高二数学直线和圆的方程单元测试(含答案)

合集下载

(完整版)直线与圆的方程测试题(含答案)

(完整版)直线与圆的方程测试题(含答案)

直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是,则斜率是( )32πA. B. C. D.3-3333-34. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,)D. 直线倾斜角的范围是(0,)2ππ5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是()A.x+2=0B.x-2=0C.y+2=0D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+=0与直线6x-2y+1=0之间的位置关系是( )21A.平行B.重合C.相交不垂直D.相交且垂直10.下列命题错误的是( )A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=x-1垂直,则a=( )21A.2B.-2C.D. 2121-13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是()A.1 B. C. D.35115315. 圆心在( -1,0),半径为5的圆的方程是()A.(x+1)2+y 2= B. (x+1)2+y 2=255C. (x-1)2+y 2= D. (x-1)2+y 2=25516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,则k 的取值范围是( )A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,则△ABC 的面积是()A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。

第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一

第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一

第二章直线和圆的方程专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一第二章直线和圆的方程专题测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息。

2.请将答案正确填写在答题卡上。

第I卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线 $ $l_1\parallell_2$,则实数 $k=$()。

A。

$-2$B。

$-1$C。

$1$D。

$2$2.(2020·XXX高一月考)直线$l_1:(a-2)x+(a+1)y+4=0$,$l_2:(a+1)x+ay-9=0$ 互相垂直,则 $a$ 的值是()。

A。

$-0.25$B。

$1$C。

$-1$D。

$1$ 或 $-1$3.(2020·XXX高一月考)直线 $l:(m-1)x-my-2m+3=0$($m\in R$)过定点 $A$,则点 $A$ 的坐标为()。

A。

$(-3,1)$B。

$(3,1)$C。

$(3,-1)$D。

$(-3,-1)$4.(2020·广东高二期末)设 $a\in R$,则“$a=1$”是“直线$ax+y-1=0$ 与直线 $x+ay+1=0$ 平行”的()。

A。

充分不必要条件B。

必要不充分条件C。

充分必要条件D。

既不充分也不必要条件5.(2020·黑龙江高一期末)若曲线 $y=4-x^2$ 与直线$y=k(x-2)+4$ 有两个交点,则实数 $k$ 的取值范围是()。

A。

$\left[\frac{3}{4},1\right]$B。

$\left[\frac{3}{4},+\infty\right)$C。

$(1,+\infty)$D。

$(1,3]$6.(2020·XXX高三其他)已知直线 $x+y=t$ 与圆$x+y=2t-t^2$($t\in R$)有公共点,则 $\frac{t(4-t)}{9}$ 的最大值为()。

(完整版)高二数学-直线和圆的方程-单元测试(含答案).doc

(完整版)高二数学-直线和圆的方程-单元测试(含答案).doc

高二直线和圆的方程单元测试卷班级: 姓名:一、选择题: 本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线 l 经过 A (2, 1)、B ( 1,m 2) (m ∈ R)两点,那么直线 l 的倾斜角的取值范围是A . [0, )B . [ 0, ] [3 C . [0, ], )444D . [0, ](, ) 422. 如果直线 (2a+5) x+( a - 2)y+4=0 与直线 (2- a)x+(a+3)y - 1=0 互相垂直,则 a 的值等于 A . 2 B .- 2C . 2,- 2D .2,0,- 2 3.已知圆 O 的方程为 x 2+ y 2= r 2,点 P ( a ,b )( ab ≠ 0)是圆 O 内一点,以P为中点的弦所在的直线为 m ,直线 n 的方程为 ax +by = r 2,则A .m ∥n ,且 n 与圆 O 相交B . m ∥ n ,且 n 与圆 O 相 离C . m 与 n 重合,且 n 与圆 O 相离D .m ⊥ n ,且 n 与圆 O 相离4. 若直线 ax2by 2 0( a,b 0) 始终平分圆 x 2y 2 4x 2 y8 0 的周长,则12a b的最小值为A .1B . 5 C.4 2D . 3 225. M (x 0 , y 0 ) 为 圆 x 2 y 2a 2 ( a 0) 内 异 于 圆 心 的 一 点 , 则 直 线x 0 x y 0 y a 2 与该圆的位置关系为A .相切 B.相交C.相离 D .相切或相交6. 已知两点 M ( 2,- 3), N (- 3,- 2),直线 L 过点 P ( 1, 1)且与线段 MN 相交,则直线 L 的斜率 k 的取值范围是A .3≤k ≤ 4B . k ≥ 3或 k ≤- 4C . 3≤ k ≤ 4D .-34444≤ k ≤45) 2 1)27. 过直线 y x 上的一点作圆 (x ( y 2 的两条切线 l 1, l 2 ,当直 线 l 1, l 2 关于 yx 对称时,它们之间的夹角为A . 30oB . 45oC . 60oD . 90ox y 1 01x 、yy1 0,那么 xy8满足条件4()的最大值为.如果实数2xy 1 0A . 2B. 1C.1D.19 (0, a),1x 2 y224其斜率为 ,且与圆2相切,则 a 的值为.设直线过点A.4B. 2 2C.2D.210.如图, l 1 、 l 2 、 l 3 是同一平面内的三条平行直线,l 1 与 l 2 间的距离是 1,l 2 与 l 3 间的距离是 2,正三角形 ABC 的三顶点分别在 l 1 、l 2 、l 3 上,则⊿ ABC的边长是A. 23 4 63 172 21B.3 C.4D.3一、选择题答案123 45 678910二、填空题: 本大题共 5 小题,每小题 5 分,共 25 分.答案填在题中横线上.11.已知直线 l 1 : x y sin 1 0 , l 2 : 2x siny 1 0 ,若 l 1 // l 2 ,则.12.有下列命题:①若两条直线平行,则其斜率必相等;②若两条直线的斜率乘积为- 1, 则其必互相垂直;③过点(- 1,1),且斜率为 2 的直线方程是y 1 2 ;x1④同垂直于 x 轴的两条直线一定都和 y 轴平行 ;⑤若直线的倾斜角为 ,则 0 .其中为真命题的有 _____________( 填写序号 ).13.直线 Ax + By +C = 0 与圆 x 2+ y 2= 4 相交于两点 M 、 N ,若满足 C 2= A 2+ uuuuruuurB 2,则 OM · ON ( O 为坐标原点)等于 _ .14.已知函数 f ( x) x 22x 3 ,集合 Mx, y f ( x) f ( y) 0 , 集 合 N x, y f ( x) f ( y) 0 , 则 集 合 MN 的 面 积是;15.集合P ( x, y) | x y 5 0,x N*,y N*},Q ( x, y) | 2x y m 0 ,M x, y) | z x y , ( x, y) ( P Q),若z 取最大值时,M(3,1) ,则实数m的取值范围是;三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12 分)已知ABC 的顶点A为(3,-1),AB边上的中线所在直线方程为6x 10 y 59 0, B 的平分线所在直线方程为x 4y 10 0 ,求BC 边所在直线的方程.17.(本小题满分12 分)某厂准备生产甲、乙两种适销产品,每件销售收入分别为 3 千元, 2 千元。

第二章 直线和圆的方程单元检测卷(能力挑战卷)2022高二数学(选择性必修第一册)

第二章  直线和圆的方程单元检测卷(能力挑战卷)2022高二数学(选择性必修第一册)

第二章直线和圆的方程(能力挑战卷)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线1:10l x my ++=和2:420l mx y ++=互相平行,则实数m 的值为()A.2- B.2 C.2± D.2或42.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为()A.22(2)1x y +-= B.22(2)1x y ++= C.22(1)(3)1x y -+-=D.22(2)(3)1x y -+-=3.圆22210x y ax y +-++=与圆221x y +=关于直线1x y -=对称,则实数a 的值为()A.2- B.1 C.2± D.24.设直线y x =222:O x y a +=相交于,A B 两点,且||AB =,则圆O 的面积为()A.π B.2π C.4π D.8π5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为() A.55 B.255 C.355 D.4556.已知,P Q 分别为圆2:(6)(M x y -+-23)4=与圆22:(4)(2)1N x y ++-=上的动点,A 为x 轴上的动点,则||||AP AQ +的最小值为()A.3-3- C.3- D.3-7.已知在平面直角坐标系中,ABC ∆的三个顶点分别是(0,3),(3,3)A B ,(2,0)C ,若直线x a =将ABC ∆分割成面积相等的两部分,则实数a 的值是() A. B.212+ C.313+ D.222-8.我国魏晋时期的数学家刘徽创立了“割圆术,也就是用圆内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长.先作出圆222x y +=的一个内接正八边形,使该八边形的其4个顶点在坐标轴上,则下列4条直线中不是该八边形的一条边所在直线的为()A.1)0x y +-= B.(10x y -+=C.1)0x y -=D.1)0x y -+=二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知圆22:(cos )(sin )1M x y θθ++-=,直线:l y kx =,下面四个命题,其中真命题是()A.对任意实数k 与θ,直线l 与圆M 相切B.对任意实数k 与θ,直线l 与圆M 有公共点C.对任意实数θ,必存在实数k ,使得直线l 与圆M 相切D.对任意实数k ,必存在实数θ,使得直线l 与圆M 相切10.已知点(3,1)M ,圆22:(1)(2)4C x y -+-=,过点M 的圆C 的切线方程可能为()A.30x -= B.20x -= C.3450x y --=D.3450x y +-=11.若曲线1y =+与直线:(l y k x =-2)4+有两个交点,则实数k 的值可以是()A.0.3 B.0.75 C.0.8 D.0.612.已知圆22111:0M x y D x E y F ++++=与22222:0N x y D x E y F ++++=的圆心不重合,直线()()121212:0l D D x E E y F F -+-+-=.下列说法正确的是()A.若两圆相交,则l 是两圆的公共弦所在的直线B.直线l 过线段MN 的中点C.过直线l 上一点(P 在两圆外)分别作圆M 圆N 的切线,切点为,A B ,则||||PA PB =D.直线l 与直线MN 相互垂直三、填空题:本题共4小题,每小题5分,共20分.13.过直线:0l x y +-=上一点P 作圆22:1O x y +=的两条切线,切点分别为,E F ,若60EPF ∠=︒,则点P 的坐标为14.已知0,0a b >>,直线1:(1)l a x y -+-210,:210l x by =++=,且12l l ⊥,则21a b+的最小值为15.已知直线:(4)l y k x =+与圆22(2)4x y ++=相交于,A B 两点,M 是线段AB 的中点,则点M 的轨迹方程为;点M 到直线3460x y +-=的距离的最小值为.(本题第一空分,第二空3分)16.在平面直角坐标系xOy 中,已知点(1,0)A -,(5,0)B .若圆22:(4)()4M x y m -+-=上存在唯一的点P ,使得直线,PA PB 在y 轴上的截距之积为5,则实数m 的值为四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知直线l 过直线250x y +-=与20x y -=的交点.(1)若点(5,0)A 到直线l 距离为3,求直线l 的方程;(2)求点(5,0)A 到直线l 距离的最大值.18.(12分)在下列所给的三个条件中任选一个,补充在下面的横线中,并加以解答.条件①:直线l 与直线4350x y -+=垂直;条件②:直线l 的一个方向向量为(4,3)a =-;条件③:直线l 与直线3420x y ++=平行.已知直线l 过点(1,2)P -,且(1)求直线l 的一般式方程;(2)若直线l 与圆225x y +=相交于,P Q ,求弦长|PQ .注:如选择多个条件分别解答,按第一个解答计分.19.(12分)已知圆22:240C x y x y m ++-+=与y 轴相切,O 为坐标原点,动点P 在圆外,过P 作圆C 的切线,切点为M .(1)求圆C 的圆心坐标及半径;(2)求满足||2||PM PO =的点P 的轨迹方程.20.(12分)已知圆22:(4)4M x y +-=,P 是直线:20l x y -=上的动点,过点P 作圆M的切线PA ,切点为A .(1)当切线PA 的长度为P 的坐标.(2)若PAM △的外接圆为圆N ,试问:当点P 运动时,圆N 是否过定点?若过定点,求出所有的定点的坐标;若不过定点,请说明理由.21.(12分)已知ABC 的三个顶点分别为()20A -,,()20B ,,()02C ,.(1)若过()12P ,的直线y ax b =+将ABC 分割为面积相等的两部分,求b 的值;(2)一束光线从()10E ,点出发射到BC 上的D 点,经BC 反射后,再经AC 反射到x 轴上的F 点,最后再经x 轴反射,反射光线所在直线为l ,证明直线l 经过一定点,并求出此定点的坐标.22.(12分)已知圆22:860C x y x y F +--+=与圆22:4O x y +=相外切,切点为A ,过点()4,1P 的直线与圆C 交于点M ,N ,线段MN 的中点为Q .(1)求点Q 的轨迹方程;(2)若AQ AP =,点P 与点Q 不重合,求直线MN 的方程及AMN 的面积.参考答案1.A 【解析】因为直线1:10l x my ++=和2:420l mx y ++=互相平行,所以2140m ⨯-=,解得2m =或2m =-.当2m =时,1:210l x y ++=与2:2420l x y ++=重合,不符合题意,故2m =-.故选A .2.【解析】方法一(直接法)设圆心坐标为(0,)b ,则由题意知22(01)(2)1b -+-=,解得2b =,故圆的方程为22(2)1x y +-=.故选A .方法二(数形结合法)根据点(1,2)到圆心的距离为1,作图易知圆心为(0,2),故圆的方程为22(2)1x y +-=.故选A .方法三(验证法)将点(1,2)代人四个选项,可排除B,D ,又圆心在y 轴上,所以排除C .故选A .3.D 【解析】因为圆22210x y ax y +-++=的圆心坐标为,12a ⎛⎫- ⎪⎝⎭,圆221x y +=的圆心坐标为(0,0),所以两圆心的中点坐标为1,42a ⎛⎫- ⎪⎝⎭,又两圆关于直线1x y -=对称,所以点1,42a ⎛⎫- ⎪⎝⎭在直线1x y -=上,所以1142a -+=,解得2a =故选D .4.C 【解析】圆222:O x y a +=的圆心坐标为(0,0),半径为||a ,直线y x =-2圆222:O x y a +=相交于,A B 两点,且||23,AB =∴圆心(0,0)到直线2y x =-的距离22|2|1,1(3)2d a -==∴+=,即24a =,圆的半径||2,r a ==∴圆O 的面积4S π=,故选C.5.B 【解析】因为圆与两坐标轴都相切,且点(2,1)在该圆上,所以可设圆的方程为222()()x a y a a -+-=,所以222(2)(1)a a a -+-=,即2a -650a +=,解得1a =或5a =,所以圆心的坐标为(1,1)或(5,5),所以圆心到直线230x y --=的距离为2212113|2552(1)⨯--=+-或22|2553|2(1)⨯--=+-255,故选B .6.A 【解析】圆22:(4)(2)1N x y ++-=关于x 轴对称的圆为:(N x '+224)(2)1y ++=,则||||AP AQ +的最小值为12MN '--=221053553+-=-,故选A .7.A 【解析】如图所示,易知直线AB 的方程是y =3直线AC 的方程是123x y +=,即32x y +-60=,且直线x a =只与边,AB AC 相交.设直线x a =与AB 交于点D ,AC 交于点E ,则点D ,E 的坐标分别为63(,3),,2a a a -⎛⎫ ⎪⎝⎭,从而6331||3,||222ADE a DE a S AD ∆-=-==.2133||224DE a a a =⋅=(1).又ABC S ∆=1933,22⨯⨯=所以1924ADE ABC S S ∆∆==(2),由(1)-(2)得23944a =,解得a =a =舍去),故选A .8.C 【解析】如图所示,可知(1,1)A B ,(1,1),(C D E -所以,,, AB BC CD DE 所在直线的方程分别为(11)y x y x y x y x =-=-+=+=+,1)0,(1x y x +-=--1)0,1)0y x y x y +=-+=-+=,故选C.9.BD 【解析】由题意知,圆心坐标(cos ,sin )θθ-,圆心M 到直线l 的距离为|sin()|1d θα==+ (其中tan k α=),所以对任意实数k 与θ,直线l 与圆M 有公共点,且对任意实数k ,必存在实数θ,使得直线l 与圆M 相切.故选BD .10.AC 【解析】由题意得圆心(1,2)C ,半径222.(31)(12)r =-+-= 程为3x =,即30x -=.又点(1,2)C 到直线30x -=的距离3d =12,r ==∴直线30x -=是圆C 的切线.当过点M 的圆C 的切线的斜率存在时,设切线方程为1(3)y k x -=-,即130kx y k -+-=,则圆心C 到切线的距离2d ==,解得3,4k =∴切线方程为31(3)4y x -=-,即3450x y --=.综上可得,过点M 的圆C 的切线方程为30x -=或3450x y --=.故选AC.11.BD 【解析】曲线1y =+可化为22(1)4,22x y x +-=- ,1y ,所以曲线1y =+是以(0,1)为圆心,2为半径的半圆.如图,直线:(2)4l y k x =-+恒过点(2,4)A .当直线l 与半圆相切时,圆心到直线l 的距离2d r ==,2=,解得512k =.当直线l 过点(2,1)B -时,直线l 的斜率为4132(2)4-=--.因为曲线1y =+与直线:(2)4l y k x =-+有两个交点,所以实数k 的取值范围为53,124⎛⎤ ⎥⎝⎦.故选BD.12.BD 【解析】A 中,若2112212A F F A F F ⋅=,则()()a c a c --=2(2)c ,即2c a c =-或2c c a =-(舍去),解得15132c a -=≠,所以A 不正确B 中,连接1112,B F B A ,若11290F B A ∠=︒,则由射影定理可得2112OB F O OA =⋅,即2b ca =,所以220c ca a +-=,即210,e e e +-=∈(0,1),解得512e =,所以B 正确;C 中,连接1,PF PO ,若1PF ⊥x 轴,且21//PO A B ,则且直线PO 与直线21A B 的斜率相等,所以2b bac a =--,即b c =,所以2c e a ===,所以C 不正确;D 中,连接122211,,A B A B A B ,则四边形1221A B A B 为菱形,若四边形1221A B A B 的内切圆过焦点12,F F ,则内切圆的圆心为原点,圆心到直线21A B 的距离等于c ,因为直线21A B 的方程为1x y a b+=,即0bx ay ab +-=,所以原点到直线21A B的距离d c ==,222b a c =-,整理得()()2222222a a c c a c -=-,所以42310e e -+=,2(0,1)e ∈,解得232e =,所以1,D 2e -==正确.故选BD.13.【解析】因为60EPF ∠=︒,所以30OPE OPF ∠=∠=︒,因为OE PE ⊥,所以||2||2OP OE ==.设(,),P x x -由||2OP ==,解得x =,故点P的坐标为.14.8【解析】因为12l l ⊥,所以(1)1120a b -⨯+⨯=,即21a b +=.因为0,0a b >>,所以21214(2)224b a a b a b a b a b⎛⎫+=++=++++ ⎪⎝⎭8=,当且仅当4b a a b =,即11,24a b ==时等号成立,所以21a b +的最小值为8.15.22(3)1(4)x y x ++=≠-,2.【解析】由题意知圆22(2)4x y ++=的圆心为(2,0)-,半径2r =,所以圆心(2,0)-到直线:(4)l y k x =+的距离2d ==<.直线:(4)l y k x =+过定点(4,0)-,且点(4,0)-在圆22(2)4x y ++=上,不妨设(4,0),(,)(4)A M x y x -≠-,()11,B x y ,则11242x x y y =+⎧⎨=⎩,将(24,2)x y +代人22(2)4x y ++=,得22(3)1(4)x y x ++=≠-,所以点M 的轨迹是以(3,0)-为圆心,以1为半径的圆(除去点(4,0))A -,则点M 到直线3460x y +-=的距离的最小值为|336|125-⨯--=.16.【解析】根据题意,设点P 的坐标为(,)a b ,则直线PA 的方程为(1)1b y x a =++,其在y 轴上的截距为1b a +,直线PB 的方程为y =(5)5b x a --,其在y 轴上的截距为55b a --.若点P 满足使得直线,PA PB 在y 轴上的截距之积为5,则有5515b b a a ⎛⎫⨯-= ⎪+-⎝⎭,变形可得22(2)b a +-=9,则点P 在圆22(2)9x y -+=上.若圆22:(4)()4M x y m -+-=上存在唯一的点P 满足题意,则圆M 与圆22(2)9x y -+=有且只有一个公共点,即两圆内切或外切.又两圆的圆心距为2,所以两圆外切,所以2425m +=,解得m =.17.【解析】(1)由250 20x y x y +-=⎧⎨-=⎩得21x y =⎧⎨=⎩,所以交点坐标为(2,1).(1分)当直l 的斜率存在时,设l 的方程为1(2)y k x -=-,即12kx y k -+-=0则点A 到直线l3=,解得43k =,所以l 的方程为4350x y --=;(3分)当直线l 的斜率不存在时,直线l 的方程为2x =,符合题意.故直线l 的方程为4350x y --=或2x =(5分)(2)设直线250x y +-=与20x y -=的交点为P ,由(1)可知(2,1)P ,过点P 任意作直线l(如图所示),设d 为点A 到直线l 的距离,则d PA (当l PA ⊥时,等号成立),(8分)由两点间的距离公式可知||PA =..(10分)18.【解析】(1)选条件①.直线4350x y -+=的斜率为4,3(2分)因为直线l 与直线4350x y -+=垂直,所以l 的斜率为34-.(4分)又直线l 过点(1,2)P -,所以直线l 的方程为32(1)4y x +=--,即3450x y ++=.(6分)选条件②.因为直线l 的一个方向向量为(4,3)a =-,所以直线l 的斜率为34-.2分)又直线l 过点(1,2)P -所以直线l 的方程为32(1)4y x +=--,即3450x y ++=.(6分)选条件③.直线3420x y ++=的斜率为34-,因为直线l 与直线3420x y ++=平行,所以直线l 的斜率为34-.(4分)又直线l 过点(1,2)P -,所以直线l 的方程为32(1)4y x +=--,即3450x y ++=(6分)(2)圆225x y +=的半径r =,圆心(0,0)到直线:3450l x y ++=的距离为1d ==,(8分)设PQ的中点为,||2M PM ===,所以||2||224PQ PM ==⨯=(12分)19.【解析】(1)圆22:240C x y x y m ++-+=可化为22(1)(2)x y ++-=5m -所以圆C 的圆心坐标为(1,2)-.又圆C 与y 轴相切,1=即4m =,故圆C 的半径为1.(6分)(2)设(,)P x y ,则22222||||||(1)(2)1PM PC MC x y =-=++--,222||PO x y =+(8分)由于||2||PM PO =,则()2222(1)(2)14x y x y ++--=+,整理得点P 的轨迹方程为221217339x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.(12分)20.(1)(0,0)或168 ,55⎛⎫ ⎪⎝⎭;(2)过定点,定点(0,4)和84,55⎛⎫ ⎪⎝⎭.(1)由题可知圆M 的圆心为(0,4)M ,半径2r =.设(2,)P b b ,因为PA 是圆M 的一条切线,所以90MAP ∠=︒.在Rt MAP △中,222MP AM AP =+,故4MP =.又MP =,4=,解得0b =或85.所以点P 的坐标为(0,0)或168 ,55⎛⎫ ⎪⎝⎭.(2)因为90MAP ∠=︒,所以PAM △的外接圆圆N 是以MP 为直径的圆,且MP 的中点坐标为4,2b b +⎛⎫ ⎪⎝⎭,所以圆N 的方程为()()222244424b b b x b y +-+⎛⎫-+-= ⎪⎝⎭,即()22(24)40x y b x y y +--+-=.由2224040x y x y y +-=⎧⎨+-=⎩,解得04x y =⎧⎨=⎩或8545x y ⎧=⎪⎪⎨⎪=⎪⎩,所以圆N 过定点(0,4)和84,55⎛⎫ ⎪⎝⎭.21.(1)2b =-;(2)证明见解析,()14--,.(1)直线BC 的方程为:20x y―+=,直线y ax b =+只能与BC 、AB 相交,其与BC 的交点为Q 点,由2y ax b x y =+⎧⎨+=⎩得21Q b a y a +=+,0Q y >,直线y ax b =+与x 轴交点为0b R a ⎛⎫- ⎪⎝⎭,,22b a-<<,由12BR BQBA CB =12=,化简得:()2(2)41b a a a +=+,又2b a +=,231280b b ∴-+=,解得:2b =而20a b =->,2b ∴=(2)设()0F m ,,直线AC 的方程为:20x y -+=,直线BC 的方程为:20x y +-=,设()0F m ,关于直线AC 的对称点为()111F x y ,,则111120221m x y y x m +⎧-+=⎪⎪⎨⎪=--⎪⎩,解得()122F m -+,,同理可得1F 关于直线BC 的对称点为()24F m -,,则2F 在直线ED 上,所以直线ED 的斜率为41m --,l ∴的斜率为41m +,l 方程为()41y x m m =-+,即()44m y x y +=-,l ∴过定点()14--,.22.(1)22(4)(2)1x y -+-=;(2)MN :3130x y +-=,AMN S =(1)由题设,22:(4)(3)25C x y F -+-=-,∴(4,3)CC 与圆O 相外切,25+==,可得16F =,即22:(4)(3)9C x y -+-=,又()4,1P 在圆C 内,且在MN 上,MN 的中点为Q ,则CQ MN ⊥,∴Q 在以CP 为直径的圆上,则Q 的轨迹方程为22(4)(2)1x y -+-=.(2)由题设知:OC 交圆O 于A ,则22434x y y x ⎧==+⎪⎨⎪⎩,可得86(,55A ,又AQ AP =,∴,P Q 是以A 为圆心,AP 为半径的圆与Q 轨迹的交点,∴圆A :228629()()555x y -+-=,与Q 轨迹作差,即可得MN 的方程为3130x y +-=,∴C 到MN 的距离为d =||MN =,A 到MN 的距离为246|13|55h +-=∴1||210AMN S h MN =⋅= .。

高二数学直线和圆的方程单元测试

高二数学直线和圆的方程单元测试

高二数学直线和圆的方程单元测试班级 学号 姓名一.选择题(3 ⨯12).1.下列命题正确的是( )A .若直线的斜率存在,则必有倾斜角α与它对应 ;B .若直线的倾斜角存在,则必有斜率与它对应;C .直线的斜率为k ,则这条直线的倾斜角为arctan k ;D .直线的倾斜角为α,则这条直线的斜率为tanα . 2.过点()2,3P 与()1,5Q 的直线PQ 的倾斜角为( ) A .arctan 2 B .()arctan 2- C .2πarctan 2- D .arctan 2π- 3.过点()()2,,,4A m B m -的直线的倾斜角为2πarctan 2+,则实数m 的值为( ) A .2 B .10 C .-8 D .0 4.直线023cos =++y x α的倾斜角的范畴是( )A .]65,2()2,6[ππππB .),65[]6,0[πππC .]65,0[πD .]65,6[ππ5.下列说法中不正确的是( )A .点斜式()11y y k x x -=-适用于不垂直于x 轴的任何直线B .斜截式y kx b =+适用于不垂直于x 轴的任何直线C .两点式112121y y x x y y x x --=--适用于不垂直于x 轴和y 轴的任何直线D .截距式1x ya b+=适用于只是原点的任何直线 6.过点()2,1M 的直线与x 、y 轴分别交于P 、Q ,若M 为线段PQ 的中点,则这条直线的方程为 A .230x y --= B .250x y +-= C .240x y +-= D .230x y -+= 7.直线10x y +-=到直线sin cos 10()42x y ππααα⋅+⋅-=<<的角为 ( )A .4πα-B .4πα-C .34πα-D .54πα-8.直线012=++y a x 与直线03)1(2=+-+by x a 互相垂直,∈b a ,R ,则||ab 的最小值为 ( )A .1B .2C .3D .49.已知点(2,-1)和(-3,2)在直线20x y a -+=的异侧,则a 的取值范畴是( )A .(4,7)B .(-4,7)C .(-7,4)D .(-4,4) 10.若点A (4,a )到直线4x -3y -1=0的距离不大于3,则 ( )A .-1<a <9B .0≤a ≤10C .5<a <8D .-2≤a ≤6 11.已知点P (-1,1)、Q (2,2),若直线L :0=++m my x 与线段PQ 的延长线相交,则m 的取值范畴为( )A .)32,3(--B .13(,)32C .)3,32( D .以上都不对12.若动点),(11y x A 、),(22y x B 分别在直线05:07:21=-+=-+y x l y x l 和上移动,则线段AB 的中点M到原点的距离的最小值为( )A .32B .33C .23D .2413.过点A (4,1)且在两坐标轴上的截距互为相反数的直线的方程是 14. 一条直线过点()5,4P -,且与两坐标轴围成的三角形的面积为5的直线的方程为15.已知实数x 、y 满足1,1,y y x ≤⎧⎪⎨≥-⎪⎩则2x y +的最大值是16.不等式组200360x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩所表示的平面区域的面积是 _____________; 17.已知两直线1l :y x =,2l :0ax y -=,当这两条直线的夹角在区间0,12π⎛⎫⎪⎝⎭内变化时, a 的取值范畴是 . 三.解答题:18.(9分) 直线:24l y x =-与x 轴的交点为M ,把直线l 绕点M 逆时针方向旋转045,求得到的直线方程。

第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一

第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一

第二章 直线和圆的方程专题测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线1l :2y x =-,2l :y kx =,若12//l l ,则实数k =( ) A .-2B .-1C .0D .12.(2020·洮南市第一中学高一月考)直线()()1:2140l a x a y -+++=与()2:190l a x ay ++-=互相垂直,则a 的值是( ). A .-0.25B .1C .-1D .1或-13.(2020·江苏省海头高级中学高一月考)直线:l (1)230m x my m ---+=(m R ∈)过定点A ,则点A 的坐标为( ) A .(3,1)-B .(3,1)C .(3,1)-D .(3,1)--4.(2020·广东高二期末)设a R ∈,则“a =1”是“直线ax+y -1=0与直线x+ay+1=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件,5.(2020·黑龙江高一期末)若曲线y 与直线y =k (x ﹣2)+4有两个交点,则实数k 的取值范围是( ) A .3,14⎛⎤⎥⎝⎦B .3,4⎛⎫+∞⎪⎝⎭C .(1,+∞)D .(1,3]6.(2020·浙江柯城。

衢州二中高三其他)已知直线x y t +=与圆()2222x y t tt R +=-∈有公共点,则()4t t -的最大值为( )A .4B .289C .329D .3277.(2020·广东高一期末)若两平行直线20,(0)x y m m ++=>与30x ny --=则m +n =( ) A .0B .1C .1-D .2-8.(2020·北京市第五中学高三其他)过直线y =x 上的一点作圆22(5)(1)2x y -+-=的两条切线l 1,l 2,当直线l 1,l 2关于y =x 对称时,它们之间的夹角为( ) A .30°B .45°C .60°D .90°二、多选题(每题不止有一个选项为正确答案,每题5分,共20分)9.(2020·江苏省苏州第十中学校高一期中)圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有( )A .公共弦AB 所在直线方程为0x y -= B .线段AB 中垂线方程为10x y +-=C .公共弦ABD .P 为圆1O 上一动点,则P 到直线AB 距离的最大值为12+ 10.(2020·江苏徐州.高一期末)已知直线12:10,:(2)330l x my l m x y +-=-++=,则下列说法正确的是( )A .若12l l //,则m =-1或m =3B .若12l l //,则m =3C .若12l l ⊥,则12m =-D .若12l l ⊥,则12m =11.(2020·江苏扬州.高一期末)已知直线l 与圆22:240C x y x y a ++-+=相交于,A B 两点,弦AB 的中点为()0,1M ,则实数a 的取值可为( ) A .1B .2C .3D .412.(2020·江苏省江阴高级中学高一期中)下列说法正确的是( ) A .直线32()y ax a a R =-+∈必过定点(3,2) B .直线32y x =-在y 轴上的截距为2-C 10y ++=的倾斜角为60°D .过点(1,2)-且垂直于直线230x y -+=的直线方程为20x y +=第II 卷(非选择题)三、填空题(每题5分,共20分)13.(2020·湖南张家界。

高中试卷-专题10 直线和圆的方程(单元测试卷)(含答案)

高中试卷-专题10 直线和圆的方程(单元测试卷)(含答案)

专题10 《直线和圆的方程》单元测试卷一、单选题1.(2019·全国高二月考(文))直线:的倾斜角为( )A .B .C .D .【答案】D 【解析】直线的斜率,设直线的倾斜角为,则,所以.故选:D.2.(2019·浙江省高二期中)圆心为,且过原点的圆的方程是( )A .B .C .D .【答案】A 【解析】根据题意.故选:.3.(2020·南京市江宁高级中学高一月考)如果直线(2a+5)x+(a -2)y+4=0与直线(2-a)x+(a+3)y -1=0互相垂直,则a 的值等于( )A .2B .-2C .2,-2D .2,0,-2【答案】C 【解析】(2a +5)(2-a )+(a -2)(a +3)=0,所以a =2或a =-2.4.(2019·山东省高一期中)圆与直线的位置关系( )A .相切B .相离C .相交D .不能确定【答案】Cx y +-0=30°45°60°135°0x y +=1k =-0x y +=1(080)a a °£<°tan 1a =-135a =°()2,2()()22228x y -+-=()()22222x y -+-=()()22228x y +++=()()22222x y +++=r ==()()22228x y -+-=A 22(1)5x y +-=120mx y m -+-=直线即即直线过点,把点代入圆的方程有,所以点在圆的内部,过点的直线一定和圆相交.故选:C.5.(2019·山东省高一期中)从点向圆引切线,则切线长的最小值( )A .B .5CD .【答案】A【解析】设切线长为,则,故选:A.6.(2020·南京市江宁高级中学高一月考)已知直线在两坐标轴上的截距相等,则实数A .1B .C .或1D .2或1【答案】D 【解析】由题意,当,即时,直线化为,此时直线在两坐标轴上的截距都为0,满足题意;当,即时,直线化为,由直线在两坐标轴上的截距相等,可得,解得;综上所述,实数或.故选:D .7.(2019·山东省高一期中)若点为圆的弦的中点,则弦所在直线的方程为( )A .B .C .D .120mx y m -+-=()12y m x -=-()21,()21,405+<()21,()21,(,3)P m 22(2)(2)1x y +++=4+d 2222(2)51(2)24d m m =++-=++min d \=20ax y a +-+=(a =)1-2-2a 0-+=a 2=ax y 2a 0+-+=2x y 0+=2a 0-+¹a 2¹ax y 2a 0+-+=122x ya a a+=--2a2a a-=-a 1=a 2=a 1=(1,1)P 2240x y x +-=AB AB 20x y +-=0x y -=20x y -+=22(1)5x y +-=【解析】化为标准方程为.∵为圆的弦的中点,∴圆心与点确定的直线斜率为,∴弦所在直线的斜率为1,∴弦所在直线的方程为,即.故选:B.8.(2020·武威第六中学高三二模(文))过点且倾斜角为的直线被圆所截得的弦长为( )AB .1CD .【答案】C 【解析】根据题意,设过点且倾斜角为的直线为 ,其方程为,即,变形可得,圆 的圆心为,半径 ,设直线与圆交于点,圆心到直线的距离,则,故选C.9.(2020·南京市江宁高级中学高一月考)已知直线和以,为端点的线段相交,则实数k 的取值范围为( )A .B.2240x y x +-=()22-24x y +=()1,1P ()22-24x y +=AB P 01121k -==--AB AB 11y x -=-0x y -=()1,030o ()2221x y -+=()1,030o l ()tan 301y x =-o)1y x =-10x -=()2221x y -+=()2,01r =l AB 12d 2AB ==20kx y -+=()3,2M -()2,5N 32k £32k ³C .D .或【答案】C 【解析】因为直线恒过定点,又因为,,所以直线的斜率k 的范围为.故选:C .10.(2020·四川省宜宾市第四中学校高二月考(理))已知圆,圆,、分别是圆、上动点,是轴上动点,则的最大值是( )A .BC .D【答案】D 【解析】如下图所示:4332k -££43k £-32k ³20kx y -+=()0,2A 43AM k =-32AN k =4332k -££()()221:231C x y -+-=()()222:349C x y -+-=M N 1C 2C P x PN PM -4+4+圆的圆心,半径为,圆的圆心,半径为,,由圆的几何性质可得,,,当且仅当、、三点共线时,取到最大值.故选:D.二、多选题11.(2019·辽宁省高二月考)在同一直角坐标系中,直线与圆的位置不可能是( )A .B .C .D .【答案】ABD 【解析】直线经过圆的圆心,且斜率为.故选项满足题意.故选:.12.(2020·山东省高三期末)已知点是直线上一定点,点、是圆上1C ()12,3C 11r =2C ()23,4C 23r =12C C ==2223PN PC r PC £+=+1111PM PC r PC ³-=-2112444PN PM PC PC C C -£-+£+=1C P 2C PN PM -4+2y ax a =+222()x a y a ++=2y ax a =+222()x a y a ++=(),0a -a ,,A B D ABD A :0l x y +=P Q 221x y +=的动点,若的最大值为,则点的坐标可以是( )A .B .C .D .【答案】AC 【解析】如下图所示:原点到直线的距离为,则直线与圆相切,由图可知,当、均为圆的切线时,取得最大值,连接、,由于的最大值为,且,,则四边形为正方形,所以由两点间的距离公式得整理得,解得,因此,点的坐标为或.故选:AC.13.(2020·广东省高二期末)瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是( )A .B .C .D .PAQ Ð90o A (()1))1,1-l 1d ==l 221x y +=AP AQ 221x y +=PAQ ÐOP OQ PAQ Ð90o 90APO AQO Ð=Ð=o 1OP OQ ==APOQ OA =OA ==220t -=0t =A ()ABC D ()4,0-A ()0,4B 20x y -+=C ()2,0()0,2()2,0-()0,2-【答案】AD 【解析】设的垂直平分线为,的外心为欧拉线方程为与直线的交点为,,①由,,重心为,代入欧拉线方程,得,②由 ①②可得或 .故选:AD 三、填空题14.(2019·浙江省高二期中)直线过定点______;若与直线平行,则______.【答案】 【解析】(1),故.即定点为(2) 若与直线平行,则,故或.当时与直线重合不满足.故.故答案为:(1) ; (2)15.(2018·江苏省高二月考)已知以为圆心的圆与圆相内切,则圆C 的方程是________.【答案】(x -4)2+(y +3)2=36.(,),C x y AB y x =-ABC D 20x y -+=y x =-(1,1)M-22||||(1)(1)10MC MA x y \==\++-=()4,0A -()0,4B ABC D 44(,33x y -+20x y -+=20x y --=2,0x y ==0,2x y ==-()1:20l m x y m +--=()m R Î1l 2:310l x my --=m =()1,23-()1:20(1)20l m x y m m x x y +--=Þ-+-=101202x x x y y -==ììÞíí-==îî()1,21l 2:310l x my --=()()()()()2310130m m m m +---=Þ-+=1m =3m =-1m =1l 2l 3m =-()1,23-()4,3C -22:1O x y +=【解析】,设所求圆的半径为,由两圆内切的充分必要条件可得:,据此可得:,圆C 的方程是(x -4)2+(y +3)2=36.16.(2020·河南省高三二模(文))圆关于直线的对称圆的标准方程为__________.【答案】【解析】,圆心为,半径为,设圆心关于直线的对称点为,对称圆的标准方程为.故答案为:.17.(2020·四川省高三二模(文))已知、为正实数,直线截圆所得的弦长为,则的最大值为__________.【答案】【解析】因为直线截圆所得的弦长为,且圆的半径为2.故圆心到直线的距离.,因为、为正实数,故,所以.当且仅当时取等号.5=()0r r >15r -=6r =22230x y y ++-=10x y +-=22(2)(1)4x y -+-=Q 2222230(41)x y y x y ++-=Þ+=+\(0,1)-210x y +-=(,)x y \1(1)1,2,1.110,22y x xy x y +ì´-=-ï=ìïÞíí=-îï+-=ïî\22(2)(1)4x y -+-=22(2)(1)4x y -+-=a b 10x y ++=()()224x a y b -+-=ab 1410x y ++=(224x (),a b d ==a b 1a b +=2124a b ab +æö£=ç÷èø12a b ==故答案为:四、解答题18.(2020·吴江汾湖高级中学高一月考)求圆上与直线的距离最小的点的坐标.【答案】【解析】过圆心且与直线垂直的直线方程为,联立圆方程得交点坐标为,,又因为与直线的距离最小,所以.19.(2019·全国高二月考(文))已知直线过点.(1)若原点到直线的距离为,求直线的方程;(2)当原点到直线的距离最大时,求直线的方程.【答案】(1)或;(2)【解析】(1)①当直线的斜率不存在时,方程符合题意;14224x y +=43120x y +-=86,55P æöç÷èø43120x y +-=340x y -=224340x y x y ì+=í-=î86,55æöç÷èø86,55æö--ç÷èø43120x y +-=86,55P æöç÷èøl (2,1)P -O l 2l O l l 20x -=34100x y --=250.x y --=l 2x =②当直线的斜率存在时,设斜率为,则方程为,即,解得,则直线的方程为故直线的方程为或(2)当原点到直线的距离最大时,直线因为,所以直线的斜率所以其方程为,即20.(2020·吴江汾湖高级中学高一月考)在中,,边上的高所在的直线方程为,边上中线所在的直线方程为.(1)求点坐标;(2)求直线的方程.【答案】(1)(2)【解析】(1)边上的高为,故的斜率为, 所以的方程为,即,因为的方程为解得所以.l k ()12y k x +=-210.kx y k ---=234k =l 34100.x y --=l 20x -=34100.x y --=O l .l OP ^011022OP k +==--l 2,k =()122y x +=-250.x y --=ABC D (1,2)A -AC BE 74460x y +-=AB CM 211540x y -+=C BC ()66C ,2180x y +-=AC 74460x y +-=AC 47AC ()4217y x -=+47180x y -+=CM 211540x y -+=21154047180x y x y -+=ìí-+=î,,66x y =ìí=î()66C ,(2)设,为中点,则的坐标为, 解得, 所以, 又因为,所以的方程为即的方程为.21.(2019·浙江省高二期中)如图,圆,点为直线上一动点,过点引圆的两条切线,切点分别为(1)求证:直线恒过定点,并求出该定点的坐标;(2)若两条切线于轴分别交于两点,求面积的最小值.【答案】(1)见解析,(2【解析】(1)设,则以 为直径的圆的方程: ,与圆,两式相减得:,()00,B x y M AB M 0012,22x y -+æöç÷èø0000122115402274460x y x y -+ì-+=ïíï+-=î0028x y =ìí=î()2,8B ()6,6C BC ()866626y x --=--BC 2180x y +-=22:(2)1C x y -+=P :4l x =P C ,A BAB Q ,PA PB y ,M N QMN V 5,02Q æöç÷èø(4,)P t CP ()22232t x y æö-+-=ç÷èø22:(2)1C x y -+=:2(2)1AB l x ty -+=所以直线恒过定点.(2)设直线与的斜率分别为,与圆,即.所以,,22.(2020·江西省新余一中高一月考)已知点,,直线:,设圆的半径为,圆心在直线上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,为坐标原点,求圆心的横坐标的取值范围.【答案】(1)或.(2)【解析】(1)由得:,所以圆C:..当切线的斜率存在时,设切线方程为,由,解得:当切线的斜率不存在时,即也满足所以切线方程为:或.5,02Qæöç÷èøAP BP12,k k(4)y t k x-=-C1=223410k tk t-+-=2121241,33-+=×=t tk k k k14My t k=-24Ny t k=-12||44=-==³MN k k()min1522MNQSD==(4,4)A(0,3)B l1y x=-C1C lC37y x=-A CC M2MB MO=O C a4x=3440x y-+=a££a££137y xy x=-ìí=-î()3,2C22(3)(2)1x y-+-=4(4)y k x-=-1d==34k=4x=4x=3440x y-+=(2)由圆心在直线l :上,设设点,由化简得:,所以点M在以为圆心,2为半径的圆上. 又点M 在圆C 上,所以圆C 与圆D 有交点,则即,解得:23.(2019·山东省高一期中)已知点,点在圆上运动.(1)求过点且被圆截得的弦长为的直线方程;(2)求的最值.【答案】(1)或;(2)最大值为88,最小值为72.【解析】(1)依题意,直线的斜率存在,因为过点且被圆截得的弦长为,,设直线方程为,即,解得或所以直线方程为或.(2)设点坐标为则.因为,所以,即的最大值为88,最小值为72.C 1y x =-(,1)C a a -(,)M x y ||2||MB MO ==22(1)4x y ++=(0,1)D -1||3CD ££13££a ££a ££(2,2),(2,6),(4,2)A B C ----P 22:4E x y +=C E 222||||||PA PB PC ++7100x y ++=20x y +-=C E 2(4)y k x +=-420kx y k ---==17k =-1k =-7100x y ++=20x y +-=P (),x y 224x y +=222222222||||||(2)(2)(2)(6)(4)(2)PA PB PC x y x y x y ++=++++++-+-++()223468804x y y y=+-+=-22y -≤≤7280488y £-£222||||||PA PB PC ++。

新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(含答案解析)

新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(含答案解析)

一、选择题1.如果实数x 、y 满足22640x y x +-+=,那么yx的最大值是( )A .23B C .3D 2.一束光线从点()2,3A 射出,经x 轴上一点C 反射后到达圆22(3)(2)2x y ++-=上一点B ,则AC BC +的最小值为( )A.B .C .D .3.过点()1,0P 作圆22(2)(2)1x y -+-=的切线,则切线方程为( ) A .1x =或3430x y +-= B .1x =或3430x y --= C .1y =或4340x y -+=D .1y =或3430x y --=4.已知圆()221:24C x a y ++=与圆()22:1C x y b +-=有且仅有1条公切线,则2211a b +的最小值为( ) A .6 B .7C .8D .95.圆22(1)2x y ++=上一点到直线5y x =+的距离最小值为( )A .1B .2CD .6.直线0x y +=被圆226240x y x y +-++=截得的弦长等于( )A .4B .2C .D7.两圆交于点(1,3)A 和(,1)B m ,两圆的圆心都在直线02cx y -+=上, 则m c += . A .1B .2C .3D .48.过点()3,1作圆()2211x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=9.已知圆C :224x y +=上恰有两个点到直线l :0x y m -+=的距离都等于1,则实数m 的取值范围是( )A .(2,32⎡-⎣ B .(2,32⎡-⎣C .2,32⎡⎡-⎣⎣D .((2,32-10.若过点(2,1)P 的圆与两坐标轴都相切,则圆心到直线230x y -+=的距离是( )A.5B.5CD11.曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时,则实数k的取值范围是( ) A .50,12⎛⎫⎪⎝⎭B .13,34⎛⎫⎪⎝⎭C .5,12⎛⎫+∞⎪⎝⎭D .53,12412.若圆()2220x y r r +=>上仅有4个点到直线20x y --=的距离为1,则实数r 的取值范围为( )A .)1,+∞B.)1-C .()1-D .()1二、填空题13.设()11,M x y 、()22,N x y 为不同的两点,直线:0l ax by c ++=,1122ax by cax by cδ++=++,以下命题中正确的序号为__________.(1)存在实数δ,使得点N 在直线l 上; (2)若1δ=,则过M 、N 的直线与直线l 平行; (3)若1δ=-,则直线l 经过MN 的中点;(4)若1δ>,则点M 、N 在直线l 的同侧且直线l 与线段MN 的延长线相交; 14.已知点M 是直线l :22y x =--上的动点,过点M 作圆C :()()22114x y -+-=的切线MA ,MB ,切点为A ,B ,则当四边形MACB 的面积最小时,直线AB 的方程为______.15.已知点(3,1)A -,点M 、N 分别是x 轴和直线250x y +-=上的两个动点,则AM MN +的最小值等于_________.16.过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为_________.17.与两圆22(2)1x y ++=,22(2)1x y -+=都相切,且半径为3的圆一共有________个18.已知k ∈R ,过定点A 的动直线10kx y +-=和过定点B 的动直线30x ky k --+=交于点P ,则22PA PB +的值为__________.19.直线:20180l x y +-=的倾斜角为__________; 20.已知定点A 到动直线l :()221420+---=mx m y m (m R ∈)的距离为一常数,则定点A 的坐标为________.三、解答题21.在ABC 中,(2,5)A ,()1,3B (1)求AB 边的垂直平分线所在的直线方程;(2)若BAC ∠的角平分线所在的直线方程为30x y -+=,求AC 所在直线的方程. 22.以点1(),C m m为圆心的圆与x 轴相交于点O ,A ,与y 轴相交于点,O B (O 为坐标原点).(1)求证OAB 的面积为定值,并求出这个定值;(2)设直线23y x =-+与圆C 相交于点,P Q ,且||||OP OQ =,求圆C 的方程. 23.已知三条直线123121323:20,:20,:210,,,l x y l x l x y l l A l l B l l C -=+=+-=⋂=⋂=⋂=.(1)求ABC 外接圆的方程;(2)若圆22:20D x y ax +-=与ABC 的外接圆相交,求a 的取值范围.24.圆心为C 的圆经过点(4,1)A -和(3,2)B -,且圆心C 在直线:20l x y --=上. (1)求圆心为C 的圆的方程;(2)过点(5,8)P 作圆C 的切线,求切线的方程.25.当实数m 的值为多少时,关于,x y 的方程()()222221220m m x m m y m +-+-+++=表示的图形是一个圆?26.已知圆C 方程222410x y x y +-++= (1)求圆C 的圆心,半径;(2)直线l 经过(2,0),并且被圆C 截得的弦长为l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】本题首先可求出圆的圆心与半径,然后将yx看作圆上一点(),x y 与()0,0连线的斜率,并结合图像得出当过原点的直线与圆相切时斜率最大,最后根据直线与圆相切即可得出结果. 【详解】22640x y x +-+=,即()2235x y -+=,圆心为()3,0yx的几何意义是圆上一点(),x y 与()0,0连线的斜率, 如图,结合题意绘出图像:结合图像易知,当过原点的直线与圆相切时,斜率最大,即yx最大, 令此时直线的倾斜角为α,则5tan 2α=,y x 的最大值为5,故选:D. 【点睛】关键点点睛:本题考查直线的斜率的几何意义的应用,考查直线与圆相切的相关性质,能否将yx看作点(),x y 与()0,0连线的斜率是解决本题的关键,考查数形结合思想,是中档题.2.C解析:C 【分析】做出圆22(3)(2)2x y ++-=关于x 轴的对称圆,进而根据图形得AC BC AP r+≥-即可求解. 【详解】解:如图,圆22(3)(2)1x y ++-=的圆心()3,2-,其关于x 轴的对称圆的圆心为()3,2P --, 由图得AC BC AP r +≥-52242=-=.故选:C. 【点睛】解题的关键在于求圆关于x 轴的对称圆圆心P ,进而将问题转化AC BC AP r +≥-求解.3.B解析:B 【分析】按照过点P 的直线斜率是否存在讨论,结合直线与圆相切的性质及点到直线的距离公式即可得解. 【详解】圆22(2)(2)1x y -+-=的圆心为()2,2,半径为1,点P 在圆外,当直线的斜率不存在时,直线方程为1x =,点()2,2到该直线的距离等于1,符合题意; 当直线的斜率存在时,设直线方程为()1y k x =-即kx y k 0--=,1=,解得34k =,所以该切线方程为3430x y --=; 所以切线方程为1x =或3430x y --=. 故选:B. 【点睛】方法点睛:求过圆外一点()00,x y 的圆的切线方程的方法几何法:当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即000kx y y kx -+-=.由圆心到直线的距离等于半径,即可求出k 的值,进而写出切线方程;代数法:当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即00y kx kx y =-+,代入圆的方程,得到一个关于x 的一元二次方程,由0∆=,求得k ,切线方程即可求出.4.D解析:D 【分析】由题意可知,圆2C 内切于圆1C ,由题意可得出2241a b +=,然后将代数式2211a b +与224a b +相乘,展开后利用基本不等式可求得2211a b+的最小值. 【详解】圆()221:24C x a y ++=的圆心为()12,0C a -,半径为12r =,圆()22:1C x y b +-=的圆心为()20,C b ,半径为21r =,由于两圆有且仅有1条公切线,则圆2C 内切于圆1C ,所以12121C C r r ==-=,可得2241a b +=,()2222222222111144559b a a b a b a b a b ⎛⎫+=++=∴++≥+= ⎪⎝⎭, 当且仅当222b a =时,等号成立,因此,2211a b +的最小值为9. 故选:D. 【点睛】结论点睛:圆与圆的位置关系:设圆1C 与圆2C 的半径长分别为1r 和2r .(1)若1212C C r r <-,则圆1C 与圆2C 内含; (2)若1212C C r r =-,则圆1C 与圆2C 内切; (3)若121212r r C C r r -<<+,则圆1C 与圆2C 相交; (4)若1212C C r r =+,则圆1C 与圆2C 外切; (5)若1212C C r r >+,则圆1C 与圆2C 外离.5.C解析:C 【分析】求出圆心到直线距离,减去半径得解. 【详解】圆心为(1,0)-,直线方程为5y x =+,所以d == ,圆22(1)2x y ++=上一点到直线5y x =+的距离最小值d r -=故选C . 【点睛】圆上的点到直线的距离的最值的几何求法通常运用圆心到直线的距离加减半径得到.属于基础题.6.A解析:A 【分析】先将圆化成标准方程,求出圆心与半径,再求圆心到直线的距离,然后解弦长即可. 【详解】因为226240x y x y +-++= 所以22(3)(1)6x y -++=,圆心到直线的距离为d ==直线0x y +=被圆226240x y x y +-++=截得的弦长4l =;故选:A . 【点睛】计算圆的弦长通常使用几何法简捷.也可使用代数法计算.7.C解析:C 【分析】由两圆相交且圆心都在直线02c x y -+=上可知线段AB 中点在02cx y -+=上,代入中点坐标整理即可. 【详解】由题意可知:线段AB 的中点1,22m +⎛⎫⎪⎝⎭在直线02c x y -+=上 代入得:12022m c+-+= 整理可得:3m c +=本题正确选项:C 【点睛】本题考查两圆相交时相交弦与圆心连线之间的关系,属于基础题.8.A解析:A 【分析】求出以(3,1)、(1,0)C 为直径的圆的方程,将两圆的方程相减可得公共弦AB 的方程. 【详解】圆22(1)1x y -+=的圆心为(1,0)C ,半径为1,以(3,1)、(1,0)C 为直径的圆的方程为2215(2)()24x y -+-=,因为过点()3,1圆()2211x y -+=的两条切线切点分别为A ,B ,所以,AB 是两圆的公共弦,将两圆的方程相减可得公共弦AB 的方程230x y +-=, 故选:A . 【点睛】本题考查直线和圆的位置关系以及圆和圆的位置关系、圆的切线性质,体现了数形结合的数学思想,属于基础题.9.D【分析】先判断圆心到直线的距离()1,3d ∈,再利用距离公式列不等式即解得参数的取值范围. 【详解】圆C :224x y +=的圆心是()0,0C ,半径2r,而圆C :224x y +=上恰有两个点到直线l :0x y m -+=的距离都等于1,所以圆心()0,0C 到直线l :0x y m -+=的距离()1,3d ∈,即()1,3d ==,解得m -<<m <<.故选:D. 【点睛】本题考查了圆上的点到直线的距离问题和点到直线的距离公式,属于中档题.10.C解析:C 【分析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y -+=的距离. 【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=, 可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心()1,1到直线230x y -+=的距离均为15d ==圆心()5,5到直线230x y -+=的距离均为25d ==圆心到直线230x y -+=的距离均为5d ==;所以,圆心到直线230x y -+=. 故选:C.关键点点睛:本题考查圆心到直线距离的计算,求出圆的圆心是解题的关键,考查计算能力.11.D解析:D 【分析】 易知曲线214y x 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,然后在同一坐标系中作出直线与半圆的图象,利用数形结合法求解. 【详解】 曲线214y x 变形为22214141y x x y y 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,在同一坐标系中作出直线与半圆的图象,如图所示:当直线()24y k x =-+与圆相切时,圆心到直线的距离等于半径,23221kk -=+,解得512k =,即512AC k ,又413224AB k , 由图知:当曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时:ACAB k kk ,即53124k <≤. 故选:D 【点睛】本题主要考查直线与圆的位置关系的应用,还考查了数形结合的思想方法,属于中档题.12.A解析:A 【分析】到已知直线的距离为1的点的轨迹,是与已知直线平行且到它的距离等于1的两条直线,根据题意可得这两条平行线与222x y r +=有4个公共点,由此利用点到直线的距离公式加以计算,可得r 的取值范围. 【详解】解:作出到直线20x y --=的距离为1的点的轨迹,得到与直线20x y --=平行, 且到直线20x y --=的距离等于1的两条直线, 圆222x y r +=的圆心为原点, 原点到直线20x y --=的距离为22d ==,∴两条平行线中与圆心O 距离较远的一条到原点的距离为21d '=+,又圆222(0)x y r r +=>上有4个点到直线20x y --=的距离为1,∴两条平行线与圆222x y r +=有4个公共点,即它们都与圆222x y r +=相交.由此可得圆的半径r d '>, 即21r >+,实数r 的取值范围是()21,++∞.故选:A .【点睛】本题给出已知圆上有四点到直线的距离等于半径,求参数的取值范围.着重考查了圆的标准方程、直线与圆的位置关系等知识,属于中档题.二、填空题13.②③④【分析】①点在直线上则点的坐标满足直线方程从而得到进而可判断①不正确②若则进而得到根据两直线斜率的关系即可判断②③若即可得到即可判断③④若则或根据点与直线的位置关系即可判定④【详解】解:若点在解析:②③④ 【分析】①点在直线上,则点的坐标满足直线方程,从而得到220ax bx c ++=,进而可判断①不正确.②若1δ=,则1122ax by c ax by c ++=++,进而得到1221y y ax x b-=--,根据两直线斜率的关系即可判断②.③若1δ=-,即可得到1212()()022x x y y a b c ++++=,即可判断③. ④若1δ>,则11220ax by c ax by c ++>++>,或11220ax by c ax by c ++<++<,根据点与直线的位置关系即可判定④. 【详解】解:若点N 在直线l 上则220ax bx c ++=,∴不存在实数δ,使点N 在直线l 上,故①不正确;若1δ=,则1122ax by c ax by c ++=++, 即1221y y ax x b-=--, MN l k k ∴=, 即过M 、N 两点的直线与直线l 平行,故②正确; 若1δ=-,则11220ax by c ax by c +++++= 即,1212()()022x x y y a b c ++++=, ∴直线l 经过线段MN 的中点,即③正确;若1δ>,则11220ax by c ax by c ++>++>,或12220ax by c ax by c ++<++<, 即点M 、N 在直线l 的同侧,且直线l 与线段MN 不平行.故④正确. 故答案为:②③④. 【点睛】本题考查两直线的位置关系,点与直线的位置关系,直线的一般式方程等知识的综合应用,若两直线平行则两直线的斜率相等.14.【分析】由已知结合四边形面积公式可得四边形MACB 面积要使四边形MACB 面积最小则需最小此时CM 与直线垂直求得以CM 为直径的圆的方程再与圆C 的方程联立可得AB 所在直线方程【详解】由圆的标准方程可知圆 解析:210x y ++=【分析】由已知结合四边形面积公式可得四边形MACB面积2||||2||CAM S S CA AM MA ==⋅==△要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,求得以CM 为直径的圆的方程,再与圆C 的方程联立可得AB 所在直线方程. 【详解】由圆的标准方程可知,圆心C (1,1) ,半径r =2.因为四边形MACB的面积2||||2||CAM S S CA AM MA ==⋅==△ 要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直. 直线CM 的方程为11(x 1)2y -=- ,即11.22y x =+联立112222y x y x ⎧=+⎪⎨⎪=--⎩,解得(1,0)M -则以CM 为直径的圆的方程为2215()24x y +-=, 联立222215(),24(1)(1)4x y x y ⎧+-=⎪⎨⎪-+-=⎩消去二次项可得直线AB 的方程为210x y ++=, 故答案为:210x y ++= 【点睛】关键点点睛:根据四边形的面积表达式可以看出要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,此时所做圆的直径为CM ,写出圆的方程,两圆方程相减即可求出过AB 的直线方程.15.【分析】利用对称性作点关于轴的对称点利用数形结合求的最小值【详解】作点关于轴的对称点则最小值即为到直线的距离所以的最小值为故答案为:【点睛】关键点点睛:本题的关键是利用对称性作点关于轴的对称点则再利解析:5【分析】利用对称性,作点(3,1)A -关于x 轴的对称点(3,1)A '--,||||||||AM MN A M MN '+=+,利用数形结合求AM MN +的最小值.【详解】作点(3,1)A -关于x 轴的对称点(3,1)A '--,则||||||||AM MN A M MN '+=+,最小值即为(3,1)A '--到直线250x y +-=的距离,12555d ==,所以||||AM MN +的最小值为55. 125【点睛】关键点点睛:本题的关键是利用对称性作点(3,1)A -关于x 轴的对称点(3,1)A '--,则AM A N '=,再利用点到直线的距离比其他折线都短,计算||||AM MN +的最小值. 16.x +4y -4=0【分析】设l1与l 的交点为A(a8-2a)求得关于的对称点坐标利用对称点在直线上求得即得点坐标从而得直线方程【详解】设l1与l 的交点为A(a8-2a)则由题意知点A 关于点P 的对称点B解析:x +4y -4=0【分析】设l 1与l 的交点为A (a,8-2a ),求得A 关于P 的对称点坐标,利用对称点在直线2l 上求得a ,即得A 点坐标,从而得直线l 方程.【详解】设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上, 代入l 2的方程得-a -3(2a -6)+10=0,解得a =4, 即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0. 故答案为:x +4y -4=0. 【点睛】本题考查求直线方程,解题方法是根据点关于点的对称点求解,直线l 与已知两直线各有一个交点,P 是这两个交点连线段中点,因此可设其中一点坐标,由对称性表示出另一点坐标,代入第二条直线方程可求得交点坐标,从而得直线方程.17.7【分析】根据两圆相离可以判定出与两圆都相切且半径为3的圆有7个【详解】解:因为两圆是相离的所以与两圆都相切且半径为3的圆的情况如下:与两圆都内切的有1个是以原点为圆心即;与两圆都外切的有2个设切点解析:7 【分析】根据两圆相离,可以判定出与两圆都相切且半径为3的圆有7个.【详解】解:因为两圆221:(2)1O x y ++=,222:(2)1O x y -+=是相离的,所以与两圆都相切且半径为3的圆的情况如下:与两圆都内切的有1个,是以原点为圆心,即229x y +=;与两圆都外切的有2个,设切点为(0,)b 4b =⇒=±∴22(9x y +±=,同理,利用圆与圆的圆心距和半径的关系可得:与圆1O 外切于圆2O 内切的圆有2个;与圆1O 内切于圆2O 外切的圆有2个;分别为223()(92x y ++±=和223()(92x y -+=,共7个, 故答案为:7. 【点睛】由圆心距判断两圆的位置关系相离,再利用直观想象可得与两圆都相切的情况,包括内切和外切两类.18.13【分析】由两直线方程可得定点再联立两直线方程解出的坐标然后由两点间距离公式可得进而可以求解【详解】动直线过定点动直线过定点联立方程解得则由两点间距离公式可得:故答案为:13【点睛】本题考查了直线解析:13 【分析】由两直线方程可得定点(0,1)A ,(3,1)B --,再联立两直线方程解出P 的坐标,然后由两点间距离公式可得2PA ,2PB ,进而可以求解. 【详解】动直线10kx y +-=过定点(0,1)A 动直线30x ky k --+=过定点(3,1)B --联立方程1030kx y x ky k +-=⎧⎨--+=⎩,解得223(1k P k -+,2231)1k k k -+++, 则由两点间距离公式可得:PA =PB =2432432222222222224129412991249124()()(1)(1)(1)(1)k k k k k k k k k k PA PB k k k k -+-+++++∴+=+++++++422213(21)13(1)k k k ++==+,故答案为:13. 【点睛】本题考查了直线中定点问题以及两点间距离公式,考查了学生的运算能力,属于基础题.19.【分析】把直线的一般方程化为斜截式方程得到斜率即可求出倾斜角【详解】由可得:所以斜率即所以倾斜角为故填【点睛】本题主要考查直线的斜率及倾斜角属于基础题解析:34π 【分析】 把直线的一般方程化为斜截式方程,得到斜率,即可求出倾斜角. 【详解】由20180x y +-=可得:2008y x =-+ ,所以斜率1k =-,即tan 1α=-,所以倾斜角为34π,故填34π. 【点睛】本题主要考查直线的斜率及倾斜角,属于基础题.20.【解析】【分析】设出定点A 根据点到直线的距离公式求出点到直线l 的距离由距离为常数利用一般到特殊的思想令分析可得定点A 的坐标检验一般性可知动直线l 是以为圆心半径为的圆的切线系即可求出定点A 的坐标为【详 解析:()2,1【解析】 【分析】设出定点A ,根据点到直线的距离公式求出点A 到直线l 的距离,由距离为常数,利用一般到特殊的思想,令0,1,1m =-分析可得,定点A 的坐标,检验一般性可知,动直线l 是以()2,1 为圆心,半径为1的圆的切线系,即可求出定点A 的坐标为()2,1. 【详解】设定点A 为(),a b ,所以点A 到直线l 的距离d =无论m R ∈,d 为定值,所以令0m = 可得,2d b =-,令1m = 可得,3d a =-, 令1m =-可得,1d a =- ,由31a a -=- 可得,2a =,即有1b =或3b = .当定点A 为()2,1 时,22111m d m +===+ ,符合题意; 当定点A 为()2,3时,22131m d m -==+ ,显然d 的值随m 的变化而变化,不符题意,舍去.综上可知,动直线l 是以()2,1 为圆心,半径为1的圆的切线系,所以定点A 为2,1.故答案为:()2,1. 【点睛】本题主要考查直线系方程的识别和应用,点到直线的距离公式的应用,考查学生的转化能力和数学运算能力,属于中档题.三、解答题21.(1)11924y x =-+;(2)280x y -+=. 【分析】(1)设AB 边的垂直平分线为l ,求出12l k =-,即得AB 边的垂直平分线所在的直线方程;(2)设B 关于直线30x y -+=的对称点M 的坐标为(,)a b ,求出(0,4)M 即得解. 【详解】(1)设AB 边的垂直平分线为l , 有题可知53221AB k -==-,12lk , 又可知AB 中点为3,42⎛⎫⎪⎝⎭,∴l 的方程为13422y x ⎛⎫-=-- ⎪⎝⎭,即11924y x =-+, (2)设B 关于直线30x y -+=的对称点M 的坐标为(,)a b ;则311133022b a a b -⎧=-⎪⎪-⎨++⎪-+=⎪⎩,解得04a b =⎧⎨=⎩,所以(0,4)M ,由题可知A ,M 两点都在直线AC 上,所以直线AC 的斜率为541202-=-,所以直线AC 的方程为14(0)2y x -=-, 所以AC 所在直线方程为280x y -+=.【点睛】方法点睛:求直线方程常用的方法是:待定系数法,先定式(点斜式、斜截式、两点式、截距式、一般式),再定量.22.(1)证明见解析;定值为2;(2)225((2x y -+=. 【分析】(1)由题可得出圆的方程,即可得出,A B 坐标,进而可求出面积; (2)由题可得OC PQ ⊥,利用斜率可求出m . 【详解】解:(1)由已知圆的半径r OC ==, 故圆C 的方程为222211()()x m y m m m-+-=+, 即22220x y mx y m +--=, ∴(2,0)A m ,2(0,)B m, ∴112||||2222OABSOA OB m m=⋅=⨯⋅=, ∴OAB 的面积为定值2.(2)∵||||OP OQ =,||||CP CQ =,∴OC PQ ⊥,而2PQ k =-,∴2112OC k m==,∴m =∴圆C 的方程为225((22x y +-=或225(()22x y +++=当圆C 为225((22x y ++=时,圆心到直线23y x =-+的距离|3|352d --==>, 此时直线与圆相离,故舍去.∴圆C 的方程为225((22x y +-=. 【点睛】关键点睛:本题考查圆中三角形面积的定值问题以及求圆的标准方程,解题的关键是将点A ,B 都用m 表示出来,根据||||OP OQ =得出OC PQ ⊥. 23.(1)22(2)(2)9x y ++-=;(2)11,,210⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭. 【分析】(1)由三条直线得到三交点,,A B C 构成直角三角形,联立方程组,求得,A C 点的坐标,得到圆心坐标和半径,进而求得圆的方程;(2)由两圆相交,得到|3|||43||a a -<<+,即可求得a 的取值范围. 【详解】(1)由题意,三条直线123:20,:20,:210l x y l x l x y -=+=+-=, 可得2l 平行于y 轴,1l 与3l 互相垂直,三交点,,A B C 构成直角三角形, 经过,,A B C 三点的圆就是以AC 为直径的圆. 由方程组2020x y x -=⎧⎨+=⎩,解得21x y =-⎧⎨=-⎩,所以点A 的坐标是(2,1)--.由方程组20210x x y +=⎧⎨+-=⎩,解得25x y =-⎧⎨=⎩,所以点C 的坐标是(2,5)-.可得线段AC 的中点坐标是(2,2)-,又由||6AC =,所以ABC 外接圆的方程为22(2)(2)9x y ++-=.(2)由圆222:()D x a y a -+=与22(2)(2)9x y ++-=相交,所以|3|||43||a a -<<+,化简得6||146||1a a a -+<<+, 当0a <时,12a <-;当0a >时,110a >. 综上可得,a 的取值范围是11,,210⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭. 【点睛】圆与圆的位置关系问题的解题策略:判断两圆的位置关系时常采用几何法,即利用两圆的圆心之间的距离与两圆的半径间的关系进行判断,一般不采用代数法;若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.24.(1)22(2)25x y ++=;(2)5x =或34170x y -+=. 【分析】(1)联立点A 和B 的中垂线与直线l ,求出圆心坐标,算出圆心与A 距离,写出圆的标准方程即可;(2)讨论斜率存在与不存在,将直线与圆相切转化为d r =,解出k ,代回直线方程化简即可. 【详解】(1)根据题意可得2113(4)AB k -==---,,A B 中点坐标为73(,)22-,所以AB 的中垂线为7322y x ⎛⎫=-++ ⎪⎝⎭,即2y x =--, 联立方程202x y y x --=⎧⎨=--⎩可得圆心坐标(0,2)-,又222(0(3))(22)25r =--+--=, 所以圆C 的方程为22(2)25x y ++=.(2)①过点P 斜率不存在的直线为5x =,与圆C 相切; ②过点P 斜率存在的直线设斜率为k , 则(5)8y k x =-+,即580kx y k --+= 圆心(0,2)-到切线的距离为5=,解得34k =综上,切线的方程为5x =或34170x y -+=. 【点睛】求圆的方程的两种方法:(1)几何法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程; (2)待定系数法:①根据题意,选择标准方程与一般方程; ②根据条件列出关于,,a b r 或,,D E F 的方程组; ③解出,,a b r 或,,D E F ,代入标准方程或一般方程.25.3m =-【分析】圆的方程中22,x y 系数需相等,可得22212m m m m +-=-+,解方程即可得答案; 【详解】要使方程()()222221220m m x m m y m +-+-+++=表示的图形是一个圆,需满足22212m m m m +-=-+,得2230m m +-=, 所以3m =-或1m =.①当1m =时,方程为2232x y +=-不合题意,舍去;②当3m =-时,方程为2214141x y +=,即22114x y +=为半径的圆.综上,3m =-满足题意. 【点睛】圆的一般方程形式为2222(4)00x y Dx Ey F D E F ++++=+->,注意方程的特点是求解的关键.26.(1)圆心(1,2)-;半径2;(2)2x =或3460x y --=. 【分析】(1)将圆的方程化为标准方程,直接求圆心和半径;(2)利用弦长公式,得到圆心到直线的距离,分斜率存在和不存在两种情况,求直线方程. 【详解】(1)()()22222410124x y x y x y +-++=⇔-++=圆心(1,2)- 半径2;(2)圆222410x y x y +-++=可化为22(1)(2)4x y -++=.所以圆心到直线的距离为1d ==当直线l 的斜率不存在时,直线l 的方程为2x =, 此时直线l被圆C 截得的弦长为当直线l 的斜率k 存在时,设直线l 的方程为(2)y k x =-,即20kx y k --=1= 解得34k =∴直线的方程为3460x y --=综上所述,直线l 的方程为2x =或3460x y --=.【点睛】易错点睛:本题第二问,根据弦长求直线方程时,不要忽略过定点直线,其中包含斜率存在和不存在两种情况,否则容易丢根.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

‎ ‎试卷班级: 姓名: 一、选择题:本大题共10‎小题,每小题5分,共50分, 每小题 ‎ 选 ‎, 一 ‎ 题 ‎. 1. l 经过A (2,1)、B (1,m 2)(m ∈R)两点,那么 l 倾斜角 取值 范围A .),0[πB .),43[]4,0[πππ⋃ C .]4,0[πD .),2(]4,0[πππ⋃2. 如果 (2a +5)x +(a -2)y+4=0与 (2-a )x +(a +3)y -1=0互相垂 ,则a 值等于A . 2B .-2C .2,-2D .2,0,-2 3.已知 O ‎ 为x 2+y 2=r 2,点P (a ,b )(ab ≠0) O 一点‎,以P 为 点 ‎ ‎为m , n ‎为ax +by =r 2,则 A .m ∥n ,且n 与 O 相‎交 B .m ∥n ,且n 与 O 相‎离 C .m 与n 重 ,且n 与 O 相‎离 D .m ⊥n ,且n 与 O 相‎离 4. ‎220(,0)ax by a b +-=>分 224280x y x y +---= 周长,则12a b+ 最小值为A .1B .5 C. D.3+5. 00(,)M x y 为 于 ‎222(0)x y a a +=> 一点,则 与 ‎200a y y x x =+ 为‎A .相切B .相交C .相离D .相切或相交 6. 已知两点M (2,-3),N (-3,-2), L 过点P ‎(1,1)且与 段MN ‎相交,则 L 斜‎率k 取值范‎围A .34-≤k ≤4 B .k ≥43或k ≤-4 C .43≤k ≤4 D .-4≤k ≤437. 过 一‎y x =点 两 ‎22(5)(1)2x y -+-=切 12l l ,, 于 ‎12l l ,y x = , ‎角为 A .30B .45C .60D .908.如果 ‎x y 、 件101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩ ,那么 最大值‎14()2xy ⋅为A .2B .1C .12 D .149. 过点 ‎(0,),a 斜率为1,且与 222x y +=相切,则a 值为A.4±B.± C.2±D.10.如图,1l 、2l 、3l 一 ‎ ‎ ,1l 与 离 ‎2l 1,2l 与 离 ‎3l 2, 角 ‎ABC 顶点分别 1l 、2l 、3l ,则⊿ABC 边长A. B.364一、、填空题:本大题共5小‎题,每小题5分,共25分.答案填 题 ‎横 .11.已知 1:sin 10l x y θ+-=,2:2sin 10l x y θ++=, 12//l l ,则θ= . 12. 下列命题:两 ‎ ,则 斜率 相‎等; 两 ‎斜率乘积为-1, 则 互相垂‎ ;③过点(-1,1),且斜率为2 ‎211=+-x y ; ④ 垂 于x ‎ 两 一‎定都 y ‎ ; 倾斜‎角为α,则πα≤≤0. 为 命题‎ ____‎______‎___(填写序号).13. Ax +By +C =0与 x 2+y 2=4相交于两点‎M 、N , C 2=A 2+B 2,则OM ·ON (O 为 点‎)等于 _ . 14.已知函 32)(2-+=x x x f ,集 (){}0)()(,≤+=y f x f y x M ,集 (){}0)()(,≥-=y f x f y x N ,则集 积‎N M ;15.集 {05|),(≤-+=y x y x P ,∈x N* ,∈y N*},{-=x y x Q 2|),(}0≤+m y , {y x z y x M -==|),,})(),(Q P y x ⋂∈, 取最大值 ‎z ,{})1,3(=M ,则 取值‎m 范围 ;、解答题:本大题共6小‎题,共75分.解答应写 ‎ , 过 或 ‎算步骤. 16.(本小题 分1‎2分)已知 顶点A ‎ABC ∆为(3,-1),AB 边 ‎ ‎ 为610590x y +-=,B∠ 分 ‎ 为4100x y -+=, BC 边 ‎ .17.(本小题 分1‎2分)‎ 、 两 ‎ ,每件 ‎分别为3 ‎,2 、 都 ‎ A ,B 两 ‎加工, 每台A ,B 加工一件‎ 工‎ 分别为1 ‎、2 ,加工一件 ‎ 工 分‎别为2 、1 ,A ,B 两 每‎ 台‎ 分别为4‎00 500‎ 如 ‎ 最‎大?角 ‎ xoy , 函 ‎()()22f x x x b x R =++∈图 与两 ‎ 交点‎,经过 交‎点 记为C ‎. : (Ⅰ) b 取值范围; (Ⅱ) C ;(Ⅲ)问 C 经过 定‎点( 与b )? ‎论. 19.(本小题 分1‎2分)如图, 两 ‎ABCD 角 相交于点‎(20)M ,,AB 边 ‎ 为360x y --=,点 边 ‎(11)T -,AD . (I ) 边 ‎AD ; (II ) ‎ABCD ;(III ) 动 P 过点(20)N -,,且与 ‎ABCD 切, 动 ‎P .等差 列{a n } 首 为a(a ≠0),公差为2a ,前n 为S ‎n .记A={(x ,y )| x =n ,y =nS n,n ∈N *},B={(x ,y ) | (x -2)2+y 2=1,x 、y ∈R }. (1) A ∩B ≠φ, a 取值集‎ ;(2) 点P ∈A ,点Q ∈B , a=3 , |PQ| 最小值. 21.(本小题 分1‎4分)已知都 ‎,a b ,△ABC 角 x ‎O y , 以两点A (a ,0 ) B (0,b )为顶点 角 ,且 ‎顶点C 一‎ 限 . (1) △ABC 能含于 D = { ( x , y ) | 0 ≤ x ≤ 1, 0≤ y ≤ 1} , 试 变量 ,a b 件, 角 ‎ a O b ‎ ‎件 ‎区域; (2) (,)a b (1) ‎件 移动 , △ABC 积 最大值, 此值 (,)a b .‎ ‎ ‎ 试卷 答‎案一、选择题: 1.D 2.C 3.B 4.D 5.C 6.B 7.C 8.A 9.C 10.D 、填空题: 11.()4k k Z ππ±∈.解:sin 0θ= 不 题意;sin 0θ≠ 由2112sin sin sin sin 24k πθθθθπθ-=-⇒=⇒==±, 11sin θ≠-.12. 13.-214.π4 解:集 M 即为:8)1()1(22≤+++y x ,集 N 即为:0))(2(≥-++y x y x , 积等于 ‎积 15.57-≤<-m 解:如图 Q P ⋂ 区域为‎ 分 ‎ 整点(横 , 为整‎ ), 于t :y x z-= ,即 1=-+zy zx ,z 即为‎t 相 , 于 ‎t 分 最 整点‎ , 最小,z 最大, 3=x, 1=y z 取最大值,q ∈)1,3(,0132≤+-⨯m∴ 5-≤m , 又 (4 ,1)P ∈ , 但 (4 ,1)q ∉ , 即 018>+-m ∴ 7->m 即 57-≤<-m、解答题:16. 11(410,)B y y -,由AB 点 ‎610590x y +-= ,:0592110274611=--⋅+-⋅y y ,y 1 = 5, 以(10,5)B . A 点 于 ‎4100x y -+= 点为'(',')A x y ,则 )7,1(1413101024423A x y y x '⇒⎪⎪⎩⎪⎪⎨⎧-=⋅-'+'=+-'⋅-+'. 故:29650BC x y +-=. 17. 解: 、 两 ‎ 量分别为x ‎,y 240025000,0,x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩函32f x y =+, ‎x ,y , 取 最大值32f x y =+域,如图 32,x y a a += ,将 变 为322ay x =-+,斜率为32-,随a 变 一‎族与 ‎域相交且 ‎2a最大 ,函 取 ‎f 最大值 由24002500x y x y +=⎧⎨+=⎩ 200100x y =⎧⎨=⎩,此, 、 两 ‎每 分别‎为200,100件 , 最大 ‎800—y18.解: (Ⅰ)令x =0, 与 ‎y 交点 (0,b ); 令()220f x x x b =++=,由题意b ≠0 且Δ>0,解 b <1 且b ≠0.(Ⅱ) 一‎般 为2x20y Dx Ey F ++++=令y =0 20x Dx F ++= 与22x x b ++=0 一 ‎,故D =2,F =b .令x =02y Ey +=0,此 一 ‎根为b ,代 E =―b ―1. 以 C 为222(1)0x y x b y b ++-++=. (Ⅲ) C 过定点(0,1) (-2,1).如下:将(0,1)代 C , 左边=02+12+2×0-(b +1)+b =0, 边=0, 以 C 过定点(0,1). 理 C ‎ 过定点(-2,1).19. 解:(I ) 为边 ‎AB 为360x y --=,且AD 与AB 垂 ,以 斜‎AD 率为3-.又 为点 ‎(11)T -, AD ,以边 ‎AD 为13(1)y x -=-+.320x y ++=.(II )由解 点 ‎36032=0x y x y --=⎧⎨++⎩,A 为(02)-,,为 两 ‎ABCD 角 交点‎为(20)M ,. 以为 ‎MABCD .又AM =‎ABCD 为22(2)8x y -+=.(III ) 为动 过点‎P N , 以 ‎PN ,又 为动 与‎P M切,以PM PN =+PM PN -=故点 ‎P 以M N ,为 点, 长为‎为 长‎a=2c =. 以 长‎b =动 ‎P ‎为221(22x yx -=≤.20. 解: (1)由已知 Sn ‎=na+2)1(-n n ·2a=an 2,nS n=an. …… 2分∴A={(x ,y)|y=ax ,x ∈N *}.(a ≠0) …… 3分由B={(x ,y)|(x -2)2+y 2=1,x ,y ∈R }知|x -2|≤1 ∴1≤x ≤ 3. 由A ∩B ≠φ ,知集 B x ‎ 能取1,2,3,又y ≠0,∴x=2.…… 5分此 y=±1,由y=ax a ‎=±21. 故a 取值集‎ 为{21,-21}.…… 7分 (2)由(1)知点P 为‎(n ,3n), (x -2)2+y 2=1 M(2,0),r=1.先 |PM|最小值.|PM|2=(n -2)2+3n 2=4n 2-4n+4=4(n -21)2+3. …… 11分又n ∈N *,∴|PM|最小值为2 (n=1).故|PQ|min =|PM|min -r=2-1=1. …… 13分21.解: (1)由题意知:顶点C 分别‎以A 、B 为 ,以|AB|为 两 ‎ 一 限 ‎交点,由 A: ( x– a )2 + y 2 = a 2 + b 2 , B: x 2 + ( y – b )2 = a 2 + b 2 .解xy =C (23b a +,23b a + )△ABC 含于 D ,即 顶点A ,B ,C 含于区域 ,∴ ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤+≤≤+≤≤≤≤≤.1230,1230,10,10b a b a b a 就 ( a , b ) 件. 图 为 图‎ 六边, ∵a > 0 , b > 0 , ∴图 ‎ 点除 .(2)∵△ABC 边长 为 角 ‎22b a +,∴ S =43( a 2 + b 2 ) (1) 件下, S 取最大值‎等 于六边 ‎图 点( a , b ) 点 离‎最大, 由六边 P ‎、Q 、R 相应 、OQ 、OR 计算.OP 2 = OR 2 = 12 + ( 2 –3)2 = 8 – 43,OQ 2 = 2(3 – 1)2 = 8 – 43.∴ OP = OR =OQ ∴ ( a , b ) = ( 1, 2 –3), 或(3– 1,3– 1), 或( 2 –3, 1 ) , S max =23– 3.。

相关文档
最新文档