2020高考数学(文)一轮复习课时作业 50直线与圆锥曲线 含解析
2020高考数学一轮复习课时作业55直线与圆锥曲线理

课时作业55 直线与圆锥曲线[基础达标]1.过椭圆错误!+错误!=1内一点P (3,1),求被这点平分的弦所在直线方程. 解析:设直线与椭圆交于A (x 1,y 1)、B (x 2,y 2)两点, 由于A 、B 两点均在椭圆上,故错误!+错误!=1,错误!+错误!=1, 两式相减得 错误!+错误!=0。
又∵P 是A 、B 的中点,∴x 1+x 2=6,y 1+y 2=2, ∴k AB =错误!=-错误!。
∴直线AB 的方程为y -1=-错误!(x -3). 即3x +4y -13=0. 2。
[2019·郑州入学测试]已知椭圆C :错误!+错误!=1(a 〉b 〉0)的离心率为错误!,以椭圆的四个顶点为顶点的四边形的面积为8。
(1)求椭圆C 的方程;(2)如图,斜率为错误!的直线l 与椭圆C 交于A ,B 两点,点P (2,1)在直线l 的左上方.若∠APB =90°,且直线PA ,PB 分别与y 轴交于点M ,N ,求线段MN 的长度.解析:(1)由题意知错误!解得错误! 所以椭圆C 的方程为x 28+错误!=1。
(2)设直线l :y =12x +m ,A (x 1,y 1),B (x 2,y 2),联立,得错误!消去y ,化简整理,得x 2+2mx +2m 2-4=0。
则由Δ=(2m )2-4(2m 2-4)>0,得-2〈m <2. 由根与系数的关系得,x 1+x 2=-2m ,x 1x 2=2m 2-4, 因为k PA =错误!,k PB =错误!, 所以k PA +k PB =错误!+错误!=错误!,上式中,分子=错误!(x2-2)+错误!(x1-2)=x1x2+(m-2)(x1+x2)-4(m-1)=2m2-4+(m-2)(-2m)-4(m-1)=0.所以k PA+k PB=0。
因为∠APB=90°,所以k PA·k PB=-1,则k PA=1,k PB=-1。
2020版高考数学一轮复习课后限时集训49直线与圆锥曲线文含解析北师大版201906272112

课后限时集训(四十九)(建议用时:60分钟) A 组 基础达标一、选择题1.直线y =b a x +3与双曲线x 2a 2-y 2b2=1的交点个数是( )A .1B .2C .1或2D .0A [因为直线y =ba x +3与双曲线的渐近线y =b ax 平行,所以它与双曲线只有1个交点.]2.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一条弦所在的直线方程是x -y +5=0,弦的中点坐标是M (-4,1),则椭圆的离心率是( )A .12B .22 C .32D .55C [设直线与椭圆交点为A (x 1,y 1),B (x 2,y 2),分别代入椭圆方程,由点差法可知y M =-b 2a 2k x M ,代入k =1,M (-4,1),解得b 2a 2=14,e =1-⎝ ⎛⎭⎪⎫b a 2=32,故选C .]3.抛物线C 的顶点为原点,焦点在x 轴上,直线x -y =0与抛物线C 交于A ,B 两点.若P (1,1)为线段AB 的中点,则抛物线C 的方程为( )A .y =2x 2B .y 2=2x C .x 2=2yD .y 2=-2xB [设A (x 1,y 1),B (x 2,y 2),抛物线方程为y 2=2px ,则⎩⎪⎨⎪⎧y 21=2px 1,y 22=2px 2,两式相减可得2p=y 1-y 2x 1-x 2·(y 1+y 2)=k AB ·2=2,即可得p =1,∴抛物线C 的方程为y 2=2x .] 4.经过椭圆x 22+y 2=1的一个焦点作倾斜角为45°的直线l ,交椭圆于A ,B 两点,设O为坐标原点,则OA →·OB →等于( )A .-3B .-13C .-13或-3D .±13B [依题意,当直线l 经过椭圆的右焦点(1,0)时,其方程为y -0=tan 45°(x -1),即y =x -1,代入椭圆方程x 22+y 2=1并整理得3x 2-4x =0,解得x =0或x =43,所以两个交点坐标分别为(0,-1),⎝ ⎛⎭⎪⎫43,13,∴OA →·OB →=-13,同理,直线l 经过椭圆的左焦点时,也可得OA →·OB →=-13.]5.(2018·太原一模)已知抛物线y 2=4x 的焦点为F ,过焦点F 的直线交抛物线于A ,B 两点,O 为坐标原点,若△AOB 的面积为6,则|AB |=( )A .6B .8C .12D .16A [由题意知抛物线y 2=4x 的焦点F 的坐标为(1,0),易知当直线AB 垂直于x 轴时,△AOB 的面积为2,不满足题意,所以可设直线AB 的方程为y =k (x -1)(k ≠0),与y 2=4x 联立,消去x 得ky 2-4y -4k =0,设A (x 1,y 1),B (x 2,y 2),所以y 1+y 2=4k,y 1y 2=-4,所以|y 1-y 2|=16k 2+16,所以△AOB 的面积为12×1×16k2+16=6,解得k =±2,所以|AB |=1+1k 2|y 1-y 2|=6,故选A .]二、填空题6.已知斜率为2的直线经过椭圆x 25+y 24=1的右焦点F 1,与椭圆相交于A ,B 两点,则弦AB 的长为________.553[由题意知,椭圆的右焦点F 1的坐标为(1,0),直线AB 的方程为y =2(x -1).由方程组⎩⎪⎨⎪⎧y =x -,x 25+y24=1,消去y ,整理得3x 2-5x =0. 设A (x 1,y 1),B (x 2,y 2),由根与系数的关系,得x 1+x 2=53,x 1x 2=0.则|AB |=x 1-x 22+y 1-y 22=1+k 2x 1+x 22-4x 1x 2]=+22⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫532-4×0=553.] 7.(2019·沧州百校联盟)过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.22 [设A (x 1,y 1),B (x 2,y 2),则x 21a 2+y 21b2=1①,x 22a 2+y 22b2=1②, ①②两式相减并整理得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.把已知条件代入上式得,-12=-b 2a 2×22,∴b 2a 2=12,故椭圆的离心率e =1-b 2a 2=22.] 8.P 为椭圆x 29+y 28=1上的任意一点,AB 为圆C :(x -1)2+y 2=1的任一条直径,则PA →·PB→的取值范围是________.[3,15] [圆心C (1,0)为椭圆的右焦点,PA →·PB →=(PC →+CA →)·(PC →+CB →)=(PC →+CA →)·(PC →-CA →)=PC →2-CA →2=|PC →|2-1,显然|PC →|∈[a -c ,a +c ]=[2,4],所以PA →·PB →=|PC →|2-1∈[3,15].]三、解答题9. 如图,已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点,设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.[解] 设直线AB 的方程为y =k (x +1)(k ≠0),代入x 22+y 2=1,整理得(1+2k 2)x 2+4k 2x+2k 2-2=0.因为直线AB 过椭圆的左焦点F ,所以方程有两个不等实根,记A (x 1,y 1),B (x 2,y 2),AB 中点N (x 0,y 0),则x 1+x 2=-4k 22k 2+1,x 0=12(x 1+x 2)=-2k 22k 2+1,y 0=k (x 0+1)=k2k 2+1,所以AB 的垂直平分线NG 的方程为y -y 0=-1k(x -x 0).令y =0,得x G =x 0+ky 0=-2k 22k 2+1+k22k 2+1=-k 22k 2+1=-12+14k 2+2.因为k ≠0,所以-12<x G <0,所以点G 横坐标的取值范围为⎝ ⎛⎭⎪⎫-12,0.10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,其中左焦点为F (-2,0).(1)求椭圆C 的方程;(2)若直线y =x +m 与椭圆C 交于不同的两点A ,B ,且线段AB 的中点M 在圆x 2+y 2=1上,求m 的值.[解] (1)由题意,得⎩⎪⎨⎪⎧c a =22,c =2,a 2=b 2+c 2,解得⎩⎨⎧a =22,b =2.∴椭圆C 的方程为x 28+y 24=1.(2)设点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0),由⎩⎪⎨⎪⎧x 28+y 24=1,y =x +m ,消去y 得,3x 2+4mx +2m 2-8=0,Δ=96-8m 2>0,∴-23<m <23, ∵x 0=x 1+x 22=-2m 3,∴y 0=x 0+m =m3,∵点M (x 0,y 0)在圆x 2+y 2=1上, ∴⎝ ⎛⎭⎪⎫-2m 32+⎝ ⎛⎭⎪⎫m 32=1,∴m =±355.B 组 能力提升1.(2019·黑龙江松原模拟)已知P 是圆C :x 2+y 2=4上的动点,P 在x 轴上的射影为P ′,点M 满足PM →=MP ′→,当点P 在圆C 上运动时,点M 形成的轨迹为曲线E .(1)求曲线E 的方程;(2)经过点A (0,2)的直线l 与曲线E 相交于点C ,D ,并且AC →=35AD →,求直线l 的方程.图①[解] (1)如图①,设M (x ,y ),则P (x,2y )在圆C :x 2+y 2=4上. 所以x 2+4y 2=4,即曲线E 的方程为x 24+y 2=1.(2)经检验,当直线l ⊥x 轴时,题目条件不成立,所以直线l 的斜率存在(如图②).设直线l :y =kx +2,C (x 1,y 1),D (x 2,y 2),联立⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +2,得(1+4k 2)x 2+16kx +12=0.Δ=(16k )2-4(1+4k 2)·12>0,得k 2>34.图②x 1+x 2=-16k1+4k2,① x 1x 2=121+4k2.② 又由AC →=35AD →,得x 1=35x 2,将它代入①②得k 2=1,k =±1⎝ ⎛⎭⎪⎫满足k 2>34,所以直线l 的斜率为k =±1,所以直线l的方程为y =±x +2.2.(2019·河南濮阳期末)设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点.设过定点M (0,2)的直线l 与椭圆交于不同的两点A ,B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.[解] 显然直线x =0不满足题设条件,可设直线l :y =kx +2,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +2,x 24+y 2=1消去y ,整理得⎝ ⎛⎭⎪⎫k 2+14x 2+4kx +3=0,∴x 1+x 2=-4k k 2+14,x 1·x 2=3k 2+14, 由Δ=(4k )2-4⎝ ⎛⎭⎪⎫k 2+14×3=4k 2-3>0得,k >32或k <-32.①又∠AOB 为锐角,∴cos∠AOB >0, ∴OA →·OB →>0,∴OA →·OB →=x 1x 2+y 1y 2>0.又y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4=3k2k 2+14+-8k 2k 2+14+4=-k 2+1k 2+14,∴3k 2+14+-k 2+1k 2+14>0,即k 2<4,∴-2<k <2.② 由①②得,-2<k <-32或32<k <2. 故k 的取值范围是⎝⎛⎭⎪⎫-2,-32∪⎝ ⎛⎭⎪⎫32,2.。
2020届高考数学一轮复习第8章 第8节 第1课时 直线与圆锥曲线

第八节 圆锥曲线的综合问题[考纲传真] 1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想.1.直线与圆锥曲线的位置关系设直线l :Ax +By +C =0,圆锥曲线C :F (x ,y )=0, 由⎩⎨⎧Ax +By +C =0,F (x ,y )=0消去y 得到关于x 的方程ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线l 与圆锥曲线C 有两个公共点;Δ=0⇔直线l 与圆锥曲线C 有一个公共点; Δ<0⇔直线l 与圆锥曲线C 有零个公共点.(2)当a =0,b ≠0时,圆锥曲线C 为抛物线或双曲线.当C 为双曲线时,l 与双曲线的渐近线平行或重合,它们的公共点有1个或0个.当C 为抛物线时,l 与抛物线的对称轴平行或重合,它们的公共点有1个. 2.圆锥曲线的弦长公式设斜率为k 的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=1+1k 2|y 1-y 2|=1+1k 2·(y 1+y 2)2-4y 1y 2. [常用结论]过一点的直线与圆锥曲线的位置关系 (1)过椭圆外一点总有两条直线与椭圆相切; 过椭圆上一点有且只有一条直线与椭圆相切; 过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)直线l 与椭圆C 相切的充要条件是直线l 与椭圆C 只有一个公共点.( ) (2)直线l 与双曲线C 相切的充要条件是直线l 与双曲线C 只有一个公共点.( )(3)过抛物线y 2=2px (p >0)焦点的弦中最短弦的弦长是2p .( )(4)若抛物线上存在关于直线l 对称的两点,则l 与抛物线有两个交点.( ) [答案] (1)√ (2)× (3)√ (4)×2.(教材改编)直线y =k (x -1)+1与椭圆x 29+y 24=1的位置关系是( ) A .相交 B .相切 C .相离 D .不确定A [直线y =k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.]3.“直线与双曲线相切”是“直线与双曲线只有一个公共点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件A [直线与双曲线相切时,只有一个公共点,但直线与双曲线相交时,也可能有一个公共点,例如:与双曲线的渐近线平行的直线与双曲线只有一个交点.故选A.]4.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有________条.3 [结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0). ]5.(教材改编)已知与向量v =(1,0)平行的直线l 与双曲线x 24-y 2=1相交于A ,B 两点,则|AB |的最小值为________.4 [由题意可设直线l 的方程为y =m ,代入x 24-y 2=1得x 2=4(1+m 2),所以x 1=4(1+m 2)=21+m 2,x 2=-21+m 2,所以|AB |=|x 1-x 2|=41+m 2≥4,即当m =0时,|AB |有最小值4.]第1课时 直线与圆锥曲线1.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A ,B 两点,它们的横坐标之和等于2,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条B [设该抛物线焦点为F ,A (x A ,y A ),B (x B ,y B ),则|AB |=|AF |+|FB |=x A +p2+x B +p2=x A +x B +1=3>2p =2.所以符合条件的直线有且只有两条.]2.若直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是( ) A .m >1 B .m >0C .0<m <5且m ≠1D .m ≥1且m ≠5D [由于直线y =kx +1恒过点(0,1),所以点(0,1)必在椭圆内或椭圆上,则0<1m ≤1且m ≠5,故m ≥1且m ≠5.]3.若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( )A.⎝⎛⎭⎪⎫-153,153 B.⎝⎛⎭⎪⎫0,153 C.⎝⎛⎭⎪⎫-153,0 D.⎝ ⎛⎭⎪⎫-153,-1D [由⎩⎨⎧y =kx +2,x 2-y 2=6得(1-k 2)x 2-4kx -10=0.设直线与双曲线右支交于不同的两点A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧1-k 2≠0,Δ=16k 2-4(1-k 2)×(-10)>0,x 1+x 2=4k 1-k2>0,x 1x 2=-101-k2>0,解得-153<k <-1,即k 的取值范围是⎝ ⎛⎭⎪⎫-153,-1.] [规律方法] 直线与圆锥曲线位置关系的判定方法►考法1 与弦长有关的问题【例1】 斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A .2 B.455C.4105D.8105C [设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎨⎧x 2+4y 2=4,y =x +t ,消去y ,得5x 2+8tx +4(t 2-1)=0,则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5.∴|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2 =2·⎝ ⎛⎭⎪⎫-85t 2-4×4(t 2-1)5=425·5-t 2,当t =0时,|AB |ma x =4105.] ►考法2 中点弦问题【例2】 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1D.x 218+y 29=1D [设A (x 1,y 1),B (x 2,y 2),所以⎩⎪⎨⎪⎧x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,运用点差法,所以直线AB 的斜率为k =b 2a 2,设直线方程为y =b 2a 2(x -3),联立直线与椭圆的方程得(a 2+b 2)x 2-6b 2x +9b 2-a 4=0,所以x 1+x 2=6b 2a 2+b 2=2,又因为a 2-b 2=9,解得b 2=9,a 2=18,方程为x 218+y 29=1.]►考法3 与弦长有关的综合问题【例3】 如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4.(1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.[解] (1)由题意知e =c a =12,2a =4.又a 2=b 2+c 2,解得a =2,b =3,所以椭圆方程为x 24+y 23=1.(2)①当两条弦中一条弦所在直线的斜率为0时,另一条弦所在直线的斜率不存在,由题意知|AB |+|CD |=7,不满足条件.②当两弦所在直线的斜率均存在且不为0时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),则直线CD 的方程为y =-1k (x -1).将直线AB 方程代入椭圆方程中并整理得(3+4k 2)x 2-8k 2x +4k 2-12=0,则x 1+x 2=8k 23+4k 2,x 1·x 2=4k 2-123+4k 2,所以|AB |=k 2+1|x 1-x 2|=k 2+1·(x 1+x 2)2-4x 1x 2=12(k 2+1)3+4k 2.同理,|CD |=12⎝ ⎛⎭⎪⎫1k 2+13+4k 2=12(k 2+1)3k 2+4. 所以|AB |+|CD |=12(k 2+1)3+4k 2+12(k 2+1)3k 2+4=84(k 2+1)2(3+4k 2)(3k 2+4)=487, 解得k =±1,所以直线AB 的方程为x -y -1=0或x +y -1=0.设椭圆M :y a 2+x b2=1(a >b >0)的离心率与双曲线x 2-y 2=1的离心率互为倒数,且椭圆的长轴长为4.(1)求椭圆M 的方程;(2)若直线y =2x +1交椭圆M 于A ,B 两点,P (1,2)为椭圆M 上一点,求△P AB 的面积.[解] (1)由题可知,双曲线的离心率为2,则椭圆的离心率e =c a =22, 由2a =4,c a =22,b 2=a 2-c 2,得a =2,c =2,b =2, 故椭圆M 的方程为y 24+x 22=1. (2)联立方程⎩⎪⎨⎪⎧y =2x +1,x 22+y 24=1,得4x 2+22x -3=0,且⎩⎪⎨⎪⎧x 1+x 2=-22,x 1x 2=-34,所以|AB |=1+2|x 1-x 2|=3·(x 1+x 2)2-4x 1x 2 =3·12+3=422. 又P 到直线AB 的距离为d =13, 所以S △P AB =12|AB |·d =12·422·13=144.。
2020版高考数学一轮复习课时跟踪检测五十二直线与圆锥曲线

课时跟踪检测(五十二) 直线与圆锥曲线1.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A ,B 两点,它们的横坐标之和等于2,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条解析:选B 设该抛物线焦点为F ,A (x A ,y A ),B (x B ,y B ),则|AB |=|AF |+|FB |=x A +p2+x B +p2=x A +x B +1=3>2p =2.所以符合条件的直线有且只有两条.2.(2019·张掖高三诊断)过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若A ,B 两点的横坐标之和为103,则|AB |=( ) A.133B.143 C .5D.163解析:选D 过抛物线的焦点的弦长公式为|AB |=p +x 1+x 2.∵p =2,∴|AB |=2+103=163. 3.(2018·聊城二模)已知直线l 与抛物线C :y 2=4x 相交于A ,B 两点,若线段AB 的中点为(2,1),则直线l 的方程为( )A .y =x -1B .y =-2x +5C .y =-x +3D .y =2x -3解析:选D 设A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧y 21=4x 1, ①y 22=4x 2, ②①-②得y 21-y 22=4(x 1-x 2),由题可知x 1≠x 2.∴y 1-y 2x 1-x 2=4y 1+y 2=42=2,即k AB =2,∴直线l 的方程为y -1=2(x -2),即2x -y -3=0.故选D.4.(2019·厦门模拟)过双曲线C :x 24-y 29=1的左焦点作倾斜角为π6的直线l ,则直线l与双曲线C 的交点情况是( )A .没有交点B .只有一个交点C .有两个交点且都在左支上D .有两个交点分别在左、右两支上解析:选D 直线l 的方程为y =33()x +13,代入C :x 24-y 29=1,整理得23x 2-813x -160=0,Δ=(-813)2+4×23×160>0,所以直线l 与双曲线C 有两个交点,由一元二次方程根与系数的关系得两个交点横坐标符号不同,故两个交点分别在左、右两支上.5.已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A ,B ,则|AB |=( )A .3B .4C .3 2D .4 2解析:选C 由题意可设l AB 为y =x +b ,代入y =-x 2+3得x 2+x +b -3=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-1,x 1x 2=b -3,y 1+y 2=x 1+b +x 2+b =-1+2b .所以AB 中点坐标为⎝ ⎛⎭⎪⎫-12,-12+b ,该点在x +y =0上,即-12+⎝ ⎛⎭⎪⎫-12+b =0,得b =1,所以|AB |=1+12·x 1+x 22-4x 1x 2=3 2.6.(2019·青岛模拟)已知点A 是抛物线C :x 2=2py (p >0)的对称轴与准线的交点,过点A 作抛物线C 的两条切线,切点分别为P ,Q ,若△AP Q 的面积为4,则p 的值为( )A.12 B .1 C.32D .2解析:选D 设过点A 与抛物线相切的直线方程为y =kx -p 2.由⎩⎪⎨⎪⎧y =kx -p 2,x 2=2py得x2-2pkx +p 2=0,由Δ=4k 2p 2-4p 2=0,可得k =±1, 则Q ⎝ ⎛⎭⎪⎫p ,p 2,P ⎝⎛⎭⎪⎫-p ,p 2,∴△AP Q 的面积为12×2p ×p =4,∴p =2.故选D.7.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),过点P (3,6)的直线l 与C 相交于A ,B 两点,且AB 的中点为N (12,15),则双曲线C 的离心率为( )A .2 B.32 C.355D.52解析:选B 设A (x 1,y 1),B (x 2,y 2),由AB 的中点为N (12,15),得x 1+x 2=24,y 1+y 2=30,由⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y22b 2=1,两式相减得:x 1+x 2x 1-x 2a2=y 1+y 2y 1-y 2b2,则y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=4b 25a 2.由直线AB 的斜率k =15-612-3=1,∴4b 25a 2=1,则b 2a 2=54,∴双曲线的离心率e =c a =1+b 2a 2=32. 8.(2019·福州模拟)已知抛物线E :y 2=2px (p >0)的焦点为F ,过F 且斜率为1的直线交E 于A ,B 两点,线段AB 的中点为M ,线段AB 的垂直平分线交x 轴于点C ,MN ⊥y 轴于点N ,若四边形CMNF 的面积等于7,则E 的方程为( )A .y 2=x B .y 2=2x C .y 2=4xD .y 2=8x解析:选C F ⎝ ⎛⎭⎪⎫p 2,0,直线AB 的方程为y =x -p2.联立得方程组⎩⎪⎨⎪⎧y 2=2px ,y =x -p2,可得x 2-3px +p 24=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=3p , 则y 1+y 2=x 1+x 2-p =2p ,∴M ⎝ ⎛⎭⎪⎫3p 2,p ,∴N (0,p ),直线MC 的方程为y =-x +5p 2. ∴C ⎝ ⎛⎭⎪⎫5p 2,0,∴四边形CMNF 的面积为S 梯形OCMN -S △ONF =⎝ ⎛⎭⎪⎫3p 2+5p 2·p2-12·p 2·p =7p24=7, 又p >0,∴p =2,即抛物线E 的方程为y 2=4x .故选C.9.(2018·湖北十堰二模)如图,F1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与C 的两个分支分别交于点A ,B .若△ABF 2为等边三角形,则双曲线的离心率为( )A .4 B.7 C.233D. 3解析:选B ∵△ABF 2为等边三角形,∴|AB |=|AF 2|=|BF 2|,∠F 1AF 2=60°. 由双曲线的定义可得|AF 1|-|AF 2|=2a , ∴|BF 1|=2a .又|BF 2|-|BF 1|=2a ,∴|BF 2|=4a . ∴|AF 2|=4a ,|AF 1|=6a .在△AF 1F 2中,由余弦定理可得|F 1F 2|2=|AF 1|2+|AF 2|2-2|AF 2|·|AF 1|cos 60°, ∴(2c )2=(6a )2+(4a )2-2×4a ×6a ×12,即c 2=7a 2,∴e =c a =c 2a 2=7.故选B. 10.(2019·贵阳模拟)已知双曲线x 2-y 2=1的左、右顶点分别为A 1,A 2,动直线l :y =kx +m 与圆x 2+y 2=1相切,且与双曲线左、右两支的交点分别为P 1(x 1,y 1),P 2(x 2,y 2),则x 2-x 1的最小值为( )A .2 2B .2C .4D .3 2解析:选A ∵l 与圆相切, ∴原点到直线的距离d =|m |1+k2=1,∴m 2=1+k 2,由⎩⎪⎨⎪⎧y =kx +m ,x 2-y 2=1得(1-k 2)x 2-2mkx -(m 2+1)=0,∴⎩⎪⎨⎪⎧1-k 2≠0,Δ=4m 2k 2+-k2m 2+=m 2+1-k 2=8>0,x 1x 2=1+m 2k 2-1<0,∴k 2<1,∴-1<k <1,由于x 1+x 2=2mk 1-k 2,∴x 2-x 1=x 1+x 22-4x 1x 2=22|1-k 2|=221-k2,∵0≤k 2<1,∴当k 2=0时,x 2-x 1取最小值2 2.故选A.11.(2019·安庆模拟)设抛物线x 2=4y 的焦点为F ,点A ,B 在抛物线上,且满足AF ―→=λFB ―→,若|AF ―→|=32,则λ的值为________.解析:设A (x 1,y 1),B (x 2,y 2),由抛物线x 2=4y 得焦点F 的坐标为(0,1),准线方程为y =-1,∵|AF ―→|=32,∴y 1+1=32,解得y 1=12,∴x 1=±2,由抛物线的对称性取x 1=2, ∴A ⎝⎛⎭⎪⎫2,12,∴直线AF 的方程为y =-24x +1, 由⎩⎪⎨⎪⎧y =-24x +1,x 2=4y .解得⎩⎪⎨⎪⎧x =2,y =12或⎩⎨⎧x =-22,y =2,∴B (-22,2),∴|FB ―→|=2+1=3,∵AF ―→=λFB ―→,∴|AF ―→|=λ|FB ―→|,∴32=3λ,解得λ=12.答案:1212.(2019·武汉调研)已知直线MN 过椭圆x 22+y 2=1的左焦点F ,与椭圆交于M ,N 两点.直线P Q 过原点O 且与直线MN 平行,直线P Q 与椭圆交于P ,Q 两点,则|P Q|2|MN |=________.解析:法一:由题意知,直线MN 的斜率不为0,设直线MN 的方程为x =my +1,则直线P Q 的方程为x =my .设M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q(x 4,y 4).⎩⎪⎨⎪⎧x =my +1,x 22+y 2=1⇒(m2+2)y 2+2my -1=0⇒y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2. ∴|MN |=1+m 2|y 1-y 2|=22·m 2+1m 2+2.⎩⎪⎨⎪⎧x =my ,x 22+y 2=1⇒(m 2+2)y 2-2=0⇒y 3+y 4=0,y 3y 4=-2m 2+2. ∴|P Q|=1+m 2|y 3-y 4|=2 2 m 2+1m 2+2. 故|P Q|2|MN |=2 2. 法二:取特殊位置,当直线MN 垂直于x 轴时,易得|MN |=2b2a=2,|P Q|=2b =2,则|P Q|2|MN |=2 2.答案:2 213.(2019·石家庄重中高中摸底)已知抛物线C :y 2=2px (p >0),直线l :y =3(x -1),l 与C 交于A ,B 两点,若|AB |=163,则p =________.解析:由⎩⎨⎧y 2=2px ,y =3x -,消去y ,得3x 2-(2p +6)x +3=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系,得x 1+x 2=2p +63,x 1x 2=1,所以|AB |=2x 1+x 22-4x 1x 2=2p +29-4=163,所以p =2. 答案:214.(2018·深圳二模)设过抛物线y 2=2px (p >0)上任意一点P (异于原点O )的直线与抛物线y 2=8px (p >0)交于A ,B 两点,直线OP 与抛物线y 2=8px (p >0)的另一个交点为Q ,则S △AB QS △ABO=________. 解析:设直线OP 的方程为y =kx (k ≠0),联立得⎩⎪⎨⎪⎧y =kx ,y 2=2px ,解得P ⎝ ⎛⎭⎪⎫2p k 2,2p k , 联立得⎩⎪⎨⎪⎧y =kx ,y 2=8px ,解得Q ⎝⎛⎭⎪⎫8p k 2,8p k, ∴|OP |= 4p2k4+4p2k 2=2p 1+k2k 2, |P Q|= 36p2k 4+36p 2k2=6p 1+k2k2, ∴S △AB Q S △ABO =|P Q||OP |=3. 答案:315.已知抛物线E :y 2=2px (p >0)的焦点F ,E 上一点(3,m )到焦点的距离为4. (1)求抛物线E 的方程;(2)过F 作直线l ,交抛物线E 于A ,B 两点,若直线AB 中点的纵坐标为-1,求直线l 的方程.解:(1)抛物线E :y 2=2px (p >0)的准线方程为x =-p2,由抛物线的定义可知3-⎝ ⎛⎭⎪⎫-p 2 =4,解得p =2,∴抛物线E 的方程为y 2=4x .(2)法一:由(1)得抛物线E 的方程为y 2=4x ,焦点F (1,0), 设A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,两式相减,整理得y 2-y 1x 2-x 1 =4y 2+y 1(x 1≠x 2). ∵线段AB 中点的纵坐标为-1, ∴直线l 的斜率k AB =4y 2+y 1=4-=-2,∴直线l 的方程为y -0=-2(x -1),即2x +y -2=0. 法二:由(1)得抛物线E 的方程为y 2=4x ,焦点F (1,0), 设直线l 的方程为x =my +1,由⎩⎪⎨⎪⎧y 2=4x ,x =my +1消去x ,得y 2-4my -4=0.设A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2), ∵线段AB 中点的纵坐标为-1, ∴y 1+y 22 =4m2=-1,解得m =-12, ∴直线l 的方程为x =-12y +1,即2x +y -2=0.16.(2019·佛山模拟)已知直线l 过点P (2,0)且与抛物线E :y 2=4x 相交于A ,B 两点,与y 轴交于点C ,其中点A 在第四象限,O 为坐标原点.(1)当A 是PC 中点时,求直线l 的方程;(2)以AB 为直径的圆交直线OB 于点D ,求|OB |·|OD |的值. 解:(1)∵A 是PC 的中点,P (2,0),C 在y 轴上, ∴A 点的横坐标为1,又A 在第四象限,∴A (1,-2). ∴直线l 的方程为y =2x -4. (2)显然直线l 的斜率不为0, 设l的方程为x =my +2,A (x 1,y 1),B (x 2,y 2),联立得方程组⎩⎪⎨⎪⎧x =my +2,y 2=4x ,消去x得y 2-4my -8=0,∴y 1y 2=-8,故x 1x 2=y 214·y 224=4,∵D 在以AB 为直径的圆上,且在直线OB 上,∴AD ―→⊥OD ―→, 设OD ―→=λOB ―→=(λx 2,λy 2),则AD ―→=OD ―→-OA ―→=(λx 2-x 1,λy 2-y 1), ∴AD ―→·OD ―→=(λx 2-x 1)λx 2+(λy 2-y 1)λy 2=0, 即λ2x 22-4λ+λ2y 22+8λ=0,易知λ≠0, ∴λ(x 22+y 22)=-4.∴|OB |·|OD |=x 22+y 22·λ2x 22+λ2y 22 =|λ|(x 22+y 22)=4.17.(2019·广州调研)如图,在直角坐标系xOy 中,椭圆C :y 2a 2+x 2b 2=1(a >b >0)的上焦点为F 1,椭圆C 的离心率为12,且过点⎝⎛⎭⎪⎫1,263. (1)求椭圆C 的方程;(2)设过椭圆C 的上顶点A 的直线l 与椭圆C 交于点B (B 不在y 轴上),垂直于l 的直线与l 交于点M ,与x 轴交于点H ,若F 1B ―→·F 1H ―→=0,且|MO |=|MA |,求直线l 的方程.解:(1)因为椭圆C 的离心率为12,所以c a =12,即a =2c .又a 2=b 2+c 2,所以b 2=3c 2,即b 2=34a 2,所以椭圆C 的方程为y 2a 2+x 234a2=1.把点⎝⎛⎭⎪⎫1,263代入椭圆C 的方程中,解得a 2=4.所以椭圆C 的方程为y 24+x 23=1.(2)由(1)知,A (0,2),设直线l 的斜率为k (k ≠0),则直线l 的方程为y =kx +2,由⎩⎪⎨⎪⎧y =kx +2,x 23+y24=1,得(3k 2+4)x 2+12kx =0.设B (x B ,y B ),得x B =-12k3k 2+4, 所以y B =-6k 2+83k 2+4,所以B ⎝ ⎛⎭⎪⎫-12k 3k 2+4,-6k2+83k 2+4.设M (x M ,y M ),因为|MO |=|MA |,所以点M 在线段OA 的垂直平分线上, 所以y M =1,因为y M =kx M +2,所以x M =-1k,即M ⎝ ⎛⎭⎪⎫-1k,1.设H (x H,0),又直线HM 垂直于直线l , 所以k MH =-1k,即1-1k-x H=-1k . 所以x H =k -1k,即H ⎝⎛⎭⎪⎫k -1k,0.又F 1(0,1),所以F 1B ―→=⎝ ⎛⎭⎪⎫-12k 3k 2+4,4-9k 23k 2+4,F 1H ―→=⎝ ⎛⎭⎪⎫k -1k ,-1.因为F 1B ―→·F 1H ―→=0,所以-12k 3k 2+4·⎝⎛⎭⎪⎫k -1k -4-9k 23k 2+4=0,解得k =±263.所以直线l 的方程为y =±263x +2.。
核按钮(新课标)高考数学一轮复习第九章平面解析几何9.8直线与圆锥曲线的位置关系课件文

(2)注意消元后非二次的情况,即当 a=0 时,对应圆
锥曲线只可能是双曲线或抛物线.
当圆锥曲线是双曲线时,直线 l 与双曲线的渐近线的 位置关系是________;当圆锥曲线是抛物线时,直线 l 与
抛物线的对称轴的位置关系是________. (3)直线方程涉及斜率 k 要考虑其不存在的情形.
又∵y0=x0+m,∴P-m4 ,34m, 代入抛物线方程得196m2=18·-m4 ,
解得 m=0 或-8,经检验都符合.故填 0 或-8.
第十七页,共48页。
类型二 定点问题
(2013·陕西)已知动圆过定点 A(4,0),且在 y 轴上截得弦 MN 的长为 8.
(1)求动圆圆心的轨迹 C 的方程; (2)已知点 B(-1,0),设不垂直于 x 轴的直线 l 与轨迹 C 交于不同的
又|O1A|= (x-4)2+y2,
∴ (x-4)2+y2= x2+42,化简得 y2=8x(x≠0); 当 O1 在 y 轴上时,O1 与 O 重合,点 O1 的坐标(0,0)也满足方程 y2= 8x,∴动圆圆心的轨迹 C 的方程为 y2=8x.
第十九页,共48页。
(2)证明:如图,
设直线 l 的方程为 y=kx+b(k≠0),P(x1,y1),Q(x2,y2),将 y=kx+b 代入 y2=8x 中,得 k2x2+(2kb-8)x+b2=0,其中Δ=(2kb-8)2-4k2b2=64-32kb>0,得 kb<2.
两式相减得(x1-x2)a(2 x1+x2)+(y1-y2)b(2 y1+y2)=0,
变形得-ba22((xy11++xy22))=yx11--yx22,即-22ba22=-12,
2020版高考数学一轮复习课时跟踪检测五十二直线与圆锥曲线含解析20190513187

课时跟踪检测(五十二) 直线与圆锥曲线1.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A ,B 两点,它们的横坐标之和等于2,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条解析:选B 设该抛物线焦点为F ,A (x A ,y A ),B (x B ,y B ),则|AB |=|AF |+|FB |=x A +p 2+x B +p2=x A +x B+1=3>2p =2.所以符合条件的直线有且只有两条.2.(2019·张掖高三诊断)过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若A ,B 两点的横坐标之和为103,则|AB |=( )A.133B.143 C .5D.163解析:选D 过抛物线的焦点的弦长公式为|AB |=p +x 1+x 2.∵p =2,∴|AB |=2+103=163.3.(2018·聊城二模)已知直线l 与抛物线C :y 2=4x 相交于A ,B 两点,若线段AB 的中点为(2,1),则直线l 的方程为( )A .y =x -1B .y =-2x +5C .y =-x +3D .y =2x -3解析:选D 设A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧y 21=4x 1, ①y 22=4x 2, ②①-②得y 21-y 22=4(x 1-x 2),由题可知x 1≠x 2.∴y 1-y 2x 1-x 2=4y 1+y 2=42=2,即k AB =2,∴直线l 的方程为y -1=2(x -2),即2x -y -3=0.故选D. 4.(2019·厦门模拟)过双曲线C :x 24-y 29=1的左焦点作倾斜角为π6的直线l ,则直线l 与双曲线C 的交点情况是( )A .没有交点B .只有一个交点C .有两个交点且都在左支上D .有两个交点分别在左、右两支上解析:选D 直线l 的方程为y =33()x +13,代入C :x 24-y 29=1,整理得23x 2-813x -160=0,Δ=(-813)2+4×23×160>0,所以直线l 与双曲线C 有两个交点,由一元二次方程根与系数的关系得两个交点横坐标符号不同,故两个交点分别在左、右两支上.5.已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A ,B ,则|AB |=( )A .3B .4C .3 2D .4 2解析:选C 由题意可设l AB 为y =x +b ,代入y =-x 2+3得x 2+x +b -3=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-1,x 1x 2=b -3,y 1+y 2=x 1+b +x 2+b =-1+2b .所以AB 中点坐标为⎝ ⎛⎭⎪⎫-12,-12+b ,该点在x+y =0上,即-12+⎝ ⎛⎭⎪⎫-12+b =0,得b =1,所以|AB |=1+12·x 1+x 22-4x 1x 2=3 2.6.(2019·青岛模拟)已知点A 是抛物线C :x 2=2py (p >0)的对称轴与准线的交点,过点A 作抛物线C 的两条切线,切点分别为P ,Q ,若△AP Q 的面积为4,则p 的值为( )A.12 B .1 C.32D .2解析:选D 设过点A 与抛物线相切的直线方程为y =kx -p2.由⎩⎪⎨⎪⎧y =kx -p 2,x 2=2py得x 2-2pkx +p 2=0,由Δ=4k 2p 2-4p 2=0,可得k =±1, 则Q ⎝ ⎛⎭⎪⎫p ,p 2,P ⎝⎛⎭⎪⎫-p ,p 2,∴△AP Q 的面积为12×2p ×p =4,∴p =2.故选D.7.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),过点P (3,6)的直线l 与C 相交于A ,B 两点,且AB 的中点为N (12,15),则双曲线C 的离心率为( )A .2 B.32 C.355D.52解析:选 B 设A (x 1,y 1),B (x 2,y 2),由AB 的中点为N (12,15),得x 1+x 2=24,y 1+y 2=30,由⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y 22b 2=1,两式相减得:x 1+x 2x 1-x 2a2=y 1+y 2y 1-y 2b2,则y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=4b 25a 2.由直线AB 的斜率k =15-612-3=1,∴4b 25a 2=1,则b 2a 2=54,∴双曲线的离心率e =c a =1+b 2a 2=32.8.(2019·福州模拟)已知抛物线E :y 2=2px (p >0)的焦点为F ,过F 且斜率为1的直线交E 于A ,B 两点,线段AB 的中点为M ,线段AB 的垂直平分线交x 轴于点C ,MN ⊥y 轴于点N ,若四边形CMNF 的面积等于7,则E 的方程为( )A .y 2=x B .y 2=2x C .y 2=4xD .y 2=8x解析:选C F ⎝ ⎛⎭⎪⎫p 2,0,直线AB 的方程为y =x -p2.联立得方程组⎩⎪⎨⎪⎧y 2=2px ,y =x -p2,可得x 2-3px +p 24=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=3p , 则y 1+y 2=x 1+x 2-p =2p ,∴M ⎝ ⎛⎭⎪⎫3p 2,p ,∴N (0,p ),直线MC 的方程为y =-x +5p 2. ∴C ⎝ ⎛⎭⎪⎫5p 2,0,∴四边形CMNF 的面积为S 梯形OCMN -S △ONF =⎝ ⎛⎭⎪⎫3p 2+5p 2·p2-12·p 2·p =7p24=7, 又p >0,∴p =2,即抛物线E 的方程为y 2=4x .故选C.9.(2018·湖北十堰二模)如图,F1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与C 的两个分支分别交于点A ,B .若△ABF 2为等边三角形,则双曲线的离心率为( )A .4 B.7 C.233D. 3解析:选B ∵△ABF 2为等边三角形, ∴|AB |=|AF 2|=|BF 2|,∠F 1AF 2=60°. 由双曲线的定义可得|AF 1|-|AF 2|=2a , ∴|BF 1|=2a .又|BF 2|-|BF 1|=2a ,∴|BF 2|=4a . ∴|AF 2|=4a ,|AF 1|=6a .在△AF 1F 2中,由余弦定理可得|F 1F 2|2=|AF 1|2+|AF 2|2-2|AF 2|·|AF 1|cos 60°, ∴(2c )2=(6a )2+(4a )2-2×4a ×6a ×12,即c 2=7a 2,∴e =c a =c 2a 2=7.故选B. 10.(2019·贵阳模拟)已知双曲线x 2-y 2=1的左、右顶点分别为A 1,A 2,动直线l :y =kx +m 与圆x 2+y 2=1相切,且与双曲线左、右两支的交点分别为P 1(x 1,y 1),P 2(x 2,y 2),则x 2-x 1的最小值为( )A .2 2B .2C .4D .3 2解析:选A ∵l 与圆相切, ∴原点到直线的距离d =|m |1+k2=1,∴m 2=1+k 2,由⎩⎪⎨⎪⎧y =kx +m ,x 2-y 2=1得(1-k 2)x 2-2mkx -(m 2+1)=0,∴⎩⎪⎨⎪⎧1-k 2≠0,Δ=4m 2k 2+-k2m 2+=m 2+1-k 2=8>0,x 1x 2=1+m 2k 2-1<0,∴k 2<1,∴-1<k <1,由于x 1+x 2=2mk 1-k 2,∴x 2-x 1=x 1+x 22-4x 1x 2=22|1-k 2|=221-k2,∵0≤k 2<1,∴当k 2=0时,x 2-x 1取最小值2 2.故选A.11.(2019·安庆模拟)设抛物线x 2=4y 的焦点为F ,点A ,B 在抛物线上,且满足AF ―→=λFB ―→,若|AF ―→|=32,则λ的值为________. 解析:设A (x 1,y 1),B (x 2,y 2),由抛物线x 2=4y 得焦点F 的坐标为(0,1), 准线方程为y =-1,∵|AF ―→|=32,∴y 1+1=32,解得y 1=12,∴x 1=±2,由抛物线的对称性取x 1=2, ∴A ⎝⎛⎭⎪⎫2,12,∴直线AF 的方程为y =-24x +1, 由⎩⎪⎨⎪⎧y =-24x +1,x 2=4y .解得⎩⎪⎨⎪⎧x =2,y =12或⎩⎨⎧x =-22,y =2,∴B (-22,2),∴|FB ―→|=2+1=3,∵AF ―→=λFB ―→,∴|AF ―→|=λ|FB ―→|,∴32=3λ,解得λ=12.答案:1212.(2019·武汉调研)已知直线MN 过椭圆x 22+y 2=1的左焦点F ,与椭圆交于M ,N 两点.直线P Q 过原点O 且与直线MN 平行,直线P Q 与椭圆交于P ,Q 两点,则|P Q|2|MN |=________.解析:法一:由题意知,直线MN 的斜率不为0,设直线MN 的方程为x =my +1,则直线P Q 的方程为x=my .设M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q(x 4,y 4).⎩⎪⎨⎪⎧x =my +1,x 22+y 2=1⇒(m 2+2)y 2+2my -1=0⇒y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2. ∴|MN |=1+m 2|y 1-y 2|=22·m 2+1m 2+2.⎩⎪⎨⎪⎧x =my ,x 22+y 2=1⇒(m 2+2)y 2-2=0⇒y 3+y 4=0,y 3y 4=-2m 2+2. ∴|P Q|=1+m 2|y 3-y 4|=2 2 m 2+1m 2+2. 故|P Q|2|MN |=2 2. 法二:取特殊位置,当直线MN 垂直于x 轴时,易得|MN |=2b 2a =2,|P Q|=2b =2,则|P Q|2|MN |=2 2.答案:2 213.(2019·石家庄重中高中摸底)已知抛物线C :y 2=2px (p >0),直线l :y =3(x -1),l 与C 交于A ,B 两点,若|AB |=163,则p =________.解析:由⎩⎨⎧y 2=2px ,y =3x -,消去y ,得3x 2-(2p +6)x +3=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系,得x 1+x 2=2p +63,x 1x 2=1,所以|AB |=2x 1+x 22-4x 1x 2=2p +29-4=163,所以p =2.答案:214.(2018·深圳二模)设过抛物线y 2=2px (p >0)上任意一点P (异于原点O )的直线与抛物线y 2=8px (p >0)交于A ,B 两点,直线OP 与抛物线y 2=8px (p >0)的另一个交点为Q ,则S △AB QS △ABO=________. 解析:设直线OP 的方程为y =kx (k ≠0),联立得⎩⎪⎨⎪⎧y =kx ,y 2=2px ,解得P ⎝ ⎛⎭⎪⎫2p k 2,2p k ,联立得⎩⎪⎨⎪⎧y =kx ,y 2=8px ,解得Q ⎝ ⎛⎭⎪⎫8p k2,8p k ,∴|OP |= 4p2k4+4p 2k 2=2p 1+k2k 2, |P Q|= 36p2k 4+36p 2k2=6p 1+k2k2, ∴S △AB Q S △ABO =|P Q||OP |=3. 答案:315.已知抛物线E :y 2=2px (p >0)的焦点F ,E 上一点(3,m )到焦点的距离为4. (1)求抛物线E 的方程;(2)过F 作直线l ,交抛物线E 于A ,B 两点,若直线AB 中点的纵坐标为-1,求直线l 的方程. 解:(1)抛物线E :y 2=2px (p >0)的准线方程为x =-p2,由抛物线的定义可知3-⎝ ⎛⎭⎪⎫-p 2 =4,解得p =2,∴抛物线E 的方程为y 2=4x .(2)法一:由(1)得抛物线E 的方程为y 2=4x ,焦点F (1,0), 设A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,两式相减,整理得y 2-y 1x 2-x 1 =4y 2+y 1(x 1≠x 2). ∵线段AB 中点的纵坐标为-1, ∴直线l 的斜率k AB =4y 2+y 1=4-=-2,∴直线l 的方程为y -0=-2(x -1),即2x +y -2=0. 法二:由(1)得抛物线E 的方程为y 2=4x ,焦点F (1,0), 设直线l 的方程为x =my +1,由⎩⎪⎨⎪⎧y 2=4x ,x =my +1消去x ,得y 2-4my -4=0.设A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2), ∵线段AB 中点的纵坐标为-1, ∴y 1+y 22 =4m2=-1,解得m =-12,∴直线l 的方程为x =-12y +1,即2x +y -2=0.16.(2019·佛山模拟)已知直线l 过点P (2,0)且与抛物线E :y 2=4x 相交于A ,B 两点,与y 轴交于点C ,其中点A 在第四象限,O 为坐标原点.(1)当A 是PC 中点时,求直线l 的方程;(2)以AB 为直径的圆交直线OB 于点D ,求|OB |·|OD |的值. 解:(1)∵A 是PC 的中点,P (2,0),C 在y 轴上, ∴A 点的横坐标为1,又A 在第四象限,∴A (1,-2). ∴直线l 的方程为y =2x -4. (2)显然直线l 的斜率不为0,设l 的方程为x =my +2,A (x 1,y 1),B (x 2,y 2),联立得方程组⎩⎪⎨⎪⎧x =my +2,y 2=4x ,消去x 得y 2-4my -8=0,∴y 1y 2=-8,故x 1x 2=y 214·y 224=4,∵D 在以AB 为直径的圆上,且在直线OB 上,∴AD ―→⊥OD ―→, 设OD ―→=λOB ―→=(λx 2,λy 2),则AD ―→=OD ―→-OA ―→=(λx 2-x 1,λy 2-y 1), ∴AD ―→·OD ―→=(λx 2-x 1)λx 2+(λy 2-y 1)λy 2=0, 即λ2x 22-4λ+λ2y 22+8λ=0,易知λ≠0, ∴λ(x 22+y 22)=-4.∴|OB |·|OD |=x 22+y 22·λ2x 22+λ2y 22 =|λ|(x 22+y 22)=4.17.(2019·广州调研)如图,在直角坐标系xOy 中,椭圆C :y 2a2+x 2b 2=1(a >b >0)的上焦点为F 1,椭圆C 的离心率为12,且过点⎝⎛⎭⎪⎫1,263.(1)求椭圆C 的方程;(2)设过椭圆C 的上顶点A 的直线l 与椭圆C 交于点B (B 不在y 轴上),垂直于l 的直线与l 交于点M ,与x 轴交于点H ,若F 1B ―→·F 1H ―→=0,且|MO |=|MA |,求直线l 的方程.解:(1)因为椭圆C 的离心率为12,所以c a =12,即a =2c .又a 2=b 2+c 2,所以b 2=3c 2,即b 2=34a 2,所以椭圆C 的方程为y 2a 2+x 234a2=1.把点⎝⎛⎭⎪⎫1,263代入椭圆C 的方程中,解得a 2=4.所以椭圆C 的方程为y 24+x 23=1.(2)由(1)知,A (0,2),设直线l 的斜率为k (k ≠0),则直线l 的方程为y =kx +2,由⎩⎪⎨⎪⎧y =kx +2,x 23+y24=1,得(3k 2+4)x 2+12kx =0.设B (x B ,y B ),得x B =-12k3k 2+4, 所以y B =-6k 2+83k 2+4,所以B ⎝ ⎛⎭⎪⎫-12k 3k 2+4,-6k 2+83k 2+4. 设M (x M ,y M ),因为|MO |=|MA |,所以点M 在线段OA 的垂直平分线上, 所以y M =1,因为y M =kx M +2,所以x M =-1k,即M ⎝ ⎛⎭⎪⎫-1k,1.设H (x H,0),又直线HM 垂直于直线l , 所以k MH =-1k,即1-1k-x H=-1k . 所以x H =k -1k,即H ⎝⎛⎭⎪⎫k -1k,0.又F 1(0,1),所以F 1B ―→=⎝ ⎛⎭⎪⎫-12k 3k 2+4,4-9k 23k 2+4,F 1H ―→=⎝ ⎛⎭⎪⎫k -1k ,-1.因为F 1B ―→·F 1H ―→=0,所以-12k 3k 2+4·⎝⎛⎭⎪⎫k -1k -4-9k 23k 2+4=0,解得k =±263.所以直线l 的方程为y =±263x +2.。
2023届高三数学一轮复习专题 直线与圆锥曲线的综合运用 讲义 (解析版)
直线与圆锥曲线的综合运用一、知识梳理1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0①直线与圆锥曲线相交;①Δ=0①直线与圆锥曲线相切;①Δ<0①直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点.①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;①若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB=1+k2|x2-x1|=1+1k2|y2-y1|.3.过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线; 过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.二、课前预习1.若直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是____.2.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为____.3.直线mx +ny =4与①O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是____个.4.已知A 1,A 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,P 是椭圆C 上异于A 1,A 2的任意一点,若直线P A 1,P A 2的斜率的乘积为-49,则椭圆C 的离心率为____.5.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点)23,1(P ,离心率为12.(1) 求椭圆C 的方程. (2) 若斜率为32的直线l 与椭圆C 交于A ,B 两点,试探究OA 2+OB 2是否为定值?若为定值,求出此定值;若不是定值,请说明理由.三、典型例题题型一. 直线与圆锥曲线的位置关系例1已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.变式 在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.例2 如图,在平面直角坐标系xOy 中,已知焦点在x 轴上,离心率为12的椭圆E 的左顶点为A ,点A 到右准线的距离为6. (1)求椭圆E 的标准方程; (2)过点A 且斜率为32的直线与椭圆E 交于点B ,过点B 与右焦点F 的直线交椭圆E 于M 点,求M 点的坐标.题型二 弦长问题例3 如图,在平面直角坐标系xOy中,已知椭圆x 2a 2+y 2b 2=1(a >b >0) 的离心率e =22,右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.变式 如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4. (1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.BAOxy lP C题型三 定点问题例4 如图,在平面直角坐标系xOy中,离心率为2的椭圆:C 22221(0)x y a b a b+=>>的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于,P Q 两点,直线,PA QA 分别与y 轴交于,M N 两点.若直线PQ斜率为2时,PQ = (1)求椭圆C 的标准方程;(2)试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.例5 已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :x 2+y 2-6x -2y +7=0相切.(1)求椭圆C 的方程;(2)若不过点A 的动直线l 与椭圆C 相交于P 、Q 两点,且AP →·AQ →=0,求证:直线l 过定点,并求出该定点N 的坐标.变式1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点1P (1,1),2P (0,1),)23,1(3 P ,)23,1(4P 中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.变式2 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上动点P 到一个焦点的距离的最小值为3(2-1).(1) 求椭圆C 的标准方程;(2) 已知过点M (0,-1)的动直线l 与椭圆C 交于A ,B 两点,试判断以线段AB 为直径的圆是否恒过定点,并说明理由.题型四 定值问题例6 已知椭圆)(:012222>>=+b a by a x C 的离心率为23,且过点),(12-P .(1)求椭圆C 的方程;(2)设点Q 在椭圆C 上,且PQ 与x 轴平行,过P 点作两条直线分别交椭圆C 于),(11y x A),(22y x B 两点,若直线PQ 平分APB ∠,求证:直线AB 的斜率是定值,并求出这个定值.变式 在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的焦距为2,离心率为22,椭圆的右顶点为A . (1)求该椭圆的方程;(2)过点(2,2)D -作直线PQ 交椭圆于两个不同点,P Q ,求证:直线,AP AQ 的斜 率之和为定值.例7 如图,在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(0)a b >>,焦点到相应准线的距离为1. (1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =于点Q ,求2211OP OQ +的值.变式在平面直角坐标系xOy 中,已知圆222:O x y b +=经过椭圆222:14x y E b +=(02)b <<的焦点.(1)求椭圆E 的标准方程;(2)设直线:l y kx m =+交椭圆E 于,P Q 两点,T 为弦PQ 的中点,(1,0),(1,0)M N -,记直线,TM TN 的斜率分别为12,k k ,当22221m k -=时,求12k k ⋅的值.题型五 最值、范围问题例8 已知椭圆C :22221(0)x y a b a b+=>>的左焦点为F (-1,0),左准线方程为x =-2.(1) 求椭圆C 的标准方程;(2) 若椭圆C 上有A ,B 两点,满足OA ①OB (O 为坐标原点),求①AOB 面积的取值范围.例9 如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的左顶点为A ,点B 是椭圆C 上异于左、右顶点的任一点,P 是AB 的中点,过点B 且与AB 垂直的直线与直线OP 交于点Q ,已知椭圆C 的离心率为12,点A 到右准线的距离为6。
高考数学一轮复习《圆锥曲线》练习题(含答案)
高考数学一轮复习《圆锥曲线》练习题(含答案)一、单选题1.双曲线2228x y -=的渐近线方程是( ) A .12y x =±B .2y x =±C .2y x =±D .22y x =±2.已知双曲线()2222100x y a b a b-=>>,的左右焦点分别为()()1200F c F c -,,,,若直线2y x =与双曲线的一个交点P 的横坐标恰好为c ,则双曲线的离心率为( ) A .5B .2C .21+D .21-3.如图,在体积为3的三棱锥P-ABC 中,P A ,PB ,PC 两两垂直,1AP =,若点M 是侧面CBP 内一动点,且满足AM BC ⊥,则点M 的轨迹长度的最大值为( )A .3B .6C .23D .324.抛物线22y x =的焦点坐标为( ).A .1,02⎛⎫⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .10,8⎛⎫ ⎪⎝⎭D .10,8⎛⎫- ⎪⎝⎭5.设抛物线y 2=4x 的焦点为F ,过点F 的直线l 与抛物线相交于A ,B ,点A 在第一象限,且|AF |﹣|BF |32=,则AF BF =( ) A .32B .2C .3D .46.已知抛物线M :24y x =的焦点为F ,O 是坐标原点,斜率为()0k k >的直线l 交抛物线M 于A ,B 两点,且点A ,B 分别位于第一、四象限,交抛物线的准线l '于点C .若2ACFABFSS=,2BF =,则AOBS=( )A .33-B .33+C .2D .231+7.若双曲线的中心为坐标原点,焦点在y 轴上,其离心率为2,则该双曲线的渐近线方程为( ) A .3y x =±B .33y x =±C .4y x =±D .14y x =±8.已知双曲线E 的左、右焦点分别为12,F F ,O 为坐标原点.若点P 在E 上,2OP OQ =-,22PF OF =,1132QF OF =,则E 的离心率为A .2B .2C .5D .31+9.设1F ,2F 是离心率为5的双曲线222124x y a -=的两个焦点,P 是双曲线上的一点,且1234PF PF =,则12PF F △的面积等于A .42B .83C .24D .4810.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,直线20l :x y '-+=,动点M 在C 上运动,记点M 到直线l 与l ′的距离分别为d 1,d 2,O 为坐标原点,则当d 1+d 2最小时,cos ∠MFO =( ) A .22B .23C .24D .2611.如图,已知正方体1111ABCD A B C D -的棱长为1,,M N 分别是棱1,AA BC 上的动点,若2MN =,则线段MN 的中点P 的轨迹是( )A .一条线段B .一段圆弧C .一部分球面D .两条平行线段12.已知拋物线21:2(0)C y px p =>的焦点F 为椭圆22222:1(0)x y C a b a b+=>>的右焦点,且1C与2C 的公共弦经过F ,则椭圆的离心率为( )A 1B C D二、填空题13.已知点(3,2)在椭圆221(0,0)x y m n m n+=>>上,则点(-3,3)与椭圆的位置关系是__________.14.过点且渐近线与双曲线22:12x C y -=的渐近线相同的双曲线方程为______.15.焦点在y 轴上的双曲线221y mx -=,则m 的值为___________.16.已知过抛物线C :y 2=8x 焦点的直线交抛物线于A ,B 两点,过点A 作抛物线准线的垂线,垂足为M ,AB BM =,则A 点的横坐标为___.三、解答题17.求经过点(3,1)A -,并且对称轴都在坐标轴上的等轴双曲线的标准方程.18.已知椭圆C :22143x y +=,过椭圆右焦点的直线l 与椭圆交于M ,N 两点,求MN 的取值范围.19.已知椭圆()2222:10x y C a b a b+=>>的离心率12e =,且椭圆C 经过点31,2P ⎛⎫-- ⎪⎝⎭.(1)求椭圆C 的方程.(2)不过点P 的直线:2l y kx =+与椭圆C 交于A ,B 两点,记直线P A ,PB 的斜率分别为1k ,2k ,试判断12k k +是否为定值.若是,求出该定值;若不是,请说明理由.20.在平面直角坐标系xOy 中,已知椭圆221:195x y C +=与()222206:136x y b C b =<<+的离心率相等.椭圆1C 的右焦点为F ,过点F 的直线与椭圆1C 交于A ,B 两点,射线OB 与椭圆2C 交于点C ,椭圆2C 的右顶点为D .(1)求椭圆2C 的标准方程;(2)若ABO 10,求直线AB 的方程; (3)若2AF BF =,求证:四边形AOCD 是平行四边形.21.已知(0,2),(3,1)A B 是椭圆2222:1(0)x y G a b a b+=>>上的两点.(1)求椭圆G 的离心率;(2)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.22.已知椭圆C 的离心率2e =()10,1B -,()20,1B . (1)求椭圆C 的方程;(2)设动直线:l y kx m =+与椭圆C 有且只有一个公共点P ,且与直线2x =相交于点Q .问在x 轴上是否存在定点N ,使得以PQ 为直径的圆恒过定点N ,若存在,求出N 点坐标;若不存在,说明理由.23.已知点P 在圆22:4O x y +=上运动,PQ x ⊥轴,垂足为Q ,点A 满足12AQ PQ =. (1)求点A 的轨迹E 的方程;(2)过点30,2⎛⎫⎪⎝⎭的直线l 与曲线E 交于,M N 两点,记OMN ∆的面积为S ,求S 的最大值.24.已知抛物线1C :()220x py p =>的焦点为F ,圆2C :()()22284x y +++=,过y 轴上点G 且与y 轴不垂直的直线l 与抛物线1C 交于A 、B 两点,B 关于y 轴的对称点为D ,O 为坐标原点,连接2GC 交x 轴于点E ,且点E 、F 分别是2GC 、OG 的中点. (1)求抛物线1C 的方程; (2)证明:直线AD 与圆2C 相交参考答案1.C2.C3.A4.C5.B6.B7.B8.D9.C10.A11.B12.A 13.点在椭圆外 14.22163x y -=15.4 16.417.设所求的等轴双曲线的方程为:()220x y λλ-=≠,将(3,1)A -代入得:()2231λ--=,即=8λ, 所以等轴双曲线的标准方程:22188x y -=18.解:由椭圆C :22143x y +=知,2a =,b =1c =,所以椭圆C 的右焦点为()1,0F .当直线l 的斜率不存在时,223b MN a==. 当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,将其代入椭圆C 的方程得()22223484120kxk x k +-+-=.设()11,M x y ,()22,N x y ,则2122834k x x k +=+,212241234k x x k -=+, 所以=MN ()222121333434+==+++k k k因为20k ≥,所以(]3,4MN ∈. 综上,MN 的取值范围是[]3,4. 19.(1)因为12c e a ==,所以2a c =,所以222234b a c a =-=.因为椭圆C 过31,2P ⎛⎫-- ⎪⎝⎭,所以221914a b +=,所以24a =,23b =,故椭圆C 的标准方程为22143x y +=. (2)因为直线l 不过31,2P ⎛⎫-- ⎪⎝⎭,且直线P A ,PB 的斜率存在,所以72k ≠且12k ≠.设()11,A x y ,()22,B x y ,联立方程组222143y kx x y =+⎧⎪⎨+=⎪⎩,得()22341640k x kx +++=, 则1221634k x x k +=-+,122434x x k =+. 由()()221616340k k ∆=-+>,得214k >且72k ≠.因为()()12121212121212121273377272222211111kx x k x x y y kx kx k k x x x x x x x x ⎛⎫++++++++ ⎪⎝⎭+=+=+=+++++++, 所以2221222271682712482134343416416713434k k k k k k k k k k k k k k ⎛⎫+ ⎪⎝⎭-+-++++===-+-+++, 即12k k +为定值,且123k k +=.20.(1)由题意知,椭圆1C 的长轴长126a =,短轴长12b =124c ==, 椭圆2C 的长轴长2212a =,短轴长2b ,焦距22c =.因为椭圆1C 与2C 的离心相等,所以1212c c a a =,即23= 因为06b <<,所以220b =,所以椭圆2C 的标准方程为2213620x y +=.(2)因为椭圆1C 右焦点为()2,0F ,且A ,O ,B 三点不共线, 设直线AB 的方程为2x my =+,联立22195x y +=,消x 得()225920250m y my ++-=.设()11,A x y ,()22,B x y ,()22(20)100590m m ∆=++>,所以1,2y ==, 即1212222025,5959m y y y y m m -+=-=++. 因为121212111||||||222ABOAOFBOFSS SOF y OFy O y y y F y =+=+=-=-==, 化简得4259m=,所以m =, 所以直线AB 的方程为2x y =+,即5100x ±-=. (3)因为2AF BF =,所以2AF FB =.因为()()1122,,,,(2,0)A x y B x y F ,所以()()11222,22,x y x y --=-,所以121262,2.x x y y =-⎧⎨=-⎩ 因为()()1122,,,A x y B x y 在椭圆22195x y +=上, 所以221122221,951,95x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以()222222226241,951,95x y x y ⎧-+=⎪⎪⎨⎪+=⎪⎩消2y ,得2218x =. 代入2222195x y +=,由对称性不妨设120,0y y ><,所以2y =从而得,113,4x y ==即321,,48A B ⎛⎛ ⎝⎭⎝⎭.所以OC k =,直线OC的方程为y x =, 联立2213620x y +=,得244116x =.由题知0x >,所以21,4x y ==21,4C ⎛ ⎝⎭.又(6,0)D,所以OA CD k k ==又因为,OA CD 不共线,所以//OA CD ,又AD OC k k ==,且,OC AD 不共线,所以//OC AD . 所以四边形AOCD 是平行四边形. 21.解:(1)由已知2b =, 由点(3,1)B 在椭圆G 上可得29114a +=,解得212,a a ==所以2228,c a b c =-== 所以椭圆G的离心率是c e a ==; (2)当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件; 设直线BC 的方程为1(3)y k x -=-),点(),C C C x y ,由22131124y kx kx y =+-⎧⎪⎨+=⎪⎩可得()222316(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B 和点C 的横坐标, 所以223(13)12331C k x k --=+,即22(13)431C k x k --=+,所以2236131C k k y k --+=+,因为以BC 为直径的圆经过点A , 所以AB AC ⊥,即0AB AC ⋅=,2222963961(3,1),3131k k k k AB AC k k ⎛⎫-----⋅=-⋅ ⎪++⎝⎭2236128031k k k --==+, 即(32)(31)0k k -+=, 123k ,213k =-, 当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以123BC k k ==, 所以直线BC 的方程为213y x =-. 22.(1)由题意可设椭圆为22221x y a b+=由题意可得c e a ==1b =,可得a =所以椭圆的方程为:2212x y +=.(2)联立2222y kx m x y =+⎧⎨+=⎩,整理可得:()222124220k x kmx m +++-=, 由题意可得()()222216412220k m k m ∆=-+-=,可得2212m k =+;可得()242212P km k x m k -==-+,1P P y kx m m =+=,即21,k P m m ⎛⎫- ⎪⎝⎭. 联立2y kx mx =+⎧⎨=⎩,可得2Q x =,2Q y k m =+,即()2,2Q k m +,设在x 轴上存在()0,0N x .由0PN QN ⋅=,可得()0021,2,20k x x k m m m ⎛⎫+-⋅---= ⎪⎝⎭,可得200242210k k k x x m m m ⎛⎫+--++= ⎪⎝⎭, 即()200022110kx x x m-++-=, 可得20002101x x x ⎧-+=⎨=⎩,可得01x =,即定点()1,0N .23.(1)设(,)A x y ,11(,)P x y , ∵12AQ PQ =,∴A 为PQ 的中点, ∴11,2,x x y y =⎧⎨=⎩∴22(2)4x y +=,即2214x y +=.∴点A 的轨迹E 的方程2214x y +=.(2)显然直线l 的斜率存在,设直线l 的方程为32y kx =+,将直线方程代入椭圆方程中得22(14)1250k x kx +++=, ∴222251444(14)56420016k k k k ∆=-⨯+=->⇒>. 设1122(,),(,)M x y N x y ,∴12133||224OMN POM PON S S S x x ∆∆∆=-=⨯⨯-=令2914()4t k t =+>,则214k t -=,∴3344OMN S S ∆====∵914049t t >⇒<<,∴129t =时,34143OMN S ∆≤⨯=,∴S 的最大值1.24.(1)设点()0,0E x ,()00,G y ,因为圆2C :()()22284x y +++=,所以圆心()22,8C --,因为点E 是2GC 的中点,所以00202820x y -+=⎧⎨-+=⨯⎩,解得0018x y =-⎧⎨=⎩,则点()0,8G ,因为点F 是OG 的中点, 所以()0,4F ,则42p=,解得8p =, 故抛物线的方程为216x y =.(2)因为B 关于y 轴的对称点为D , 所以设()11,B x y ,()22,A x y ,()11,D x y -,设直线AB 的方程为8y kx -=,即80kx y -+=,联立28016kx y x y-+=⎧⎨=⎩,消去x 得()22161640y k y -++=,则1264y y =, 设直线AD 的方程为y mx n =+,联立216y mx n x y=+⎧⎨=⎩,消去x 得()2221620y m n y n -++=,则212y y n =, 故264n =,易知0n <,则8n =-,直线AD 的方程为8y mx =-,必过定点()0,8-, 而圆2C :()()22284x y +++=正好与y 轴交于定点()0,8-, 且过点()0,8-的所有直线中,只有与y 轴重合的直线才能与圆2C :()()22284x y +++=相切,直线AD 显然不可能是y 轴,因此,直线AD 与圆2C 相交.。
2020版高考数学一轮复习课后限时集训49直线与圆锥曲线文(含解析)北师大版
课后限时集训(四十九)(建议用时:60分钟) A 组 基础达标一、选择题1.直线y =b a x +3与双曲线x 2a 2-y 2b2=1的交点个数是( )A .1B .2C .1或2D .0A [因为直线y =ba x +3与双曲线的渐近线y =b ax 平行,所以它与双曲线只有1个交点.]2.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一条弦所在的直线方程是x -y +5=0,弦的中点坐标是M (-4,1),则椭圆的离心率是( )A .12B .22 C .32D .55C [设直线与椭圆交点为A (x 1,y 1),B (x 2,y 2),分别代入椭圆方程,由点差法可知y M =-b 2a 2k x M ,代入k =1,M (-4,1),解得b 2a 2=14,e =1-⎝ ⎛⎭⎪⎫b a 2=32,故选C .]3.抛物线C 的顶点为原点,焦点在x 轴上,直线x -y =0与抛物线C 交于A ,B 两点.若P (1,1)为线段AB 的中点,则抛物线C 的方程为( )A .y =2x 2B .y 2=2x C .x 2=2yD .y 2=-2xB [设A (x 1,y 1),B (x 2,y 2),抛物线方程为y 2=2px ,则⎩⎪⎨⎪⎧y 21=2px 1,y 22=2px 2,两式相减可得2p=y 1-y 2x 1-x 2·(y 1+y 2)=k AB ·2=2,即可得p =1,∴抛物线C 的方程为y 2=2x .] 4.经过椭圆x 22+y 2=1的一个焦点作倾斜角为45°的直线l ,交椭圆于A ,B 两点,设O为坐标原点,则OA →·OB →等于( )A .-3B .-13C .-13或-3D .±13B [依题意,当直线l 经过椭圆的右焦点(1,0)时,其方程为y -0=tan 45°(x -1),即y =x -1,代入椭圆方程x 22+y 2=1并整理得3x 2-4x =0,解得x =0或x =43,所以两个交点坐标分别为(0,-1),⎝ ⎛⎭⎪⎫43,13,∴OA →·OB →=-13,同理,直线l 经过椭圆的左焦点时,也可得OA →·OB →=-13.]5.(2018·太原一模)已知抛物线y 2=4x 的焦点为F ,过焦点F 的直线交抛物线于A ,B 两点,O 为坐标原点,若△AOB 的面积为6,则|AB |=( )A .6B .8C .12D .16A [由题意知抛物线y 2=4x 的焦点F 的坐标为(1,0),易知当直线AB 垂直于x 轴时,△AOB 的面积为2,不满足题意,所以可设直线AB 的方程为y =k (x -1)(k ≠0),与y 2=4x 联立,消去x 得ky 2-4y -4k =0,设A (x 1,y 1),B (x 2,y 2),所以y 1+y 2=4k,y 1y 2=-4,所以|y 1-y 2|=16k 2+16,所以△AOB 的面积为12×1×16k2+16=6,解得k =±2,所以|AB |=1+1k 2|y 1-y 2|=6,故选A .]二、填空题6.已知斜率为2的直线经过椭圆x 25+y 24=1的右焦点F 1,与椭圆相交于A ,B 两点,则弦AB 的长为________.553[由题意知,椭圆的右焦点F 1的坐标为(1,0),直线AB 的方程为y =2(x -1).由方程组⎩⎪⎨⎪⎧y =x -,x 25+y24=1,消去y ,整理得3x 2-5x =0. 设A (x 1,y 1),B (x 2,y 2),由根与系数的关系,得x 1+x 2=53,x 1x 2=0.则|AB |=x 1-x 22+y 1-y 22=+k 2x 1+x 22-4x 1x 2]=+22⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫532-4×0=553.] 7.(2019·沧州百校联盟)过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.22 [设A (x 1,y 1),B (x 2,y 2),则x 21a 2+y 21b2=1①,x 22a 2+y 22b2=1②, ①②两式相减并整理得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.把已知条件代入上式得,-12=-b 2a 2×22,∴b 2a 2=12,故椭圆的离心率e =1-b 2a 2=22.] 8.P 为椭圆x 29+y 28=1上的任意一点,AB 为圆C :(x -1)2+y 2=1的任一条直径,则PA →·PB→的取值范围是________.[3,15] [圆心C (1,0)为椭圆的右焦点,PA →·PB →=(PC →+CA →)·(PC →+CB →)=(PC →+CA →)·(PC →-CA →)=PC →2-CA →2=|PC →|2-1,显然|PC →|∈[a -c ,a +c ]=[2,4],所以PA →·PB →=|PC →|2-1∈[3,15].]三、解答题9. 如图,已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点,设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.[解] 设直线AB 的方程为y =k (x +1)(k ≠0),代入x 22+y 2=1,整理得(1+2k 2)x 2+4k 2x+2k 2-2=0.因为直线AB 过椭圆的左焦点F ,所以方程有两个不等实根,记A (x 1,y 1),B (x 2,y 2),AB 中点N (x 0,y 0),则x 1+x 2=-4k 22k 2+1,x 0=12(x 1+x 2)=-2k 22k 2+1,y 0=k (x 0+1)=k2k 2+1,所以AB 的垂直平分线NG 的方程为y -y 0=-1k(x -x 0).令y =0,得x G =x 0+ky 0=-2k 22k 2+1+k22k 2+1=-k 22k 2+1=-12+14k 2+2.因为k ≠0,所以-12<x G <0,所以点G 横坐标的取值范围为⎝ ⎛⎭⎪⎫-12,0.10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,其中左焦点为F (-2,0).(1)求椭圆C 的方程;(2)若直线y =x +m 与椭圆C 交于不同的两点A ,B ,且线段AB 的中点M 在圆x 2+y 2=1上,求m 的值.[解] (1)由题意,得⎩⎪⎨⎪⎧c a =22,c =2,a 2=b 2+c 2,解得⎩⎨⎧a =22,b =2.∴椭圆C 的方程为x 28+y 24=1.(2)设点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0),由⎩⎪⎨⎪⎧x 28+y 24=1,y =x +m ,消去y 得,3x 2+4mx +2m 2-8=0,Δ=96-8m 2>0,∴-23<m <23, ∵x 0=x 1+x 22=-2m 3,∴y 0=x 0+m =m3,∵点M (x 0,y 0)在圆x 2+y 2=1上, ∴⎝ ⎛⎭⎪⎫-2m 32+⎝ ⎛⎭⎪⎫m 32=1,∴m =±355.B 组 能力提升1.(2019·黑龙江松原模拟)已知P 是圆C :x 2+y 2=4上的动点,P 在x 轴上的射影为P ′,点M 满足PM →=MP ′→,当点P 在圆C 上运动时,点M 形成的轨迹为曲线E .(1)求曲线E 的方程;(2)经过点A (0,2)的直线l 与曲线E 相交于点C ,D ,并且AC →=35AD →,求直线l 的方程.图①[解] (1)如图①,设M (x ,y ),则P (x,2y )在圆C :x 2+y 2=4上. 所以x 2+4y 2=4,即曲线E 的方程为x 24+y 2=1.(2)经检验,当直线l ⊥x 轴时,题目条件不成立,所以直线l 的斜率存在(如图②).设直线l :y =kx +2,C (x 1,y 1),D (x 2,y 2),联立⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +2,得(1+4k 2)x 2+16kx +12=0.Δ=(16k )2-4(1+4k 2)·12>0,得k 2>34.图②x 1+x 2=-16k1+4k2,① x 1x 2=121+4k2.② 又由AC →=35AD →,得x 1=35x 2,将它代入①②得k 2=1,k =±1⎝ ⎛⎭⎪⎫满足k 2>34,所以直线l 的斜率为k =±1,所以直线l的方程为y =±x +2.2.(2019·河南濮阳期末)设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点.设过定点M (0,2)的直线l 与椭圆交于不同的两点A ,B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.[解] 显然直线x =0不满足题设条件,可设直线l :y =kx +2,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +2,x 24+y 2=1消去y ,整理得⎝ ⎛⎭⎪⎫k 2+14x 2+4kx +3=0,∴x 1+x 2=-4k k 2+14,x 1·x 2=3k 2+14, 由Δ=(4k )2-4⎝ ⎛⎭⎪⎫k 2+14×3=4k 2-3>0得,k >32或k <-32.①又∠AOB 为锐角,∴cos∠AOB >0, ∴OA →·OB →>0,∴OA →·OB →=x 1x 2+y 1y 2>0.又y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4=3k2k 2+14+-8k 2k 2+14+4=-k 2+1k 2+14,∴3k 2+14+-k 2+1k 2+14>0,即k 2<4,∴-2<k <2.② 由①②得,-2<k <-32或32<k <2. 故k 的取值范围是⎝⎛⎭⎪⎫-2,-32∪⎝ ⎛⎭⎪⎫32,2.。
高考数学一轮复习直线与圆锥曲线的位置关系课件理
4.椭圆 ax2+by2=1 与直线 y=1-x 交于 A、B 两点,若
过原点与线段 AB 中点的直线的倾斜角为 30°,则ab的值为( )
3
3
A. 4 B. 3
3 C. 2 D. 3
解析:设 AB 的中点为 M(x0,y0),A(x1,y1),B(x2, y2),
由点差法得yx11- -yx22=-abxy00=-1,
解析:方法 1:设以 Q 为中点的弦 AB 端点坐标为 A(x1, y1),B(x2,y2),则有 y12=8x1,y22=8x2,
两式相减,得(y1-y2)(y1+y2)=8(x1-x2). 又 x1+x2=8,y1+y2=2, 则 k=xy22--xy11=y1+8 y2=4,
∴所求直线 AB 的方程为 y-1=4(x-4), 即 4x-y-15=0. 方法 2:设弦 AB 所在的直线方程为 y=k(x-4)+1,
由yy= 2=k8xx-4+1, 消去 x 整理,得 ky2-8y-32k+8=0. 设 A(x1,y1),B(x2,y2),
由韦达定理得 y1+y2=8k. 又∵Q 是 AB 中点,∴y1+2 y2=1,
∴8k=2,∴k=4. ∴弦 AB 所在直线方程为 4x-y-15=0.
点评:有关弦中点轨迹、中点弦所在直线的方程,中点坐 标的问题,有时采用“平方差”法,可优化解题方法,简化运 算.
=2 5m+20.
(3)设线段 AB 中点坐标为(x,y),则 x=x1+2 x2=-2, y=y1+2 y2=2x1+2 x2=-4. ∴AB 中点坐标为(-2,-4).
题型三 圆锥曲线的中点弦问题 例 3 过点 Q(4,1)作抛物线 y2=8x 的弦 AB,恰被 Q 所平分, 求 AB 所在直线的方程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业50 直线与圆锥曲线 [基础达标] 1.过椭圆x216+y24=1内一点P(3,1),求被这点平分的弦所在直线方程. 解析:设直线与椭圆交于A(x1,y1)、B(x2,y2)两点, 由于A、B两点均在椭圆上,
故x2116+y214=1,x2216+y224=1, 两式相减得 x1+x2x1-x216+y1+y2y1-y24=0.
又∵P是A、B的中点,∴x1+x2=6,y1+y2=2, ∴kAB=y1-y2x1-x2=-34.
∴直线AB的方程为y-1=-34(x-3). 即3x+4y-13=0. 2.
[2019·郑州入学测试]已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为32,以椭圆的四个顶点为顶点的四边形的面积为8. (1)求椭圆C的方程;
(2)如图,斜率为12的直线l与椭圆C交于A,B两点,点P(2,1)在直线l的左上方.若∠APB=90°,且直线PA,PB分别与y轴交于点M,N,求线段MN的长度.
解析:(1)由题意知 ca=32,2ab=8,a2=b2+c2,解得 a2=8,b2=2. 所以椭圆C的方程为x28+y22=1. (2)设直线l:y=12x+m,A(x1,y1),B(x2,y2),
联立,得 y=12x+m,x28+y22=1,消去y,化简整理,得x2+2mx+2m2-4=0. 则由Δ=(2m)2-4(2m2-4)>0,得-2由根与系数的关系得,x1+x2=-2m,x1x2=2m2-4,
因为kPA=y1-1x1-2,kPB=y2-1x2-2,
所以kPA+kPB=y1-1x1-2+y2-1x2-2= y1-1x2-2+y2-1x1-2x1-2x2-2,
上式中,分子=12x1+m-1(x2-2)+12x2+m-1(x1-2) =x1x2+(m-2)(x1+x2)-4(m-1) =2m2-4+(m-2)(-2m)-4(m-1)=0. 所以kPA+kPB=0. 因为∠APB=90°,所以kPA·kPB=-1, 则kPA=1,kPB=-1. 所以△PMN是等腰直角三角形, 所以|MN|=2xP=4.
3.已知椭圆C:x2a2+y2b2=1(a>b>0)的一个顶点为A(2,0),离心率为22.直线y=k(x-1)与椭圆C交于不同的两点M,N. (1)求椭圆C的方程;
(2)当△AMN的面积为103时,求k的值. 解析:(1)由题意得 a=2,ca=22,a2=b2+c2, 解得b=2,所以椭圆C的方程为x24+y22=1. (2)由 y=kx-1,x24+y22=1,得(1+2k2)x2-4k2x+2k2-4=0. 设点M,N的坐标分别为(x1,y1),(x2,y2), 则y1=k(x1-1),y2=k(x2-1),
x1+x2=4k21+2k2,x1x2=2k2-41+2k2, 所以|MN|=x2-x12+y2-y12 =1+k2[x1+x22-4x1x2]
=21+k24+6k21+2k2. 又因为点A(2,0)到直线y=k(x-1)的距离d=|k|1+k2, 所以△AMN的面积为S=12|MN|·d=|k|4+6k21+2k2, 由|k|4+6k21+2k2=103,解得k=±1. 4.[2019·山西八校联考]如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.
(1)求该椭圆的离心率和标准方程; (2)过B1作直线l交椭圆于P,Q两点,使得PB2⊥QB2,求直线l的方程.
解析:(1)设所求椭圆的标准方程x2a2+y2b2=1(a>b>0),右焦点为F2(c,0). 因为△AB1B2是直角三角形,且|AB1|=|AB2|, 所以∠B1AB2=90°, 因此|OA|=|OB2|,得b=c2. 由c2=a2-b2得4b2=a2-b2, 故a2=5b2,c2=4b2,所以离心率e=ca=255. 在Rt△AB1B2中,OA⊥B1B2,故S△AB1B2=12·|B1B2|·|OA|=|OB2|·|OA|=c2·b=b2.由题设条件S△AB1B2=4得b2=4,所以a2=5b2=20.因此所求椭圆的标准方程为x220+y24=1. (2)由(1)知B1(-2,0),B2(2,0).由题意知直线l的斜率存在且不为0,故可设直线l的方程为x=my-2,代入椭圆方程并整理得(m2+5)y2-4my-16=0. 设P(x1,y1),Q(x2,y2),
则y1+y2=4mm2+5,y1·y2=-16m2+5,
又B2P→=(x1-2,y1),B2Q→=(x2-2,y2), 所以B2P→·B2Q→=(x1-2)(x2-2)+y1y2=(my1-4)(my2-4)+y1y2=(m2+1)y1y2-4m(y1+y2)+16=-16m2+1m2+5-16m2m2+5+16=-16m2-64m2+5,
由PB2⊥QB2,得B2P→·B2Q→=0, 即16m2-64=0,解得m=±2. 所以满足条件的直线l有两条,其方程分别为x+2y+2=0和x-2y+2=0. 5.[2019·唐山五校联考]在直角坐标系xOy中,长为2+1的线段的
两端点C,D分别在x轴、y轴上滑动,CP→=2 PD→.记点P的轨迹为曲线E. (1)求曲线E的方程;
(2)经过点(0,1)作直线与曲线E相交于A,B两点,OM→=OA→+OB→,当点M在曲线E上时,求四边形AOBM的面积. 解析:(1)设C(m,0),D(0,n),P(x,y).
由CP→=2 PD→,得(x-m,y)=2(-x,n-y),
所以 x-m=-2x,y=2n-y,得 m=2+1x,n=2+12y, 由|CD→|=2+1,得m2+n2=(2+1)2, 所以(2+1)2x2+2+122y2=(2+1)2, 整理,得曲线E的方程为x2+y22=1. (2)设A(x1,y1),B(x2,y2), 由OM→=OA→+OB→,知点M坐标为(x1+x2,y1+y2). 由题意知,直线AB的斜率存在. 设直线AB的方程为y=kx+1,代入曲线E的方程,得 (k2+2)x2+2kx-1=0,
则x1+x2=-2kk2+2,x1x2=-1k2+2.
y1+y2=k(x1+x2)+2=4k2+2. 由点M在曲线E上,知(x1+x2)2+y1+y222=1, 即4k2k2+22+8k2+22=1,解得k2=2. 这时|AB|=1+k2|x1-x2|=3[x1+x22-4x1x2]=322, 原点到直线AB的距离d=11+k2=33, 所以平行四边形OAMB的面积S=|AB|·d=62. 6.[2018·天津卷]设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为53,点A的坐标为(b,0),且|FB|·|AB|=62. (1)求椭圆的方程; (2)设直线l:y=kx(k>0)与椭圆在第一象限的交点为P,且l与直线AB
交于点Q.若|AQ||PQ|=524sin∠AOQ(O为原点),求k的值. 解析:(1)设椭圆的焦距为2c,由已知有c2a2=59,又由a2=b2+c2,可得2a=3b.由已知可得|FB|=a,|AB|=2b, 由|FB|·|AB|=62,可得ab=6,从而a=3,b=2.
所以,椭圆的方程为x29+y24=1. (2)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2). 由已知有y1>y2>0,故|PQ|sin∠AOQ=y1-y2. 又因为|AQ|=y2sin∠OAB,而∠OAB=π4,所以|AQ|=2y2.
由|AQ||PQ|=524sin∠AOQ,可得5y1=9y2.
由方程组 y=kx,x29+y24=1消去x,可得y1=6k9k2+4. 易知直线AB的方程为x+y-2=0, 由方程组 y=kx,x+y-2=0消去x,可得y2=2kk+1. 由5y1=9y2,可得5(k+1)=39k2+4,两边平方, 整理得56k2-50k+11=0,解得k=12或k=1128.
所以k的值为12或1128.
[能力挑战] 7.[2018·江苏卷]如图,在平面直角坐标系xOy中,椭圆C过点3,12,焦点为F1(-3,0),F2(3,0),圆O的直径为F1F2.
(1)求椭圆C及圆O的方程; (2)设直线l与圆O相切于第一象限内的点P. ①若直线l与椭圆C有且只有一个公共点,求点P的坐标;
②直线l与椭圆C交于A,B两点.若△OAB的面积为267,求直线l的方程. 解析:解法一 (1)因为椭圆C的焦点为F1(-3,0),F2(3,0),
所以可设椭圆C的方程为x2a2+y2b2=1(a>b>0).
又点3,12在椭圆C上, 所以 3a2+14b2=1,a2-b2=3,解得 a2=4,b2=1. 因此,椭圆C的方程为x24+y2=1. 因为圆O的直径为F1F2,所以其方程为x2+y2=3. (2)①设直线l与圆O相切于P(x0,y0)(x0>0,y0>0),则x20+y20=3.
所以直线l的方程为y=-x0y0(x-x0)+y0,即y=-x0y0x+3y0.
由 x24+y2=1,y=-x0y0x+3y0,消去y,得 (4x20+y20)x2-24x0x+36-4y20=0.(*) 因为直线l与椭圆C有且只有一个公共点, 所以Δ=(-24x0)2-4(4x20+y20)·(36-4y20)=48y20 (x20-2)=0. 因为x0>0,y0>0, 所以x0=2,y0=1. 因此,点P的坐标为(2,1).
②因为三角形OAB的面积为267,
所以12AB·OP=267,从而AB=427. 设A(x1,y1),B(x2,y2), 由(*)得x1,2=24x0±48y2 0x2 0-224x2 0+y2 0, 所以AB2=(x1-x2)2+(y1-y2)2 =1+x20y20·48y2 0x2 0-24x2 0+y2 02. 因为x20+y20=3, 所以AB2=16x2 0-2x2 0+12=3249, 即2x40-45x20+100=0, 解得x20=52(x20=20舍去),则y20=12,因此P的坐标为102,22. 则直线l的方程为y=-5x+32. 解法二 (1)由题意知c=3,所以圆O的方程为x2+y2=3,因为点