2019备战中考数学基础必练(人教版)-第二十一章-一元二次方程(含解析)

合集下载

人教版初中九年级数学上册第二十一章《一元二次方程》知识点复习(含答案解析)(1)

人教版初中九年级数学上册第二十一章《一元二次方程》知识点复习(含答案解析)(1)

一、选择题1.方程22(1)10m x -+-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±lB .m≥-l 且m≠1C .m≥-lD .m >-1且m≠1D 解析:D【分析】根据一元二次方程的定义及二次根式有意义的条件求解可得.【详解】∵方程22(1)10m x -+-=是关于x 的一元二次方程,∴210m -≠,解得1m ≠±,10m +≥,解得:1m ≥-,∴1m >-且1m ≠,故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.某小区2018年屋顶绿化面积为22000m ,计划2020年屋顶绿化面积要达到22880m .设该小区2018年至2020年屋顶绿化面积的年平均增长率为x ,则可列方程为( )A .2000(12)2880x +=B .2000(1)2880x ⨯+=C .220002000(1)2000(1)2880x x ++++=D .22000(1)2880x +=D解析:D【分析】一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积的年平均增长率为x ,根据题意即可列出方程.【详解】解:设平均增长率为x ,根据题意可列出方程为:2000(1+x )2=2880.故选:D .【点睛】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a (1+x )2=b (a <b );平均降低率问题,在理解的基础上,可归结为a (1-x )2=b (a >b ).3.若用配方法解方程24121x x +=,通常要在此方程两边同时加上一个“适当”的数,则下面变形恰当的是( )A .2221212412122x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭B .22241212112x x ++=+C .2412919x x ++=+D .241212112x x ++=+C解析:C【分析】 把原方程变形为2(2)621x x +⨯=,将2x 看成未知数,方程两边都加上一次项系数一半的平方即可.【详解】解:方程24121x x +=变形为2(2)621x x +⨯=, 2(2)62+91+9x x +⨯=∴2412919x x ++=+故选:C【点睛】本题考查了解一元二次方程的应用,关键是能正确配方.4.若整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根,并且使得关于y 的分式 方程32133ay y y y -+=--有整数解,则符合条件的整数a 的个数为( ) A .2B .3C .4D .5B 解析:B【分析】对于关于x 的一元二次方程()2210a x -+=有两个实数根,利用判别式的意义得到a-2≠0且2a+3≥0且△=2-4(a-2)≥0,解不等式组得到整数a 为:-1,0,1,3,4,5;接着解分式方程得到y=61a -,而y≠3,则61a -≠3,解得a≠3,从而得到当a=-1,0,4时,分式方程有整数解,然后求符合条件的所有a 的个数.【详解】解:∵整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根, ∴a-2≠0且2a+3≥0且△=2-4(a-2)≥0, ∴31122a -≤≤且a≠2, ∴整数a 为:-1,0,1,3,4,5;去分母得3-ay+3-y=-2y ,解得y=61a -,而y≠3,则61a -≠3,解得a≠3, 当a=-1,0,4时,分式方程有整数解,∴符合条件的所有a 的个数是3.故选:B .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.5.如图,在矩形ABCD 中,AB =a (a <2),BC =2.以点D 为圆心,CD 的长为半径画弧,交AD 于点E ,交BD 于点F .下列哪条线段的长度是方程2240x ax +-=的一个根( )A .线段AE 的长B .线段BF 的长C .线段BD 的长D .线段DF 的长B解析:B【分析】 根据勾股定理求出BF ,利用求根公式解方程,比较即可.【详解】解:∵四边形ABCD 是矩形∴CD=AB=a在Rt △BCD 中,由勾股定理得,2224BD BC CD a =++∴24a a +, 解方程2240x ax +-=得2224164x a a a a -±+=±=-+ ∴线段BF 的长是方程2240x ax +-=的一个根.故选:B .【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.6.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( )A .1B .﹣1C .12D .12-D 解析:D【分析】直接利用根与系数的关系解答.【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2,∴x 1•x 2=12=﹣12. 故选:D .【点睛】 此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 7.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人.A .40B .10C .9D .8D解析:D【分析】设每轮传染中平均一个人传染了x 人,则一轮传染后共有(1+x )人被传染,两轮传染后共有[(1+x )+x(1+x)]人被传染,由题意列方程计算即可.【详解】解:设每轮传染中平均一个人传染了x 人,由题意,得:(1+x )+x(1+x)=81,即x 2+2x ﹣80=0,解得:x 1=8,x 2=﹣10(不符合题意,舍去),故每轮传染中平均一个人传染了8人,故选:D .【点睛】本题考查了一元二次方程的应用,解一元二次方程,理解题意,正确列出方程是解答的关键.8.已知a 、b 、m 、n 为互不相等的实数,且(a +m )( a +n )=2,(b +m )( b +n )=2,则ab ﹣mn 的值为( )A .4B .1C .﹣2D .﹣1C 解析:C【分析】先把已知条件变形得到a 2+ (m +n ) a +mn ﹣2=0,b 2+( m +n ) b +mn ﹣2=0,则可把a 、b 看作方程x 2+( m +n ) x +mn ﹣2=0的两实数根,利用根与系数的关系得到ab =mn ﹣2,从而得到ab ﹣mn 的值.【详解】解:∵(a +m )( a +n )=2,(b +m )( b +n )=2,∴a 2+( m +n )a +mn ﹣2=0,b 2+( m +n )b +mn ﹣2=0,而a 、b 、m 、n 为互不相等的实数,∴可以把a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两个实数根,∴ab =mn ﹣2,∴ab ﹣mn =﹣2.故选:C .【点睛】本题考查一元二次方程根与系数的关系及整式的乘法,理解代数思想,把“a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两实数根”是解题关键.9.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( ) A .5-B .5C .10319-D .10319A 解析:A【分析】 由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解.【详解】 解:由219990n n ++=可得211199910n n ⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A .【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.10.若()()2222230xy x y ++--=,则22x y +的值是( ) A .3B .-1C .3或1D .3或-1A 解析:A【分析】用22a x y =+,解出关于a 的方程,取正值即为22x y +的值是.【详解】解:令22a x y =+,则(2)30a a --=,即2230a a --=,即(3)(1)0a a ,解得13a =,21a =-,又因为220a x y =+>,所以3a =故22x y +的值是3,故选:A .【点睛】本题考查解一元二次方程,掌握换元思想可以使做题简单,但需注意220a x y =+>. 二、填空题11.若关于x 的一元二次方程210(0)ax bx a +-=≠有一根为2020x =,则一元二次方程2(1)(1)1a x b x +++=必有一根为________.x=2019【分析】对于一元二次方程设t=x+1得到at2+bt=1利用at2+bt-1=0有一个根为t=2020得到x+1=2020从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一解析:x=2019【分析】对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1得到at 2+bt=1,利用at 2+bt-1=0有一个根为t=2020得到x+1=2020,从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一根为x=2019.【详解】解:对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1,所以at 2+bt=1,即at 2+bt-1=0,而关于x 的一元二次方程ax 2+bx-1=0(a≠0)有一根为x=2020,所以at 2+bt-1=0有一个根为t=2020,则x+1=2020,解得x=2019,所以2(1)(1)1a x b x +++=必有一根为x=2019.故答案为:x=2019.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.对于任意实数a ,b ,定义:22a b a ab b =++◆.若方程()250x -=◆的两根记为m 、n ,则22m n +=______.6【分析】根据新定义可得出mn 为方程x2+2x ﹣1=0的两个根利用根与系数的关系可得出m+n=﹣2mn=﹣1将其代入m2+n2=(m+n )2﹣2mn 中即可得出结论【详解】解:∵(x ◆2)﹣5=x2+解析:6【分析】根据新定义可得出m 、n 为方程x 2+2x ﹣1=0的两个根,利用根与系数的关系可得出m+n=﹣2、mn=﹣1,将其代入m 2+n 2=(m+n )2﹣2mn 中即可得出结论.【详解】解:∵(x ◆2)﹣5=x 2+2x+4﹣5,∴m 、n 为方程x 2+2x ﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴m 2+n 2=(m+n )2﹣2mn=6.故答案为6.【点睛】 本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a是解题的关键. 13.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.【分析】先计算多项式乘以多项式并移项再合并同类项即可【详解】故答案为:【点睛】此题考查一元二次方程的一般形式掌握多项式乘以多项式合并同类项计算法则是解题的关键解析:23710x x -+=【分析】先计算多项式乘以多项式,并移项,再合并同类项即可.【详解】(32)(1)83x x x -+=-23322830x x x x +---+=23710x x -+=故答案为:23710x x -+=.【点睛】此题考查一元二次方程的一般形式,掌握多项式乘以多项式,合并同类项计算法则是解题的关键.14.一元二次方程(x +1)(x ﹣3)=3x +4化为一般形式可得_________.x2﹣5x ﹣7=0【分析】利用多项式乘多项式的法则展开再利用等式的性质进行移项合并进行计算【详解】(x +1)(x ﹣3)=3x +4x2﹣2x ﹣3=3x +4x2﹣5x ﹣7=0故答案是:x2﹣5x ﹣7=0解析:x 2﹣5x ﹣7=0 .【分析】利用多项式乘多项式的法则展开,再利用等式的性质进行移项、合并,进行计算.【详解】(x +1)(x ﹣3)=3x +4,x 2﹣2x ﹣3=3x +4,x 2﹣5x ﹣7=0.故答案是:x 2﹣5x ﹣7=0.【点睛】本题考查一元二次方程的变形,属于基础题型.15.已知()0n n ≠是一元二次方程240x mx n ++=的一个根,则m n +的值为______.【分析】根据一元二次方程的解的定义把代入得到继而可得的值【详解】∵是关于x 的一元二次方程的一个根∴即∵∴即故答案为:【点睛】本题考查了一元二次方程的解的定义因式分解的应用注意:能使一元二次方程左右两解析:4-【分析】根据一元二次方程的解的定义把x n =代入240x mx n ++=得到240n mn n ++=,继而可得m n +的值.【详解】∵n 是关于x 的一元二次方程240x mx n ++=的一个根,∴240n mn n ++=,即()40n n m ++=,∵0n ≠,∴4n m ++,即4m n +=-,故答案为:4-.【点睛】本题考查了一元二次方程的解的定义、因式分解的应用.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.有一人患了流感,经过两轮传染后共有81人患了流感,若每轮传染中平均每个人传染的人数相同,那么第三轮过后,共有______人患有流感.729【分析】设每轮传染中平均每人传染了x 人根据经过两轮传染后共有81人患了流感可求出x 进而求出第三轮过后共有多少人感染【详解】设每轮传染中平均每个人传染的人数为x 人由题意可列得解得(舍去)即每轮传解析:729【分析】设每轮传染中平均每人传染了x 人,根据经过两轮传染后共有81人患了流感,可求出x ,进而求出第三轮过后,共有多少人感染.【详解】设每轮传染中平均每个人传染的人数为x 人,由题意可列得,()1181x x x +++=,解得18x =,210x =-(舍去),即每轮传染中平均每个人传染的人数为8人,经过三轮传染后患上流感的人数为:81881729+⨯=(人).故答案为:729.【点睛】本题考查理解题意的能力,先求出每轮传染中平均每人传染了多少人,然后求出三轮过后,共有多少人患病.17.若m 是方程210x x +-=的根,则2222018m m ++的值为__________2020【分析】根据m 是方程的根得代入求值【详解】解:∵m 是方程的根∴即原式故答案是:2020【点睛】本题考查一元二次方程的根解题的关键是掌握一元二次方程根的定义解析:2020【分析】根据m 是方程210x x +-=的根,得21m m +=,代入求值.【详解】解:∵m 是方程210x x +-=的根,∴210m m +-=,即21m m +=,原式()222018220182020m m =++=+=.故答案是:2020.【点睛】本题考查一元二次方程的根,解题的关键是掌握一元二次方程根的定义.18.已知关于x 的方程2x m =有两个相等的实数根,则m =________.0【分析】先将方程化成一般式然后再运用根的判别式求解即可【详解】解:∵关于的方程有两个相等的实数根∴关于的方程有两个相等的实数根∴△=02-4m=0解得m=0故答案为0【点睛】本题主要考查了一元二次解析:0【分析】先将方程化成一般式,然后再运用根的判别式求解即可.【详解】解:∵关于x 的方程2x m =有两个相等的实数根,∴关于x 的方程20x m -=有两个相等的实数根,∴△=02-4m=0,解得m=0.故答案为0.【点睛】本题主要考查了一元二次方程根的判别式,掌握“当△=0时,方程有两个相等的实数根”是解答本题的关键.19.“新冠肺炎”防治取得战略性成果.若有一个人患了“新冠肺炎”,经过两轮传染后共有16个人患了“新冠肺炎”,则每轮传染中平均一个人传染了______人.3【分析】设每轮传染中平均一个人传染了人则第一轮共有人患病第二轮后患病人数有人从而列方程再解方程可得答案【详解】解:设每轮传染中平均一个人传染了人则:或或经检验:不符合题意舍去取答:每轮传染中平均一解析:3【分析】设每轮传染中平均一个人传染了x 人,则第一轮共有()1x +人患病,第二轮后患病人数有()21x +人,从而列方程,再解方程可得答案.【详解】解:设每轮传染中平均一个人传染了x 人,则:()1+116,x x x ++=()2116,x ∴+=14x ∴+=或14,x +=- 3x ∴=或5,x =-经检验:5x =-不符合题意,舍去,取 3.x =答:每轮传染中平均一个人传染了3人.故答案为:3.【点睛】本题考查的是一元二次方程的应用,掌握一元二次方程的应用中的传播问题是解题的关键.20.当x=______时,−4x 2−4x+1有最大值.【分析】先根据完全平方公式将原式配方进而利用非负数的性质求出即可【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2-(2x+1)2≤0∴当x=-时4x2-4x+1有最大值 解析:12- 【分析】先根据完全平方公式将原式配方,进而利用非负数的性质求出即可.【详解】解:∵-4x 2-4x+1=-(4x 2+4x-1)=-(2x+1)2+2,-(2x+1)2≤0,∴当x=-12时,4x 2-4x+1有最大值是2. 故答案为:-12. 【点睛】此题主要考查了配方法的应用以及非负数的性质,正确配方得出是解题关键.三、解答题21.若a 为方程2(16x =的一个正根,b 为方程22113y y -+=的一个负根,求+a b 的值.解析:a+b= 5【分析】先求出2(16x =的根4x ,由a 为方程2(16x =的一个正根,得4a =+,再求22113y y -+=的根=1y ±b 为方程22113y y -+=的一个负根,得1b =+a b 即可.【详解】2(16x -=,4x -=±,4x ,a为方程2(16x =的一个正根,4a =+,22113y y -+=,()2113y -=,1y -==1y ±b 为方程22113y y -+=的一个负根,1b =415a b +=+=.【点睛】本题考查一元二次方程的解法,会比较方程根的正负与大小,掌握一元二次方程的解法是解题关键.22.解方程:(1)x 2+10x +9=0;(2)x 2=14.解析:(1)121,9x x =-=-;(2)1222,22x x == 【分析】(1)运用因式分解法求解即可(2)运用公式法求解即可.【详解】解:(1)∵x 2+10x +9=0,∴(x +1)(x +9)=0,则x +1=0或x +9=0,解得x 1=﹣1,x 2=﹣9;(2)x 2=14整理,得:x 2﹣14=0, ∵a =1,b c =﹣14, ∴△2﹣4×1×(﹣14)=4>0,则x =22,即x 1=22,x 2=22-. 【点睛】此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解答此题的关键. 23.某地区2018年投入教育经费2000万元,2020年投入教育经费2420万元(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2022年需投入教育经费2900万元,如果按(1)中教育经费投入的增长率,到2022年该地区投入的教育经费是否能达到2900万元?请说明理由.解析:(1)10%;(2)可以,理由见解析【分析】(1)设年平均增长率是x ,列式()2200012420x +=,求出结果;(2)利用(1)中算出的增长率算出2022年的教育经费,看是否超过2900万元.【详解】解:(1)设年平均增长率是x , ()2200012420x +=1 1.1x +=±10.1x =,2 2.1x =-(舍去),答:年平均增长率是10%;(2)2022年的教育经费是()2242010.12928.2⨯+=(万元), 2928.22900>,答:教育经费可以达到2900万元.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的列式方法.24.用配方法解方程:22450x x +-=.解析:121,122x x =-+=-- 【分析】 利用完全平方公式进行配方解一元二次方程即可得.【详解】22450x x +-=,2245x x +=,2522x x +=, 252112x x ++=+, ()2712x +=,12x +=±,1x =-±,即121,122x x =-+=--. 【点睛】 本题考查了利用配方法解一元二次方程,熟练掌握配方法是解题关键.25.回答下列问题.(1(2|1-. (3)计算:102(1)-++. (4)解方程:2(1)90x +-=.解析:(13;(21+;(3)44)12x =,24x =-. 【分析】 (1)利用用二次根式的性质化成最简二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除法则以及绝对值的性质计算,再合并同类二次根式即可;(3)根据零指数幂,负整数指数幂以及完全平方公式计算,再合并同类二次根式即可;(4)移项,利用直接开平方法即可求解.【详解】(13 3=+3 =;(2|11)=-1=1=;(3)102(1)-++121=+-4=-(4)2(1)90x+-=,移项得:2(1)9x+=,∴13x+=或13x+=-,12x=,24x=-.【点睛】本题考查了解一元二次方程-直接开平方法,二次根式的混合运算,掌握运算法则是解答本题的关键.26.(12.(2)解一元二次方程:x2﹣4x﹣5=0.解析:(1)2;(2)125, 1.x x==-【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据因式分解的方法解方程即可.解:(1|2|3+23=2 (2)x 2﹣4x ﹣5=0,(x ﹣5)(x +1)=0,∴x ﹣5=0或x +1=0,∴x 1=5,x 2=﹣1.【点睛】本题考查二次根式的混合运算以及解一元二次方程的方法,属于基础题 。

2019-人教版九年级上册第21章一元二次方程小结复习 (共22张PPT)-文档资料

2019-人教版九年级上册第21章一元二次方程小结复习  (共22张PPT)-文档资料
一元二次方程复习
学习目标:
(1) 复习一元二次方程和根的 定义以及一元二次方程的解法
(2)一元二次方程的根的判别式 以及根与系数的关系
(3)一元二次方程的应用
判断是否是一元二次方程的条件: 一元、二次、整式方程
ax2+bx+c=0是一元一次方程的条件:a=0且b≠0 是一元二次方程的条件: a≠0
二.一元二次方程的解法 共同记一记 1.直接开平方法
2. 配方法 3. 公式法
x=-b b24ac( b24ac0) 2a
基本步骤:
1. 把方程化成一元二次方程的一般形式 2. 写出方程各项的系数 3. 计算出b2-4ac的值,看b2-4ac的值与0的关系,若
b2-4ac﹤0,则此方程没有实数根 。
认真做一做
当m为何值时,方程 m 1x22m xm 30
(1)有两个相等实根; m-1≠0且Δ=0
(2)有两个不等实根; m-1≠0且Δ>0
(3)有实根;
△≥0且△m≥-01≠0 或m-1=0
(4)无实数根;
△<0且m-1≠0
(5)只有一个实数根; m-1=0
(6)有两个数根。 △≥0且m-1≠0
巩固练习
1、政府近几年下大力气降低药品价格,希望使广大人民
群众看得起病吃得起药,某种针剂的单价由100元经过两
次降价,降至64元,设平均每次下降的百分率为x,则可列
方程
.
2、某商厦二月份的销售额为100万元,三月份销售额
下降了20%,该商厦赶快改进经营措施,销售额开始稳
步上升,五月份销售额达到了135.2万元,设四、五月份
引例:1、判断下列方程是不是一元二次方程
(1)4x- 1
2

2019精选教育人教课标版 初中数学九年级上册第二十一章一元二次方程及其应用 (共31张PPT).ppt

2019精选教育人教课标版 初中数学九年级上册第二十一章一元二次方程及其应用 (共31张PPT).ppt

【易错警示】利用根与系数关系解题的前提是方程的两根 存在,即注意根的判别式b2-4ac≥0.
提分必练
9. 若关于x的方程x2+3x+a=0有一个根为-1,则另一
个根为_-__2___.
10. 已知x1,x2是一元二次方程x2-2x-1=0的两根,则
1+ 1
x1 x2
=_-__2___.
基础点 3 一元二次方程的实际应用(10年5考) 1. 变化率模型:(2017.8,2015.6,2013.7,2010.19,
练习2 某班同学向班上其他同学互赠新年贺卡,全班共
互赠贺卡2070张,设全班有x名学生,那么根据题意可列
方程( A ) A. x(x-1)=2070
B. x(x-1)=2070
C. x(x+1)=2070
D. x(x+1)=2070
【解析】由题意可得,x(x-1)=2070.
问题3:某经销商销售该基地的酥梨,经过观察发现,定 价为6元/kg时,能销售100 kg;当定价每增加0.1元,则销 量减少1 kg.当定价最少为多少时,销售额为630元. 【自主解答】
解:设销量成小了n kg,根据题意得, (6+0.1n)(100-n)=630, 600+4n-0.1n2=630, n2-40n+300=0, (n-30)(n-10)=0, n=10或30,∴n=10, ∴6+0.1×10=7, ∴定价最少为7元/kg时,销售额为630元.
练习1 某工厂一月份产值为50万元,计划第一季度总产
值达到120万元,设二、三月份平均每月的增长率为x,根
据题意,可列方程( D )
A. 50(1+x)2=120
B. 50(1+x)+50(1+x)2=120
C. 50(1+x)3=120

人教版九年级初中数学上册第二十一章一元二次方程-解一元二次方程(配方法)PPT课件

人教版九年级初中数学上册第二十一章一元二次方程-解一元二次方程(配方法)PPT课件
2
B.x 2 6 x 8 0,x 2 6 x 9 8 9, x 3 1
2
2
2
2
7
7 7
7 7 97
C.2 x 7 x 6 0,x x 3, x 2 x 3 , x
第二十一章 一元二次方程
21.2.1 解一元二次方程
——配方法
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.理解配方法的概念,并运用配方法解一元二次方程。
2.掌握用配方法解一元二次方程的一般步骤。
重点难点
重点:用配方法解一元二次方程。
难点:用配方法解一元二次方程的步骤。
新知探究
尝试写出解方程x2+6x+4=0的过程?
第二十一章 一元二次方程
课 程 结 束
人教版九年级(初中)数学上册
授课老师:XX
C.大于等于1
的值( C )
D.不大于1
【思路点拨】将二次三项式配方,然后根据平方大于等于0,求出最值。
【解题过程】 解:∵ 2 x 2 4 x 3
2 x 2 2 x 1 2 1 3
2 x 1 1。
2
2 x 1 0,
2
原式 1。
方”)
新知探究
通过配方法解一元二次方程的步骤
用配方法解一元二次方程
ax 2 bx c 0 a 0 的一般步骤:
(1)移项:将含有x的项移到方程的左边,常数项移到方程的右边;
(2)二次项系数化为1:两边同除以二次项的系数;
(3)配方:方程两边都加上一次项系数一半的平方;

人教备战中考数学一元二次方程(大题培优 易错 难题)附详细答案

人教备战中考数学一元二次方程(大题培优 易错 难题)附详细答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.解下列方程:(1)x 2﹣3x=1.(2)12(y+2)2﹣6=0. 【答案】(1)12313313,22x x +-== ;(2)12223,223y y =-+=-- 【解析】试题分析:(1)利用公式法求解即可;(2)利用直接开方法解即可;试题解析:解:(1)将原方程化为一般式,得x 2﹣3x ﹣1=0,∵b 2﹣4ac=13>0∴. ∴12313313,22x x +-==. (2)(y+2)2=12, ∴或,∴12223,223y y =-+=--2.已知关于x 的方程x 2﹣(2k +1)x +k 2+1=0.(1)若方程有两个不相等的实数根,求k 的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k =2,求该矩形的对角线L 的长.【答案】(1)k >34;(215 【解析】【分析】(1)根据关于x 的方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,得出△>0,再解不等式即可;(2)当k=2时,原方程x 2-5x+5=0,设方程的两根是m 、n ,则矩形两邻边的长是m 、n ,利用根与系数的关系得出m+n=5,mn=522m n +,利用完全平方公式进行变形即可求得答案.【详解】(1)∵方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,∴Δ=[-(2k +1)]2-4×1×(k 2+1)=4k -3>0,∴k >34;(2)当k =2时,原方程为x 2-5x +5=0,设方程的两个根为m ,n ,∴m +n =5,mn =5,∴==. 【点睛】本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.3.计算题(1)先化简,再求值:21x x -÷(1+211x -),其中x=2017. (2)已知方程x 2﹣2x+m ﹣3=0有两个相等的实数根,求m 的值.【答案】(1)2018;(2)m=4【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21x x -÷(1+211x -) =2221111x x x x -+÷-- =()()22111x x x x x+-⋅- =x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x 2﹣2x+m ﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m ﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.4.如图,在Rt ABC 中,90B =∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm ?若存在,请求出此时x 的值;若不存在,请说明理由.【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析【解析】【分析】根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况.【详解】解:∵90B ∠=,10AC =,6BC =,∴8AB =.∴BQ x =,82PB x =-;假设存在x 的值,使得四边形APQC 的面积等于216cm , 则()1168821622x x ⨯⨯--=, 整理得:2480x x -+=,∵1632160=-=-<,∴假设不成立,四边形APQC 面积的面积不能等于216cm .【点睛】本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.5.已知关于x 的一元二次方程()2211204x m x m +++-=. ()1若此方程有两个实数根,求m 的最小整数值;()2若此方程的两个实数根为1x ,2x ,且满足22212121184x x x x m ++=-,求m 的值. 【答案】(1)m 的最小整数值为4-;(2)3m =【解析】【分析】(1)根据方程有两个实数根得0∆≥,列式即可求解,(2)利用韦达定理即可解题.【详解】(1)解:()22114124m m ⎛⎫∆=+-⨯⨯- ⎪⎝⎭22218m m m =++-+29m =+方程有两个实数根0∴∆≥,即290m +≥92m ∴≥- ∴ m 的最小整数值为4-(2)由根与系数的关系得:()121x x m +=-+,212124x x m =- 由22212121184x x x x m ++=-得:()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭13m ∴=,25m =- 92m ≥- 3m ∴=【点睛】本题考查了根的判别式和韦达定理,中等难度,熟悉韦达定理是解题关键.6.阅读下面的例题,范例:解方程x 2﹣|x|﹣2=0,解:(1)当x≥0时,原方程化为x 2﹣x ﹣2=0,解得:x 1=2,x 2=﹣1(不合题意,舍去). (2)当x <0时,原方程化为x 2+x ﹣2=0,解得:x 1=﹣2,x 2=1(不合题意,舍去). ∴原方程的根是x 1=2,x 2=﹣2请参照例题解方程x 2﹣|x ﹣10|﹣10=0.【答案】x 1=4,x 2=﹣5.【解析】【分析】分为两种情况:当x≥10时,原方程化为x 2﹣x=0,当x <10时,原方程化为x 2+x ﹣20=0,分别求出方程的解即可.【详解】当x≥10时,原方程化为x 2﹣x+10﹣10=0,解得x 1=0(不合题意,舍去),x 2=1(不合题意,舍去);当x <10时,原方程化为x 2+x ﹣20=0,解得x 3=4,x 4=﹣5,故原方程的根是x 1=4,x 2=﹣5.【点睛】本题考查了解一元二次方程——因式分解法,解此题的关键是能正确去掉绝对值符号.7.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:4600022000x-﹣46000220001.5x-= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.8.如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若点P从点A沿AB边向B点以1 cm/s的速度移动,点Q从B点沿BC边向点C以2 cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8cm²?(2)出发几秒后,线段PQ的长为42cm ?(3)△PBQ的面积能否为10 cm2?若能,求出时间;若不能,请说明理由.【答案】(1) 2或4秒2 cm;(3)见解析.【解析】【分析】(1)由题意,可设P、Q经过t秒,使△PBQ的面积为8cm2,则PB=6-t,BQ=2t,根据三角形面积的计算公式,S △PBQ=12BP×BQ ,列出表达式,解答出即可; (2)设经过x 秒后线段PQ 的长为42cm ,依题意得AP=x ,BP=6-x ,BQ=2x ,利用勾股定理列方程求解;(3)将△PBQ 的面积表示出来,根据△=b 2-4ac 来判断.【详解】(1)设P ,Q 经过t 秒时,△PBQ 的面积为8 cm 2,则PB =6-t ,BQ =2t ,∵∠B =90°,∴12(6-t)× 2t =8, 解得t 1=2,t 2=4, ∴当P ,Q 经过2或4秒时,△PBQ 的面积为8 cm 2;(2)设x 秒后,PQ =42 cm ,由题意,得(6-x)2+4x 2=32,解得x 1=25,x 2=2, 故经过25秒或2秒后,线段PQ 的长为42 cm ; (3)设经过y 秒,△PBQ 的面积等于10 cm 2,S △PBQ =12×(6-y)× 2y =10, 即y 2-6y +10=0, ∵Δ=b 2-4ac =36-4× 10=-4< 0,∴△PBQ 的面积不会等于10 cm 2.【点睛】本题考查了一元二次方程的应用,熟练的掌握一元二次方程的应用是本题解题的关键.9.如图,在四边形 ABCD 中, AD //BC , C 90∠=︒ , BC 16=, DC 12= , AD 21= ,动点P 从点D 出发,沿线段 DA 的方向以每秒2个单位长的速度运动;动点Q 从点 C 出发,在线段 CB 上以每秒1个单位长的速度向点 B 运动;点P ,Q 分别从点D ,C 同时出发,当点 P 运动到点 A 时,点Q 随之停止运动,设运动的时间为t 秒).(1)当 t 2=时,求 BPQ 的面积;(2)若四边形ABQP 为平行四边形,求运动时间 t . (3)当 t 为何值时,以 B 、P 、Q 为顶点的三角形是等腰三角形?【答案】(1)S 84=;(2)t 5= ;(3)7t 2=或163. 【解析】【分析】(1)过点P 作PM BC ⊥于M ,则PM=DC ,当t=2时,算出BQ ,求出面积即可;(2)当四边形ABQP 是平行四边形时,AP BQ =,即212t 16t -=-,解出即可;(3)以 B 、P 、Q 为顶点的三角形是等腰三角形,分三种情况,①PQ BQ =,②BP BQ =,③PB PQ =分别求出t 即可.【详解】解 :(1)过点P 作PM BC ⊥于M ,则四边形PDCM 为矩形.∴PM DC 12==,∵QB 16t =-,当t=2时,则BQ=14,则1S QB PM 2=⨯=12×14×12=84; (2)当四边形ABQP 是平行四边形时,AP BQ =, 即212t 16t -=-:解得:t 5=∴当t 5=时,四边形ABQP 是平行四边形.(3)由图可知,CM=PD=2t ,CQ=t ,若以B 、P 、Q 为顶点的三角形是等腰三角形,可以分为以下三种情况:①若PQ BQ =,在Rt PMQ 中,222PQ 12t =+,由22PQ BQ =得()2221216t t +=- 解得:7t 2= ; ②若BP BQ =,在Rt PMB 中,()222PB 16212t =-+,由22PB BQ ?=得()()222 1621216t t -+=- ,即2332t 1440t -+=,此时,()232431447040=--⨯⨯=-<△ ,所以此方程无解,所以BP BQ ≠ ;③若PB PQ =,由22PB PQ ?=得()2222 12162t 12t +=-+ ,得116 3t=,216t=(不合题意,舍去);综上所述,当7t2=或163时,以B、P、Q为顶点的三角形是等腰三角形.【点睛】本题是对四边形即可中动点问题的考查,熟练掌握动点中线段的表示、平行四边形和等腰三角形的性质及判断是解决本题的关键,难度适中.10.∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m吨(或水费是按y=1.7x来计算的),五月份用水量超过m吨(或水费是按来计算的)则有151=1.7×80+(80-m)×即m2-80m+1500=0解得m1=30,m2=50.又∵四月份用水量为35吨,m1=30<35,∴m1=30舍去.∴m=50【解析】。

中考数学专题练习直接开平方法解一元二次方程(含解析)

中考数学专题练习直接开平方法解一元二次方程(含解析)

2019中考数学专题练习-直接开平方法解一元二次方程(含解析)一、单选题1.若分式的值为0,则x的值是()A.1或-1B.1C. -1D.0【答案】B【考点】分式的值为零的条件,解一元二次方程-直接开平方法【解析】【分析】根据分子为0,同时分母不等于0时,分式值是零,即可得到结果.由题意得,解得,则x=1,故选B.【点评】解答本题的关键是熟练掌握分式值是零的条件:分子为0,同时分母不等于0.2.若25x2=16,则x的值为()A. B. C. D.【答案】A【考点】直接开平方法解一元二次方程【解析】【解答】解:25x2=16,x2= ,x=± ,故答案为:A【分析】观察次方程缺一次项,可以用直接开平方法求解或利用因式分解法求解。

3.方程的根是()A. B. C. D.【答案】A【考点】解一元二次方程-直接开平方法【解析】【解答】用开平方法可得【分析】将原方程变形为=4,用直接开平方法解得x=2,即= 2 ,= − 2.4.一元二次方程x2=2的解是()A.x=2或x=﹣2B.x=2C.x=4或x=﹣4D.x=或x=﹣【答案】D【考点】解一元二次方程-直接开平方法【解析】【解答】解:∵x2=2,∵x=±.故选:D.【分析】直接开平方解方程得出答案.5.方程x2=9的解是()A.x1=x2=3B.x1=x2=9C.x1=3,x2=﹣3D.x1=9,x2=﹣9【答案】C【考点】解一元二次方程-直接开平方法【解析】【解答】解:x2=9,两边开平方,得x1=3,x2=﹣3.故选C.【分析】利用直接开平方法求解即可.6.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4B.x-6=4C.x+6=4D.x+6=-4【答案】D【考点】解一元二次方程-直接开平方法【解析】【分析】方程两边直接开平方可达到降次的目的,进而可直接得到答案.【解答】(x+6)2=16,两边直接开平方得:x+6=±4,则:x+6=4,x+6=-4,故选:D.7.方程x2=9的解是()A.x=9B.x=±9C.x=3D.x=±3【答案】D【考点】直接开平方法解一元二次方程【解析】【解答】解:∵x2=9,∵x=±3,故选:D.【分析】直接开平方法即可得.8.若是反比例函数,则b的值为()A.1B.-1C.D.任意实数【答案】A【考点】直接开平方法解一元二次方程,反比例函数的定义【解析】【解答】,解得.故答案为:A.【分析】根据反比例函数的定义知,自变量次数为-1,b2-2=-1,得b=1,,又因为比例系数k≠0,得b+1≠0,得b≠-1,综合分析可得b=1。

19年秋人教版九年级数学《第21章一元二次方程》PPT课件


导入新课
复习引入
1.如果 x2=a,则x叫做a的 平方根 . 2.如果 x2=a(a ≥0),则x= a . 3.如果 x2=64 ,则x= ±8 . 4.任何数都可以作为被开方数吗?
负数不可以作为被开方数.
讲授新课
一 直接开平方法
问题:一桶油漆可刷的面积为1500dm2,李林用这 桶油漆恰好刷完10个同样的正方体形状的盒子的全 部外表面,你能算出盒子的棱长吗?
(8)( x )2 2 x 6 0
例2:a为何值时,下列方程为一元二次方程?
(1)ax2-x=2x2 (2) (a-1)x |a|+1 -2x-7=0.
解:(1)将方程式转化为一般形式,得(a-2)x2-x=0, 所以当a-2≠0,即a≠2时,原方程是一元二次方程;
(2)由∣a ∣+1 =2,且a-1 ≠0知,当a=-1时,原方 程是一元二次方程.
x 6,
x1 6 ,x2 6
(2) x2-900=0. (2)移项,得 x2=900.
直接开平方,得 x=±30,
∴x1=30, x2=-30.
探究பைடு நூலகம்流
对照上面方法,你认为怎样解方程(x+3)2=5 在解方程(I)时,由方程x2=25得x=±5.由此想到: (x+3)2=5 , ② 得 x 3 5,
x 3 5 ,或 x 3 5 . ③
(2)当p=0 时,方程(I)有两个相等的实数根 x1 x2 =0;
(3)当p<0 时,因为任何实数x,都有x2≥0 ,所以
方程(I)无实数根.
归纳 利用平方根的定义直接开平方求一元二次方程 的根的方法叫直接开平方法.
典例精析
例1 利用直接开平方法解下列方程:

人教版初三九年级数学第二十一章《一元二次方程复习PPT课件》

七楼A座办公家园
典型例题:
x2 -8x-9=0.
解:移项,得 x 2-8x=9,
两边都加一次项系数一半的平方,
x 2-8x+4 2=q+4 2,
配方,得
(x-4) 2=25,
解这个方程,得 x-4=±5,
移项,得
x=4±5.
即 x 1=9,x2 =-1. (口头检验,是不是 原方程的根)
典型例题:
(1)x2-10x+24=0; (2)x2-8x+15=0;
(3)x2+2x-99=0; (4)y2+5y+2=0;
(5)3x2-1=4x;
(6)2x2+2x-30=0;
(7)x2+px+q=0 (p2-4q≥0);
七楼A座办公家园
公式法:
x b b2 4ac 2a
强调公式的条件:
七楼A座办公家园
应用
七楼A座办公家园
a 0,b2 4ac 0
七楼A座办公家园
根与系数关系
c x1 x2 a
b x1 x2 a
七楼A座办公家园
1.应用一元二次方程的根与系数关系时, 首先要把已知方程化成一般形式. 2.应用一元二次方程的根与系数关系时, 要特别注意,方程有实根的条件,即在 初中代数里,当且仅当
b2-4ac≥0时,才能应用根与系关系. 3.可以通过一元二次方程系数判断方程 根的情况.
一元二次方程 复习
七楼A座办公家园
一元二次方程概念?一般形式? 问题1:剪一面积为20cm2的长方
形纸片,且长比宽多1cm,则纸片 长、宽各为多少?
七楼A座办公家园
问题2:如图:如果
用一正方形纸片,在

九年级数学上册第二十一章一元二次方程经典大题例题(带答案)

九年级数学上册第二十一章一元二次方程经典大题例题单选题为根的一元二次方程可能是()1、以x=4±√16+4c2A.x2−4x−c=0B.x2+4x−c=0C.x2−4x+c=0D.x2+4x+c=0答案:A分析:根据求根公式逐一判断即可.,符合题意;解:A.此方程的根为x=4±√16+4c2,不符合题意;B.此方程的根为x=−4±√16+4c2,不符合题意;C.此方程的根为x=4±√16−4c2,不符合题意;D.此方程的根为x=−4±√16−4c2故选:A.小提示:本题主要考查解一元二次方程—公式法,解题的关键是掌握求根公式.2、若x=﹣1是方程x2+x+m=0的一个根,则此方程的另一个根是()A.﹣1B.0C.1D.2答案:B分析:根据根与系数的关系即可求出答案.设x2+x+m=0另一个根是α,∴﹣1+α=﹣1,∴α=0,故选:B.小提示:本题考查一元二次方程根与系数的关系,解题的关键是熟练运用一元二次方程根与系数的关系,本题属于基础题型.3、用配方法解方程x2−6x−8=0时,配方结果正确的是()A.(x−3)2=17B.(x−3)2=14C.(x−6)2=44D.(x−3)2=1答案:A分析:利用配方法把方程x2−6x−8=0变形即可.用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,故选A.小提示:本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.4、下列是关于x的一元二次方程的是()A.x2−1=2021B.x(x+6)=0C.a2x−5=0D.4x−x3=2x答案:B分析:根据一元二次方程的概念判断即可.只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.解:A.是分式方程,不是一元二次方程,不符合题意;B.是一元二次方程,符合题意;C.当a=0时,不是一元二次方程,不符合题意;D.是一元三次方程,不符合题意;故选:B.小提示:本题考查的是一元二次方程的概念,掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解题的关键.5、已知m为方程x2+3x−2022=0的根,那么m3+2m2−2025m+2022的值为()A.−2022B.0C.2022D.4044答案:B分析:根据题意有m2+3m−2022=0,即有m3+3m2−2022m=0,据此即可作答.∵m为x2+3x−2022=0的根据,∴m2+3m−2022=0,且m≠0,∴m3+3m2−2022m=0,则有原式=(m 3+3m 2−2022m)−(m 2+3m −2022)=0−0=0,故选:B .小提示:本题考查了利用未知数是一元二次方程的根求解代数式的值,由m 为x 2+3x −2022=0得到m 2+3m −2022=0是解答本题的关键.6、下列方程中,一元二次方程共有( )个.①x 2﹣2x ﹣1=0;②ax 2+bx +c =0;③2x 2+3x −5=0;④﹣x 2=0;⑤(x ﹣1)2+y 2=2;⑥(x ﹣1)(x ﹣3)=x 2A .1B .2C .3D .4答案:B分析:根据一元二次方程根的定义一一判定即可.解:①x 2﹣2x ﹣1=0,符合一元二次方程的定义,是一元二次方程;②ax 2+bx +c =0,没有二次项系数不为0这个条件,不符合一元二次方程的定义,不是一元二次方程; ③2x 2+3x −5=0不是整式方程,不符合一元二次方程的定义,不是一元二次方程;④﹣x 2=0,符合一元二次方程的定义,是一元二次方程;⑤(x ﹣1)2+y 2=2,方程含有两个未知数,不符合一元二次方程的定义,不是一元二次方程;⑥(x ﹣1)(x ﹣3)=x 2,方程整理后,未知数的最高次数是1,不符合一元二次方程的定义,不是一元二次方程.综上所述,一元二次方程共有2个.故选:B .小提示:本题考查了一元二次方程的定义,解题的关键在于判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.7、一次会议上,每两个参加会议的人都互相握了一次手,有人统计一共共握66次手.若设这次会议到会的人数为x 人,依题意可列方程( )A .12x (x ﹣1)=66B .12(1+x)2=66C .x (1+x )=66D .x (x ﹣1)=66答案:A分析:利用参会人员共握手次数=参会人数×(参会人数﹣1)÷2,即可得出关于x的一元二次方程,此题得解.解:依题意得:12x(x−1)=66.故选:A.小提示:本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8、我国南宋数学家杨辉在《田亩比类乘除捷法》中记录了这样的一个问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”其大意是:矩形面积是864平方步,其中长与宽和为60步,问长比宽多多少步?若设长比宽多.....x步.,则下列符合题意的方程是()A.(60 - x)x = 864B.60−x2×60+x2= 864C.(60 + x)x = 864D.(30 + x)(30 - x)= 864 答案:B分析:画图分析即可得,宽为60−x2步,长为60+x2步,根据面积关系即可得方程.画图如下:由图知:宽为60−x2步,长为60+x2步则可得方程为:60−x2×60+x2= 864故选:B小提示:本题考查了一元二次方程的实际应用,弄懂题意并画图分析得到宽与长是关键.9、已知x=−2是方程x2+ax+2=0的一个根,则a的值为()A.1B.-1C.3D.−3答案:C分析:将x=−2代入方程x2+ax+2=0即可解出.将x=−2代入x2+ax+2=0可得4−2a+2=0解得a=3,故答案为C.小提示:本题考查了一元二次方程,将一个根代入得到关于a的方程是本题的关键.10、我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是()A.3(x−1)x=6210B.3(x−1)=6210C.(3x−1)x=6210D.3x=6210答案:A分析:设这批椽的数量为x株,则一株椽的价钱为3(x−1)文,利用总价=单价×数量,即可得出关于x的一元二次方程,此题得解.解:∵这批椽的数量为x株,每株椽的运费是3文,少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,∴一株椽的价钱为3(x−1)文,依题意得:3(x−1)x=6210,故选:A.小提示:本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.填空题11、若关于x的一元二次方程mx2+nx−1=0(m≠0)的一个解是x=1,则m+n的值是___.答案:1分析:根据一元二次方程解的定义把x=1代入到mx2+nx−1=0(m≠0)进行求解即可.解:∵关于x的一元二次方程mx2+nx−1=0(m≠0)的一个解是x=1,∴m+n−1=0,∴m+n=1,所以答案是:1.小提示:本题主要考查了一元二次方程解的定义,代数式求值,熟知一元二次方程解的定义是解题的关键.12、若a是方程x2+x−1=0的一个根,则代数式−3a2−3a+2022的值为________.答案:2019分析:根据a是方程x2+x−1=0一个根,可以得到a2+a−1=0,然后即可得到a2+a=1,再整体代入所求式子计算即可.解:∵a是方程x2+x−1=0一个根,∴a2+a−1=0,∴a2+a=1,∴−3a2−3a+2022=−3(a2+a)+2022=−3×1+2022=−3+2022=2019,所以答案是:2019.小提示:本题考查一元二次方程的解,解答本题的关键是明确题意,利用整体代入的思想解答.13、已知α,β是方程x2+2021x+1=0的两个根,则(α2+2022α+1)(β2+2022β+1)=_____.答案:1分析:利用一元二次方程解的定义得到α2+2021α+1=0,β2+2021β+1=0;根据根与系数的关系得到:αβ=1,然后将其代入(α2+2022α+1)(β2+2022β+1)进行求值即可.解:∵α,β是方程x2+2021x+1=0的两个根,∴α2+2021α+1=0,β2+2021β+1=0,αβ=1,∴(α2+2022α+1)(β2+2022β+1)=(α2+2021α+1+α)(β2+2021β+1+β)=(0+α)(0+β)=αβ=1.故答案是:1.小提示:本题主要考查了一元二次方程解和根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.14、近来房地产市场进入寒冬期,某楼盘原价为每平方米10000元,连续两次降价后售价为8100元,则平均每次降价的百分率是______.答案:10%分析:设平均每次降价的百分率为x,根据该楼盘的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.解:设平均每次降价的百分率为x,依题意得:10000(1-x)2=8100,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).所以答案是:10%.小提示:本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15、小明在计算某数的平方时,将这个数的平方误看成它的2倍,使答案少了35,则这个数为_________.答案:7或-5##−5或7分析:设这个数为x,根据这个数的平方-2×这个数=35,列出方程,解方程即可.解:设这个数为x,根据题意得:x2−2x=35,解得:x=7或x=−5.所以答案是:7或-5.小提示:本题主要考查了一元二次方程的应用,根据题目中的等量关系列出方程,是解题的关键.解答题16、如图,四边形ABCD中,AD∥BC,∠B=90°,AB=8,BC=20,AD=18,点Q为BC中点,动点P在线段AD 边上以每秒2个单位的速度由点A向点D运动,设动点P的运动时间为t秒.(1)当t为何值时,四边形PBQD是平行四边形,请说明理由?(2)在AD边上是否存在一点R,使得B、Q、R、P四点为顶点的四边形是菱形?若存在,请直接写出t的值:若不存在,请说明理由.(3)在线段PD上有一点M,且PM=10,当点P从点A向右运动_________秒时,四边形BCMP的周长最小,其最小值为_________.答案:(1)4(2)存在,t=3;2√89+30(3)52分析:(1)利用一组对边平行且相等的四边形是平行四边形的判定方法,得到PD=BQ=10,列出一元一次方程求解即可;(2)利用菱形的判定,由一组邻边相等的平行四边形是菱形,得到PB=PR=10,再利用勾股定理建立方程求解即可;(3)先确定四边形BCMP的周长等于30+QM+CM,再利用轴对称的知识和两点之间线段最短的知识确定QM+CM的最小值即可得到周长最小值,最后求出AP的长即可得到P点运动时间.(1)解:连接BP、DQ,∵BC=20,点Q为BC中点,∴BQ=CQ=10,要使四边形PBQD是平行四边形,则PD=BQ=10,∴18−2t=10,∴t=4,此时,PD=BQ且PD∥BQ,则四边形PBQD是平行四边形,∴当t为4时,四边形PBQD是平行四边形.(2)存在,t=3;假设R点在图中所示位置,则连接BP、QR,要使得B、Q、R、P四点为顶点的四边形是菱形,则有PB=PR=10,在Rt△ABP中,82+(2t)2=102,∴t=3,t=−3(舍去),此时AR=2×3+10=16,符合题意;∴在AD边上存在一点R,使得B、Q、R、P四点为顶点的四边形是菱形,且t=3.(3)5;2√89+302如图,连接BP、QM,因为PM=10,∴PM=BQ且PM∥BQ,∴四边形PBQM是平行四边形,∴PB=QM,∵四边形BCMP的周长=PM+PB+BC+CM=10+QM+20+CM=30+QM+CM,∴当QM+CM的值最小时,四边形BCMP的周长最小,作Q点关于AD的对称点G,连接CG,则QG=2QE=16,四边形ABQE是矩形,∴AE=BQ=10,AB=EQ=8,当C、M、G三点共线时(即M点位于图中的F点处),QM+CM的值最小等于CG,∴Rt△GQC中,CG=√QG2+QC2=√162+102=2√89,此时,四边形BCMP的周长最小值为2√89+30,∵E点为QG中点,EF∥QC,∴EF=1QC=5,2∴AF=15,∴AP=15-10=5,∴t=5.2∴当点P从点A向右运动5秒时,四边形BCMP的周长最小,其最小值为2√89+30.2所以答案是:5;2√89+30.2小提示:本题考查了动点问题,涉及到了平行四边形的判定与性质、菱形的判定与性质、勾股定理解三角形、“将军饮马”问题、一元一次方程的应用、解一元二次方程等,解题关键是能正确建立方程,以及能确定最短路径.17、已知关于x的方程x2+(m−2)x−9=0.(1)求证:无论m取什么实数,这个方程总有两个不相等的实数根.(2)若这个方程的两个实根α,β,满足2α+β=m+1,求m的值.答案:(1)证明见解析(2)m1=2,m2=−12分析:(1)△=b2−4ac>0,无论m取什么实数,这个方程总有两个不相等的实数根;(2)根据根与系数关系可得:(2m−1)2+(m−2)(2m−1)−9=0,即可求解.(1)证明:∵b2−4ac=(m−2)2−4×1−(−9)=(m−2)2+36,无论m取何实数,b2−4ac的值都大于零.∴这个方程总有两个不相等的实数根.(2)解:∵α,β是方程的两个实数根,∴α+β=2−m.又∵2α+β=m+1,∴α+2−m=m+1.∴α=2m−1,代入原方程得:(2m−1)2+(m−2)(2m−1)−9=0,化简得:2m2−3m−2=0..解得:m1=2,m2=−12小提示:本题考查了根的判别式及根与系数的关系、解一元二次方程,解题的关键是熟知根与系数的关系及用根的判别式判定根的情况.18、2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育学习活动,我市“红二方面军长征出发地纪念馆”成为重要的活动基地.据了解,今年3月份该基地接待参观人数10万人,5月份接待参观人数增加到12.1万人.(1)求这两个月参观人数的月平均增长率;(2)按照这个增长率,预计6月份的参观人数是多少?答案:(1)10%;(2)13.31万分析:(1)设这两个月参观人数的月平均增长率为x,根据题意列出等式解出x即可;(2)直接利用(1)中求出的月平均增长率计算即可.(1)解:设这两个月参观人数的月平均增长率为x,由题意得:10(1+x)2=12.1,解得:x1=10%,x2=−21(不合题意,舍去),10答:这两个月参观人数的月平均增长率为10%.(2)12.1×(1+10%)=13.31(万人),答:六月份的参观人数为13.31万人.小提示:本题考查了二次函数和增长率问题,解题的关键是:根据题目条件列出等式,求出增长率,再利用增长率来预测.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019备战中考数学基础必练(人教版)-第二十一章-一元二次方程(含解析)一、单选题1.关于x的方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是()A. k>-1B. k<-1C. k≥-1且k≠0D. k>-1且k≠02.方程(x+1)(x-3)=5的解是()A. x1=1,x2=-3B. x1=4,x2=-2C. x1=-1,x2= 3D. x1= -4,x2=23.若关于x 的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有解,那么m的取值范围是()A. m>B. m≥C. m>且m≠2D. m≥ 且m≠24.设方程的两根分别为,且,那么m的值等于()A. B. -2 C. D.5.一元二次方程x2﹣3x+2=0 的两根分别是x1、x2,则x1+x2的值是()A. 3B. 2C. ﹣3D. ﹣26.用配方法解一元二次方程+4x-3=0时,原方程可变形为()A. (x+2)=1B. (x+2)=19C. (x+2)=13D. (x+2)=77.若(a+b)(a+b+2)=8,则a+b的值为()A. -4B. 2C. 4D. -4或28.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,,则k的取值范围是()A. k>-1B. k>1C. k≠0D. k>-1且k≠09.已知是方程x2-2x-1=0的两个根,则的值为()A. B. 2 C. D. -2二、填空题10.方程的解是________.11.若关于x的方程x2+3x+a=0有一个根为1,则另一个根为________.12.若关于x的方程(m﹣)x ﹣x+2=0是一元二次方程,则m的值是________.13.关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,b,m均为常数,a≠0),则方程a(x+m+2)2+b=0的解是________.14.若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是________.15.若正数a是一个一元二次方程x2-5x+m=0的一个根,-a是一元二次方程x2+5x-m=0的一个根,则a的值是________.16.关于x的方程3kx2+12x+2=0有实数根,则k的取值范围是________.17.用配方法解方程,则配方后的方程是________ .18.若关于x的方程x2+mx+1=0有两个相等的实数根,则m=________.19.若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________.三、计算题20.解方程①x2﹣3x+2=0②4x2﹣12x+7=0.21.解方程:(1)(2x﹣3)2=25(2)x2﹣4x﹣3=0 (配方法)22.解方程:四、解答题23.如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.(1)问:依据规律在第6个图中,黑色瓷砖多少块,白色瓷砖有多少块;(2)某新学校教室要装修,每间教室面积为68m2,准备定制边长为0.5米的正方形白色瓷砖和长为0.5米、宽为0.25米的长方形黑色瓷砖来铺地面.按照此图案方式进行装修,瓷砖无须切割,恰好完成铺设.已知白色瓷砖每块20元,黑色瓷砖每块10元,请问每间教室瓷砖共需要多少元?24.已知关于x的方程x2﹣2(m+1)x+m2=0(1)当Mm取什么值时,原方程没有实数根;(2)对m选取一个合适的非零整数,使原方程有两个不相等的实数根,并求出这两个实数根.五、综合题25.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题(1)若△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC 是什么形状?说明理由.(2)若x2+4y2﹣2xy+12y+12=0,求x y的值.(3)已知a﹣b=4,ab+c2﹣6c+13=0,则a+b+c=________.26.先阅读下列(1)的解答过程,然后再解答第(2)(3)小题.(1)已知实数a、b满足a2=2﹣2a,b2=2﹣2b,且a≠b,求+ 的值.(2)若实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,求代数式+ 的值;(3)已知m2﹣3m﹣5=0,5n2+3n﹣1=0,求m2+ 的值.答案解析部分一、单选题1.【答案】D【考点】一元二次方程的定义,根的判别式【解析】【分析】根据△的意义得到k≠0且△=4-4k×(-1)>0,然后求出两不等式的公共部分即可.【解答】∵x的方程kx2+2x-1=0有两个不相等的实数根,∴k≠0且△=4-4k×(-1)>0,解得k>-1,∴k的取值范围为k>-1且k≠0.故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.2.【答案】B【考点】解一元二次方程-公式法【解析】解答:(x+1)(x-3)=5,x2-2x-3-5=0,x2-2x-8=0,∴x1=4,x2=-2.故选:B .分析:首先把方程化为一般形式,利用公式法即可求解.3.【答案】D【考点】根的判别式【解析】【解答】解:∵关于x 的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有解,∴,解得:m≥ 且m≠2.故选D.【分析】根据一元二次方程的定义以及方程有解,结合根的判别式即可得出关于m的一元二次不等式组,解不等式即可得出结论.4.【答案】B【考点】根与系数的关系【解析】【解答】∵方程的两根分别为,∴,又∵,∴,∴.【分析】根据根与系数的关系及求得,再由m与的关系求得m 的值.5.【答案】A【考点】根与系数的关系【解析】【解答】解:这里a=1,b=﹣3,则x1+x2=﹣=3,故选A.【分析】根据一元二次方程根与系数的关系求则可.设x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=-,x1x2=.6.【答案】D【考点】解一元二次方程-配方法【解析】【解答】∵x2+4x=3,∴x2+4x+4=3+4,即(x+2)2=7,故答案为:D.【分析】将方程的常数项移到方程的右边,根据等式的性质,方程的左右两边都加上一次项系数一半,的平方4,左边利用完全平方公式改写成一个整式的平方,右边合并同类项,即可。

7.【答案】D【考点】解一元二次方程-因式分解法【解析】解答: 设a+b=x ,由题意得x(x+2)=8+2x-8=0(x-2)(x+4)=0解得x1=2,x2=-4因此a+b=2或-4.故选:D.分析: 此题考查用换元法解一元二次方程,注意原方程的特点,用一个字母代替方程的某一个式子是解决问题的关键8.【答案】D【考点】根的判别式【解析】【分析】根据△的意义得到k≠0且△=4-4k×(-1)>0,然后求出不等式的解即可。

【解答】∵关于x的方程kx2+2x-1=0有两个不相等的实数根,∴k≠0且△=4-4k×(-1)>0,解得k>-1,∴k的取值范围为k>-1且k≠0.故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根。

也考查了一元二次方程的定义。

9.【答案】D【考点】一元二次方程的根与系数的关系【解析】【解答】由韦达定理可得,故答案为:D.【分析】利用一元二次方程根与系数的关系求出方程的lx1+x2,x1x2,再将转化为,然后代入求值。

二、填空题10.【答案】x=0【考点】一元二次方程的解【解析】【解答】解:两边平方得:x=x2,解方程的:x1=0,x2=1,检验:当x1=0时,方程的左边=右边=0,∴x=0为原方程的根当x2=1时,原方程无意义,故舍去.故答案为:x=0.【分析】把方程两边平方去根号后求解.11.【答案】﹣4【考点】根与系数的关系【解析】【解答】解:设方程的另一根为x2,根据题意,得:1+x2=﹣3,解得:x2=﹣4,故答案为:﹣4.【分析】依据一元二次方程根与系数的关系进行解答即可.12.【答案】﹣【考点】一元二次方程的定义【解析】【解答】解:∵关于x的方程(m﹣)x ﹣x+2=0是一元二次方程,∴m2﹣1=2,m﹣≠0,解得:m=﹣.故答案为:﹣.【分析】直接利用一元二次方程的定义得出关于m的等式进而得出答案.13.【答案】x3=0,x4=﹣3【考点】一元二次方程的根【解析】【解答】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣3.故答案为:x3=0,x4=﹣3【分析】将方程a(x+m+2)2+b=0中的x+2看着整体,相当于前面方程中的x,列出方程x+2=2或x+2=﹣1,求解即可。

14.【答案】5【考点】一元二次方程的根【解析】【解答】解:∵a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x ﹣m=0的一个根,∴a2﹣5a+m=0①,a2﹣5a﹣m=0②,①+②,得2(a2﹣5a)=0,∵a>0,∴a=5.故答案为:5【分析】由a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,可得出a2﹣5a+m=0和a2﹣5a﹣m=0,将两方程相加,可得出2(a2﹣5a)=0,求出方程的解,然后根据a是正数,可求出符合条件的a的值。

15.【答案】5【考点】一元二次方程的应用【解析】【解答】解:∵a是一元二次方程x2-5x+m=0的一个根,-a是一元二次方程x2+5x-m=0的一个根,∴a2-5a+m=0①,a2-5a-m=0②,①+②,得2(a2-5a)=0,∵a>0,∴a=5.故答案为:5【分析】将两个方程的根分别代入两个方程,观察后将两个方程相加即可得到关于a的一元二次方程,求得a的值,并结合a为正数可求得a的值为5.16.【答案】k≤6【考点】一元二次方程根的判别式及应用【解析】【解答】解:当k=0时,原方程可化为12x+2=0,解得x=﹣;当k≠0时,此方程是一元二次方程,∵方程3kx2+12x+2=0有实数根,∴△≥0,即△=122﹣4×3k×2≥0,解得k≤6.∴k的取值范围是k≤6.故答案为:k≤6.【分析】由于题中时关于x的方程,因此此方程可能是一元一次方程也可能是一元二次方程,分情况讨论:当k=0时;当k≠0时,此方程是一元二次方程,由题意得出b2-4ac≥0,建立关于k的不等式,求解即可。

相关文档
最新文档