数列选择题解答题训练题(含答案)中等难度
中等数学最难试题及答案

中等数学最难试题及答案一、选择题(每题4分,共20分)1. 若函数f(x)=x^2-4x+3,则f(2)的值为()A. -1B. 1C. 3D. 5答案:B解析:将x=2代入函数f(x)=x^2-4x+3,得到f(2)=2^2-4*2+3=1。
2. 已知等差数列{an}的首项a1=1,公差d=2,则a5的值为()A. 9B. 11C. 13D. 15答案:A解析:根据等差数列的通项公式an=a1+(n-1)d,代入n=5,得到a5=1+(5-1)*2=9。
3. 若复数z满足z^2+z+1=0,则z的值为()A. iB. -iC. 1+iD. 1-i答案:A解析:将z^2+z+1=0进行因式分解,得到(z+1/2+√3/2i)(z+1/2-√3/2i)=0,解得z=-1/2+√3/2i或z=-1/2-√3/2i,即z=i或z=-i,因此答案为A。
4. 已知双曲线C的方程为x^2/a^2-y^2/b^2=1,若双曲线C的一条渐近线方程为y=√2x,则a和b的关系为()A. a=bB. a=√2bC. b=√2aD. b=2a答案:C解析:根据双曲线的渐近线方程y=±(b/a)x,代入y=√2x,得到b/a=√2,即b=√2a。
5. 已知函数f(x)=x^3-3x+1,求f'(x)的值为()A. 3x^2-3B. 3x^2+3C. 3x^2-9xD. 3x^2+9x答案:A解析:对函数f(x)=x^3-3x+1求导,得到f'(x)=3x^2-3。
二、填空题(每题5分,共20分)6. 已知等比数列{bn}的首项b1=2,公比q=3,则b5的值为______。
答案:486解析:根据等比数列的通项公式bn=b1*q^(n-1),代入n=5,得到b5=2*3^(5-1)=486。
7. 若函数f(x)=x^2-4x+3,则f(x)的最小值为______。
答案:-1解析:将函数f(x)=x^2-4x+3进行配方,得到f(x)=(x-2)^2-1,因此f(x)的最小值为-1。
等差数列练习题(有答案)doc

一、等差数列选择题1.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60B .11C .50D .552.已知数列{}n a 是等差数列,其前n 项和为n S ,若454a a +=,则8S =( ) A .16 B .-16 C .4D .-43.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160B .180C .200D .2204.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8B .13C .26D .1625.《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为( ) A .32B .33C .34D .356.已知数列{}n a 的前n 项和n S 满足()12n n n S +=,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项的和为( ) A .89B .910C .1011D .11127.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11B .12C .23D .248.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则1215a b =( ) A .32B .7059C .7159D .859.题目文件丢失!10.已知等差数列{}n a 的公差d 为正数,()()111,211,n n n a a a tn a t +=+=+为常数,则n a =( )A .21n -B .43n -C .54n -D .n11.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( )A .450a a +=B .560a a +=C .670a a +=D .890a a +=12.已知{}n a 是公差为2的等差数列,前5项和525S =,若215m a =,则m =( ) A .4B .6C .7D .813.已知等差数列{}n a 的前n 项和为n S ,且2n S n =.定义数列{}n b 如下:()*1m m b m m+∈N 是使不等式()*n a m m ≥∈N 成立的所有n 中的最小值,则13519 b b b b ++++=( )A .25B .50C .75D .10014.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103B .107C .109D .10515.等差数列{}n a 的前n 项和为n S ,且132a a +=,422a a -=,则5S =( ) A .21B .15C .10D .616.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )A .7B .9C .21D .4217.在等差数列{}n a 中,()()3589133224a a a a a ++++=,则此数列前13项的和是( ) A .13 B .26 C .52 D .56 18.若等差数列{a n }满足a 2=20,a 5=8,则a 1=( )A .24B .23C .17D .1619.已知等差数列{}n a 中,7916+=a a ,41a =,则12a 的值是( ) A .15B .30C .3D .6420.已知等差数列{}n a 的前n 项和n S 满足:21<<m m m S S S ++,若0n S >,则n 的最大值为( ) A .2mB .21m +C .22m +D .23m +二、多选题21.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小B .130S =C .49S S =D .70a =22.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a =B .911a a =C .当9n =或10时,n S 取得最大值D .613S S =23.已知数列{}n a 满足0n a >,121n n n a na a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )A .11a =B .121a a =C .201920202019S a =D .201920202019S a >24.设等差数列{}n a 的前n 项和为n S .若30S =,46a =,则( ) A .23n S n n =- B .2392-=n n nSC .36n a n =-D .2n a n =25.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =-B .310na nC .228n S n n =- D .24n S n n =-26.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列B .(){}1n-是等方差数列C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 27.定义11222n nn a a a H n-+++=为数列{}n a 的“优值”.已知某数列{}n a 的“优值”2nn H =,前n 项和为n S ,则( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .2020202320202S = D .2S ,4S ,6S 成等差数列28.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a >B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .0n S <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项29.无穷数列{}n a 的前n 项和2n S an bn c =++,其中a ,b ,c 为实数,则( )A .{}n a 可能为等差数列B .{}n a 可能为等比数列C .{}n a 中一定存在连续三项构成等差数列D .{}n a 中一定存在连续三项构成等比数列30.已知{}n a 为等差数列,其前n 项和为n S ,且13623a a S +=,则以下结论正确的是( ). A .10a =0B .10S 最小C .712S S =D .190S =【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.D 【分析】根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】因为在等差数列{}n a 中,若n S 为其前n 项和,65a =, 所以()1111161111552a a S a +===.故选:D. 2.A 【详解】 由()()18458884816222a a a a S +⨯+⨯⨯====.故选A.3.B 【分析】把已知的两式相加得到12018a a +=,再求20S 得解. 【详解】由题得120219318()()()247854a a a a a a +++++=-+=, 所以1201203()54,18a a a a +=∴+=. 所以2012020()10181802S a a =+=⨯=. 故选:B 4.B【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.【详解】因为()351041072244a a a a a a ++=+==,所以71a =,又()1131371313131132a a S a +===⨯=, 故选:B. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.5.D 【分析】设年纪最小者年龄为n ,年纪最大者为m ,由他们年龄依次相差一岁得出(1)(2)(28)1520n n n n m ++++++++=,结合等差数列的求和公式得出111429m n =-,再由[]90,100m ∈求出n 的值.【详解】根据题意可知,这30个老人年龄之和为1520,设年纪最小者年龄为n ,年纪最大者为m ,[]90,100m ∈,则有(1)(2)(28)294061520n n n n m n m ++++++++=++=则有291114n m +=,则111429m n =-,所以90111429100m ≤-≤ 解得34.96635.31n ≤≤,因为年龄为整数,所以35n =. 故选:D 6.C 【分析】 首先根据()12n n n S +=得到n a n =,设11111n n n b a a n n +==-+,再利用裂项求和即可得到答案. 【详解】当1n =时,111a S ==, 当2n ≥时,()()11122n n n n n n n a S S n -+-=-=-=. 检验111a S ==,所以n a n =.设()1111111n n n b a a n n n n +===-++,前n 项和为n T , 则10111111101122310111111T ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…. 故选:C 7.C 【分析】由题设求得等差数列{}n a 的公差d ,即可求得结果. 【详解】32153S a ==,25a ∴=, 12a =,∴公差213d a a =-=, 81727323a a d ∴=+=+⨯=,故选:C. 8.C 【分析】可设(32)n S kn n =+,(21)n T kn n =+,进而求得n a 与n b 的关系式,即可求得结果. 【详解】因为{}n a ,{}n b 是等差数列,且3221n n S n T n +=+, 所以可设(32)n S kn n =+,(21)n T kn n =+,又当2n 时,有1(61)n n n a S S k n -=-=-,1(41)n n n b T T k n -=-=-, ∴1215(6121)71(4151)59a kb k ⨯-==⨯-, 故选:C .9.无10.A 【分析】由已知等式分别求出数列的前三项,由2132a a a =+列出方程,求出公差,利用等差数列的通项公式求解可得答案. 【详解】11a =,()()1211n n n a a tn a ++=+,令1n =,则()()121211a a t a +=+,解得21a t =-令2n =,则()()2322121a a t a +=+,即()2311t a t -=-,若1t =,则20,1a d ==,与已知矛盾,故解得31a t =+{}n a 等差数列,2132a a a ∴=+,即()2111t t -=++,解得4t =则公差212d a a =-=,所以()1121n a a n d n =+-=-. 故选:A 11.B 【分析】由100S =可计算出1100a a +=,再利用等差数列下标和的性质可得出合适的选项. 【详解】由等差数列的求和公式可得()110101002a a S +==,1100a a ∴+=, 由等差数列的基本性质可得561100a a a a +=+=. 故选:B. 12.A 【分析】由525S =求出1a ,从而可求出数列的通项公式,进而可求出m 的值 【详解】 解:由题意得15452252a ⨯+⨯=,解得11a =, 所以1(1)12(1)21n a a n d n n =+-=+-=-, 因为215m a =,所以22115m ⋅-=,解得4m =, 故选:A 13.B 【分析】先求得21n a n =-,根据n a m ≥,求得12m n +≥,进而得到21212k k b --=,结合等差数列的求和公式,即可求解. 【详解】由题意,等差数列{}n a 的前n 项和为n S ,且2n S n =,可得21n a n =-,因为n a m ≥,即21n m -≥,解得12m n +≥, 当21m k =-,(*k N ∈)时,1m m b k m+=,即()()11212m m m mk m b m m +===++, 即21212k k b --=, 从而()13519113519502b b b b ++++=++++=.故选:B. 14.B【分析】根据题意可知正整数能被21整除余2,即可写出通项,求出答案. 【详解】根据题意可知正整数能被21整除余2,21+2n a n ∴=, 5215+2107a ∴=⨯=.故选:B. 15.C 【分析】根据已知条件得到关于首项1a 和公差d 的方程组,求解出1,a d 的值,再根据等差数列前n 项和的计算公式求解出5S 的值. 【详解】 因为134222a a a a +=⎧⎨-=⎩,所以122222a d d +=⎧⎨=⎩,所以101a d =⎧⎨=⎩,所以5154550101102S a d ⨯=+=⨯+⨯=, 故选:C. 16.C 【分析】利用等差数列的前n 项和公式可得1216a a +=,即可得113a =,再利用等差数列的性质即可求解. 【详解】设等差数列{}n a 的公差为d ,则()1212121632a a S +==, 所以1216a a +=,即1126a =,所以113a =, 所以()()()2582022051781411a a a a a a a a a a a ++++=++++++111111111122277321a a a a a =+++==⨯=,故选:C 【点睛】关键点点睛:本题的关键点是求出1216a a +=,进而得出113a =,()()()2582022051781411117a a a a a a a a a a a a ++++=++++++=即可求解.17.B 【分析】利用等差数列的下标性质,结合等差数列的求和公式即可得结果. 【详解】由等差数列的性质,可得3542a a a +=,891371013103a a a a a a a ++=++=,因为()()3589133224a a a a a ++++=, 可得410322324a a ⨯+⨯=,即4104a a +=, 故数列的前13项之和()()11341013131313426222a a a a S ++⨯====. 故选:B. 18.A 【分析】 由题意可得5282045252a a d --===---,再由220a =可求出1a 的值 【详解】 解:根据题意,5282045252a a d --===---,则1220(4)24a a d =-=--=, 故选:A. 19.A 【分析】设等差数列{}n a 的公差为d ,根据等差数列的通项公式列方程组,求出1a 和d 的值,12111a a d =+,即可求解.【详解】设等差数列{}n a 的公差为d ,则111681631a d a d a d +++=⎧⎨+=⎩,即117831a d a d +=⎧⎨+=⎩ 解得:174174d a ⎧=⎪⎪⎨⎪=-⎪⎩,所以12117760111115444a a d =+=-+⨯==, 所以12a 的值是15, 故选:A 20.C 【分析】首先根据数列的通项n a 与n S 的关系,得到10m a +>,2<0m a +,12+>0m m a a ++,再根据选项,代入前n 项和公式,计算结果. 【详解】由21<<m m m S S S ++得,10m a +>,2<0m a +,12+>0m m a a ++. 又()()()1212112121>02m m m m a a S m a +++++==+,()()()1232322323<02m m m m a a S m a +++++==+,()()()()1222212211>02m m m m m a a S m a a ++++++==++.故选:C.【点睛】关键点睛:本题的第一个关键是根据公式11,2,1n n n S S n a S n --≥⎧=⎨=⎩,判断数列的项的正负,第二个关键能利用等差数列的性质和公式,将判断和的正负转化为项的正负.二、多选题21.BCD 【分析】由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】设等差数列数列{}n a 的公差为d .由13522,a a S +=有()1112542252a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确. 选项A. ()71176773212S a d a d d ⨯=+=+=-,无法判断其是否有最小值,故A 错误. 选项B. 113137131302a S a a +=⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确. 故选:BCD 【点睛】关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,属于中档题. 22.ABD 【分析】由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列{}n a 的前n 项和为n S ,1385a a S +=, ∴()111875282a a d a d ⨯++=+,解得19a d =-, 故10190a a d =+=,故A 正确;∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119222n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,故C 错误; 由于61656392S a d d ⨯=+=-,131131213392S a d d ⨯=+=-,故613S S =,故D 正确, 故选:ABD. 【点睛】思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果. 23.BC 【分析】根据递推公式,得到11n n nn n a a a +-=-,令1n =,得到121a a =,可判断A 错,B 正确;根据求和公式,得到1n n nS a +=,求出201920202019S a =,可得C 正确,D 错. 【详解】由121n n n a n a a n +=+-可知2111n n n n na n n n a a a a ++--==+,即11n n n n n a a a +-=-, 当1n =时,则121a a =,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321111102110n n n n n n n n n n S a a a a a a a a a a a a +++⎛⎫⎛⎫⎛⎫-=+++=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误. 故选:BC. 【点睛】 方法点睛:由递推公式求通项公式的常用方法:(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解; (2)累乘法,形如()1n na f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通项时,常需要构造成等比数列求解;(4)已知n a 与n S 的关系求通项时,一般可根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解.24.BC【分析】由已知条件列方程组,求出公差和首项,从而可求出通项公式和前n 项和公式 【详解】解:设等差数列{}n a 的公差为d , 因为30S =,46a =,所以113230236a d a d ⨯⎧+=⎪⎨⎪+=⎩,解得133a d =-⎧⎨=⎩, 所以1(1)33(1)36n a a n d n n =+-=-+-=-,21(1)3(1)393222n n n n n n nS na d n ---=+=-+=, 故选:BC 25.AD 【分析】设等差数列{}n a 的公差为d ,根据已知得1145460a d a d +=⎧⎨+=⎩,进而得13,2a d =-=,故25n a n =-,24n S n n =-.【详解】解:设等差数列{}n a 的公差为d ,因为450,5S a ==所以根据等差数列前n 项和公式和通项公式得:1145460a d a d +=⎧⎨+=⎩,解方程组得:13,2a d =-=,所以()31225n a n n =-+-⨯=-,24n S n n =-.故选:AD. 26.BCD 【分析】根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】对于A 选项,取n a n =,则()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦()()221221n n n =+++不是常数,则{}2n a 不是等方差数列,A 选项中的结论错误;对于B 选项,()()22111110n n+⎡⎤⎡⎤---=-=⎣⎦⎣⎦为常数,则(){}1n-是等方差数列,B 选项中的结论正确;对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得221n n a a p +-=,则数列{}2na 为等差数列,所以()221kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方差数列,C 选项中的结论正确;对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得n a dn m =+,则()()()()2221112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++,由于数列{}n a 也为等方差数列,所以,存在实数p ,使得221n n a a p +-=,则()222d n m d d p ++=对任意的n *∈N 恒成立,则()2202d m d d p⎧=⎪⎨+=⎪⎩,得0p d ==, 此时,数列{}n a 为常数列,D 选项正确.故选BCD. 【点睛】本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题. 27.AC 【分析】 由题意可知112222n n nn a a a H n-+++==,即112222n n n a a a n -+++=⋅,则2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,可求解出1n a n =+,易知{}n a 是等差数列,则A 正确,然后利用等差数列的前n 项和公式求出n S ,判断C ,D 的正误. 【详解】 解:由112222n n nn a a a H n-+++==,得112222n n n a a a n -+++=⋅,①所以2n ≥时,()211212212n n n a a a n ---+++=-⋅,②得2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,即2n ≥时,1n a n =+,当1n =时,由①知12a =,满足1n a n =+.所以数列{}n a 是首项为2,公差为1的等差数列,故A 正确,B 错, 所以()32n n n S +=,所以2020202320202S =,故C 正确.25S =,414S =,627S =,故D 错,故选:AC . 【点睛】本题考查数列的新定义问题,考查数列通项公式的求解及前n 项和的求解,难度一般. 28.ACD 【分析】 由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1na 在1,6n n N上单调递增,1na 在7n nN ,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <,所以1na 在1,6nn N上单调递增,1na 在7nn N ,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确;由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0n S <,所以当[]7,12n ∈时,0n a <,>0n S ,0nnS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确; 【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题. 29.ABC 【分析】由2n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S a b c ==++.当2n ≥时,()()221112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .所以若{}n a 是等差数列,则0.a b a b c c +=++∴=所以当0c 时,{}n a 是等差数列, 0a cb ==⎧⎨≠⎩时是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列. 故选:A B C 【点睛】本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题. 30.ACD 【分析】由13623a a S +=得100a =,故A 正确;当0d <时,根据二次函数知识可知n S 无最小值,故B 错误;根据等差数列的性质计算可知127S S =,故C 正确;根据等差数列前n 项和公式以及等差数列的性质可得190S =,故D 正确. 【详解】因为13623a a S +=,所以111236615a a d a d ++=+,所以190a d +=,即100a =,故A 正确;当0d <时,1(1)(1)922n n n n n S na d dn d --=+=-+2(19)2dn n =-无最小值,故B 错误;因为127891*********S S a a a a a a -=++++==,所以127S S =,故C 正确; 因为()1191910191902a a S a+⨯===,故D 正确.故选:ACD. 【点睛】本题考查了等差数列的通项公式、前n 项和公式,考查了等差数列的性质,属于中档题.。
高中数学数列多选题专项训练100附答案

一、数列多选题1.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=0答案:ABD 【分析】对于A ,由题意得bn=an2,然后化简4(b2020-b2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{an}满足a1=a2=1,an =an -1+an -2 (n≥3解析:ABD 【分析】对于A ,由题意得b n =4πa n 2,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】由题意得b n =4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4πa 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n-12=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题 2.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( )A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin2n n a π= D .cos(1)1n a n π=-+答案:BD 【分析】根据选项求出数列的前项,逐一判断即可. 【详解】解:因为数列的前4项为2,0,2,0, 选项A :不符合题设; 选项B : ,符合题设; 选项C :, 不符合题设; 选项D : ,符合题设解析:BD 【分析】根据选项求出数列的前4项,逐一判断即可. 【详解】解:因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+=23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin2,2a π==22sin 0,a π==332sin22a π==-不符合题设;选项D :1cos 012,a =+=2cos 10,a π=+=3cos 212,a π=+=4cos310a π=+=,符合题设.故选:BD. 【点睛】本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题. 3.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114a =,则下列说法错误的是( )A .数列{}n a 的前n 项和为4n S n =B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1n S ⎧⎫⎨⎬⎩⎭为递增数列 答案:ABC 【分析】数列的前项和为,且满足,,可得:,化为:,利用等差数列的通项公式可得,,时,,进而求出. 【详解】数列的前项和为,且满足,, ∴,化为:,∴数列是等差数列,公差为4, ∴,可得解析:ABC 【分析】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1nS ,n S ,2n ≥时,()()111144141n n n a S S n n n n -=-=-=---,进而求出n a . 【详解】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =, ∴1140n n n n S S S S ---+=,化为:1114n n S S --=, ∴数列1n S ⎧⎫⎨⎬⎩⎭是等差数列,公差为4,∴()14414n n n S =+-=,可得14n S n=, ∴2n ≥时,()()111144141n n n a S S n n n n -=-=-=---, ∴()1(1)41(2)41n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC. 【点睛】本题考查数列递推式,解题关键是将已知递推式变形为1114n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题4.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >D .若67S S >则56S S >.答案:BC 【分析】根据等差数列的前项和性质判断. 【详解】A 错:;B 对:对称轴为7;C 对:,又,;D 错:,但不能得出是否为负,因此不一定有. 故选:BC . 【点睛】关键点点睛:本题考查等差数列解析:BC 【分析】根据等差数列的前n 项和性质判断. 【详解】A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;B 对:n S 对称轴为n =7;C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC .【点睛】关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 5.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减D .数列{}n S 有最大值答案:ABD 【分析】由可判断AB ,再由a1>0,d <0,可知等差数列数列先正后负,可判断CD. 【详解】根据等差数列定义可得,所以数列单调递减,A 正确; 由数列单调递减,可知数列有最大值a1,故B 正解析:ABD 【分析】由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD. 【详解】根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确. 故选:ABD.6.设d 为正项等差数列{}n a 的公差,若0d >,32a =,则( ) A .244a a ⋅<B .224154a a +≥C .15111a a +> D .1524a a a a ⋅>⋅答案:ABC 【分析】由已知求得公差的范围:,把各选项中的项全部用表示,并根据判断各选项. 【详解】 由题知,只需, ,A 正确; ,B 正确;,C 正确; ,所以,D 错误. 【点睛】本题考查等差数列的性解析:ABC 【分析】由已知求得公差d 的范围:01d <<,把各选项中的项全部用d 表示,并根据01d <<判断各选项. 【详解】 由题知,只需1220010a d d d =->⎧⇒<<⎨>⎩,()()2242244a a d d d ⋅=-⋅+=-<,A 正确;()()2222415223644a a d d d d +=-++=-+>≥,B 正确; 21511111122221a a d d d+=+=>-+-,C 正确; ()()()()2152422222230a a a a d d d d d ⋅-⋅=-⋅+--⋅+=-<,所以1524a a a a ⋅<⋅,D 错误. 【点睛】本题考查等差数列的性质,解题方法是由已知确定d 的范围,由通项公式写出各项(用d 表示)后,可判断.7.在数列{}n a 中,若22*1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列C .若{}n a 是等方差数列,则{}()*,kn a k Nk ∈为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列答案:BCD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若是等差数列,如,则不是常数,故不是等方差数列,故A 错误; 对于B ,数列中,是常数, 是等方差数解析:BCD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}n a 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确;对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a ,数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,,()()()()2222222212132221k k k k k k k k aa a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()2222222212132221k kk k k k k k aa a a a a a a kp +++++--+-+-++-=,222k k a a kp ∴-=,()221kn k n a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BCD. 【点睛】本题考查了数列的新定义问题和等差数列的定义,属于中档题. 8.下列命题正确的是( )A .给出数列的有限项就可以唯一确定这个数列的通项公式B .若等差数列{}n a 的公差0d >,则{}n a 是递增数列C .若a ,b ,c 成等差数列,则111,,a b c可能成等差数列 D .若数列{}n a 是等差数列,则数列{}12++n n a a 也是等差数列答案:BCD 【分析】根据等差数列的性质即可判断选项的正误. 【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知,必是递增数列;C 选项:时,是等差数列,而a = 1,解析:BCD 【分析】根据等差数列的性质即可判断选项的正误. 【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知0d >,{}n a 必是递增数列;C 选项:1a b c ===时,1111a b c===是等差数列,而a = 1,b = 2,c = 3时不成立; D 选项:数列{}n a 是等差数列公差为d ,所以11112(1)223(31)n n a a a n d a nd a n d ++=+-++=+-也是等差数列;故选:BCD 【点睛】本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题.9.无穷数列{}n a 的前n 项和2n S an bn c =++,其中a ,b ,c 为实数,则( )A .{}n a 可能为等差数列B .{}n a 可能为等比数列C .{}n a 中一定存在连续三项构成等差数列D .{}n a 中一定存在连续三项构成等比数列答案:ABC 【分析】由可求得的表达式,利用定义判定得出答案. 【详解】 当时,. 当时,. 当时,上式=. 所以若是等差数列,则所以当时,是等差数列, 时是等比数列;当时,从第二项开始是等差数列.解析:ABC 【分析】由2n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S a b c ==++.当2n ≥时,()()221112n n n a S S an bn c a n b n c an a b -=-=++-----=-+.当1n =时,上式=+a b .所以若{}n a 是等差数列,则0.a b a b c c +=++∴= 所以当0c时,{}n a 是等差数列, 00a c b ==⎧⎨≠⎩时是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列. 故选:A B C 【点睛】本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题.10.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <D .613S S =答案:AD 【分析】由求出,即,由此表示出、、、,可判断C 、D 两选项;当时,,有最小值,故B 错误. 【详解】解:,,故正确A.由,当时,,有最小值,故B 错误. ,所以,故C 错误. ,,故D 正确.解析:AD 【分析】由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误. 【详解】解:1385a a S +=,111110875108,90,02da a d a a d a ⨯++=++==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.61656+5415392dS a d d d ⨯==-+=-, 131131213+11778392dS a d d d ⨯==-+=-,故D 正确.故选:AD【点睛】考查等差数列的有关量的计算以及性质,基础题.。
高中数学数列多选题专项训练100含答案

一、数列多选题1.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =C .135********a a a a a ++++= D .2222123202020202021a a a a a a ++++=答案:BCD 【分析】根据题意写出,,,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,,,故A 不正确; 对B ,,故B 正确; 对C ,由,,解析:BCD 【分析】根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,821a =,620S =,故A 不正确; 对B ,761333S S =+=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得135********a a a a a +++⋅⋅⋅+=,故C 正确;对D ,该数列总有21n n n a a a ++=+,2121a a a =,则()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-,故2222123202*********a a a a a a +++⋅⋅⋅+=,故D 正确.故选:BCD 【点睛】关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形.2.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 答案:ABD 【分析】根据,,,计算可知正确;根据,,,,,,累加可知不正确;根据,,,,,,累加可知正确. 【详解】依题意可知,,,, ,,,,故正确; ,所以,故正确; 由,,,,,, 可得,故不解析:ABD 【分析】根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,累加可知D 正确. 【详解】依题意可知,11a =,21a =,21n n n a a a ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确; 7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a aa =-,786a a a =-,,201920202018a a a =-,可得13572019a a a a a +++++=242648620202018a a a a a a a a a +-+-+-++-2020a =,故C 不正确;2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+- 20192020a a =,所以22212201920202019a a a a a +++=,故D 正确. 故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题.3.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 答案:ABCD 【分析】由题意可得数列满足递推关系,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为,故A 正确; 对B ,,故B 正确; 对C ,由,,,……,,可得:.故是斐波那契数列中的第解析:ABCD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.对D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;故选:ABCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换. 4.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 答案:AC 【分析】令,则,根据,可判定A 正确;由,可判定B 错误;根据等差数列的性质,可判定C 正确;,根据,可判定D 错误. 【详解】令,则,因为,所以为等差数列且公差,故A 正确; 由,所以,故B 错误;解析:AC 【分析】令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由256110200a a a a d -=>,可判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛⎫=+- ⎪⎝⎭,根据02>d ,可判定D 错误. 【详解】令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;由()()22225611011119209200a a a a a a d daa d d -=++-+=>,所以56110a a a a >,故B错误;根据等差数列的性质,可得()213x x x -=+,所以13x =,213x -=, 故1011109333a =+⨯=,故C 正确; 由()111222nn n na dS d d n a nn -+⎛⎫==+- ⎪⎝⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列,故D 错误. 故选:AC . 【点睛】解决数列的单调性问题的三种方法;1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;2、作商比较法:根据1(0n n na a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断.5.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >D .若67S S >则56S S >.答案:BC 【分析】根据等差数列的前项和性质判断. 【详解】A 错:;B 对:对称轴为7;C 对:,又,;D 错:,但不能得出是否为负,因此不一定有. 故选:BC . 【点睛】关键点点睛:本题考查等差数列解析:BC 【分析】根据等差数列的前n 项和性质判断. 【详解】A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;B 对:n S 对称轴为n =7;C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC . 【点睛】关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 6.已知数列{}2nna n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列答案:ACD 【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】因为,,所以a1=3,an =[1+(n-1)d](n+2n).若d =1,则an =n(n+2n);若d =0,则a2=解析:ACD 【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为1112a =+,1(1)2n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得15d =-. 故选ACD7.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的是( ) A .110S =B .10n n S S -=(110n ≤≤)C .当110S >时,5n S S ≥D .当110S <时,5n S S ≥答案:BC 【分析】设公差d 不为零,由,解得,然后逐项判断. 【详解】 设公差d 不为零,因为, 所以, 即, 解得, ,故A 错误; ,故B 正确;若,解得,,故C 正确;D 错误; 故选:BC解析:BC 【分析】 设公差d 不为零,由38a a =,解得192a d =-,然后逐项判断.【详解】 设公差d 不为零, 因为38a a =,所以1127a d a d +=+, 即1127a d a d +=--, 解得192a d =-,11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭,故A 错误;()()()()()()221101110910,10102222n n n n n n dd na d n n n a n n S S d ----=+=-=-+=-,故B 正确; 若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭,解得0d >,()()22510525222n d d d n n S n S =-=--≥,故C 正确;D 错误; 故选:BC 8.已知数列{}n a 的前n 项和为,n S 25,n S n n =-则下列说法正确的是( )A .{}n a 为等差数列B .0n a >C .n S 最小值为214-D .{}n a 为单调递增数列答案:AD 【分析】利用求出数列的通项公式,可对A ,B ,D 进行判断,对进行配方可对C 进行判断 【详解】 解:当时,, 当时,, 当时,满足上式, 所以,由于,所以数列为首项为,公差为2的等差数列, 因解析:AD 【分析】利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式,可对A ,B ,D 进行判断,对25,n S n n =-进行配方可对C 进行判断【详解】解:当1n =时,11154a S ==-=-,当2n ≥时,2215[(1)5(1)]26n n n a S S n n n n n -=-=-----=-,当1n =时,14a =-满足上式, 所以26n a n =-,由于()122n n a a n --=≥,所以数列{}n a 为首项为4-,公差为2的等差数列, 因为公差大于零,所以{}n a 为单调递增数列,所以A ,D 正确,B 错误, 由于225255()24n S n n n =-=--,而n ∈+N ,所以当2n =或3n =时,n S 取最小值,且最小值为6-,所以C 错误, 故选:AD 【点睛】此题考查,n n a S 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n 项和的最值问题,属于基础题9.已知等差数列{}n a 的前n 项和为n S ()*n N ∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a =-C .当且仅当10n =时,n S 取最大值D .当0nS <时,n 的最小值为22答案:AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由解不等式可判断D . 【详解】等差数列的前n 项和为,公差,由,可解析:AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0n S <解不等式可判断D .【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2111628a d a d a d +=++,化为1100a d +=,②由①②解得120a =,2d =-,则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-,由22144124n S n ⎛⎫=--+ ⎪⎝⎭,可得10n =或11时,n S 取得最大值110; 由2102n S n n -<=,解得21n >,则n 的最小值为22.故选:AD 【点睛】本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题.10.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13 D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 答案:ABCD 【分析】S12>0,a7<0,利用等差数列的求和公式及其性质可得:a6+a7>0,a6>0.再利用a3=a1+2d =12,可得<d <﹣3.a1>0.利用S13=13a7<0.可得Sn <0解析:ABCD【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确. 【详解】∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13. 数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0. 对于:7≤n ≤12时,nnS a <0.S n >0,但是随着n 的增大而减小;a n <0, 但是随着n 的增大而减小,可得:nnS a <0,但是随着n 的增大而增大. ∴n =7时,nnS a 取得最小值.综上可得:ABCD 都正确. 故选:ABCD . 【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.。
小学四年级奥数题库:等差数列(中等难度)_题型归纳

小学四年级奥数题库:等差数列(中等难度)_题型归纳
小学四年级奥数题库:等差数列(中等难度)
如图,平行四边形ABCD的面积是40平方厘米,图中阴影部分的面积是多少?
等差数列答案:连接BD,由三角形等积变形,ΔBOD的面积等于阴影部分的面积,又ΔADB 的面积等于ΔBCD的面积,都是平行四边形ABCD的一半,所以阴影部分的面积是平行四边形ABCD的1/4,面积为10平方厘米。
三角形等积变换是求平面几何图形面积的一种重要方法,三角形等积变换的重要性质有:两个三角形底(高)相等时,面积比等于高(底)的比。
(易错题)高中数学选修二第一单元《数列》检测(含答案解析)

一、选择题1.已知数列{}n a 中,12a =,111(2)n n a n a -=-≥,则2021a 等于( ) A .1-B .12-C .12D .22.我国古代著名的数学专著《九章算术》里有一段叙述:今有良马和驽马发长安至齐,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,九日后二马相逢.问:齐去长安多少里?( ) A .1125B .1250C .2250D .25003.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,数列{}n b 满足1111n n nb a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1B .2C .3D .44.数列{}n a 满足1n n a a n +=+,且11a =,则8a =( ). A .29B .28C .27D .265.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .681a a >B .01q <<C .n S 的最大值为7SD .n T 的最大值为7T6.设数列{}n a 满足122,6,a a ==且2122n n n a a a ++-+=,若[]x 表示不超过x 的最大整数,则121024102410241024a a a ⎡⎤+++=⎢⎥⎣⎦( ) A .1022 B .1023 C .1024 D .10257.已知等差数列{}n a 的前n 项的和为n S ,且675S S S >>,有下面4个结论: ①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S , 其中正确结论的序号为( ) A .②③B .①②C .①③D .①④8.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是( ) A .2072B .2073C .2074D .20759.已知数列{}n a 的前n 项和22n S n n =+,那么它的通项公式是( )A .21n a n =-B .21n a n =+C .41n a n =-D .41n a n =+10.已知数列{}n a 是等比数列,11a >,且前n 项和n S 满足11lim n n S a →∞=,那么1a 的取值范围是( ) A.(B .()1,4C .()1,2D .()1,+∞11.等比数列{} n a 的前n 项和为n S ,若63:3:1S S =,则93:S S =( ) A .4:1B .6:1C .7:1D .9:112.设等比数列{}n a 的前n 项和为n S ,且510315S S ==,,则20S =( ) A .255B .375C .250D .200二、填空题13.已知等比数列{}n a 的首项为2,公比为13-,其前n 项和记为n S ,若对任意的*n N ∈,均有13n nA SB S ≤-≤恒成立,则B A -的最小值为______. 14.已知递增数列{}n a 共有2020项,且各项和均不为零,20202a =,如果从{}n a 中任取两项i a 、j a ,当i j <时,j i a a -仍是数列{}n a 中的项,则数列{}n a 的各项和2020S =______.15.将数列{2}n 与{32}n -的公共项从小到大排列得到数列{}n a ,则{}n a 的前n 项和n S =___.16.设n S 是数列{}n a 的前n 项和,若()112nn n nS a =-+,则129S S S +++=________.17.已知等差数列{}n a 的前n 项和n S 满足318S =,3180n S -=,270n S =,则n =________.18.已知数列{}n a 满足112a =,121n n a a n n +=++,则n a =__________.19.已知数列{}n a 满足11a = 132n n a a +=+,则{}n a 的通项公式为__________________. 20.等差数列{}n a 满足:123202012320201111a a a a a a a a ++++=-+-+-+⋯+-12320201111a a a a =++++++++,则其公差d 的取值范围为______.三、解答题21.已知数列{}n a 的前n 项和为n S ,且2n S n n =+,数列{}n b 的通项公式为1n n b x -=.(1)求数列{}n a 的通项公式;(2)设n n n c a b =,数列{}n c 的前n 项和为n T ,求n T ; (3)设()44n n d n a =+,12n n H d d d =+++()*n N ∈,求使得对任意*n N ∈,均有9n mH >成立的最大整数m 22.数列{}n a 满足()1121nn n a a n ++-=-,n *∈N 且1a a =(a 为常数). (1)(i )当n 为偶数时,求4n n a a +-的值; (ii )求{}n a 的通顶公式;(2)设n S 是数列{}n a 的前n 项和,求证:48411114n S S S ++⋅⋅⋅+< 23.已知数列{}n a 的前n 项和n S 满足()*12n n a S n N =-∈.(1)求数列{}n a 的通项公式, (2)设函数13()log f x x =,()()()12n n b f a f a f a =+++,1231111n nT b b b b =+++求证:2n T <. 24.已知数列{}n a 是等差数列,数列{}n b 是等比数列,且满足112a b ==,35730a a a ++=,2316b b a =.(1)求数列{}n a 与和{}n b 的通项公式;(2)设数列{}n a ,{}n b 的前n 项和分别为n S ,n T .①是否存在正整数k ,使得132k k k T T b +=++成立?若存在,求出k 的值,若不存在,请说明理由;②解关于n 的不等式n n S b ≥.25.已知数列{}n a 的前n 项和为n S ,12a =,()()31n n n S a n a -=-. (1)求n a ; (2)若数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:1n T <. 26.已知数列}{n a 满足11a =,)(121n n a a n N *+=+∈.(1)求数列}{na 的通项公式.(2)设n b n =,求数列1n n b a ⎧⎫⎪⎨⎬+⎪⎭⎩的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先计算出{}n a 的前几项,然后分析{}n a 的周期性,根据周期可将2021a 转化为2a ,结合12a =求解出结果.【详解】因为12a =,所以23412311111,11,12,......2a a a a a a =-==-=-=-= 所以3211111111111111111111n n nn n n n na a a a a a a a +++-=-=-=-=-=-=------, 所以{}n a 是周期为3的周期数列,所以20213673+2212a a a ⨯===, 故选:C. 【点睛】思路点睛:根据递推公式证明数列{}n a 为周期数列的步骤:(1)先根据已知条件写出数列{}n a 的前几项,直至出现数列中项循环,判断循环的项包含的项数A ;(2)证明()*n A n a a A N+=∈,则可说明数列{}na 是周期为A 的数列.2.A解析:A 【分析】由题意可知,良马每日行的距离{}n a 以及驽马每日行的距离{}n b 均为等差数列,确定这两个数列的首项和公差,利用等差数列的求和公式可求得结果. 【详解】由题意可知,良马每日行的距离成等差数列,记为{}n a ,其中1103a =,公差113d =. 驽马每日行的距离成等差数列,记为{}n b ,其中197b =,公差20.5d =-. 设长安至齐为x 里,则1291292a a a b b b x +++++++=,即9813980.521039979225022x ⨯⨯⨯⨯=⨯++⨯-=,解得1125x =.【点睛】关键点点睛:解本题的关键在于得出长安至齐的距离等于良马和驽马九日所行的距离之和的 2倍,并结合题意得知两匹马所行的距离成等差数列,解题时要充分抓住题中信息进行分析,将实际问题转化为数学问题来求解.3.B解析:B 【分析】 由题意可得221114n n a a +-=,运用等差数列的通项公式可得2143n n a =-,求得14n b =,然后利用裂项相消求和法可求得结果【详解】解:由11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,得221114n na a +-=, 所以数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列, 所以2114(1)43nn n a =+-=-, 因为0n a >,所以n a =,所以1111n n nb a a +=+=所以14n b ==,所以201220T b b b =++⋅⋅⋅+111339(91)244=++⋅⋅⋅+=⨯-=, 故选:B 【点睛】关键点点睛:此题考查由数列的递推式求数列的前n 项和,解题的关键是由已知条件得221114n n a a +-=,从而数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,进而可求n a =,14nb ==,然后利用裂项相消法可求得结果,考查计算能力和转化思想,属于中档题4.A【分析】由已知得11n n n a a -=--,运用叠加法可得选项. 【详解】 解:由题意知:1n n a a n +=+,11n n a a n -∴-=-,即:211a a -=,322a a -=,,11n n n a a -=--,把上述所有式子左右叠加一起得:(1)12n n n a -=+, 88(81)1292a ⨯-∴=+=. 故选:A. 【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式1(1)n a a n d =+-,或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a ,是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第n −1项的差是个有规律的数列,就可以利用这种方法; (5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第n −1项商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且k ≠1,k ≠0).一般化方法:设()1n n a m k a m -+=+,得到()11b b k m m k =-=-,, 可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于112(),n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,m ≠0),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子;(7)1nn n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用(6)中的方法求解即可.5.B解析:B 【分析】根据11a >,667711,01a a a a -><-,分0q < ,1q ≥,01q <<讨论确定q 的范围,然后再逐项判断. 【详解】若0q <,因为11a >,所以670,0a a <>,则670a a ⋅<与671a a ⋅>矛盾,若1q ≥,因为11a >,所以671,1a a >>,则67101a a ->-,与67101a a -<-矛盾, 所以01q <<,故B 正确;因为67101a a -<-,则6710a a >>>,所以()26870,1a a a =∈,故A 错误; 因为0n a >,01q <<,所以111n n a q a S q q=---单调递增,故C 错误; 因为7n ≥时,()0,1n a ∈,16n ≤≤时,1n a >,所以n T 的最大值为6T ,故D 错误; 故选:B 【点睛】关键点点睛:本题的关键是通过穷举法确定01q <<.6.B解析:B 【分析】由2122n n n a a a ++-+=变形得()2112n n n n a a a a +++---=,令1n n n b a a +=-,可得n b 为等差数列,求得{}n b 通项进而求得{}n a 通项, 结合裂项公式求1n a ⎧⎫⎨⎬⎩⎭前n 项和,再由最大整数定义即可求解 【详解】由()12121222n n n n n n n a a a a a a a +++++--=-+⇒=-,设1n n n b a a +=-,则12n nb b ,{}n b 为等差数列,1214b a a =-=,公差为2d =,故22=+n b n ,112n n n b n a a --==-,()1221n n a a n ---=-,,2122a a -=⨯,叠加得()()121n a a n n -=+-,化简得2n a n n =+,故()111111n a n n n n ==-++,所以1210241024102410241111111024110241223102410251025a a a ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫+++=⨯-+-++-=⨯-⎢⎥⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦ 1024102410231025⎡⎤=-=⎢⎥⎣⎦故选:B 【点睛】方法点睛:本题考查构造数列的使用,等差通项的求解,叠加法求前n 项和,裂项公式求前n 项和,新定义的理解,综合性强,常用以下方法: (1)形如()1n n a a f n --=的数列,常采用叠加法求解;(2)常见裂项公式有:()11111n n n n =-++,()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭,()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭7.B解析:B 【分析】利用等差数列的前n 项和的性质可得正确的选项. 【详解】由675S S S >>得760S S -<,750S S ->,则70a <,670a a +>, 所以60a >,所以0d <,①正确; 111116111102a a S a +=⨯=>,故②正确; 1126712126()02a a S a a +=⨯=+>,故③错误; 因为60a >,70a <,故数列{}n S 中的最大项为6S ,故④错误. 故选:B. 【点睛】本题考查等差数列的性质, 考查等差数列前n 项和的性质.8.C解析:C 【分析】由于数列22221,2,3,2,5,6,7,8,3,45⋯共有2025项,其中有45个平方数,12个立方数,有3个既是平方数,又是立方数的数,所以还剩余20254512+31971--=项,所以去掉平方数和立方数后,第2020项是在2025后的第()20201971=49-个数,从而求得结果. 【详解】∵2452025=,2462116=,20202025<,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉45个平方数,因为331217282025132197=<<=,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉12个立方数,又66320254<<,所以在从数列22221,2,3,2,5,6,7,8,3,45⋯中有3个数即是平方数, 又是立方数的数,重复去掉了3个即是平方数,又是立方数的数, 所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉平方数和立方数后还有20254512+31971--=项,此时距2020项还差2020197149-=项, 所以这个数列的第2020项是2025492074+=, 故选:C. 【点睛】本题考查学生的实践创新能力,解决该题的关键是找出第2020项的大概位置,所以只要弄明白在数列22221,2,3,2,5,6,7,8,3,45⋯去掉哪些项,去掉多少项,问题便迎刃而解,属于中档题.9.C解析:C 【解析】分类讨论:当1n =时,11213a S ==+=,当2n ≥时,221(2)2(1)141n n n a S S n n n n n -⎡⎤=-=+--+-=-⎣⎦, 且当1n =时:1414113n a -=⨯-== 据此可得,数列的通项公式为:41n a n =-. 本题选择C 选项.10.A解析:A 【分析】设等比数列{}n a 的公比为q ,可知10q -<<或01q <<,计算出111lim 1n n a S q a →∞==-,可得出q 关于1a 的表达式,结合q 的范围,可解出1a 的取值范围. 【详解】设等比数列{}n a 的公比为q ,由于11lim n n S a →∞=,则10q -<<或01q <<, ()111n n a q S q-=-,则()11111lim lim11n n n n a q a S qq a →∞→∞-===--,得211q a =-. ①若10q -<<,则21110a -<-<,即2112a <<,11a >,解得1a <<; ②当01q <<,则21011a <-<,得2101a <<,11a >,则2101a <<不成立.综上所述,1a的取值范围是(. 故选A. 【点睛】本题考查利用极限求等比数列首项的取值范围,解题的关键就是得出公比与首项的关系,结合公比的取值范围得出关于首项的不等式,考查运算求解能力,属于中等题.11.C解析:C 【分析】利用等比数列前n 项和的性质k S ,2k k S S -,32k k S S -,43k k S S -,成等比数列求解.【详解】因为数列{} n a 为等比数列,则3S ,63S S -,96S S -成等比数列, 设3S m =,则63S m =,则632S S m -=, 故633S S S -=96632S S S S -=-,所以964S S m -=,得到97S m =,所以937SS =. 故选:C. 【点睛】本题考查等比数列前n 项和性质的运用,难度一般,利用性质结论计算即可.12.A解析:A 【分析】由等比数列的性质,510515102015,,,S S S S S S S ---仍是等比数列,先由51051510,,S S S S S --是等比数列求出15S ,再由10515102015,,S S S S S S ---是等比数列,可得20S . 【详解】由题得,51051510,,S S S S S --成等比数列,则有210551510()()S S S S S -=-,215123(15)S =-,解得1563S =,同理有215101052015()()()S S S S S S -=--,2204812(63)S =-,解得20255S =.故选:A 【点睛】本题考查等比数列前n 项和的性质,这道题也可以先由510315S S ==,求出数列的首项和公比q ,再由前n 项和公式直接得20S 。
重庆巴蜀中学选修二第一单元《数列》测试题(包含答案解析)
一、选择题1.已知数列{}n a 中,12a =,111(2)n n a n a -=-≥,则2021a 等于( ) A .1-B .12-C .12D .22.已知数列{}n a 满足21n n n a a a ++=+,*,n N ∈.若564316a a +=,则129a a a ++⋅⋅⋅+=( )A .16B .28C .32D .483.已知无穷等比数列{}n a 的各项的和为3,且12a =,则2a =( ) A .13B .25C .23D .324.朱载堉(1536-1611),明太祖九世孙,音乐家,数学家,天文历算家,在他多达百万字著述中以《乐律全书》最为著名,在西方人眼中他是大百科全书式的学者王子,他对文乙的最大贡献是他创建了“十二平均律”,此理论被广泛应用在世界各国的键盘乐器上,包善钢琴,故朱载堉被誉为“钢琴理论的鼻担”.“十二平均律"是指一个八度有13个音,相邻两个音之间的频率之比相等,且最后一个音频率是最初那个音频率的2倍,设第三个音频率为3f ,第九个音频率9f ,则93f f 等于( )ABCD5.已知数列{}n a 满足11a =,()*12nn n a a n a +=∈+N ,若()*11(2)1n n b n n a λ+⎛⎫=-⋅+∈ ⎪⎝⎭N ,1b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围是( ) A .23λ>B .32λ>C .23λ<D .32λ<6.设数列{}n a 满足122,6,a a ==且2122n n n a a a ++-+=,若[]x 表示不超过x 的最大整数,则121024102410241024a a a ⎡⎤+++=⎢⎥⎣⎦( ) A .1022 B .1023 C .1024 D .10257.已知数列{}n a 满足11a =,24a =,310a =,且{}1n n a a +-是等比数列,则81ii a==∑( ) A .376B .382C .749D .7668.已知数列{}n a 是1为首项,2为公差的等差数列,{}n b 是1为首项,2为公比的等比数列,设n n b c a =,12n n T c c c =++,()n N *∈,则当2020n T <时,n 的最大值为( ) A .9 B .10C .11D .249.已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=A .40B .60C .32D .5010.设等差数列{}n a 的前n 项和为n S ,若130S >,140S <,则n S 取最大值时n 的值为( ) A .6B .7C .8D .1311.已知数列{}n a 是等比数列,11a >,且前n 项和n S 满足11lim n n S a →∞=,那么1a 的取值范围是( ) A.(B .()1,4C .()1,2D .()1,+∞12.在公差不为零的等差数列{}n a 中,1a ,3a ,7a 依次成等比数列,前7项和为35,则数列{}n a 的通项n a 等于( ) A .nB .1n +C .21n -D .21n二、填空题13.计算:111113355720192021++++=⨯⨯⨯⨯__________.14.设n S 是数列{}n a 的前n 项和,若()112nn n n S a =-+,则129S S S +++=________.15.设n S 是数列{}n a 的前n 项和,13a =,当2n ≥时有1122n n n n n S S S S na --+-=,则使122021m S S S ≥成立的正整数m 的最小值为______.16.若数列{}n a 满足111+-=n nd a a (*,n N d ∈为常数),则称数列{}n a 为调和数列.已知数列1n b ⎧⎫⎨⎬⎩⎭为调和数列,12320300,++++=b b b b 且378+=b b 则16=b ______.17.今年冬天流感盛行,据医务室统计,北校近30天每天因病请假人数依次构成数列{}n a ,已知11a =,22a=,且()*21(1)nn n a a n N +-=+-∈,则这30天因病请假的人数共有人______.18.等差数列{}n a 的前n 项和为n S ,且131413140,0,a a a a ><>,若10k k S S +<,则k =_________.19.等差数列{}n a 满足:123202012320201111a a a a a a a a ++++=-+-+-+⋯+-12320201111a a a a =++++++++,则其公差d 的取值范围为______.20.有一个数阵排列如下:1 2 3 4 5 6 7 8 …… 2 4 6 8 10 12 14…… 4 8 12 16 20…… 8 16 24 32…… 16 32 48 64…… 32 64 96…… 64……则第9行从左至右第3个数字为________________.三、解答题21.已知{}n a 是首项为19,公差为2-的等差数列. (1)求数列{}n a 的通项公式n a ;(2)设{}n n b a -是首项为1,公比为3的等比数列,求数列{}n b 的通项公式及其前n 项和n T .22.已知定义在R 上的函数()f x ,对任意实数1x ,2x 都有()()()12121f x x f x f x +=++,且()11f =.(1)若对任意正整数n ,有112n n a f ⎛⎫=+⎪⎝⎭,求{}n a 的通项公式; (2)若31n b n =+,求数列{}n n a b 前n 项和n S .23.在①35a =,2526a a b +=;②22b =,3433a a b +=;③39S =,4528a a b +=三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为()1d d >,前n 项和为n S ,等比数列{}n b 的公比为q ,且11a b =,d q =,___________;求数列{}n a 、{}n b 的通项公式.24.已知公差为整数的等差数列{}n a 满足2315a a =,且47a =. (1)求数列{}n a 的通项公式n a ; (2)求数列{}3nn a ⋅的前n 项和nS.25.在①1,n a ,n S 成等差数列;②递增等比数列{}n a 中的项2a ,4a 是方程21090x x -+=的两根;这二个条件中任选一个,补充在下面的问题中,若问题中的k 存在,求k 的值;若k 不存在,说明理由.已知数列{}n a 和等差数列{}n b 满足__________,且14b a =,223b a a =-,是否存在()320,k k k N <<∈使得k T 是数列{}n a 中的项?(n S 为数列{}n a 的前n 项和,n T 为数列{}n b 的前n 项和)26.已知各项均为正数的数列{}n a 的前n 项和n S 满足()220n n S n n S -+=(1)求数列{}n a 的通项公式; (2)设14n n n b a a +=⋅,数列{}n b 的前n 项和为n T .证明:1n T <【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先计算出{}n a 的前几项,然后分析{}n a 的周期性,根据周期可将2021a 转化为2a ,结合12a =求解出结果.【详解】因为12a =,所以23412311111,11,12,......2a a a a a a =-==-=-=-= 所以3211111111111111111111n n nn n n n na a a a a a a a +++-=-=-=-=-=-=------, 所以{}n a 是周期为3的周期数列,所以20213673+2212a a a ⨯===, 故选:C. 【点睛】思路点睛:根据递推公式证明数列{}n a 为周期数列的步骤:(1)先根据已知条件写出数列{}n a 的前几项,直至出现数列中项循环,判断循环的项包含的项数A ;(2)证明()*n A n a a A N+=∈,则可说明数列{}na 是周期为A 的数列.2.C解析:C 【分析】由21n n n a a a ++=+,分别求出3456789,,,,,,a a a a a a a 关于12,a a 的表达式, 再利用564316a a +=,即可求解 【详解】由21n n n a a a ++=+可得,321a a a =+,432212a a a a a =+=+5432132a a a a a =+=+,6542153a a a a a =+=+,7652185a a a a a =+=+, 87621138a a a a a =+=+,987212113a a a a a =+=+, ∴129212154342(2717)a a a a a a a ++⋅⋅⋅+=+=⨯+,564316a a +=,21214(32)3(53)16a a a a ∴+++=,即21271716a a +=, ∴129212154342(2717)32a a a a a a a ++⋅⋅⋅+=+=⨯+=故选:C 【点睛】关键点睛,利用递推式21n n n a a a ++=+,求得129212154342(2717)a a a a a a a ++⋅⋅⋅+=+=⨯+,再利用564316a a +=,求得21271716a a +=,进而求解,主要考查学生的数学运算能力,属于中档题3.C解析:C 【分析】设等比数列的公比为q ,进而根据题意得()21lim lim31n n n n q S q→+∞→+∞-==-,且()0,1q ∈,从而解得13q =,故223a =【详解】解:设等比数列的公比为q ,显然1q ≠, 由于等比数列{}n a 中,12a = 所以等比数列{}n a 的前n 项和为:()()112111n n n a q q S qq--==--,因为无穷等比数列{}n a 的各项的和为3, 所以()21lim lim31n n n n q S q→+∞→+∞-==-,且()0,1q ∈,所以231q =-,解得13q =, 所以2123a a q ==. 故选:C. 【点睛】本题解题的关键在于根据题意将问题转化为()21lim lim31n n n n q S q→+∞→+∞-==-,且()0,1q ∈,进而根据极限得13q =,考查运算求解能力,是中档题. 4.A解析:A 【分析】依题意13个音的频率成等比数列,记为{}n a ,设公比为q ,推导出1122q =,由此能求出93f f 的值. 【详解】依题意13个音的频率成等比数列,记为{}n a ,设公比为q ,则12131=a a q ,且1312=a a ,1122∴=q ,86912316191232⎛⎫=∴==== ⎪⎝⎭q q f q a a f a a 故选:A . 【点睛】关键点点睛:本题考查等比数列的通项公式及性质,解题的关键是分析题意将13个音的频率构成等比数列,再利用等比数列的性质求解,考查学生的分析解题能力与转化思想及运算能力,属于基础题.5.C解析:C 【分析】 由数列递推式()*12n n n a a n a +=∈+N 得到11n a ⎧⎫+⎨⎬⎩⎭是首项为2,公比为2的等比数列,求出其通项公式后代入1(2)2nn b n λ+=-⋅,当2n ≥时,1n n b b +>,且21b b >求得实数λ的取值范围. 【详解】 解:由12n n n a a a +=+得,1121n na a +=+ 则111121n n a a +⎛⎫+=+ ⎪⎝⎭由11a =,得1112a +=, ∴数列11n a ⎧⎫+⎨⎬⎩⎭是首项为2,公比为2的等比数列,∴111222n n na -+=⨯=, 由()*11(2)1n nb n n a λ+⎛⎫=-⋅+∈⎪⎝⎭N , 得1(2)2nn b n λ+=-⋅, 因为数列{}n b 是单调递增数列, 所以2n ≥时,1n n b b +>,1(2)2(12)2n n n n λλ--⋅--⋅∴>,即12n λ+<, 所以32λ<, 又∵1b λ=-,2(12)224b λλ=-⋅=-, 由21b b >,得24λλ->-,得23λ<, 综上:实数λ的取值范围是2,3⎛⎫-∞ ⎪⎝⎭. 故选:C . 【点睛】解决数列的单调性问题的3种方法:(1)作差比较法根据1n n a a +>的符号判断数列{}n a 是递增数列、递减数列或是常数列; (2)作商比较法根据1n na a +(0n a >或0n a <)与1的大小关系进行判断; (3)数形结合法结合相应函数的图象直观判断.6.B解析:B 【分析】由2122n n n a a a ++-+=变形得()2112n n n n a a a a +++---=,令1n n n b a a +=-,可得n b 为等差数列,求得{}n b 通项进而求得{}n a 通项, 结合裂项公式求1n a ⎧⎫⎨⎬⎩⎭前n 项和,再由最大整数定义即可求解 【详解】由()12121222n n n n n n n a a a a a a a +++++--=-+⇒=-,设1n n n b a a +=-,则12n nb b ,{}n b 为等差数列,1214b a a =-=,公差为2d =,故22=+n b n ,112n n n b n a a --==-,()1221n n a a n ---=-,,2122a a -=⨯,叠加得()()121n a a n n -=+-,化简得2n a n n =+,故()111111n a n n n n ==-++,所以 1210241024102410241111111024110241223102410251025a a a ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫+++=⨯-+-++-=⨯-⎢⎥⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦ 1024102410231025⎡⎤=-=⎢⎥⎣⎦ 故选:B 【点睛】方法点睛:本题考查构造数列的使用,等差通项的求解,叠加法求前n 项和,裂项公式求前n 项和,新定义的理解,综合性强,常用以下方法: (1)形如()1n n a a f n --=的数列,常采用叠加法求解; (2)常见裂项公式有:()11111n n n n =-++,()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭,()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭7.C解析:C 【分析】利用累加法求出通项n a ,然后利用等比数列的求和公式,求解81i i a =∑即可【详解】由已知得,213a a -=,326a a -=,而{}1n n a a +-是等比数列,故2q,∴11221()()()n n n n a a a a a a ----+-+-=23632n -+++⨯1133232312n n ---⨯==⨯--,1n a a ∴-=1323n -⨯-,化简得1322n n a -=⨯-,8712818123(122)2831612i iaa a a =-=++=⨯+++-⨯=⨯--∑83219749=⨯-=故选:C 【点睛】关键点睛:解题关键在于利用累加法求出通项,难度属于中档题8.A解析:A 【分析】根据题意计算21n a n =-,12n n b -=,122n n T n +=--,解不等式得到答案.【详解】∵{}n a 是以1为首项,2为公差的等差数列,∴21n a n =-, ∵{}n b 是以1为首项,2为公比的等比数列,∴12n n b -=,∴2112n n n b b b T c c c a a a =++⋅⋅⋅+=++⋅⋅⋅+11242n a a a a -=+++⋯+()1(211)(221)(241)221n -=⨯-+⨯-+⨯-+⋅⋅⋅+⨯-()121242n n -=+++⋅⋅⋅+-11222212nn n n +-=⨯-=---,∵2020n T <,∴1222020n n +--<,解得9n ≤, 则当2020n T <时,n 的最大值是9. 故选:A. 【点睛】本题考查了等差数列,等比数列,分组求和法,意在考查学生对于数列公式方法的灵活运用.9.B解析:B 【解析】由等比数列的性质可知,数列S 3,S 6−S 3,S 9−S 6,S 12−S 9是等比数列,即数列4,8,S 9−S 6,S 12−S 9是等比数列,因此S 12=4+8+16+32=60,选B .10.B解析:B 【解析】分析:首先利用求和公式,根据题中条件130S >,140S <,确定出780,0a a ><,从而根据对于首项大于零,公差小于零时,其前n 项和最大时对应的条件就是10n n a a +≥⎧⎨≤⎩,从而求得结果.详解:根据130S >,140S <,可以确定11371147820,0a a a a a a a +=>+=+<,所以可以得到780,0a a ><,所以则n S 取最大值时n 的值为7,故选B.点睛:该题考查的是有关等差数列的前n 项和最大值的问题,在求解的过程中,需要明确其前n 项和取最大值的条件10n n a a +≥⎧⎨≤⎩,之后就是应用题的条件,确定其相关项的符号,从而求得结果.11.A解析:A 【分析】设等比数列{}n a 的公比为q ,可知10q -<<或01q <<,计算出111lim 1n n a S q a →∞==-,可得出q 关于1a 的表达式,结合q 的范围,可解出1a 的取值范围. 【详解】设等比数列{}n a 的公比为q ,由于11lim n n S a →∞=,则10q -<<或01q <<, ()111n n a q S q-=-,则()11111lim lim11n n n n a q a S qq a →∞→∞-===--,得211q a =-. ①若10q -<<,则21110a -<-<,即2112a <<,11a >,解得1a <<; ②当01q <<,则21011a <-<,得2101a <<,11a >,则2101a <<不成立.综上所述,1a的取值范围是(. 故选A. 【点睛】本题考查利用极限求等比数列首项的取值范围,解题的关键就是得出公比与首项的关系,结合公比的取值范围得出关于首项的不等式,考查运算求解能力,属于中等题.12.B解析:B 【分析】根据等差数列以及等比数列的性质求出首项和公差,从而求出通项公式. 【详解】由题意得,等差数列{}n a 中,1a ,3a ,7a 依次成等比数列,故2317a a a =,则()()211126a d a a d +=+, 故12a d =,① 又数列7项和为35, 则1767352da ⨯+=,②, 联立①②解得:1d =,12a =, 故()211n a n n =+-=+, 故选:B. 【点睛】本题考查等差数列和等比数列的性质,公式,重点考查计算能力,属于基础题型.二、填空题13.【分析】用裂项相消法求和【详解】故答案为:【点睛】本题考查裂项相消法求和数列求和的常用方法:设数列是等差数列是等比数列(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列的 解析:10102021【分析】用裂项相消法求和. 【详解】111111111111(1)()()1335572019202123235220192021++++=-+-++-⨯⨯⨯⨯111010(1)220212021=-=. 故答案为:10102021. 【点睛】本题考查裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.14.【分析】令计算得出然后推导出当为偶数时当为奇数时利用等比数列的求和公式可求得的值【详解】当时解得;当时当为偶数时可得则;当为奇数时可得则因此故答案为:【点睛】方法点睛:本题考查已知与的关系求和常用的 解析:3411024【分析】令1n =计算得出114a =,然后推导出当n 为偶数时,0n S =,当n 为奇数时,112n n S +=,利用等比数列的求和公式可求得129S S S +++的值.【详解】 当1n =时,11112a S a ==-+,解得114a =;当2n ≥时,()()()1111122nnn n n n n nS a S S -=-+=-⋅-+.当n 为偶数时,可得112n n n n S S S -=-+,则112n nS -=; 当()3n n ≥为奇数时,可得112n n n n S S S -=-++,则1112120222n nn n nS S -+=-=-=. 因此,2512924681011111111341240000122222102414S S S ⎛⎫- ⎪⎝⎭+++=++++++++==-.故答案为:3411024. 【点睛】方法点睛:本题考查已知n S 与n a 的关系求和,常用的数列求和方法如下: (1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.15.1010【分析】由与关系当时将代入条件等式得到数列为等差数列求出进而求出即可求出结论【详解】∵∴∴∴令则∴数列是以为首项公差的等差数列∴即∴∴由解得即正整数的最小值为故答案为:【点睛】方法点睛:本题解析:1010 【分析】由n S 与n a 关系,当2n ≥时,将1n n n a S S -=-代入条件等式,得到数列21{}nn S +为等差数列,求出n S ,进而求出12m S S S ,即可求出结论.【详解】∵1122n n n n n S S S S na --+-=, ∴()11122n n n n n n S S S S n S S ---+-=-, ∴()()1122121n n n n S S n S n S --=+--,∴121212n n n n S S -+--=, 令21n nn b S +=,则()122n n b b n --=≥,∴数列{}n b 是以111331b S a ===为首项,公差2d =的等差数列, ∴21n b n =-,即2121n n n S +=-,∴2121n n S n +=-, ∴12521321321m m S S S m m +=⨯⨯⨯=+-,由212021m +≥,解得1010m ≥, 即正整数m 的最小值为1010.故答案为: 1010. 【点睛】方法点睛:本题考查等差数列的通项公式,考查递推关系式,求通项公式的主要方法有: 观察法:若已知数列前若干项,通过观察分析,找出规律;公式法:已知数列是等差数列或等比数列,或者给出前n 项和与通项公式的关系; 累加法:形如()1n n a a f n +=+的递推数列; 累乘法:形如()1n n a a f n +=⋅的递推数列.16.26【分析】由调和数列的定义可得是公差为的等差数列再由等差数列的性质和求和公式即可得出结果【详解】由数列为调和数列可得(为常数)∴是公差为的等差数列又∴∴又∴∴∴故答案为:26【点睛】本题考查新定义解析:26 【分析】由调和数列的定义可得{}n b 是公差为d 的等差数列,再由等差数列的性质和求和公式,即可得出结果. 【详解】由数列1n b ⎧⎫⎨⎬⎩⎭为调和数列,可得11111 11n n n n b b d b b +++-=-=(n N ∈,d 为常数),∴{}n b 是公差为d 的等差数列, 又12320300b b b b ++++=,∴120203002b b +⨯=,∴12030b b +=, 又378+=b b ,∴54b =,∴51612030b b b b +=+=,∴1626b =, 故答案为:26. 【点睛】本题考查新定义的理解和运用,考查等差数列的定义和性质,以及求和公式,考查运算能力,属于中档题.17.255【分析】根据题目所给递推关系找到数列的规律由此求得前天的请假人数之和【详解】依题意且所以以此类推数列的奇数项均为偶数项是首项为公差为的等差数列所以前项的和故答案为:【点睛】本小题主要考查分组求解析:255 【分析】根据题目所给递推关系找到数列{}n a 的规律,由此求得前30天的请假人数之和30S . 【详解】依题意11a =,22a =,且()*21(1)n n n a a n N +-=+-∈,所以31311101a a a a -=-=⇒==,4241124a a a -=+=⇒=, 53531101a a a a -=-=⇒==, 6461126a a a -=+=⇒=,以此类推,数列{}n a 的奇数项均为1,偶数项是首项为2、公差为2的等差数列, 所以前30项的和()()301112430S =+++++++23015151516152552+=+⨯=+⨯=. 故答案为:255 【点睛】本小题主要考查分组求和法,考查等差数列前n 项和公式,属于中档题.18.26【分析】由题意可得等差数列递减且可得可得结论【详解】等差数列中等差数列递减且满足的k 值为故答案为:【点睛】本题考查等差数列的求和公式和等差数列的性质得出项的正负和前项和的关系是解决问题的关键属中解析:26 【分析】由题意可得等差数列递减且13140a a +>,可得2526270,0,0S S S >><,可得结论.【详解】等差数列{}n a 中131413140,0,a a a a ><>,∴等差数列递减且13140a a +>,13142513262714250,260,2702a a S a S S a +∴=>=>=<, ∴满足10k k S S +<的k 值为26,故答案为:26 【点睛】本题考查等差数列的求和公式和等差数列的性质,得出项的正负和前n 项和的关系是解决问题的关键,属中档题.19.【分析】由题意知等差数列中的项一定有正有负分成首项大于零和小于零两种情况进行讨论结合已知条件可知或从而可求出公差的取值范围【详解】解:由题意知等差数列中的项一定有正有负当时由则由则所以所以即;当时同 解析:(][),22,-∞-+∞【分析】由题意知,等差数列{}n a 中的项一定有正有负,分成首项大于零和小于零两种情况进行讨论,结合已知条件,可知101110101,1a a ≥<-或101110101,1a a ≤->,从而可求出公差的取值范围. 【详解】解:由题意知,等差数列{}n a 中的项一定有正有负,当10,0a d <>时, 由123202012320201111a a a a a a a a ++++=-+-+-+⋯+-,则10111010100a a -≥⎧⎨≤⎩ , 由123202012320201111a a a a a a a a ++++=++++++++,则1011101010a a ≥⎧⎨+≤⎩, 所以101110101,1a a ≥≤-,所以10101a d +≥,即101012d a ≥-≥; 当10,0a d ><时,同理可求出101012d a ≤--≤-, 综上所述,公差d 的取值范围为(][),22,-∞-+∞.故答案为: (][),22,-∞-+∞.【点睛】本题考查了等差数列的通项公式,考查了数列的单调性.本题的易错点是未讨论首项的正负问题.20.768【分析】数阵排列第一列是首项为1公比为2的等比数列可求出第9行首项;每行按公差为排列可解【详解】数阵排列第一列是首项为1公比为2的等比数列所以第9行首项为第9行公差为所以第9行从左至右第3个数解析:768 【分析】数阵排列第一列是首项为1,公比为2的等比数列,可求出第9行首项;每行按公差为12n - 排列,可解 【详解】数阵排列第一列是首项为1,公比为2的等比数列12n n a所以第9行首项为82=256,第9行公差为82=256, 所以第9行从左至右第3个数字为768 故答案为:768【点睛】本题考查等差数列、等比数列基本量运算及学生观察分析能力.解决等差、等比数列基本量计算问题利用方程的思想.等差、等比数列中有五个量一般可以“知三求二”,通过列方程(组)求关键量.三、解答题21.(1)212n a n =-;(2)12123n n b n -=-+;231202n n T n n -=-++. 【分析】(1)利用等差数列的通项公式即可求解;(2)由(1)得12123n n b n -=-+,利用分组求和即可求解.【详解】(1)因为{}n a 是首项119a =,公差2d =-的等差数列, 所以192(1)n a n =--212n =-,(2)由题知{}n n b a -是首项为1,公比为3的等比数列,则13n n n b a --=,所以13n n n b a -=+12123n n -=-+,所以12n n T b b b =+++()()()()0121233333n n a a a a =++++++++ ()()21121333n n a a a -=+++++++()()()211319212402313120132222n n n n n n n n n ⨯-+----=+=+=-+-.22.(1)()*112n n a n -=∈N ;(2)137142n n n S -+=-.【分析】(1)令1212x x ==,求出102f ⎛⎫= ⎪⎝⎭,从而可得11a =,再有112n n a f ⎛⎫=+ ⎪⎝⎭,求得12n n a a +=,利用等比数列的通项公式即可求解.(2)由1312n n n n a b -+=,利用错位相减法即可求解. 【详解】解:(1)令1212x x ==,则()111122f f ⎛⎫==+ ⎪⎝⎭,∴102f ⎛⎫= ⎪⎝⎭,11112a f ⎛⎫=+= ⎪⎝⎭. ∵1111111111112*********n n n n n n n a f f f f a +++++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+=++=+=+=⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,∴112n n a a +=,∴{}n a 为以1为首项,12为公比的等比数列,∴()*112n n a n -=∈N . (2)∵1312n n n n a b -+=, ∴21471031S 1222n n n -+=++++①, 由①12⨯,得23147103122222n nn S +=++++②, 由①-②,得21133331422222n n n n S -+=++++- 1131374317222n n nn n -++⎛⎫=+--=- ⎪⎝⎭, ∴137142n n n S -+=-. 【点睛】关键点点睛:本题考查了函数与数列的综合,解题的关键是根据关系式求出()*112n n a n -=∈N ,考查了计算能力. 23.21n a n =-,12n n b -=【分析】若选条件①,则可根据35a =得出125a d +=,然后根据2526a a b +=得出11256a d a d +=,最后两式联立,求出1a 、1b 、d 、q 的值,即可得出结果;若选条件②,则可根据22b =得出12a d =,然后根据3433a a b +=得出211253a d a d +=,最后两式联立,求出1a 、1b 、d 、q 的值,即可得出结果;若选条件③,则可根据39S =得出1339a d +=,然后根据4528a a b +=得出11278a d a d +=,最后两式联立,求出1a 、1b 、d 、q 的值,即可得出结果.【详解】 选条件①:因为35a =,所以125a d +=,因为2526a a b +=,11a b =,d q =,所以11256a d a d +=,联立11125256a d a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩或1256512a d ⎧=⎪⎪⎨⎪=⎪⎩(舍去),则111a b ==,2d q ==, 故1(1)21n a a n d n =+-=-,1112nn nb b q .选条件②:因为22b =,11a b =,d q =,所以12a d =,因为3433a a b +=,所以211253a d a d +=,联立12112253a d a d a d =⎧⎨+=⎩,解得112a d =⎧⎨=⎩或112a d =-⎧⎨=⎩(舍去), 则111a b ==,2d q ==, 故1(1)21n a a n d n =+-=-,1112nn n b b q .选条件③:因为39S =,所以1339a d +=,因为4528a a b +=,11a b =,d q =,所以11278a d a d +=,联立111339278a d a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩或121838a d ⎧=⎪⎪⎨⎪=⎪⎩(舍去), 则111a b ==,2d q ==, 故1(1)21n a a n d n =+-=-,1112nn n b b q .【点睛】方法点睛:本题考查等差数列、等比数列通项公式的求法,常见的求通项公式的方法有:公式法、累加法、累乘法、n a 与n S 关系法、构造法,考查计算能力,是中档题.24.(1)21n a n =-;(2)1(1)33n n S n +=-⋅+.【分析】(1)由题列出方程求出首项和公差,即可得出通项公式; (2)利用错位相减法即可求出. 【详解】解:(1)设公差为,d d Z ∈,由题意知:()()11121537a d a d a d ⎧++=⎨+=⎩,解得112a d =⎧⎨=⎩,∴1(1)21n a a n d n =+-=-;(2)3(21)3nnn a n ⋅=-⋅ 故123133353(21)3n n S n =⨯+⨯+⨯++-⋅, 则23413133353(21)3n n S n +=⨯+⨯+⨯++-⋅,两式相减得23123232323(21)3n n n S n +-=+⨯+⨯++⨯--⋅()()()11118133213223613n n n n n -++-=+--⋅=-⋅--,1(1)33n n S n +∴=-⋅+.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 25.任选①②,结论都是:不存在()320,k k k N <<∈使得k T 是数列{}n a 中的项. 【分析】选①,由1(2)n n n a S S n -=-≥得出数列{}n a 是系数,求得其通项公式后,可得12,b b ,公差为21d b b =-,从而得n T ,n T 根据的表达式知3n ≥时,0n T <,结合n a 表达式可得结论.选②,由方程的根,及数列的性质得出24,a a ,从而可得n a ,求出12,b b ,得公差d 后可得n T ,在2n ≥时,0n T <,结合n a 可得结论. 【详解】若选①,∵1,n a ,n S 成等差数列,∴21n n a S =+, 即21n n S a =-,显然11121a S a ==-,11a =,2n ≥时,11(21)(21)n n n n n a S S a a --=-=---,化简得12n n a a -=,∴{}n a 是等比数列,公比为2,∴12n na ,∴148b a ==,223242b a a =-=-=-,{}n b 是等差数列,则2110d b b =-=-,21(1)(1)8(10)51322n n n n n T nb d n n n --=+=+⨯-=-+, 18T =,26T =,36T =-,3n ≥时都有0n T <,而120n n a -=>,∴不存在()320,k k k N <<∈使得k T 是数列{}n a 中的项.若选②,∵递增等比数列{}n a 中的项2a ,4a 是方程21090x x -+=的两根, ∴241,9a a ==,则2429a q a ==,3q =,2223n n n a a q --==, 149b a ==,223132b a a =-=-=-,2111d b b =-=-,1(1)1(1)(11)232n n n n n T nb d n --=+=⨯+⨯-2113526n n =-+,易知19T =,2n ≥时,0n T <,而0n a >,∴不存在()320,k k k N <<∈使得k T 是数列{}n a 中的项. 【点睛】关键点点睛:本题考查注等比数列的通项公式,求等差数列的前n 项和,解题关键是由基本量法法求得n a 和n T ,然后分析n T 与n a 的性质,确定结论. 26.(1)2n a n =,n *∈N ;(2)证明见解析. 【分析】(1)利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式;(2)利用裂项相消法求和,即可得证; 【详解】解:(1)因为0n a >,所以0n S >,故2n S n n =+ 当1n =时,112a S ==,当2n ≥时,()()()221112n n n a S S n n n n n -⎡⎤=-=+--+-=⎣⎦且1a 也满足上式,所以数列{}n a 的通项公式为2n a n =,n *∈N (2)()1411111n n n b a a n n n n +===-++⋅所以()1211112231n n T b b b n n =++⋅⋅⋅+=++⋅⋅⋅+⨯⨯+ 11111111122311n n n ⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.。
专题12 数列求和方法之倒序相加法(解析版)
专题12 数列求和方法之倒序相加法一、单选题1.已知1()()32g x f x =+-是R 上的奇函数,1(0)()n a f f n=++1()(1)n f f n-++,n *∈N ,则数列{}n a 的通项公式为( )A .1n a n =+B .31n a n =+C .33n a n =+D .223n a n n =-+【答案】C 【分析】 由()132F x f x ⎛⎫=+- ⎪⎝⎭在R 上为奇函数,知11622f x f x ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,令12t x =-,则112x t +=-,得到()()16f t f t +-=.由此能够求出数列{}n a 的通项公式. 【详解】由题已知()132F x f x ⎛⎫=+- ⎪⎝⎭是R 上的奇函数, 故()()F x F x -=-,代入得:()11622f x f x x R ⎛⎫⎛⎫-++=∈ ⎪ ⎪⎝⎭⎝⎭, ∴函数()f x 关于点132⎛⎫ ⎪⎝⎭,对称, 令12t x =-, 则112x t +=-, 得到()()16f t f t +-=, ∴()()1101n n a f f f f n n -⎛⎫⎛⎫=++++⎪ ⎪⎝⎭⎝⎭,()()1110n n a f f f f n n -⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭,倒序相加可得()261n a n =+,即()31n a n =+, 故选:C . 【点睛】思路点睛:利用函数的性质以及倒序相加法求数列的通项公式问题.先利用函数的奇偶性得到函数的对称中心,再用换元法得到()()16f t f t +-=,最后利用倒序相加法求解数列的通项公式. 2.已知1()12F x f x ⎛⎫=+- ⎪⎝⎭是R 上的奇函数,*121(0)(1)()n n a f f f f f n n n n -⎛⎫⎛⎫⎛⎫=+++++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭N ,则数列{}n a 的通项公式为( )A .n a n =B .2n a n =C .1n a n =+D .223n a n n =-+【答案】C 【分析】由()112F x f x ⎛⎫=+- ⎪⎝⎭在R 上为奇函数,知11222f x f x ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,令12t x =-,则112x t +=-,得到()()12f t f t +-=.由此能够求出数列{}n a 的通项公式. 【详解】由题已知()112F x f x ⎛⎫=+- ⎪⎝⎭是R 上的奇函数, 故()()F x F x -=-, 代入得:()11222f x f x x R ⎛⎫⎛⎫-++=∈⎪ ⎪⎝⎭⎝⎭, ∴函数()f x 关于点112⎛⎫ ⎪⎝⎭,对称, 令12t x =-, 则112x t +=-,得到()()12f t f t +-=, ∴()()1101n n a f f f f n n -⎛⎫⎛⎫=++++⎪ ⎪⎝⎭⎝⎭,()()1110n n a f f f f n n -⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭,倒序相加可得()221n a n =+, 即1n a n =+, 故选:C . 【点睛】思路点睛:先利用函数的奇偶性得到函数的对称中心,再利用对称性以及倒序相加法求数列的通项公式. 3.已知12a =,121n n a a n +-=+(*n N ∈),则n a =( ) A .1n + B .21nC .21n +D .221n +【答案】C 【分析】利用累加法即可求出通项公式. 【详解】解:∴121n n a a n +-=+,则当2n ≥时,121n n a a n --=-,……325a a -=, 213a a -=,∴132212153n n a a a a a a n --+⋅⋅⋅+-+-=-+⋅⋅⋅++,化简得()()21121312n n n a a n --+-==-,又12a =,∴21n a n =+,经检验12a =也符合上式, ∴()2*1n n N a n =+∈,故选:C . 【点睛】本题主要考查累加法求数列的通项公式,考查数列的递推公式的应用,考查倒序相加法求数列的和,考查计算能力,属于中档题.4.设n 为满足不等式01222008nn n n n C C C nC ⋅+⋅<⋅+++的最大正整数,则n 的值为( ).A .11B .10C .9D .8【答案】D 【分析】利用倒序相加法可求得0121221n n n n n n C C C nC n -+++⋅⋅⋅+=⋅+,进而解不等式求得最大正整数n .【详解】设0122nn n n n S C C C nC =+++⋅⋅⋅+,则()()12012n n n n nn n S nC n C n C C --=+-+-+⋅⋅⋅+,又r n rn n C C -=,012102222n n n n n n n n n S nC nC nC nC nC C n -∴=++++++=⋅+,121n S n -∴=⋅+,由2008S <得:122007n n -⋅<,72128=,82256=,∴78210242007⨯=<,89223042007⨯=>,n ∴的值为8.故选:D . 【点睛】本题考查了与组合数有关的不等式的求解问题;涉及到了利用倒序相加法求解数列的前n 项和的问题,属于中档题.5.已知函数()y f x =满足()(1)1f x f x +-=,若数列{}n a 满足121(0)(1)n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则数列{}n a 的前10项和为( )A .652B .33C .672D .34【答案】A 【分析】根据()(1)1f x f x +-=,并结合倒序相加法可求出12n n a +=,再利用等差数列求和公式得到答案. 【详解】函数()y f x =满足()(1)1f x f x +-=,121(0)(1)n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴,121(1)(0)n n n a f f f f f n n n --⎛⎫⎛⎫⎛⎫∴=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴,由∴+∴可得21n a n =+,12n n a +∴=, 所以数列{}n a 是首项为1,公差为12的等差数列,其前10项和为10110165222+⎛⎫+ ⎪⎝⎭=.故选:A. 【点睛】本题考查了函数的性质,考查倒序相加法求和,意在考查学生的计算能力和综合应用能力,属于中档题. 6.已知函数()y f x =满足()(1)1f x f x +-=,若数列{}n a 满足12(0)n a f f f n n ⎛⎫⎛⎫=++++⎪ ⎪⎝⎭⎝⎭1(1)n f f n -⎛⎫+ ⎪⎝⎭,则数列{}n a 的前20项和为( )A .100B .105C .110D .115【答案】D 【分析】根据函数()y f x =满足()(1)1f x f x +-=,利用倒序相加法求出n a ,再求前20项和. 【详解】 解:函数()y f x =满足()(1)1f x f x +-=,()()12101n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++⋯⋯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴, ()()12110n n n a f f f f f n n n --⎛⎫⎛⎫⎛⎫∴=+++⋯⋯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴,由∴+∴可得21n a n =+,12n n a +∴=,所以数列 {}n a 是首项为1,公差为12的等差数列,其前20项和为20120121152+⎛⎫+ ⎪⎝⎭=. 故选:D . 【点睛】本题主要考查函数的性质及倒序相加法求和,属于基础题.7.已知函数()442x x f x =+,设2019n n a f ⎛⎫= ⎪⎝⎭(n *∈N ),则数列{}n a 的前2019项和2019S 的值为( ) A .30293B .30323C .60563D .60593【答案】A 【分析】首先可得()()11f x f x +-=,又2019n n a f ⎛⎫=⎪⎝⎭,则20192019120192019n n n f f a --⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,即20191n n a a -+=,则可得20181009S =,再由()91201120119422019423a f f ⎛⎫==== ⎪+⎝⎭及201920182019S S a =+计算可得; 【详解】解:因为()442xx f x =+,所以()114214242x x xf x ---==++ 所以()()21414242xx x f x f x +=-+=++因为2019n n a f ⎛⎫=⎪⎝⎭ 所以2019n n a f ⎛⎫=⎪⎝⎭,20192019120192019n n n f f a --⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭所以20191n n a a -+=则数列{}n a 的前2018项和2018S 则1220182018a a S a =+++ 2018212018017S a a a =+++所以201820182S = 所以20181009S = 又()91201120119422019423a f f ⎛⎫==== ⎪+⎝⎭20192018201923029100933S S a ∴=+=+=故选:A 【点睛】本题考查数列的递推公式的应用,函数与数列,倒序相加法求和,属于中档题. 8.已知22()(),1f x x x=∈+R 若等比数列{}n a 满足120201,a a =则122020()()()f a f a f a +++=( )A .20192B .1010C .2019D .2020【答案】D 【详解】22()(),1f x x x=∈+R 22222122()11122211f x f x x x x x x⎛⎫∴+=+ ⎪+⎝⎭⎛⎫+ ⎪⎝⎭=+=++等比数列{}n a 满足120201,a a =120202019220201...1,a a a a a a ∴====()()()()()()120202019202012...2f a f a f a f a f a f a ∴+=+==+=即122020()()()f a f a f a +++=2020故选:D 【点睛】本题综合考查函数与数列相关性质,需要发现题中所给条件蕴含的倒数关系,寻找规律进而求出答案. 9.设函数()221xf x =+,利用课本(苏教版必修5)中推导等差数列前n 项和的方法,求得()()()()()54045f f f f f -+-+⋅⋅⋅++⋅⋅⋅++的值为( )A .9B .11C .92D .112【答案】B 【分析】先计算出()()f x f x +-的值,然后利用倒序相加法即可计算出所求代数式的值. 【详解】()221x f x =+,()()()22222212121221x x x x x x f x f x --⋅∴+-=+=+++++()2122222211221xx x x x +⋅=+==+++, 设()()()()()54045S f f f f f =-+-+⋅⋅⋅++⋅⋅⋅++, 则()()()()()54045S f f f f f =+++++-+-,两式相加得()()2115511222S f f ⎡⎤=⨯+-=⨯=⎣⎦,因此,11S =. 故选:B. 【点睛】本题考查函数值的和的求法,注意运用倒序相加法,求得()()2f x f x +-=是解题的关键,考查化简运算能力,属于中档题.10.设等差数列{}n a 的前n 项和是n S ,已知21832a a +=,则145S S -=( ) A .102S B .144C .288D .()1145a a +【答案】B【分析】根据等差数列求和公式表示出145S S -,根据21832a a +=结合等差数列性质求解. 【详解】由题:等差数列中:()()614218145671499 (14422)a a a a S S a a a ++-=+++===.故选:B 【点睛】此题考查等差数列求和公式和等差数列性质的综合应用,熟练掌握相关性质可以减少计算量. 11.已知F (x )=f (x +12)−2是R 上的奇函数,a n =f (0)+f (1n )+⋯+f (n−1n)+f (1),n ∈N ∗则数列{a n }的通项公式为 A .a n =n B .a n =2(n +1) C .a n =n +1 D .a n =n 2−2n +3【答案】B 【分析】由F (x )=f (x +12)−2在R 上为奇函数,知f (12−x )+f (12+x )=4,令t =12−x ,则12+x =1−t ,得到f (t )+f (1−t )=4.由此能够求出数列{a n }的通项公式. 【详解】由题已知F (x )=f (x +12)−2是R 上的奇函数 故F (−x )=−F (x ),代入得:f (12−x )+f (12+x )=4,(x ∈R ) ∴函数f (x )关于点(12,2)对称,令t =12−x ,则12+x =1−t ,得到f (t )+f (1−t )=4. ∴a n =f (0)+f (1n )+⋯+f (n−1n )+f (1),a n =f (1)+f (n−1n )+⋯+f (1n )+f (0)倒序相加可得2a n =4(n +1),即a n =2(n +1) , 故选B∴ 【点睛】本题考查函数的基本性质,借助函数性质处理数列问题问题,对数学思维的要求比较高,要求学生理解f (12−x )+f (12+x )=4,(x ∈R )∴属难题12.已知函数()sin 3f x x x π=+-,则12340332017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值为( )A .4033B .-4033C .8066D .-8066【答案】D 【解析】试题分析:()()()2sin 32sin 234f x f x x x x x πππ+-=+-+-+--=-,所以原式()4033480662=-⋅=-. 考点:函数求值,倒序求和法.【思路点晴】本题主要考查函数求值与倒序相加法.注意到原式中第一个自变量加上最后一个自变量的值为2,依此类推,第二个自变量加上倒数第二个自变量的值也是2,故考虑()()2f x f x +-是不是定值.通过算,可以得到()()24f x f x +-=-,每两个数的和是4-,其中()()()114,12f f f +=-=-,所以原式等价于4033个2-即8066-.13.已知1()()12F x f x =+-为R 上的奇函数,121(0)()()()(1)n n a f f f f f n nn-=+++++*()n N ∈,则数列{}n a 的通项公式为 A .1n a n =- B .n a n =C .1n a n =+D .2n a n =【答案】C 【分析】观察到121(0)()()()(1)n n a f f f f f n nn-=+++++的自变量头尾加得1,根据()F x 为R 上的奇函数和1()()12F x f x =+-得到112,()22f x f x x R ⎛⎫⎛⎫-++=∈ ⎪ ⎪⎝⎭⎝⎭即可求解. 【详解】∴()F x 为R 上的奇函数, ∴()()F x F x -=-代入1()()12F x f x =+-得:112,()22f x f x x R ⎛⎫⎛⎫-++=∈⎪ ⎪⎝⎭⎝⎭当0x =时,112f ⎛⎫=⎪⎝⎭, 当n 为偶数时:()*121(0)(1)n n a f f f f f n N n n n -⎛⎫⎛⎫⎛⎫=+++⋯++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111111122[(0)(1)]222n n n f f ff f f f n n ⎡⎤⎛⎫⎛⎫-+⎢⎥ ⎪ ⎪⎡-⎤⎛⎫⎛⎫⎛⎫=++++⋯++⋯+++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2112nn =⨯+=+当n 为奇数时:()*121(0)(1)n n a f f f f f n N n n n -⎛⎫⎛⎫⎛⎫=+++⋯++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111122[(0)(1)]n n n f f f f f f n n n n ⎡-+⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪⎡-⎤⎛⎫⎛⎫=++++⋯++⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦1212n n +=⨯=+ 综上所述,1n a n =+, 故选C. 【点睛】本题考查数列与函数的综合应用.关键在于发现规律,再建立与已知的联系. 二、填空题14.设数列{}n a 的通项公式为2cos ,n a n =︒该数列的前n 项和为n S ,则89S =_________.【答案】892【分析】利用诱导公式和同角三角函数基本关系式可知()22cos cos 901n n +-=,再利用倒序相加法求和.【详解】()22cos sin 90n n =- ,222289cos 1cos 2cos 3...cos 89S =++++, 222289cos 89cos 88cos 87...cos 1S =++++ ,22cos 89sin 1=,22cos 88sin 2=,22cos 87sin 3=,…22cos 1sin 89=,()()()222222892cos 1cos 89cos 2cos 88...cos 89cos 1S ∴=++++++, ()()()222222892cos 1sin 1cos 2sin 2...cos 89sin 89S ∴=++++++,18989=⨯=,89892S ∴=. 故答案为:892 【点睛】关键点点睛:本题考查求三角函数的和,解题关键是找到()22cos cos 901n n +-=,然后利用倒序相加法求和.15.已知函数()331xx f x =+,()x R ∈,正项等比数列{}n a 满足501a =,则()()()1299f lna f lna f lna ++⋯+等于______.【答案】992【解析】试题分析:因为3()31x x f x =+,所以33()()13131x xx x f x f x --+-=+=++.因为数列{}n a 是等比数列,所以21992984951501a a a a a a a =====,即1992984951ln ln ln ln ln ln 0a a a a a a +=+==+=.设9912399(ln )(ln )(ln )(ln )S f a f a f a f a =++++ ∴,又99999897(ln )(ln )(ln )=++S f a f a f a +…+1(ln )f a ∴,∴+∴,得99299=S ,所以99992=S .考点:1、等比数列的性质;2、对数的运算;3、数列求和.【知识点睛】如果一个数列{}n a ,与首末两项等距离的两项之和等于首末两项之和(都相等,为定值),可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法.如等差数列的前n 项和公式即是用此法推导的.16.设()'f x 是函数()y f x =的导数,()''f x 是()'f x 的导数,若方程()''0f x =有实数解0x ,则称点()()0,x f x 为函数()y f x =的“拐点”.已知:任何三次函数都有拐点,又有对称中心,且拐点就是对称中心.设()32182133f x x x x =-++,数列{}n a 的通项公式为27n a n =-,则()()()128f a f a f a ++⋅⋅⋅+=_______. 【答案】8 【分析】由题意对已知函数求两次导数可得图象关于点(2,1)对称,即()(4)2f x f x +-=,即可得到结论. 【详解】 解:3218()2133f x x x x =-++,28()43f x x x ∴'=-+,()24f x x ∴'=-,令()0f x ''=,解得:2x =, 而88(2)821133f =-+⨯+=, 故函数()f x 关于点(2,1)对称,()(4)2f x f x ∴+-=,27n a n =-, 15a ∴=-,89a =, 18()()2f a f a ∴+=,同理可得27()()2f a f a +=,36()()2f a f a +=,45()()2f a f a +=,128()()()248f a f a f a ∴++⋯+=⨯=,故答案为:8.【点睛】本题主要考查导数的基本运算,利用条件求出函数的对称中心是解决本题的关键.求和的过程中使用了倒序相加法. 17.已知()221x f x x +=-,等差数列{}n a 的前n 项和为n S ,且20181009S =,则()()()122018f a f a f a +++的值为___________.【答案】1009 【分析】先求出120181a a +=,并判断20181n n a a -+=,(n *∈N 且02018n <<),再由函数得到()()11f x f x +-=,最后求()()()122018f a f a f a +++的值即可.【详解】解:因为等差数列{}n a 的前n 项和为n S ,且20181009S =, 所以1201820182018()10092a a S +==,解得:120181a a +=,则20191n n a a -+=,(n *∈N 且02018n <<) 因为()221x f x x +=-,则()()2(1)211212(1)1x x f x f x x x +-++-=+=---, 所以()()()()20192(1)211212(1)1n n n n n n n n a a f a f a f a f a a a -+-++=+-=+=---设()()()122018T f a f a f a =+++,则()()()201821T f a f a f a =+++,由上述两式相加得:()()()()()()1201822017201812[][][]2018T f a f a f a f a f a f a =++++++=,则1009T = 故答案为:1009. 【点睛】本题考查等差数列的通项的性质、等差数列的前n 项和、倒序相加法,是中档题.18.设函数2()log f x =,数列{}n a 满足2020n n a f ⎛⎫= ⎪⎝⎭,则124039a a a ++⋅⋅⋅+=______.【答案】40392- 【分析】由题得40391403924038403912()()()S a a a a a a =++++++,设k *∈N ,考虑一般情况,40401k k a a -+=-,即得解. 【详解】由题得4039124039S a a a =++⋅⋅⋅+,4039403921S a a a =+⋅⋅⋅++, 两式相加得40391403924038403912()()()S a a a a a a =++++++,考虑一般情况,设k *∈N ,则4040224040404020202020log log 404020202020424220202020k kk kk k a a f f k k ---⎛⎫⎛⎫+=+=+ ⎪ ⎪-⎝⎭⎝⎭-⨯-⨯2240401=log log 12k ⎤-==-⎢⎣ 所以40394039403924039,.2S S =-∴=- 故答案为:40392- 【点睛】本题主要考查对数的运算和倒序相加求和,意在考查学生对这些知识的理解掌握水平. 19.若121()(1)2,(0)()()...()(1)n n f x f x a f f f f f n n n-+-==+++++(*n N ∈),则数列{}n a 的通项公式是___________. 【答案】1n a n =+ 【分析】根据自变量的和为1时,函数值的和为2,运用数列的求和方法,倒序相加法求和,计算数列的通项公式. 【详解】()()1210...1n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()1211...0n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,两式相加可得 ()()()()1111201...10n n n a f f ff f f f f n n n n ⎡-⎤⎡-⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++++++⎡⎤⎡⎤ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦, ()221n a n =+,所以1n a n =+ . 故答案为:1n a n =+ 【点睛】本题考查倒序相加法求和,重点考查推理能力和计算能力,属于基础题型. 20.()f x 对任意x ∈R 都有()()112f x f x +-=.数列{}n a 满足:()120n a f f f n n ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭()11n f f n -⎛⎫++ ⎪⎝⎭,则n a =__________.【答案】14n + 【分析】采用倒序相加法即可求得结果. 【详解】由题意得:()()1012f f +=,1112n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,2212n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,……, ()()12101n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()12110n n n a f f f f f n n n --⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 122n n a +∴=,解得:14n n a +=. 故答案为:14n +. 【点睛】本题考查利用倒序相加法求和的问题,属于基础题.21.函数2()2cos 2xf x π=,数列{}n a 满足()2020n na f =,其前n 项和为n S ,则2019S =_____. 【答案】2019 【分析】由二倍角公式可得2()2coscos 12xf x x ππ==+,则cos12020n na π=+,再求其前2019项的即可,或根据函数的解析式化简得到()+(1)2f x f x -=求解. 【详解】 (法一):2()2cos cos 12xf x x ππ==+,()2020n n a f = cos12020n na π∴=+ ()cos cos 0απα+-=1201922018coscos cos cos 02020202020202020ππππ∴+=+= 201912320191220182019cos1cos 1cos1cos 120202020202020202019S a a a a ππππ=++++=++++++++= (法二):2()2cos=cos 12xf x x ππ=+,()()(1)cos 11cos 1f x x x πππ-=-+=-+=cos cos sin sin 1cos 1x x x πππππ++=-+所以()+(1)2f x f x -=,20191232019++++S a a a a =所以20191232019()()()()2020202020202020S f f f f =++++, 20192019201820171()()()()2020202020202020S f f f f =++++,所以2019222019S =⨯,所以20192019S =. 故答案为:2019 【点睛】本题考查三角函数诱导公式及数列求和降幂公式:21cos 2cos 2αα+=,21cos 2sin 2αα-=, 22.推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得22222sin 1sin 2sin 3sin 88sin 89︒+︒+︒+⋯+︒+︒=__________.【答案】892. 【分析】通过诱导公式可知sin1cos89,sin2cos88,...,sin89cos1︒=︒︒=︒︒=︒,结合22sin cos 1αα+=,可求出原式为892. 【详解】解:设22222sin 1sin 2sin 3sin 88sin 89S =︒+︒+︒+⋯+︒+︒,sin1cos89,sin2cos88,sin3cos87,...,sin88cos2,sin89cos1︒=︒︒=︒︒=︒︒=︒︒=︒,22222cos 1cos 2cos 3...cos 88cos 89S ∴=︒+︒+︒++︒+︒,则()()()2222222sin 1cos 1sin 2cos 2...sin 89cos 8989S =︒+︒+︒+︒++︒+︒=,即892S =, 故答案为:892【点睛】本题考查了诱导公式,考查了同角三角函数的基本关系.本题的关键是结合诱导公式对所求式子倒序求和. 23.设()f x =,利用课本中推导等差数列前n 项和的公式的方法,可求得12019f ⎛⎫ ⎪⎝⎭22019f ⎛⎫+ ⎪⎝⎭2017201820192019f f ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭_________.【答案】2【分析】由题干可证出()(1)f x f x +-=1009对的组合,即1009个2,计算即可得解. 【详解】()f x =,∴(1)x xf x -===,因此()(1)x xf x f x +-==2x ⎛⎫===, 所以12019f ⎛⎫⎪⎝⎭22019f ⎛⎫+ ⎪⎝⎭2017201820192019f f ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 12018201920192019202201197f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=⎝⎭⎝⎭2=.故答案为:2. 【点睛】本题考查倒序相加法求数列的前n 项和,考查逻辑思维能力和运算能力,属于常考题. 24.已知数列{}n a 满足2120n n n a a a ++-+=,且42a π=,若函数()2sin 22cos2xf x x =+,记()n n y f a =,则数列{}n y 的前7项和为__________. 【答案】7 【分析】利用等差数列的性质可得17263542a a a a a a a π+=+=+==,再利用二倍角的余弦公式可得()2sin22cos sin2cos 12xf x x x x =+=++,利用倒序相加法即可求解. 【详解】数列{}n a 满足211n n n n a a a a +++-=-,*N n ∈,∴数列{}n a 是等差数列,42a π=,17263542a a a a a a a π∴+=+=+==,()2sin22cos sin2cos 12xf x x x x =+=++,()()171177sin 2cos 1sin 2cos 1f a f a a a a a ∴+=+++++ ()()7777sin 22cos 1sin 2cos 1a a a a ππ=-+-++++7777sin 2cos 1sin 2cos 12a a a a =--++++=同理()()()()()2635422f a f a f a f a f a +=+==,∴数列{}n y 的前7项和为7.故答案为:7. 【点睛】本题考查了等差数列的性质、二倍角的余弦公式、诱导公式以及倒序相加法,属于中档题.25.给出定义 :对于三次函数32()(0),f x ax bx cx d a =+++≠设'()f x 是函数()y f x =的导数,()f x ''是'()f x 的导数,若方程()0f x ''=有实数解0x ,则称点0,0((())x f x 为函数()y f x =的“拐点”,经过研究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.已知函数3232115()32,()33212h x x x x g x x x x =-++=-+-.设1234037()()()......(),2019201920192019h h h h n ++++=1232018()()()......()2019201920192019g g g g m +++=.若2()(1),t x mx nxt '=+则(0)t '=__________.【答案】-4037 【分析】由题意对已知函数求两次导数,令二阶导数为零,即可求得函数的中心对称,即有()(1)2g x g x +-=,()(2)2h x h x +-=,借助倒序相加的方法,可得,m n 进而可求2()(1)t x mx nxt '=+的解析式,求导,当1x =代入导函数解得(1)t ',计算求解即可得出结果. 【详解】 函数32115()33212g x x x x =-+-函数的导数2()3,()21g x x x g x x '''=-+=-由()0g x ''=得0210x -=解得012x =,而112g ⎛⎫= ⎪⎝⎭故函数()g x 关于点1,12⎛⎫⎪⎝⎭对称, ()(1)2g x g x ∴+-=故1232018()()()...+()2019201920192019g g g g m +++=,201820171201920192019g g g m ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 两式相加得220182m ⨯=,则2018m =.同理32()32h x x x x =-++,2()361h x x x '=-+,()66h x x ''=-,令()0h x ''=,则1x =,(1)1h =,故函数()h x 关于点()1,1对称,()(2)2h x h x ∴+-=,1234037()()()...(),2019201920192019h h h h n ++++=4037403640351()()()...(),2019201920192019h h h h n ++++=两式相加得240372n ⨯=,则4037n =. 所以2()20184037(1),t x x xt '=+()40364037(1),t x x t ''=+当1x =时, (1)40364037(1),t t ''=+解得:(1)=1t '-,所以()40364037,t x x '=-则(0)4037t =-'.故答案为: -4037.【点睛】本题考查对新定义的理解,考查二阶导数的求法,仔细审题是解题的关键,考查倒序法求和,难度较难.三、解答题26.已知数列{}n a 的前n 项和为n S .(∴)若{}n a 为等差数列,求证:()12n n n a a S +=; (∴)若()12n n n a a S +=,求证:{}n a 为等差数列. 【答案】(∴)证明见解析;(∴)证明见解析.【分析】(1)根据{}n a 为等差数列,利用倒序相加法证明()12n n n a a S +=即可; (2)由前n 项和公式有1n n n a S S -=-、11n n n a S S ++=-,相加后整理可得11n n n n a a a a +--=-,{}n a 为等差数列得证.【详解】(∴)证明:已知数列{}n a 为等差数列,设其公差为d ,则有1123(1),n n n a a n d S a a a a =+-=++++, 于是()()[]11112(1)n S a a d a d a n d =+++++++-,∴ 又()()[]2(1)n n n n n S a a d a d a n d =+-+-++--,∴ ∴+∴得:()12n n S n a a =+,即()12n n n a a S +=. (∴)证明:∴()12n n n a a S +=,当2n ≥时,()111(1)2n n n a a S ---+=, ∴()()1111(1)22n n n n n n a a n a a a S S --+-+=-=-,∴ ()()11111(1)22n n n n n n a a n a a a S S ++++++=-=-,∴ ∴-∴并整理,得112n n n a a a -+=+,即11(2)n n n n a a a a n +--=-≥,∴数列{}n a 是等差数列.【点睛】本题考查了已知等差数列的通项公式,应用倒序相加法求证前n 项和公式,由前n 项和公式,结合等差数列的定义证明等差数列,属于基础题.27.已知函数()21x f x x =+,设数列{}n a 满足1()n n a f a +=,且112a =. (1)求数列{}n a 的通项公式;(2)若记((21))(1i n b f i a i =--⨯=,2,3,⋯,)n ,求数列{}i b 的前n 项和n T .【答案】(1)12n a n =;(2)2n n T =. 【分析】(1)由1()n n a f a +=得到121n n n a a a +=+,然后变形为1112n n a a +-=,利用等差数列的定义求解. (2)由(1)得到121221i i b n i -+=⨯-+,由112112*********i n i i n i b b n i n i -+-+-++=⨯+⨯=-+-+,利用倒序相加法求解.【详解】(1)因为()21x f x x =+,所以由1()n n a f a +=得121n n na a a +=+, 所以121112n n n na a a a ++==+,∴1112n n a a +-=, 所以1{}n a 是首项为2,公差为2的等差数列, 所以12(1)22n n n a =+-⨯=,所以12n a n=. (2)由(1)知21()(1,2,3,,)2i i b f i n n-=-=⋯, 则21(21)1212212[(21)]22212()12i i i i n b i i n n i -----+===⨯-⨯--+-+⨯-+, {}12(1)1[2(1)1]22(1)12[2(1)1]22[]12n i n i n i n b n i n i n n -+-+----+-==-+-⨯--+-+⨯-+, 12(1)112212[2(1)1]221n i n i n i n n i -+--+=⨯=⨯-+---+, 所以112112211(1,2,3,,)221221i n i i n i b b i n n i n i -+-+-++=⨯+⨯==⋯-+-+, 123n n T b b b b =+++⋯+,121n n n n T b b b b --=+++⋯+,两式相加,得:121321112()()()()()nn n n n n i n i i T b b b b b b b b b b n ---+==++++++⋯++=+=∑, 所以2n n T =. 【点睛】 本题主要考查数列的递推关系,等差数列的定义及通项公式以及倒序相加求和,话考查了运算求解的能力,属于中等题.28.已知f (x )=142x + (x ∴R ),P 1(x 1,y 1),P 2(x 2,y 2)是函数y =f (x )的图像上的两点,且线段P 1P 2的中点P的横坐标是12. (1)求证:点P 的纵坐标是定值;(2)若数列{a n }的通项公式是a n =()*m N ,n 1,2,3,,m n f m ⎛⎫∈=⋯⎪⎝⎭,求数列{a n }的前m 项和S m . 【答案】(1)证明见解析;(2)S m =3112m - 【分析】(1)先根据中点坐标公式得x 1+x 2=1,再代入化简求得y 1+y 2=12,即证得结果; (2)先求()1f ,再利用倒序相加法求121S=m f f f m m m -⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,两者相加得结果. 【详解】(1)证明:∴P 1P 2的中点P 的横坐标为12, ∴122x x +=12,∴x 1+x 2=1. ∴P 1(x 1,y 1),P 2(x 2,y 2)是函数y =f (x )的图像上的两点,∴y 1=1142+x ,y 2=2142+x , ∴y 1+y 2=1142+x +2142+x =121242424242()()+++++x x x x =12121244442444()++++++x x x x x x =121244442444()+++++x x x x =12124442444()++++x x x x =12, ∴点P 的纵坐标为122y y +=14. ∴点P 的纵坐标是定值.(2)S m =a 1+a 2+a 3+…+a m=()12121=1m m f f f f f f f m m m m m m -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭令121S=m f f f m m m -⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)知k f m ⎛⎫ ⎪⎝⎭+m k f m -⎛⎫ ⎪⎝⎭=12.(k =1,2,3,…,m -1) ∴倒序相加得∴2S =12 (m -1),∴S =14 (m -1). 又f (1)=142+=16, ∴S m =S +f (1)=14 (m -1)+16=3112m -. 【点睛】本题考查利用指数性质运算、利用倒序相加法求和,考查基本求解能力,属基础题.29.已知f (x )=142x + (x ∴R ),P 1(x 1,y 1),P 2(x 2,y 2)是函数y =f (x )的图像上的两点,且线段P 1P 2的中点P 的横坐标是12. (1)求证:点P 的纵坐标是定值;(2)若数列{a n }的通项公式是a n =()*N ,1,2,3,,n f m n m m ⎛⎫∈=⋯⎪⎝⎭,求数列{a n }的前m 项和S m . 【答案】(1)见证明过程(2)S m =3112m - 【分析】 (1)根据P 1P 2的中点P 的横坐标是12可得x 1+x 2=1,计算y 1+y 2=12121244442444()++++++x x x x x x ,代入x 1+x 2=1可得y 1+y 2=12,即可得证; (2)利用倒序相加法求数列的和即可.【详解】(1)证明:∴P 1P 2的中点P 的横坐标为12, ∴122x x +=12,∴x 1+x 2=1. ∴P 1(x 1,y 1),P 2(x 2,y 2)是函数y =f (x )的图像上的两点,∴y 1=1142+x ,y 2=2142+x∴y 1+y 2=1142+x +2142+x =121242424242()()+++++x x x x =12121244442444()++++++x x x x x x =121244442444()+++++x x x x =12124442444()++++x x x x =12, ∴点P 的纵坐标为122y y +=14. ∴点P 的纵坐标是定值.(2)S m =a 1+a 2+a 3+…+a m=f 1m ⎛⎫ ⎪⎝⎭+f 2m ⎛⎫ ⎪⎝⎭+f 3m ⎛⎫ ⎪⎝⎭+…+f m m ⎛⎫ ⎪⎝⎭=f 1m ⎛⎫⎪⎝⎭+f 2m ⎛⎫ ⎪⎝⎭+f 3m ⎛⎫ ⎪⎝⎭+…+f 1m m -⎛⎫ ⎪⎝⎭+f (1). 令S =f 1m ⎛⎫ ⎪⎝⎭+f 2m ⎛⎫ ⎪⎝⎭+f 3m ⎛⎫ ⎪⎝⎭+…+f 1m m -⎛⎫ ⎪⎝⎭,∴ 倒序得S =f 1m m -⎛⎫⎪⎝⎭+f 2m m -⎛⎫ ⎪⎝⎭+f 3m m -⎛⎫ ⎪⎝⎭+…+f 1m ⎛⎫ ⎪⎝⎭,∴ ∴+∴,得2S =11m f f m m -⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭+[f 2m ⎛⎫ ⎪⎝⎭+ f 2m m -⎛⎫ ⎪⎝⎭]+[f 3m ⎛⎫ ⎪⎝⎭+ f 3m m -⎛⎫ ⎪⎝⎭]+…+[f 1m m -⎛⎫ ⎪⎝⎭+f 1m ⎛⎫ ⎪⎝⎭]. ∴k m +m k m-=1(k =1,2,3,…,m -1), ∴由(1)知f k m ⎛⎫⎪⎝⎭+f m k m -⎛⎫ ⎪⎝⎭=12. ∴2S =12 (m -1),∴S =14(m -1). 又f (1)=142+=16, ∴S m =S +f (1)=14(m -1)+16=3112m -【点睛】本题主要考查了定值问题,数列倒序相加求和,考查了推理分析问题能力,运算能力,属于中档题.30.已知数列{}n a 的前n 项和224()n n S n N ++=-∈,函数()f x 对一切实数x 总有()(1)1f x f x +-=,数列{}n b 满足121(0)()()()(1).n n b f f f f f n n n -=+++++分别求数列{}n a 、{}n b 的通项公式. 【答案】()1*2n n a n N +=∈;12n n b += 【分析】 利用,n n a S 的关系即可容易得到n a ;根据函数性质,利用倒序相加法即可求得n b .【详解】当12111,244n a S +===-=当()()21112,24242n n n n n n n a S S +++-≥=-=---= 1n =时满足上式,故()1*2n n a n N +=∈ ;∴()()1f x f x +-=1∴111n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭∴()120n b f f f n n ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭ ()11n f f n -⎛⎫++ ⎪⎝⎭∴ ∴()121n n n b f f f n n --⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭()()10f f ++ ∴ ∴∴+∴,得1212n n n b n b +=+∴=【点睛】 本题考查利用,n n a S 的关系求数列的通项公式,涉及倒序相加法求数列的前n 项和,属综合基础题.。
深圳平安里学校初中部选修二第一单元《数列》测试卷(有答案解析)
一、选择题1.在等差数列{}n a 中,n S 为其前n 项和,若202020210,0S S <>,则下列判断错误的是( )A .数列{}n a 单调递增B .10100a <C .数列{}n a 前2020项最小D .10110a >2.已知数列{}n a 中,11a =,前n 项和为n S ,且点1(,)()n n P a a n N *+∈在直线10x y -+=上,则12320191111S S S S ++++=( )A .20192020 B .20191010 C .20194040D .201920202⨯ 3.已知单调递增数列{}n a 的前n 项和n S 满足()()*21n n n S a a n =+∈N ,且0n S >,记数列{}2nn a ⋅的前n 项和为n T ,则使得2020n T >成立的n 的最小值为( )A .7B .8C .10D .114.已知数列{}n a 满足11a =,24a =,310a =,且{}1n n a a +-是等比数列,则81ii a==∑( ) A .376B .382C .749D .7665.已知数列{}n a 满足:113a =,1(1)21n n n a na n ++-=+,*n N ∈,则下列说法正确的是( ) A .1n n a a +≥ B .1n n a a +≤C .数列{}n a 的最小项为3a 和4aD .数列{}n a 的最大项为3a 和4a6.数列{}n a 是等差数列,51260a a =>,数列{}n b 满足123n n n n b a a a +++=,*n N ∈,设n S 为{}n b 的前n 项和,则当n S 取得最大值时,n 的值等于( )A .9B .10C .11D .127.已知数列{}n a是等比数列,数列{}n b 是等差数列,若1611a a a ⋅⋅=-16117b b b π++=,则3948tan1b b a a +-⋅的值是( )A .B .1-C .-D8.已知数列{}n a 的前n 项和为n S ,且21n n S a =-,则66(S a = ) A .6332B .3116C .12364 D .1271289.已知数列{}n a 是等比数列,11a >,且前n 项和n S 满足11lim n n S a →∞=,那么1a 的取值范围是( ) A.(B .()1,4C .()1,2D .()1,+∞10.已知等比数列{}n a 的前n 项和()232nn S λλ=+-⋅(λ为常数),则λ=( ) A .2-B .1-C .1D .211.已知等差数列{}n a 中,50a >,470a a +<则{}n a 的前n 项和n S 的最大值为( ) A .4SB .5SC .6SD .7S12.已知等比数列{}n a 的前n 项和为n S ,若1220a a +=,334S =,且2n a S a ≤≤+,则实数a 的取值范围是( ) A .0,1B .[]1,0-C .1,12⎡⎤⎢⎥⎣⎦D .11,2⎡⎤-⎢⎥⎣⎦二、填空题13.已知数列{}n a 为等差数列,1351a a a ++=,n S 表示数列{}n a 的前n 项和,若当且仅当20n =时,n S 取到最大值,则246a a a ++的取值范围是________14.朱载堉(1536-1611)是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制作了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”,即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设第三个音的频率为1f ,第七个音的频率为2f ,则21f f =______. 15.已知{}{},n n a b 均为等差数列,其前n 项和分别为,n n S T ,且233n n S n T n -=+,则55a b =________.16.设n S 是数列{}n a 的前n 项和,满足212n n n a a S +=,且0n a >,则64S =____.17.已知等差数列{}n a 的前n 项和n S 满足318S =,3180n S -=,270n S =,则n =________.18.设数列{}n a 是首项为1的正项数列,且()221110n n n n n a na a a +++-+⋅=,则它的通项公式n a =______.19.有一个数阵排列如下: 1 2 3 4 5 6 7 8 …… 2 4 6 8 10 12 14…… 4 8 12 16 20…… 8 16 24 32…… 16 32 48 64…… 32 64 96…… 64……则第9行从左至右第3个数字为________________.20.设数列{}n a 满足15a =,且对任意正整数n ,总有()()13344n n n a a a +++=+成立,则数列{}n a 的前2020项和为______.三、解答题21.设数列{}n a 满足12a =,12nn n a a +-=;数列{}n b 前n 项和为n S ,且()2132n S n n =-. (1)求数列{}n a 和{}n b 的通项公式; (2)若n n n c a b =,求数列{}n c 的前n 项和n T .22.已知数列{}n a 的前n 项和*41,()3nn n S S n N -=∈.(1)求数列{}n a 的通项公式; (2)设2log n b =n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .23.记等差数列{}n a 的前n 项和为n S ,已知520S =,23a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 的通项公式2nn b =,将数列{}n a 中与{}n b 的相同项去掉,剩下的项依次构成新数列{}n c ,设数列{}n c 的前n 项和为n T ,求2020T .24.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.(1)求数列{}n a ,{}n b 的通项公式; (2)记n c =*n N ∈,证明:12n c c c +++<.25.已知{}n a 是各项均为正数的等比数列,且126a a +=,123a a a =. (1)求数列{}n a 的通项公式;(2)数列{}n b 通项公式为21n b n =+,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T . 26.设n S .是数列{}n a 的前n 项和,()2n S k n n n N =⋅+∈,其中k 是常数.(1)求1a 及n a 的值; (2)当k =2时,求证:12n 1112...3S S S +++<; (3)设0k >,记21n nb a =,求证:当2n ≥时,23411...14(1)n n b b b b n k k -<++++<-++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】结合等差数列的求和公式及等差数列的性质可得101010110,0a a <>,从而可求出公差的符号,进而可确定单调性,进而可确定和最小问题. 【详解】因为202020210,0S S <>,即()()12021202012020210,02022a a a a ++<>,所以12020120210,0a a a a +<+>.因为10101011120201011120210,20,a a a a a a a +=+<=+> 所以101010110,0a a <>,所以101110100d a a =->,所以数列{}n a 是单调递增数列, 前1010项和最小,所以C 错误. 故选:C . 【点睛】 关键点睛:本题的关键是由等差数列的求和公式对已知条件进行变形,整理出12020120210,0a a a a +<+>,再结合等差数列的性质求出101010110,0a a <>,确定公差后即可确定单调性及最值问题.2.B解析:B 【分析】由点在直线上得到数列{}n a 的通项公式和前n 项和公式,根据公式特征利用裂项相消可得答案. 【详解】点1(,)()n n P a a n N *+∈在直线10x y -+=上,所以11n n a a +=+,即1=1n n a a +-所以{}n a 是以1为首项,公差为1的等差数列,即=n a n ,(1)=2n n nS +, 所以1211=2(1)1n S n n n n ⎛⎫=- ⎪++⎝⎭, 123201911111111112121223201920202020S S S S ⎛⎫⎛⎫++++=-+-++-=- ⎪ ⎪⎝⎭⎝⎭20191010=. 故选:B. 【点睛】 裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和,注意通项“分裂成两项差”的形式之后是不是还有系数.3.B解析:B 【分析】由数列n a 与n S 的关系转化条件可得11n n a a -=+,结合等差数列的性质可得n a n =,再由错位相减法可得()1122n n T n +=-⋅+,即可得解.【详解】由题意,()()*21n n n S a a n N=+∈,当2n ≥时,()11121n n n S a a ---=+,所以()()11122211n n n n n n n a S S a a a a ---=-=+-+, 整理得()()1110n n n n a a a a --+--=,因为数列{}n a 单调递增且0n S >,所以110,10n n n n a a a a --+≠--=,即11n n a a -=+, 当1n =时,()11121S a a =+,所以11a =, 所以数列{}n a 是以1为首项,公差为1的等差数列, 所以n a n =,所以1231222322n n T n =⋅+⋅+⋅+⋅⋅⋅+⋅,()23412122232122n n n T n n +=⋅+⋅+⋅+⋅⋅⋅+-⋅+⋅,所以()()234111212222222212212n nn n n n T n n n +++--=++++⋅⋅⋅+-⋅=-⋅=-⋅--,所以()1122n n T n +=-⋅+,所以876221538T =⨯+=,987223586T =⨯+=,所以2020n T >成立的n 的最小值为8. 故选:B. 【点睛】关键点点睛:解决本题的关键是数列n a 与n S 关系的应用及错位相减法的应用.4.C解析:C 【分析】利用累加法求出通项n a ,然后利用等比数列的求和公式,求解81i i a =∑即可【详解】由已知得,213a a -=,326a a -=,而{}1n n a a +-是等比数列,故2q,∴11221()()()n n n n a a a a a a ----+-+-=23632n -+++⨯1133232312n n ---⨯==⨯--,1n a a ∴-=1323n -⨯-,化简得1322n n a -=⨯-,8712818123(122)2831612i iaa a a =-=++=⨯+++-⨯=⨯--∑83219749=⨯-=故选:C 【点睛】关键点睛:解题关键在于利用累加法求出通项,难度属于中档题5.C解析:C 【分析】令n n b na =,由已知得121n n b b n +-=+运用累加法得2+12n b n =,从而可得12+n a n n =,作差得()()()+13+4+1n n a n n a n n -=-,从而可得12345>>n a a a a a a =<<<,由此可得选项. 【详解】令n n b na =,则121n n b b n +-=+,又113a =,所以113b =,213b b -=,325b b -=, ,121n n b b n --=-, 所以累加得()()213+2113++122nn n b n --==,所以2+1212+n nb n an n n n===,所以()()()()+13+41212+1+++1+1n n n n a a n n n n n n -⎛⎫-=-= ⎪⎝⎭, 所以当3n <时,+1n n a a <,当3n =时,+1n n a a =,即34a a =,当>3n 时,+1>n n a a , 即12345>>n a a a a a a =<<<,所以数列{}n a 的最小项为3a 和4a ,故选:C. 【点睛】本题考查构造新数列,运用累加法求数列的通项,以及运用作差法判断差的正负得出数列的增减性,属于中档题.6.D解析:D 【分析】由51260a a =>,得到首项和公差的关系以及公差的范围,然后求得通项公式,判断,n n a b 的正负,再利用通项与前n 项和关系求解.【详解】设数列{}n a 的公差为d , 因为51260a a =>,所以()1104116a a d d +=>+,即1625a d =-, 因为512a a >, 所以0d <,所以167(1)5n a n d n d a ⎛⎫=+-=-⎪⎝⎭, 当113n ≤≤时,0n a >,当14n ≥时,0n a <, 所以12101314...0...b b b b b >>>>>>>, 又因为()111213141215131405db b a a a a a a +=+=>, 所以1210S S >,故n S 中12S 最大 , 故选:D 【点睛】本题主要考查等差数列的通项公式以及数列前n 项和的最值问题,还考查逻辑推理的能力,属于中档题.7.A解析:A 【分析】由等比数列和等差数的性质先求出39b b +和48a a ⋅的值,从而可求出3948tan1b b a a +-⋅的值【详解】解:因为数列{}n a 是等比数列,数列{}n b是等差数列,1611a a a ⋅⋅=-16117b b b π++=,所以36a =-,637b π=,所以6a =673b π=, 所以3961423b b b π+==,24863a a a ⋅==,所以39481473tan tan tan()tan(2)tan 113333b b a a πππππ+==-=-+=-=-⋅-,故选:A 【点睛】此题考查等差数列和等比数列的性质的应用,考查三角函数求值,属于中档题8.A解析:A 【分析】利用数列递推关系:1n =时,1121a a =-,解得1a ;2n 时,1n n n a S S -=-.再利用等比数列的通项公式与求和公式即可得出. 【详解】21n n S a =-,1n ∴=时,1121a a =-,解得11a =;2n 时,1121(21)n n n n n a S S a a --=-=---,化为:12n n a a -=.∴数列{}n a 是等比数列,公比为2.56232a ∴==,66216321S -==-.则666332S a =. 故选:A . 【点睛】本题考查数列递推关系、等比数列的通项公式与求和公式,考查推理能力与计算能力,属于中档题.9.A解析:A 【分析】设等比数列{}n a 的公比为q ,可知10q -<<或01q <<,计算出111lim 1n n a S q a →∞==-,可得出q 关于1a 的表达式,结合q 的范围,可解出1a 的取值范围. 【详解】设等比数列{}n a 的公比为q ,由于11lim n n S a →∞=,则10q -<<或01q <<, ()111n n a q S q-=-,则()11111lim lim11n n n n a q a S qq a →∞→∞-===--,得211q a =-. ①若10q -<<,则21110a -<-<,即2112a <<,11a >,解得1a <<; ②当01q <<,则21011a <-<,得2101a <<,11a >,则2101a <<不成立.综上所述,1a的取值范围是(. 故选A. 【点睛】本题考查利用极限求等比数列首项的取值范围,解题的关键就是得出公比与首项的关系,结合公比的取值范围得出关于首项的不等式,考查运算求解能力,属于中等题.10.C解析:C 【分析】分别求出等比数列的前三项,利用等比数列的性质能求出入的值. 【详解】∵等比数列{}n a 的前n 项和()232nn S λλ=+-⋅(λ为常数),∴()1123246a S λλλ==+-⨯=-,()()222123223226a S S λλλλλ=-=+-⋅-+-⋅=-⎡⎤⎣⎦()()32332232232412a S S λλλλλ⎡⎤=-=+-⋅-+-⋅=-⎣⎦,123,,a a a 成等比数列,∴()()()22646412λλλ-=--,解得1λ=或3λ= ∵3λ=时,2n S λ=是常数,不成立,故舍去3λ=.1λ∴=故选:C 【点睛】本题主要考查等比数列的性质等基础知识,求和公式与通项的关系,考查运算求解能力,属于中档题.11.B解析:B 【分析】根据50a >和470a a +<判断出数列的单调性,根据数列的单调性确定出n S 的最大值. 【详解】因为470a a +<,所以560a a +<,又因为50a >,所以60a <, 因为{}n a 为等差数列,所以650d a a =-<,所以{}n a 为单调递减数列, 所以n S 的最大值为5S , 故选:B. 【点睛】本题考查根据等差数列的单调性求解前n 项和的最大值,难度一般.求解等差数列前n 项和的最值,关键是分析等差数列的单调性,借助单调性可说明n S 有最大值还是最小值并且求解出对应结果.12.D解析:D 【分析】设等比数列{}n a 的公比为q ,由1220a a +=,334S =,列方程求出1,a q ,进而可求出n S ,列不等式组可求出a 的取值范围【详解】解:设等比数列{}n a 的公比为q , 因为1220a a +=,334S =, 所以121(12)03(1)4a q a q q +=⎧⎪⎨++=⎪⎩,解得111,2a q ==-, 所以11()212[1()]1321()2nn n S --==----, 所以当1n =时,n S 取得最大值,当2n =时,n S 取得最小值12, 所以1221a a ⎧≤⎪⎨⎪+≥⎩,解得112a -≤≤, 故选:D 【点睛】此题考查等比数列的通项公式与求和公式及其性质,考查推理能力与计算能力,属于中档题二、填空题13.【分析】由条件可得当时取到最大值则得到的范围由可得答案【详解】由得即当且仅当时取到最大值则则即得到由可得故答案为:【点睛】关键点睛:本题考查等差数列的基本性质的应用解答本题的关键是当且仅当时取到最大解析:1617,1718⎛⎫⎪⎝⎭【分析】 由条件可得31,3a =当20n =时,n S 取到最大值,则202100a a >⎧⎨<⎩得到d 的范围,由24613a a a d ++=+可得答案.【详解】由1351a a a ++=,得331,a =即31,3a =24643333,a a a a a d ++==+当且仅当20n =时,n S 取到最大值,则20210a a >⎧⎨<⎩则203213170180a a d a a d =+>⎧⎨=+<⎩,即20211170311803a d a d ⎧=+>⎪⎪⎨⎪=+<⎪⎩,得到11,5154d ⎛⎫∈-- ⎪⎝⎭ 2464333313a a a a a d d ++==+=+由11,5154d ⎛⎫∈-- ⎪⎝⎭,可得1617131718d <+<故答案为:1617,1718⎛⎫⎪⎝⎭【点睛】关键点睛:本题考查等差数列的基本性质的应用,解答本题的关键是当且仅当20n =时,n S 取到最大值,则202100a a >⎧⎨<⎩,从而得出11,5154d ⎛⎫∈-- ⎪⎝⎭,属于中档题. 14.【分析】将每个音的频率看作等比数列利用等比数列知识可求得结果【详解】由题知:一个八度13个音且相邻两个音之间的频率之比相等可以将每个音的频率看作等比数列一共13项且最后一个音是最初那个音的频率的2倍 解析:132【分析】将每个音的频率看作等比数列{}n a ,利用等比数列知识可求得结果. 【详解】由题知:一个八度13个音,且相邻两个音之间的频率之比相等,∴可以将每个音的频率看作等比数列{}n a ,一共13项,且1nn a q a -=, 最后一个音是最初那个音的频率的2倍,1312a a ∴=,12121122a q a q =⇒=,()1164122113321312f a a q q q f a a q ∴=====,12312ff ∴=. 故答案为:132【点睛】关键点点睛:构造等比数列求解是解题关键.15.【分析】根据等差数列的前n 项和公式有结合已知条件令即可得进而求【详解】∵均为等差数列令公差分别为则有∴令则有∴故答案为:【点睛】思路点睛:利用等差数列的前n 项和公式结合等差数列通项公式的特点合理假设解析:54【分析】根据等差数列的前n 项和公式有11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+,结合已知条件,令122,1d d ==即可得11,a b ,进而求55a b . 【详解】∵{}{},n n a b 均为等差数列,令公差分别为12,d d ,则有11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+, ∴11121222323n n S nd a d n T nd b d n +--==+-+,令122,1d d ==,则有111,22a b =-=, ∴5115124544a a db b d +==+, 故答案为:54【点睛】思路点睛:利用等差数列的前n 项和公式,结合等差数列通项公式的特点合理假设即可得到数列的基本量11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+,则有11121222n n S nd a d T nd b d +-=+-.结合已知233n n S n T n -=+,假设122,1d d ==,即可求11,a b . 16.8【分析】由与的关系化简结合等差数列的定义得出数列是等差数列进而求出【详解】当时当时由题意可知整理得所以数列是以为首项为公差的等差数列则故答案为:【点睛】解决本题的关键是由与的关系对化简结合等差数列解析:8 【分析】由n S 与n a 的关系化简212n n n a a S +=,结合等差数列的定义得出数列{}2n S 是等差数列,进而求出2n S n =,【详解】当1n =时,111S a ==当2n ≥时,由题意可知()()21112n n n n n S S S S S ---+=-,整理得2211n n S S --=所以数列{}2n S 是以1为首项,1为公差的等差数列,则2n S n =64264S ∴=,0n a >,648S ∴=故答案为:8 【点睛】解决本题的关键是由n S 与n a 的关系对212n n n a a S +=化简,结合等差数列的定义进行求解.17.15【分析】根据等差数列的前项和与等差数列的性质求解【详解】因为所以又所以故解得故答案为:15【点睛】本题考查等差数列的前项和等差数列的性质利用等差数列的性质求解可以减少计算量解析:15 【分析】根据等差数列的前n 项和与等差数列的性质求解, 【详解】因为32318S a ==,所以26a =,又2311390n n n n n n a a S S a a ----=++-==, 所以130n a -=.故()()12127022n n n n a a n a a S -++===,解得15n =. 故答案为:15. 【点睛】本题考查等差数列的前n 项和,等差数列的性质,利用等差数列的性质求解可以减少计算量.18.【分析】由条件有由数列为正项数列即得然后利用累乘法可求出数列的通项公式【详解】由则又数列为正项数列即所以即所以故答案为:【点睛】本题考查由递推关系求数列的通项公式考查累乘法属于中档题解析:1n【分析】由条件有()()1110n n n n n a na a a ++⎡⎤+-+=⎣⎦,由数列{}n a 为正项数列,即得()101n n n a na ++-=,然后利用累乘法可求出数列的通项公式.【详解】由()221110n n n n n a na a a +++-+⋅=,则()()1110n n n n n a na a a ++⎡⎤+-+=⎣⎦又数列{}n a 为正项数列,即0n a >,11a = 所以()101n n n a na ++-=,即11n n a a nn +=+ 所以1211211211112n n n n n a a a n n a a a a a n n n-----=⋅⋅⋅=⨯⨯⨯⨯=- 故答案为:1n【点睛】本题考查由递推关系求数列的通项公式,考查累乘法,属于中档题.19.768【分析】数阵排列第一列是首项为1公比为2的等比数列可求出第9行首项;每行按公差为排列可解【详解】数阵排列第一列是首项为1公比为2的等比数列所以第9行首项为第9行公差为所以第9行从左至右第3个数解析:768 【分析】数阵排列第一列是首项为1,公比为2的等比数列,可求出第9行首项;每行按公差为12n - 排列,可解【详解】数阵排列第一列是首项为1,公比为2的等比数列12n n a所以第9行首项为82=256,第9行公差为82=256, 所以第9行从左至右第3个数字为768 故答案为:768 【点睛】本题考查等差数列、等比数列基本量运算及学生观察分析能力.解决等差、等比数列基本量计算问题利用方程的思想.等差、等比数列中有五个量一般可以“知三求二”,通过列方程(组)求关键量.20.【分析】由递推关系可求出的值由可知数列是以4为周期的数列进而可得【详解】由可得因为所以同理可得所以数列是以4为周期的数列且所以故答案为:【点睛】本题考查数列求和考查周期数列的性质考查学生的计算求解能 解析:25253-【分析】由递推关系,可求出2345,,,a a a a 的值,由15a a =,可知数列{}n a 是以4为周期的数列,进而可得()20201234505S a a a a =+++. 【详解】由()()13344n n n a a a +++=+,可得1445333n n n n n a a a a a ++-=-=++, 因为15a =,所以255053a -==+,同理可得353a =-,45a =-,55a =,所以数列{}n a 是以4为周期的数列,且123453a a a a +++=-,所以20205252550533S =-⨯=-. 故答案为:25253-. 【点睛】本题考查数列求和,考查周期数列的性质,考查学生的计算求解能力,属于中档题.三、解答题21.(1)()*2n n a n N =∈,()*32n b n n N =-∈;(2)()110352n n T n +=+-⋅.【分析】(1)由12nn n a a +-=,得到()1122n n n a a n ---=≥,再利用累加法求解;根据()2132n S n n =-,利用通项和前n 项的的关系11,1,2nnn S n a S S n -=⎧=⎨-≥⎩求解. (2)由(1)得()322nn n n c a b n ==⋅-,然后利用错位相减法求和. 【详解】 (1)12n n n a a +-=,()1122n n n a a n --∴-=≥, ()()()112211n n n n n a a a a a a a a ---∴=-+-++-+122222n n --=++++()()121222212n n n --=+=≥-,又12a =满足上式,()*2n n a n N ∴=∈.数列{}n b 中()2132n S n n =-, ∴当2n ≥时,()()()2211133113222n n n b S S n n n n n -⎡⎤=-=-----=-⎣⎦, 又当1n =时,111b S ==,满足上式.()*32n b n n ∴=-∈N .(2)由(1)得()322nn n n c a b n ==⋅-,()()211242352322n n n T n n -∴=⨯+⨯++-⋅+-⋅①, ()()23121242352322n n n T n n +∴=⨯+⨯++-⋅+-⋅②,①-②得()()23123222322n n n T n +-=++++--⋅()()2112122332212n n n -+-=+⨯--⋅-()110532n n +=-+-⋅, ()110352n n T n +∴=+-⋅.【点睛】方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11nn na q S a q q q=⎧⎪=-⎨≠⎪-⎩;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 22.(1)14n n a -=;(2)11643994n n -+-⨯. 【分析】(1)2n 时,1n n n a S S -=-,1n =时,111a S ==.即可得出n a . (2)22log 2n n b log n ===,14n n n b na -=.利用错位相减法即可得出. 【详解】解:(1)2n 时,1114141433n n n n n n a S S -----=-=-=,1n =时,111a S ==.综上可得:14n n a -=.(2)22log 2n n b log n ===,∴14n n n b na -=. ∴数列n nb a ⎧⎫⎨⎬⎩⎭的前n 项和21231444n n nT -=+++⋯⋯+.21112144444n n n n nT --=++⋯⋯++, 相减可得:2111311141144444414n nn n nn n T --=+++⋯⋯+-=--. 11643994n n n T -+∴=-⨯.【点睛】本题考查了数列递推关系、等比数列的通项公式求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.根据和求通项时,一定要注意1n =时的检验,利用错位相减求和法时,运算容易出错,一定要仔细准确运算,注意检查,必要时用10110,b T T a ==检验一下.23.(Ⅰ)1n a n =+;(Ⅱ)20202061449T =. 【分析】(Ⅰ)根据条件求等差数列的首项和公差,再求通项公式;(Ⅱ)首先求两个数列中的相同项,设数列{}n a 的前n 项和为n A ,数列{}n b 的前n 项和为n B ,根据公式2020203010T A B =-,求解.【详解】(Ⅰ)依题意,()155355202a a S a+⨯===,解得:34a =,又23a =,故1d =,12a =, 所以1(1)1n a a n d n =+-⋅=+.(Ⅱ)令数列{}n a 的前n 项和为n A ,数列{}n b 的前n 项和为n B ,由(Ⅰ)可知11a b =,32a b =,73a b =,154a b =,…,102310a b =,204711a b =, 所以2020203010T A B =-,2030(22031)203020634952A +⨯==,()1010212204612B -==-,故20202061449T =. 【点睛】关键点点睛:本题考查等差数列和等比数列的综合应用,本题的第二问的关键是找到有多少项相同,以及相同项是什么,然后根据公式2020203010T A B =-求解. 24.(1)22n a n =-,(1)n b n n =+;(2)证明见解析. 【分析】(1)根据等差数列的通项公式求出公差d 可得n a ,根据等差数列的求和公式可得n S ,根据n n S b +,1n n S b ++,2n n S b ++成等比数列可得(1)n b n n =+; (2)将n c 放大后再裂项,利用裂项求和方法求解可证不等式成立. 【详解】(1)设等差数列{}n a 的公差为d , 由题意得31413124333a a d a a d S a d=+=⎧⎨=+==+⎩,解得102a d =⎧⎨=⎩,从而22n a n =-,2(1)(1)2n n nS n n -==-. 因为n n S b +,1n n S b ++,2n n S b ++成等比数列 所以()()()212n n n n n n S b S b S b +++=++, 从而()211222n n n n n n n n S S b S S b S S +++++=++,所以2221221(1)(1)(1)(2)2(1)(1)2(1)(1)(2)2(1)2n n n n n n n S S S n n n n n n n n b n n S S S n n n n n n ++++-+--+++====++--+++-+. (2)证明:因为nc===<=,所以122(10211)2nc c c n n n+++<-+-++--=【点睛】关键点点睛:将nc放大后再裂项,利用裂项求和方法求解是解题关键.25.(1)2nna=;(2)2552n nnT+=-.【分析】(1)设{}n a的公比为q,利用基本量运算求出公比,可得数列{}n a的通项公式;(2)利用错位相减法计算出数列nnba⎧⎫⎨⎬⎩⎭的前n项和nT.【详解】(1)设{}n a的公比为q,由题意知:()116a q+=,2211a q a q=.又0na>,解得12a=,2q,所以2nna=.(2)21nb n=+.令nnnbca=,则212n nnc+=,因此12231357212122222n n n nn nT c c c--+=+++=+++++,又234113572121222222n n nn nT+-+=+++++,两式相减得121111 13111213121525122222222222 n n n n nnn n nT--++++++⎛⎫⎛⎫=++++-=+--=-⎪ ⎪⎝⎭⎝⎭所以2552n nnT+=-.【点睛】方法点睛:本题考查等比数列的通项公式,考查数列的求和,数列求和的方法总结如下:公式法,利用等差数列和等比数列的求和公式进行计算即可;裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方法求和.26.(1)1121na k a kn k=+=-+;;(2)证明见解析;(3)证明见解析.【分析】(1)由数列n a 与n S 的关系运算即可得解; (2)转化条件得12(21)(21)n S n n <-+,由裂项相消法即可得证; (3)通过放缩可得1n b >、111114n n n b k a a -⎛⎫<+-⎪⎝⎭,结合裂项相消法即可得证. 【详解】(1)1n =时, 111a S k ==+,2n ≥时,221[(1)(1)]21n n n a S S k n n k n n kn k -=-=⋅+-⋅-+-=-+,又11a k =+也满足21n a kn k =-+, 11,21n a k a kn k ∴=+=-+;(2)证明:当 2k =时, 22n S n n =+112211(21)2(21)(21)(21)2121n S n n n n n n n n ∴==<=-++-+-+ 2n ∴≥时,12311111111111335572121n S S S S n n ⎛⎫++++<+-+-++- ⎪-+⎝⎭2123213n =-<+; 显然1n =时,111233S =<成立; 123111123n S SS S ∴++++<; (3)证明:当0k >时,1n a >,2411n n a a ∴>, 2222111111n n n n n b a a a a ⎛⎫∴=>=+-= ⎪⎝⎭ 231n b b b n ∴+++>-;又当2n ≥时,22221131111111111112224nn n n n n n n n a b a a a a a k a a --++⎛⎫=<-=+<+=+- ⎪⎝⎭, 2312231111111114n n n b b b n k a a a a a a -⎛⎫∴+++<-+-+-++- ⎪⎝⎭111111111144(1)44(1)n n n n n k a a k k k a k k ⎛⎫=-+-=-+-<-+ ⎪+⋅+⎝⎭, 综上所述,当2n ≥时,()2311141n n b b b n k k -<+++<-++. 【点睛】关键点点睛:解决本题的关键是对数列进行合理放缩,细心计算即可得解.。
等差数列前n项和公式基础训练题(含详解)
④ ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.
11.
【解析】
【分析】
根据 得到 , ,计算得到答案.
【详解】
; ,解得
故答案为:
【点睛】
本题考查了等差数列的通项公式和前 项和,意在考查学生对于等差数列公式的灵活运用.
12.
【解析】
【分析】
利用 来求 的通项.
A.18B.36C.45D.60
7.设 为等差数列, , 为其前n项和,若 ,则公差 ()
A. B. C.1D.2
8.等差数列 的前 项和为 ,已知 , ,则当 取最大值时 的值是()
A.5B.6C.7D.8
9.已知 是数列 的前 项和,且 ,则 ().
A.72B.88C.92D.98
10.设 为等差数列 的前 项的和 , ,则数列 的前2017项和为( )
所以 ,所以 .
故答案为: .
【点睛】
本题考查等差数列公差的计算,难度较易.已知等差数列中的两个等量关系,可通过构造方程组求解等差数列的公差,还可以通过等差数列的下标和性质求解公差.
20.已知数列{an}的前n项和为Sn=n2+3n+5,则an=______.
参考答案
1.A
【解析】
设 ,根据 是一个首项为a,公差为a的等差数列,各项分别为a,2a,3a,4a. .
2.B
【解析】
【分析】
根据等差数列的性质,求出 ,再由前n项和公式,即可求解.
【详解】
∵ ,
∴ ,∴
∴由 得 ,∴ .
故选:B.
【点睛】
本题考查等差数列性质的灵活应用,以及等差数列的前n项和公式,属于中档题.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列训练题
一、单选题(共9题;共18分)
1.已知是等差数列,且满足,,则为()
A. 17
B. 18
C. 19
D. 20
2.已知数列的前n项和为,满足,则的值为()
A. 8
B. 16
C. 32
D. 81
3.已知等差数列的前n项和为,若,则公差d 等于( )
A. B. C. 1 D. 2
4.已知数列的各项均为正数,其前n项和满足,设,
为数列的前n项和,则()
A. 110
B. 220
C. 440
D. 880
5.设S n是等差数列{a n}的前n项和,若,则等于()
A. B. C. D.
6.已知数列为等差数列,,为数列前n项和,则()
A. 10
B. 12
C. 14
D. 16
7.已知等差数列中,前n项和满足,则的值是()
A. 3
B. 6
C. 7
D. 9
8.已知数列中,,且当为奇数时,;当n为偶数时,
.则此数列的前20项的和为()
A. B. C. D.
9.已知(其中,且),且,,成等差数列,则()
A. 8
B. 7
C. 6
D. 5
二、解答题(共8题;共75分)
10.已知等差数列的前项和为,且,.
(1)求数列的通项公式;
(2)求使不等式成立的的最小值.
11.已知数列的前项和为,且.公比大于的等比数列的首项为,且
.
(1)求和的通项公式;
(2)若,求证:,.
12.在数列中,,点在直线上
(Ⅰ)求数列的通项公式;
(Ⅱ)记,求数列的前n项和.
13.已知数列满足:,.
(1)设数列满足:,求证:数列是等比数列;
(2)求出数列的通项公式和前n项和.
14.设为正项数列的前项和,且满足.
(1)求的通项公式;
(2)令, ,若恒成立,求的取值范围.
15.在等差数列中,,.
(1)求数列的通项公式;
(2)设数列是首项为1,公比为2的等比数列,求的前项和.
16.已知为数列的前项和,且,
(1)求数列的通项公式;
(2)设,求数列的前项.
17.已知数列满足,,,且.
(1)求证:数列为等比数列,并求出数列的通项公式;
(2)设,求数列的前项和.
答案解析部分
一、单选题
1.【答案】A
【解析】【解答】设等差数列的公差为,
因为, ,
故,
所以,
故答案为:A.
【分析】先根据题中等式解出的首项与公差,再利用通项公式求即可.
2.【答案】B
【解析】【解答】当时,,解得,
当时,即,
所以数列是以1为首项,公比为的等比数列,
所以.
故答案为:B.
【分析】利用与的关系,结合题意可得数列是以1为首项,公比为的等比数列,利用等比数列的通项公式即可得解.
3.【答案】D
【解析】【解答】解:,,,.
又由,得.
故答案为:D.
【分析】由,可求出,进而可知,结合,可求出公差.
4.【答案】D
【解析】【解答】由得,作差可得:
,又得,
则所以,
…,
所以.
故答案为:D.
【分析】利用之间的关系,即可容易求得,则得解,再用并项求和法即可求得结果.
5.【答案】A
【解析】【解答】解:根据等差数列的性质,
若数列为等差数列,则,,,也成等差数列;
又,
则数列,,,是以为首项,以为公差的等差数列
则,,
故答案为:A.
【分析】根据等差数列的性质,,,也成等差数列,结合,根据等差数列的性质得到,,代入即可得到答案.
6.【答案】A
【解析】【解答】,,
.
故答案为:A.
【分析】由等差数列下标和性质可求得,代入等差数列求和公式可求得结果.
7.【答案】B
【解析】【解答】因为,所以,
又为等差数列,根据等差数列的性质可得,
所以;
故答案为:B
【分析】根据前项和的定义可得,再根据等差数列的性质可得结果.
8.【答案】A
【解析】【解答】当为奇数时,,
则数列奇数项是以为首项,以为公差的等差数列,
当为偶数时,,
则数列中每个偶数项加是以为首项,以为公比的等比数列.
所以
.
故答案为:A
【分析】根据分组求和法,利用等差数列的前项和公式求出前20项的奇数项的和,利用等比数列的前n 项和公式求出前20项的偶数项的和,进而可求解.
9.【答案】A
【解析】【解答】展开式的通项为:,故,,,,,成等差数列,所以,化简得,解得或(舍),故答案为:A.
【分析】计算,,,根据等差数列计算得到答案.
二、解答题
10.【答案】(1)解:设等差数列的公差为
由,
所以,
所以
(2)解:由(1)可知:
所以
又,所以
即或
所以使不等式成立的的最小值为8
【解析】【分析】(1)根据等差数列的通项公式以及前n项和,可得,然后利用公式法,可得结果.(2)根据(1)的结论,计算,然后可得结果.
11.【答案】(1)解:数列的前项和为,且,
当时,,
当时,,
经检验,满足,
所以,数列的通项公式为;
设的公比为,
即,
将代入,得,
解得,
所以,数列的通项公式为.
(2)解:,
当时,,
即,
,,
当时,,
【解析】【分析】(1)对于数列,利用公式即可求得数列的通项公式;设的公比为,利用和,可求出q的值,进而得到数列的通项公式;(2)首先计算出,然后计算出当时,关于的表达式并进行放缩,进一步可将数列放缩成,注意时要另外计算,求,计算结果并加以放缩,即可证明不等式成立.
12.【答案】解:(Ⅰ)由已知得,即
∴数列是以为首项,以为公差的等差数列
∵
∴
(Ⅱ)由(Ⅰ)得
∴
∴
【解析】【分析】(Ⅰ)根据点在直线上,代入后根据等差数列定义即可求得通项公式.(Ⅱ)表示出
的通项公式,根据裂项法即可求得.
13.【答案】(1)解:,
又
是以2为首项,2为公比的等比数列
(2)解:由(1)得,,
.
【解析】【分析】(1)由递推公式计算可得,且,据此可得数列是等比数列.(2)由(1)可得,则,分组求和可得
14.【答案】(1)解:由题可知, 正项数列满足
当,有,即,
解得或(舍),
当时, ,也有,
两式相减得, ,
∴,即,
∴是以4为首项,3为公差的等差数列,∴
(2)解:由(1)知,
∴,
∴,
即.
【解析】【分析】(1)利用的关系式即可求出通项公式.(2)由(1)知,
利用裂项相消求和即可.
15.【答案】(1)解:设等差数列的公差是.
由已知,
∴,
∴,
得,
∴数列的通项公式为.
(2)解:由数列是首项为1,公比为2的等比数列,
∴,
∴,
∴
,
【解析】【分析】(1)依题意,从而.由此能求出数列的
通项公式;(2)由数列是首项为1,公比为2的等比数列,求出,再分组求和即可.
16.【答案】(1)解:是以3为首项,为公比的等比数列,
(2)解:
【解析】【分析】(1)根据已知可得,利用与的关系可得,从而可得
数列为等比数列,利用等比数列的通项公式即可求解.(2)由(1)可知,再利用
错位相减法即可求解.
17.【答案】(1)证明:已知,
则,
且,则为以3为首相,3为公比的等比数列,
所以,
(2)解:由(1)得:,
,①
,②
①-②可得,
则
即
【解析】【分析】(1)根据题目所给递推关系式得到,由此证得数列
为等比数列,并求得其通项公式.然后利用累加法求得数列的通项公式.(2)利用错位相减求和法求得数列的前项和.。