地层最大深度为50m, 按地层沉积年代、 成因类型将本工程 场地勘察范围内的土层划分为第四系全新人工填土层、 第四系全新统冲洪积层、 第四系上更新统冲湖层、 第四系上更新统坡残积层、 更迭系茅口组灰岩五大类。与本站设计相关的土层自上而下依次为: 第①1层杂填土: 褐灰、 黑灰, 稍密~稍湿, 表层为沥青混凝土, 下含碎石, 局部夹有碎砖块等, 为路基结构层。分布较连续, 厚度1.50~2.40m, 平均厚度 1.69m 。 第②1层粘土: 褐黄色, 湿, 中压缩性, 含云母、 氧化铁, 含少许风化碎 石。局部为粉质粘土。分布较连续, 层顶埋深1.50~1.80m, 厚度0.60~1.50m, 昆明北 北辰小区 金星站 白云路右线长

平均厚度0.95m。 层粘土: 褐灰~深灰色, 湿, 中压缩性, 含少量有机质, 局部为粉质第② 3 粘土。分布较连续, 层顶埋深 2.30~3.30m, 厚度0.50~3.00m, 平均厚度 1.45m。 层粉土: 褐灰~灰色, 稍密, 夹粉砂薄层。分布不连续, 层顶埋深第② 4 1.60~4.00m, 厚度0.80~ 2.30m, 平均厚度1.55m。 第② 层泥炭质粘土: 黑灰~黑, 软塑~可塑, 高压缩性, 有机质含量约5 12~40%, 局部有机质含量大于60%, 相变为泥炭。分布较连续, 层顶埋深 2.20~2.60m, 厚度0.50m。 第③ 层圆砾: 深灰~兰灰、褐黄, 中密。圆形及亚圆形, 级配较差, 砾石 1 成分为砂岩及灰岩, 中等风化。20~25m以上为粉土、粉砂为主要填充物, 以 下以粘性土为充填物。夹卵石、粘性土及粉土夹层, 局部夹有胶结块。连续分 布, 且厚度大, 均未揭穿, 层顶埋深3.30~5.50m。 2层粘土: 褐黄、兰灰、灰, 硬塑, 中压缩性。局部含5~15%砾石, 第③ 1 砾石成分为砂岩及灰岩, 中等风化。分布不连续, 厚度0.40~2.50m, 平均厚度 0.98m; 层顶埋深8.10~37.60m。 3层粉土: 褐灰、灰、深灰, 中密, 局部地段相变为粉砂层, 含砾, 砾第③ 1 石含量3~15%, 局部夹腐木。分布不连续, 厚度0.30~2.60m, 平均厚度 1.33m。 3) 地下水的腐蚀性评价 据在场地内取地下水样水质分析结果, 场地地下水及地表水对混凝土结构 无腐蚀性, 对钢结构具弱腐蚀性, 在Ⅱ类场地条件下对混凝土结构中钢筋无腐 蚀性。 4) 不良地质作用 ①液化土层 对已收集资料进行分析、整理、判别② 层粉土粉砂层为液化土层, 其余 4 各层粉土粉砂层属上更新统地层, 判定为不液化土层。

地铁盾构隧道施工技术现状

地铁盾构隧道施工技术现状 发表时间:2019-04-26T15:54:01.173Z 来源:《建筑学研究前沿》2018年第36期作者:张磊翟宝伶[导读] 利用盾构法进行地铁工程建设有利于进行隧道挖掘,而隧道挖掘工作是地铁工程建设中最重要的内容。天津国际工程建设监理公司天津市 300191 摘要:随着我国私家车数量的不断增多,交通拥堵已成为城市发展难题之一,空气质量也受之影响,在一定程度上阻碍了社会的发展。在低碳环保,科学发展观的践行之下,必须行,绿色出行为前提下,乘坐公共交通地铁的出行为交通拥堵疏解了巨大的压力。截止目前,我国的很多城市都已经有了正式的轨道交通,并且各种线路在逐渐的发展和扩大,地铁轨道的运行在我国有了很大的突破和进步,取得了很大的成绩,对于社会的发展具有很强的推动作用。地铁轨道的优点较多,例如地下轨道交通快捷,节约资源,对环境破坏较小,以及可以抵抗自然风雪的伤害,安全舒适。当然地铁的运行离不开地下隧道,盾构法作为地铁工程建设的常用方法,在地铁工程建设中发挥了至关重要的作用。利用盾构法进行地铁工程建设有利于进行隧道挖掘,而隧道挖掘工作是地铁工程建设中最重要的内容。 关键词:地铁;盾构;隧道;施工技术 1盾构的分类 盾构机按其适用的地质情况不同主要分为泥水式盾构机、土压平衡式盾构机等类型。下面简单介绍通用的两种:泥水盾构机是在盾构机前面设置挡板,与刀盘泥浆槽之间形成稳定的开挖面,泥土进入泥浆仓内,形成一个不透水的薄膜在掌子面以此为张力来保持水压力,与开挖面的土压和水压之和保持平衡。挖出的土泥以泥浆的方式运输到地面,然后泥浆和水通过处理设备将泥土分离出来,分离出来的泥水经过处理后再循环利用到开挖中。 土压平衡盾构机是当盾构机向前推时,通过前面刀盘旋转切削土体切下来的土被运到土仓。当土仓被削下来的土填满时,被动土压力与开挖面上的土压和水压力之和保持平衡,因此实现掌子面平衡。 2盾构法施工的原理 盾构法开挖隧道本质上就是在盾构机开挖的过程中同步进行管片的拼装和盾尾注入浆体。根据开挖面所处的土层条件等状况,选择相应的盾构机机型。现在常见的形式包括密闭式、敞开式、土压式、泥水式等类型的盾构机。盾构机开挖隧道的施工过程:1.在隧道两端各建造一个盾构工作井:2.在两端的工作井处分别安装盾构设备;3.当盾构区间较长时宜进行设置中间维修井并在起始工作井处由千斤顶来提供推力使盾构机从开孔位置顶出;4.盾构机进行掘进时是根据设计位置来开挖并在开挖过程中管片安装和土体的排出同步进行;5.对盾尾的注浆必须及时用以固定衬砌管片的位置和减小土体的变形。盾构机在开挖的整体流程下存在的重要技术分为四块:1刀盘切入土层过程2开挖土层过程3盾构时管片衬砌的安装过程和最后的盾尾同步注浆过程。 (a)切入土层:盾构顶推力的大小是由本身存在的千斤顶来进行支持,当盾构的切口环进入到土体所顶进的长度和千斤顶所顶进的距离相对等。 (b)土体开挖:相对应地区的地质特性和机械的类型不同所进行的开挖方式也会有着千差万别。具体开挖方式有:网格式机械切削式敞开式和挤压式等开挖方式。 (c)衬砌拼装:在地质情况或承载力较小时一般会使用衬砌管片预制拼接来施工,同时根据设计要求存在其他的衬砌施工方法例如现浇式和复合式。 (d)盾尾同步注浆:在实际盾构开挖过程中盾构机开挖出的洞口大小比要拼接管片外径还要大一些,所以在盾构继续开挖时前期拼装好的管片会受到周围围岩作用并在盾尾通过后形成盾尾空隙。这种空隙在盾构施工中是一种十分严重的问题,如果没有对空隙及时的进行填充就会严重影响到管片的整体安全性。 3盾构隧道工程施工工艺 3.1盾构机进出洞时作业控制 地铁工程施工人员在进行盾构机的进出洞操作时,必须对作业、操作进行严格控制。利用盾构机挖掘隧道,必然会涉及到盾构机的进出洞,而这一过程的作业控制直接关系到盾构法的施工质量。如果盾构机进出洞操作出现问题,则整个地铁工程建设都有可能失败。为此,施工人员必须充分重视盾构机的进出洞作业控制。通常情况下,盾构机首先进行进洞作业,而后再进行出洞作业。在盾构机进行进洞作业之前,施工人员必须明确地铁隧道的作业路线,避免出现较大的轴线误差。同时,施工人员还应仔细勘察施工路线周围的环境,根据实际情况进行具体的操作。如果存在威胁盾构机施工作业的潜在因素,则必须在作业前制定好预防措施以及应急措施,避免在施工过程中出现重大事故,干扰盾构机的顺利施工。在进行盾构机的出洞作业前,施工人员需彻底审查各项工作,避免存在漏洞影响出洞作业。 3.2盾构机挖掘施工时作业控制 盾构机的挖掘作业是地铁施工盾构法的主要工作,此项作业在地铁工程建设的盾构施工中具有十分重要的作用。在盾构机进行挖掘施工的过程中,应尽量避免挖掘施工对周边土层产生较大影响,以保证开挖土层的稳定性。要减少盾构机挖掘施工对周边土层稳定性产生的影响,施工人员必须在挖掘作业前科学合理地调整盾构机的参数。同时,在挖掘施工过程中,使用人员应注意盾构机的姿态,避免盾构机因姿态问题影响挖掘工作的顺利进行。盾构机的姿态不仅会影响挖掘工作的进行,还会影响管片作业的拼装质量。为此,在盾构机的挖掘施工过程中必须严格控制其姿态。盾构机的姿态控制与注浆方式、盾构坡度等各项参数具有十分密切的关系,只有在控制好各项参数的前提下才能真正实现对盾构机姿态的有效控制。盾构机各项参数量的控制需要建立在可靠的测量工作之上,在进行可靠性的测量之后,才能实现对盾构机各项参数量的精准控制。此外,要将土体压力控制在可控范围内,还需严格调控盾构机的前进速度和排土容量。 3.3推进操作和纠偏 盾构在实施的时候,首先需要对围岩的范围进行观察,以此确保实施的安全性,实时对千斤顶的行程和推力进行观察,沿既定路线方向准确掘进。因此,有必要正确推进盾构的运行,随时纠正偏差。盾构掘进过程中,为了保证盾构掘进功能在计划路线上的正确性,防止偏移、偏转和俯仰,应适当调整千斤顶行程和推力,破坏不方便掘进面的稳定性。一般采用开挖后立即推进。或者一边挖一边推。因此,任何时候都要正确操作屏蔽体,任何时候都要进行纠偏的路线。

北京地铁测量施工方案

地铁十号线二期工程03标成宋区间工程 测量施工方案 编制人: 审核人: 审批人: 北京城建集团有限责任公司地铁十号线 工程项目经理部 2011年1月10日

目录 一、编制依据 (2) 二、工程概况及结构特点 (2) 1、工程概况 (2) 三、施工测量体系 (2) 1、测量复核制度 (2) 2、仪器设备的配置与核定情况 (3) 3、人员配备及资质 (3) 4、测量精度 (3) 5、测量控制网的布置 (4) 四、施工测量部分 (4)

1、隧道明挖平面、高程控制桩的布设与测量 (4) 2、工程控制桩布设与测量 (4) 3、隧道明挖的施工测量 (5) 4、桩点保护措施 (6) 5、测量成果检验程序 (6) 6、围护桩测量程序 (6) 一、编制依据: 1、《地下铁道、轻轨交通工程测量规范》GB50308-2008 2、《新建铁路工程测量技术规范》TB10101-99 3、《城市测量规范》CJJ8-99 4、《工程测量规范》GB50026-93 5、《建筑变形测量规范》JGJ/T8-97

6、城建集团技术管理规定 7、北京地铁10号线二期3标工程施工组织设计及施工方案 8、北京地铁10号线二期3标工程施工图纸 二、工程概况及结构特点: 1、工程概况 1、北京地铁10号线二期是一条位于城市西南部的线路,线路连通海淀、丰台、朝阳三个行政区,并与线网中的多条线路交叉换乘。所以10号线二期不仅本身是一条城市快速轨道交通线路,同时在线网中起到重要的联络作用。本段区间位于规划中的石榴庄路下方,规划中的石榴庄路是一条重要的东西方向的城市主干道。 2、成寿寺站~宋家庄站明开挖区间右线起讫里程为右 K30+579.263右K30+368.883,区间隧道全长210.38m。结构底板埋深约为15.50~18.90m,。该隧道采用明挖法施工。 3、本段区间地面标高38.02~39.39m,明挖区间结构为单层多跨框架结构,区间结构覆土厚度约为8.96-10.48m。区间为现浇钢筋混凝土单层多跨框架结构,结构外设置外包防水层。基坑围护结构采用钻孔灌注桩,基坑内设钢支撑+临时钢立柱。 三、施工测量体系 1、测量复核制度 ①严格执行开工前业主设计交接桩制度,接桩后必须对导线点进行复测和保护,复测成果报监理审批合格后使用。 ②利用已知点进行引测,工程放样前必须坚持先检测后使用的原

相关文档
最新文档